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Least mean square (LMS) 

Signed LMS, signed regressor LMS, sign-sign LMS 

Normalized LMS 

Variable-step-size LMS 

Recursive least squares (RLS) 

Constant modulus algorithm (CMA) 

Types of Adaptive Algorithm 
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Although the best choice of adaptive algorithm might depend on your individual situation, here 

are some generalizations that might influence your choice: 

The LMS algorithm executes quickly but converges slowly, and its complexity grows linearly 

with the number of weights. 

The RLS algorithm converges quickly, but its complexity grows with the square of the 

number of weights, roughly speaking. This algorithm can also be unstable when the number 

of weights is large. 

The various types of signed LMS algorithms simplify hardware implementation. 

The normalized LMS and variable-step-size LMS algorithms are more robust to variability of 

the input signal's statistics (such as power).  

The constant modulus algorithm is useful when no training signal is available, and works 

best for constant modulus modulations such as PSK. However, if CMA has no additional side 

information, it can introduce phase ambiguity. For example, CMA might find weights that 

produce a perfect QPSK constellation but might introduce a phase rotation of 90, 180, or 

270degrees. Alternatively, differential modulation can be used to avoid phase ambiguity. 

Choosing an Adaptive Algorithm 
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A decision-feedback equalizer is a nonlinear equalizer that contains 

a forward filter and a feedback filter. The forward filter is similar to the 

linear equalizer described in Symbol-Spaced Equalizers, 

while the feedback filter contains a tapped delay line whose inputs are the 

decisions made on the equalized signal. The purpose of  a DFE is to cancel 

Inter symbol interference while minimizing noise enhancement. By contrast, 

noise enhancement is a typical problem with the linear equalizers described 

earlier. Below is a schematic of  a fractionally spaced DFE with L forward weights 

and N-L feedback weights. The forward filter is at the top and the feedback 

filter is at the bottom. If  K is 1, the result is a symbol-spaced DFE instead 

of  a fractionally spaced DFE. 

In each symbol period, the equalizer receives K input samples at the 

forward filter, as well as one decision or training sample at the feedback 

filter. The equalizer then outputs a weighted sum of  the values in the forward 

and feedback delay lines, and updates the weights to prepare for the next 

symbol period. 

Decision-Feedback Equalizers 
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Block-Diagram of Decision-Feedback Equalizer 
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A fractionally spaced equalizer is a linear equalizer that is similar 

to a symbol-spaced linear equalizer, as described in Symbol-Spaced 

Equalizers. By contrast, however, a fractionally spaced equalizer receives 

K input samples before it produces one output sample and updates the 

weights, where K is an integer. In many applications, K is 2. 

The output sample rate is 1/T, while the input sample rate is K/T. The 

weight-updating occurs at the output rate, which is the slower rate.Below is 

a schematic of a fractionally spaced equalizer. 

Fractionally Spaced Equalizers 
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Block-Diagram of Fractionally Spaced Equalizers 
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In typical applications, an equalizer begins by using a known sequence of 

transmitted symbols when adapting the equalizer weights. The known sequence, 

called a training sequence, enables the equalizer to gather information about the 

channel characteristics. After the equalizer finishes processing the training 

sequence, it adapts the equalizer weights in decision-directed mode using a 

detected version of the output signal. To 

use a training sequence when invoking the equalize function, include the symbols 

of the training sequence as an input vector.  

As an exception, CMA equalizers do not use a training sequence. If an equalizer 

object is based on CMA, you should not include a training sequence as an input 

vector. The training sequence in this case is just the beginning of the transmitted 

message. 

Equalizing Using a Training Sequence 
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Filtered signal

Equalized signal

Ideal signal constellation

% Set up parameters and signals. 

M = 4; % Alphabet size for modulation 

msg = randint(1500,1,M); % Random message 

modmsg = pskmod(msg,M); % Modulate using QPSK. 

trainlen = 500; % Length of training sequence 

chan = [.986; .845; .237; .123+.31i]; % Channel 

coefficients 

filtmsg = filter(chan,1,modmsg); % Introduce channel 

distortion. 

% Equalize the received signal. 

eq1 = lineareq(8, lms(0.01)); % Create an equalizer 

object. 

eq1.SigConst = pskmod([0:M-1],M); % Set signal 

constellation. 

[symbolest,yd] = 

equalize(eq1,filtmsg,modmsg(1:trainlen)); % Equalize. 

 

% Plot signals. 

h = scatterplot(filtmsg,1,trainlen,'bx'); hold on; 

scatterplot(symbolest,1,trainlen,'g.',h); 

scatterplot(eq1.SigConst,1,0,'k*',h); 

legend('Filtered signal','Equalized signal',... 

   'Ideal signal constellation'); 

hold off; 

The code below illustrates how to use equalize with a training sequence. 

 


