
1

INTERSYMBOL INTERFERENCES.

 EQUALIZING

1 0 1 1 0 1

 1 0 0 1 0 0

t

t

Magnitude

Magnitude
Threshold

Intersymbol interferences Intersymbol interferences

T: 1 0 1 1 0 1

R: 1 0 0 1 0 0

2

Transmitter Channel
F(z)

Equalizer
G(z)=1/F(z)

Receiver

Input

+

AWGN

Zero-Forsing Equalizer

Equalizer

Linear Nonlinear

DFE FSE MLSE

CLASSIFICATION

G(z) = 1/F(z)

3

z-1 z-1 z-1 z-1

x x x x x

Gain adjustment

Unequalized input

Equalized output

v k

I ke





k

kj

jkjke vcI

Linear Filters

Cj-ı Cj-ı Cj-2 Cj+ı Cj+2

Cjk =Cj(k-1)+me(k-1)vk

ek=Ikd-Ikr

Ikd- desred output; Ikr –real output; m- constant; e- error

4

Least mean square (LMS)

Signed LMS, signed regressor LMS, sign-sign LMS

Normalized LMS

Variable-step-size LMS

Recursive least squares (RLS)

Constant modulus algorithm (CMA)

Types of Adaptive Algorithm

5

Although the best choice of adaptive algorithm might depend on your individual situation, here

are some generalizations that might influence your choice:

The LMS algorithm executes quickly but converges slowly, and its complexity grows linearly

with the number of weights.

The RLS algorithm converges quickly, but its complexity grows with the square of the

number of weights, roughly speaking. This algorithm can also be unstable when the number

of weights is large.

The various types of signed LMS algorithms simplify hardware implementation.

The normalized LMS and variable-step-size LMS algorithms are more robust to variability of

the input signal's statistics (such as power).

The constant modulus algorithm is useful when no training signal is available, and works

best for constant modulus modulations such as PSK. However, if CMA has no additional side

information, it can introduce phase ambiguity. For example, CMA might find weights that

produce a perfect QPSK constellation but might introduce a phase rotation of 90, 180, or

270degrees. Alternatively, differential modulation can be used to avoid phase ambiguity.

Choosing an Adaptive Algorithm

6

A decision-feedback equalizer is a nonlinear equalizer that contains

a forward filter and a feedback filter. The forward filter is similar to the

linear equalizer described in Symbol-Spaced Equalizers,

while the feedback filter contains a tapped delay line whose inputs are the

decisions made on the equalized signal. The purpose of a DFE is to cancel

Inter symbol interference while minimizing noise enhancement. By contrast,

noise enhancement is a typical problem with the linear equalizers described

earlier. Below is a schematic of a fractionally spaced DFE with L forward weights

and N-L feedback weights. The forward filter is at the top and the feedback

filter is at the bottom. If K is 1, the result is a symbol-spaced DFE instead

of a fractionally spaced DFE.

In each symbol period, the equalizer receives K input samples at the

forward filter, as well as one decision or training sample at the feedback

filter. The equalizer then outputs a weighted sum of the values in the forward

and feedback delay lines, and updates the weights to prepare for the next

symbol period.

Decision-Feedback Equalizers

7

Block-Diagram of Decision-Feedback Equalizer

8

A fractionally spaced equalizer is a linear equalizer that is similar

to a symbol-spaced linear equalizer, as described in Symbol-Spaced

Equalizers. By contrast, however, a fractionally spaced equalizer receives

K input samples before it produces one output sample and updates the

weights, where K is an integer. In many applications, K is 2.

The output sample rate is 1/T, while the input sample rate is K/T. The

weight-updating occurs at the output rate, which is the slower rate.Below is

a schematic of a fractionally spaced equalizer.

Fractionally Spaced Equalizers

9

Block-Diagram of Fractionally Spaced Equalizers

10

In typical applications, an equalizer begins by using a known sequence of

transmitted symbols when adapting the equalizer weights. The known sequence,

called a training sequence, enables the equalizer to gather information about the

channel characteristics. After the equalizer finishes processing the training

sequence, it adapts the equalizer weights in decision-directed mode using a

detected version of the output signal. To

use a training sequence when invoking the equalize function, include the symbols

of the training sequence as an input vector.

As an exception, CMA equalizers do not use a training sequence. If an equalizer

object is based on CMA, you should not include a training sequence as an input

vector. The training sequence in this case is just the beginning of the transmitted

message.

Equalizing Using a Training Sequence

11

-2 -1 0 1 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Q
u
a
d
ra

tu
re

In-Phase

Scatter plot

Filtered signal

Equalized signal

Ideal signal constellation

% Set up parameters and signals.

M = 4; % Alphabet size for modulation

msg = randint(1500,1,M); % Random message

modmsg = pskmod(msg,M); % Modulate using QPSK.

trainlen = 500; % Length of training sequence

chan = [.986; .845; .237; .123+.31i]; % Channel

coefficients

filtmsg = filter(chan,1,modmsg); % Introduce channel

distortion.

% Equalize the received signal.

eq1 = lineareq(8, lms(0.01)); % Create an equalizer

object.

eq1.SigConst = pskmod([0:M-1],M); % Set signal

constellation.

[symbolest,yd] =

equalize(eq1,filtmsg,modmsg(1:trainlen)); % Equalize.

% Plot signals.

h = scatterplot(filtmsg,1,trainlen,'bx'); hold on;

scatterplot(symbolest,1,trainlen,'g.',h);

scatterplot(eq1.SigConst,1,0,'k*',h);

legend('Filtered signal','Equalized signal',...

 'Ideal signal constellation');

hold off;

The code below illustrates how to use equalize with a training sequence.

