
79

10. Message Authentication

Encryption protects against passive attack (eavesdropping). A different requirement is to
protect against active attack (falsification of data and transactions). Protection against such
attacks is known as message authentication.

A message, file, document, or other collection of data is said to be authentic when it is
genuine and came from its alleged source. Message authentication is a procedure that allows
communicating parties to verify that received message is authentic. The two important aspects
are to verify that the contents of the message have not been altered and that the source is
authentic. We may also wish to verify a message’s timeliness (it has been artificially delayed
and replayed) and sequence relative to other messages flowing between two parties.

10.1. Authentication Using Conventional Encryption

It is possible to perform authentication simply by the use of conventional encryption. If we
assume that only the sender and receiver share a key (which is as it should be), then only the
genuine sender would be able to encrypt a message successfully for the other participant.
Furthermore, if the message includes an error-detection code and a sequence number, the
receiver is assured that no alterations have been made and that sequencing is proper. If the
message also includes a timestamp, the receiver is assured that the message has not been
delayed beyond that normally expected for network transit.

10.2. Message Authentication without Message Encryption

We examine several approaches to message authentication that do not rely on encryption. In
all of these approaches, an authentication tag is generated and appended to each message for
transmission. The message itself is not encrypted and can be read at the destination
independent of the authentication function at the destination.

10. 2. 1 Message Authentication Code

One authentication technique involves the use of a secret key to generate a small block of
data, known as a message authentication code that is appended to the message. This technique
assumes that two communicating parties, say A and B, share a common secret key KAB. When
A has a message to send to B, it calculates the message authentication code as a function of
the message and the key: MACM = F (KAB, M). The message plus code are transmitted to the
intended recipient. The recipient performs the same calculation on the received message,
using the same secret key, to generate a new message authentication code. The received code
is compared to the calculated code. If we assume that only the receiver and the sender know
the identity of the key, and if the received code matches the calculate code, then

1. The receiver is assured that the message has not been altered.
2. The receiver is assured that the message is from the alleged sender. Because no one

else knows the secret key, no one else could prepare a message with a proper code.
3. If the message includes a sequence number, then the receiver can be assured of the

proper sequence, because an attacker cannot successfully alter the sequence number.
A number of algorithms could be used to generate the code. The national Bureau of

Standards, in its publication DES Modes of Operation, recommends the use of Data
Encryption Algorithm (DEA).

80

10. 3. Hash Functions

In general, a hash function is an efficiently evaluated function that takes an input string

(usually binary) of arbitrary length and produces an output string of some fixed length, called

a hash value or message digest. According to the dictionary, the word hash used as a verb

can mean “ to chop into pieces; to mince” or” to make a mess of; to mangle. ”Both of these

capture some of what hash functions are supposed to do. Chop up the input data and make “

mess” of it so that the original data would be difficult or impossible to deduce from the

mangled remains. Value provides a way of checking whether the message has been

manipulated or corrupted in transit or storage. It is a sort of “digital fingerprint”. Moreover,

the message digest can be encrypted using either conventional or public-key cryptography to

produce a digital signature, which is used to help the recipient feel confident that the

received message is not forget.

The hash function H must be satisfied:

 It should be one-way: For a given hash value v=H(x) it should be infeasible for an

opponent to find a message x such that x=H-1(v).

 It should at least be weakly collision resistant: Given a hash value v=H(x) and the

message x from which it was computed, it should be computationally infeasible for an

opponent to find another message y different from x such that v =H(y).

 It might be strongly collision resistant: It is computationally infeasible for an

opponent to find a pair of distinct messages x and y such that H(x)=H(y).

Sender, recipient, and opponent all know the hash function. A recipient of a hashed

message can check for manipulation by “hashing” the message (that is, applying the hash

Fig. 10. 1

M
e
s
s
a
g
e

MAC
Algorith

MAC
Algorith

MAC

MAC
Transmit

Compare

K

 K

M
e
s
s
a
g
e

M
e
s
s
a
g
e

MAC MAC

81

function to the received message) and comparing the result with the hash value that was

pretended to the received message. If the two hash values agree, the probability is high

that there was no manipulation; if the two disagree, it is certain that some manipulation or

corruption in the data took place. Thus hash functions generate a sort of error detecting

code.

Figure shows a technique that uses a hash function. This technique assumes that two

communicating parties, say A and B, share a common secret value SAB. When A has a

message to send B, it calculates the hash function over the concatenation of the secret

value and the message: MDM = H (SAB║M). It then sends [M║MDM] to B. because B

possesses SAB, it can recomputed H (SAB║M) and verify MDM. because the secret value

itself is not sent, it is not possible for an attacker to modify an intercepted message. As

long as the secret value remains secret, it is also not possible for an attacker to generate a

false message.

A variation on the third technique, called HMAC, is the one adopted for IP security.

 SAB

Example 1. Grace and Alan are concerned that their e-mails maybe intercepted and

modified in transit. They agree to compute a hash value H(x) of an e-mail message x as

follows. Group the letters(ignoring spaces and punctuation) into five-letter blocks and pad

if necessary at the end to make the message length exactly a multiple of 5. Then , treating

the letters a representing numbers in the range 0 to 25, they sum letters 1,6,11...modulo 26

to obtain the first hash letter y 1 , sum letters 2,7,12,... modulo 26 to obtain a second hash

letter y 2 , and so on. The five letters representing these five sums are the value of this y 2 ,

and so on. The five letters representing these five sums are the value of this hash function:

m
e
s
s
a
g
e

H

Channel H

Compare

m
e
s
s
a
g
e

m
e
s
s
a
g
e

MDM

[M║MDM]

MDM

MDM

Fig. 10. 2

Alice
Bob

82

H(x) = y 1 y 2 y 3 y 4 y 5 .The hash value will be sent first in a preliminary message, and then

the message itself will be sent.

For example, suppose Grace wants to send the message:

It is much easier to apologise than it is to get permission.

X=ITISM UCHEA SIERT OAPOL OGIZE THANI TISTO GETPE RMISS IONXX

Alan then computes the hash letters by

y1  I+U+S+O+O+T+T+G+R+I = N(mod 26)

y 2 T+C+I+A+G+H+I+E+M+O = C(mod 26)

y 3  I+H+E+P+I+A+S+T+I+N = W(mod 26)

y 4 S+E+R+O+Z+N+T+P+S+X = K(mod 26)

y 5 M+A+I+L+E+I+O+E+S+X = J(mod 26)

She first sends NCWKJ and then she sends the plaintext unencrypted.

On the other end, after receiving a hash value and a message, Alan sums the message

letters in the same way to produce a hash word. It compares the message letters in the

same way to produce a hash word. He compares this with the one that preceded the

message. If the two are the same, he regards the message as likely to be the one Grace

sent. If they are different, he is certain that either the message was altered, or the hash

value was altered, or both. In this case, he rejects the received message.

Why does agreement between Alan’s computed and received hash words make it likely

that the message was unaltered? Suppose, for instance, that Evelyn, an opponent, knows

the hashing algorithm, has learned the hash value Grace sent, and would like to alter or

ITISM
UCHEA
SIERT
OAPOL
OGIZE
THANI
TISTO
GETPE
RMISS
IONXX

NCWKJ
(Computed
hash letters)

x
ITISM UCHEA …..IONXX NCWKJ

ITISM
UCHEA
SIERT
OAPOL
OGIZE
THANI
TISTO
GETPE
RMISS
IONXX

NCWKJ
(Computed
hash letters)

NCWKJ

(Received
hash letters)

 ≠
=

Message
was altered

Message
likely
to be sent

Fig. 10. 3

Grace
Evelyn

Alan

83

replace the message to Alan. If , for example, she changed the letters EASI to HARD. In

the message, then she would change the message, but Alan would (you should verify)

compute the hash word MXWNJ and compare it with NCWKJ to see that something was

a miss. If Evelyn picked an intelligible English sentence at random, what would be the

probability that it hashed to NCWKJ? An easier question is, If Evelyn picked a random

string of letters, what would be the probability that it hashed to NCWKH? Assuming that

the strings that do hash to NCWKJ are in some sense uniformly distributed through all

strings, then this probability is .).?(104.8
11881376

1

26

1 8
5

whyx  The sub collection of

these strings hashing to NCWKJ that are also intelligible English sentences is only a tiny

proportion, so the probability of Evelyn choosing an English text at random that hashes to

NCWKJ is small indeed. Of course, knowing the details of the hashing algorithm, Evelyn

might be able to improve her odds significantly. Hash functions are selected so that their

values will be essentially uniformly distributed for the population of expected messages. If

there are M possible messages, and z is a k-bit hash value, then there are about M/2 k

messages that hash to z, so the probability of an adversary guessing a message that hashes

to z is about

k2

1

M

M/2 k



10. 3. 1. Simple Hash Functions

All hash functions operate using the following general principles. The input (message,

file, etc.) is viewed as a sequence of n-bit blocks. The input is processed one block at a

time in an iterative fashion to produce an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of every

block. This can be expressed as follows:

imiii bbbC  ...21

Where

Ci = ith bit of the hash code, 1≤ i ≤ n

m = number of n-bit blocks in the input

bij = ith bit in jth block

 = XOR operation

84

Figure illustrates this operation; it produces a simple parity for each bit position and is known

as a longitudinal redundancy check. It is reasonably effective for random data as a data

integrity check. Each n-bit hash value is equally likely. Thus, the probability that a data error

will result in an unchanged hash value is 2-n. with more predictably formatted data, the

function is less effective. For example, in most normal text files, the high-order bit of each

octet is always zero. So if a 128-bit hash value is used, instead of an effectiveness of 2-128, the

hash function on this type of data has an effectiveness of 2-112.

A technique originally proposed by the National Bureau of Standards used the simple XOR

applied to 64-bit blocks of the message and then an encryption of the entire message that used

the cipher block chaining (CBC) mode. We can define the scheme as follows: given a

message consisting of a sequence of 64-bit blocks X1, X2, … XN, define the hash code C as the

block-by-block XOR or all blocks and append the hash code as the final block:

NN XXXXC   ...211

Next, encrypt the entire message plus hash code, using CBC mode to produce the encrypted

message Y1, Y1,… YN+1.

10. 3. 2. The SHA-1 Secure Hash Function

The secure hash algorithm (SHA) was developed by the National Institute of Standards and

Technology (NIST) and published as a federal information processing standard 1993; a

revised version was issued as FIPS PUB 180-1 in 1995and is generally referred to as SHA-1.

Bit1 Bit 2 … Bit n

Block 1 b11 b21 bn1

Block 2 b12 b22 bn2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Block m b1m b2m bnm

Hash code C1 C2 Cn

85

The algorithm takes as input a message with a maximum length of less than 264 bits

and produces as output a 160-bit message digest. The input is processed in 512-bit blocks.

The SHA-1 algorithm has the property that every bit of the hash code is a function of

every bit of the input. The complex repetition of the basic function f produces results that are

well mixed, that is, it is unlikely that two messages chosen at random, even if they exhibit

similarly regularities, will have the same hash code. Unless there is some hidden weakness in

SHA-1, which has not so far been published, the difficulty of coming up with two messages

having the same message digest is on the order of 280 operations, while the difficulty of

finding a message with a given digest is on the order of 2160 operations.

In this section we look at two other secure hash functions that, in addition to SHA-1,

have gained commercial acceptance. Some of the principal characteristics are compared in

table.

So with a secure hash function that produces, say, a 160-bit hash value- as does the federal

Secure Hash Standard 8 the probability of random guesswork leading to a message for

a given hash value is

9325429766283019655036848327133090291821461501637

1

2

1
160

 = 6.8422810 49

Presumably, very sophisticated guessing might raise this number a few orders of

magnitude, but the probability will still be infinitesimal.

10. 4 MD5 Message Digest Algorithm

The MD5 message-digest algorithm (RFC 1321) was developed by Ron Rivest. Until the last

few years, MD5 was the most widely used secure hash algorithm. Table shows comparison of

Secure Hash Functions.

MD5 SHA-1 RIPEMD-160

Digest lenght 128 bits 160 bits 160 bits

Basic unit of processing 512 bits 512 bits 512 bits

Number of steps 64 (4 rounds

of 16)

80 (4 rounds

of 20)

160(5 rounds of

16)

Maximum message size ∞ 264-1 bits ∞

Primitive logical func. 4 4 5

Additive constants used 64 4 9

86

The algorithm takes as input a message of arbitrary length and produces as output a 128-bit

message digest. The input is processed in 512-bit blocks.

As processor speeds have increased, the security of a 128-bit hash code has become

questionable. It can be shown that the difficulty of coming up with two messages having the

same message digest is on the order of 264 operations, whereas the difficulty of finding a

message with a given digest is on the on the order 2128 operations. The former figure is too

small for security. Further, a number of cryptanalytic attacks have been developed that

suggest the vulnerability of MD5 to cryptanalysis.

10. 4. 1 RIPEMD-160

The RIPEMD-160 message-digest algorithm was developed under the European RACE

Integrity Primitives Evaluation (RIPE) project, by a group of researchers that launched

partially successful attacks on MD4 and MD5. The group originally developed a 128-bit

version of RIPEM. After the end of the RIPE project, H. Dobbertin (who was not a part of the

RIPE project) found attacks on two rounds of RIPEMD, and later on MD4 and MD5. Because

of these attacks, some members of the RIPE consortium decided to upgrade RIPEMD. The

design work was done by them and by Dobbertin.

RIPEMD-160 is quite similar in structure to SHA-1. The algorithm takes as input a

message of arbitrary length and produces as output a 160-bit message digest. The input is

processed in 512 –bit blocks.

10. 4. 2 HMAC

In recent years, there has been increased interest in developing a MAC derived from a

cryptographic hash code, such as SHA-1.

A hash function such as SHA-1 was not designed for use as a MAC and can not be

used directly for that purpose because it does not rely on a secret key. There have been a

number of proposals for the incorporation of a secret key into an existing hash algorithm. The

approach that has received the most support is HMAC. HMAC has been issued as RFC 2104,

has been chosen as the mandatory-to-implement MAC for IP Security, and is used in other

Internet protocols, such as transport layer security (TLS, soon to replace secure sockets layer)

and secure electronic transaction (SET).

