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5. Classical Cryptographic Techniques from modular arithmetic perspective 

By classical cryptography we mean methods of encipherment that have been used 
from antiquity through the middle of the twentieth century and that are generally based on 
pencil-and-paper work. The goal in all of these methods is to keep secret from intermediaries 
the content of messages in ordinary human language. 

One of the essential ideals throughout the course is modular arithmetic, which we 
introduce in the context of shift ciphers. We illustrate how some forms of typographical 
transformations can be performed by calculations that use modular arithmetic. Broadly 
speaking, there are two basic approaches to cryptology: substitution, where plaintext symbols
are replaced by other symbols to produce hypertexts, and transposition, where plaintext 
symbol are rearranged to produce ciphertext. We will encounter these basic ideas in various 
forms, separately and in combination.

 Plaintext will be written in lover case letters and CIPHERTEXT will be written in 
capital letters (expect in the computer problems).

 The letters of the alphabet are assigned numbers as follows: 

a   b   c   d   e   f   g   h   i   j   k     l     m    n    o     p
0  1   2   3  4   5   6   7  8   9  10   11  12   13  14   15

q    r    s     t    u    v    w    x     y    z
16  17  18  19  20  21  22   23   24   25

Note that we start with a=0, so z is letter number 25.

 Spaces and punctuation are omitted. This is even more annoying, but is almost always 
possible to replace the possible to replace the spaces in the plaintext after decrypting. 
If spaces were left in, there  would be two choices. They could be left as spaces; but 
this yields so much information on the structure of the message that decryption 
becomes easier. Or they could be encrypted; but then they would dominate frequency 
counts (unless the message averages at least eight letters per word), again simplifying 
decryption.

Note: In this chapter, we’ll be using some concepts from number theory, especially 
modular arithmetic. If you are not familiar with congruence, you should read the first 
three section of chapter 3 before proceeding.

Shift Ciphers 

One of the earliest cryptosystems is often attributed to Julius Caesar. Suppose Alice 
wanted to send a plaintext such as 

attack

but she didn’t want Oscar to read it. He shifted each letter by six places, so a become G, b
became Z, c became I, and K because Q.

G Z Z G I Q
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Decryption was accomplished by shifting back by seven spaces (and trying to figure 
out how to put the spaces back in).

We now give the general situation using a modular arithmetic.
Label the letters as integers from 0 to 25, the key is an integer k with 0 ≤ k ≤ 25. The 

encryption process is

C = (p + k) mod 26

Decryption is P= (c - k) mod 26. For example, Caesar used k=3.
Let’s see how the four types of attack work.

1. Known ciphertext only: Oscar has only the ciphertext. Her best strategy is an 
exhaustive search, since there are only 26 possible keys. The letter e occurs most 
frequently in most English text. Suppose the letter L appears frequently in the 
ciphertext. Since e=4 and L=11, a reasonable guess is that k = 11 – 4 = 7. However, 
for shift ciphers this method takes much longer than an exhaustive search, plus it 
requires many more letters in the message in order for it to work (anything short, such 
as this, might not contain a common symbol, thus changing statistical counts).

2. Known plaintext: If you know just one letter of the plaintext along with the 
corresponding letter of ciphertext, you can deduce the key. For example, if you know t 
(P= 19) encrypts to D (C= 3), then the key is k ≡ 3 – 19 ≡ -16 ≡ 10 (mod 26).

3. Chosen plaintext: Choose the letter a as the plaintext. The ciphertext gives the key. 
For example, if the ciphertext is H, then the key is 7. 

4. Chosen ciphertext: choose the letter A as ciphertext. The plaintext is the negative of 
the key. For example, if the plaintext is h, the key is – 7 ≡ 19 (mod 26).

Affine Ciphers

The shift ciphers may be generalized and slightly strengthened as follows. Choose two 
integers α and β, with gcd (α, 26) = 1, and consider the function (called an affine function)

y= (αx + β) mod 26;        α = P;        y = C    

For example, let α = 9 and β = 2, so we are working with 9 p + 2. take a plaintext letter 
such as h (x = 7). It is encrypted to 9 ∙ 7 + 2 ≡ 65 ≡ 13 (mod26), which is the letter N.
Using the same function, we obtain 

Affine → CVVWPM. 

How do we decrypt? If we were working with rational number rather than mod 26, we find: 
c - β = α p,     x = α-1 (y - β) p= α-1(c - β). In our example: y = 9 p + 2 and solve:                  p 
= 1/9 (c – 2). But 1/9 needs to be reinterpreted when we work mod 26.since gcd (9, 26) = 1, 
there is a multiplicative inverse for 9 (mod 26) (if this last sentence doesn’t make sense to 
you). In fact, 9 ∙ 3 ≡ 1 (mod 26), so 3 is the desired inverse and can be used in place of 1/9. we 
therefore have

x ≡ 3 (c – 2) ≡ 3c – 6 ≡  3y + 20 (mod 26).
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Let’s try this. The letter V (P=21) is mapped to 3.21 + 20 ≡ 83 ≡ 5 (mod 26), which is the 
letter f. Similarly, we see that the ciphertext CVVWPM is decrypted back to affine.

Suppose we try to use the function 13P + 4 as our encryption function.
We obtain 

Input → ERRER.

If we alter the input, we obtain 

Alter → ERRER.

Clearly this function leads to errors. It is impossible to decrypt, since several plaintexts 
yield the same ciphertext. In particular, we note that encryption  must be one-to-one, and this 
fails in the present case.

What goes wrong in this example? If we select α=13; β =4 and solve y= 13x + 4, we 
obtain P=1⁄13 (C-4). But 1/13 does not exist mod 26 since gcd (13, 26) = 13 ≠ 1. more 
generally, it can be shown that αP + β is a one-to-one function mod 26 if and only if gcd (α, 
26) = 1. In this case, decryption uses x ≡ α*y - α* β (mod 26), where αα*≡ 1 (mod26). So 
descryption is also accomplished by an affine function.

The key for this encryption method is the pair (α, β). There are 12 possible choices for 
α with gcd (α, 26) = 1 and there are 26 choices for β (since we are working mod 26, we only 
need to consider α and β between 0 and 25). Therefore, there are 12 ∙26 = 312 choices for the 
key. 

Let’s look at the possible attacks.

1. Ciphertext only: An exhaustive search through all 312 keys would take longer than 
the corresponding search in the case of the shift cipher; however, it would be very 
easy to do on a computer. When all possibilities for the key are tired, a fairly short 
ciphertext , say around 20charecters, will probably correspond to only one meaningful 
plaintext, thus allowing the determination of the key. It would also be possible to use 
frequency counts, thought this would require much longer texts.

2. Known plaintext: With a little luck, knowing two letters of the plaintext and the 
corresponding letters of the ciphertext suffices to find the key. In any case, the number 
of possibilities for the key is greatly reduced and a few more letters should yield the 
key.

For example, suppose the plaintext starts with if and the corresponding ciphertext is 
PQ. In numbers, this means that 8 (= i) maps to 15 (= P) and 5 maps to 16. therefore, 
we have the equations

8 α + β ≡ 15 and 5 α + β ≡ 16 (mod 26).
Subtracting yields 3 α ≡ -1 ≡ 25  (mod 26), which has the  unique solution α =17. 
using the first equation, we find 8∙ 17 + β ≡ 15 (mod  26), which yields β = 9.

Suppose instead that the plaintext go corresponds to the ciphertext TH. We 
obtain the equations

6 α + β ≡ 19 and 14 α + β ≡ 7  (mod 26).
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Subtracting yields -8 α ≡ 12 (mod 26). Since gcd(-8,26) = 2, this has two 
solutions: α=5, 18. the corresponding values of β are both 15 (this is not a concidence; 
it will always happen this way). So we have two candidates for the key: (5, 15) and 
(18, 15). However, gcd (18, 26) ≠ 1 so the second is ruled out. Therefore, the key is 
(5, 15).

The preceding procedure works unless the gcd we get is 13 (or 26). In this 
case, use another letter of the message, if available.

If we know only one letter of plaintext, we still get a relation between α and β. 
For example, if we only know that g in plaintext corresponds to T in ciphertext, then 
we have 6 α + β ≡ 19 (mod 26).there are 12 possibilities for α and each gives one 
corresponding β. There, an exhaustive search through the 12 keys should yield the 
correct key.

3. Chosen plaintext: Choose ab as the plaintext. The fist character of the ciphertext will 
be   α ∙ 0 + β = β, and the second will be α + β. Therefore, we can find the key.

4.Chosen ciphertext: Choose AB as the ciphertext. This yields the decryption function of 
the form x = α1 y + β1. We could solve for y and obtain the encryption key. But why 
bother? We have the decryption function, which is what we want.

Hill Cipher. The Hill cipher, which is a block cipher invented in 1929 by Lester Hill. It 
seems never to have been used much in practice. Its significance is that it was perhaps the first 
time that algebraic methods (linear algebra, modular arithmetic) were used in cryptography in 
an essential way. As we’ll see in later chapters, algebraic methods now occupy a central 
position in the subject.
Chose an integer n, for example n=2. The key is an n x n matrix k. For example k is 2 x 2  
matrix.

  Encrytion Algorithm is  y = ek (X) = kX

X is vector (1x n) obtained from plaintext letters numerical equivalents y is chiphertext letters 
numerical equivalents.

If x1, x2, x3, … xn-1, xn are the numerical equivalents of our n plaintext letters (n is 
seven), we breave plaintext each block to a vector of (1×n).

(y1  y2) = (x1  x2)  k mod 26
(y3   y4) = (x3  x4)  k mod 26
………
(yn-1 yn) = (xn-1  xn) k mod 26

Decryption algorithm is 

x = dk (y) = y         
(x1  x2) = (y1  y2)k

-1 mod 26
. . . . .. . . . . . . . . . .
(xn-1  xn) = (yn-1 yn)k

-1 mod 26
Example :

n=2
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x = july = ((9, 20), (11, 24)) 









73

811
k

(y1  y2) = (9, 20) 







73

811
mod 26 = (159 212) mod 26 = (3, 4)

(y3  y4) = (11, 24) 







73

811
= (11, 22)         mod 26

y = ((3, 4), (11, 22)) = DELW ;  y = DELW 

In order to decrypt we need: 
gcd (det (k), 26) = 1

Now that we have the ciphertext, how do we decrypt? Simply break the ciphertext into blocks 
of length n, change each to a vector, and multiply on the right by the inverse matrix N. In our 
preceding example, we have

y = DELW = ((3, 4), (11, 26)) → (3, 4) k-1 = (3, 4) 










53/1153/3

53/853/7
mod 26 

= (9/53    20/53) mod 26 = (9, 20) = JULY  

The Hill cipher can be implemented using key matrices with sizes other than 2 x 2 . ın 
the Exercises you have the opportunity to explore what happens with 3 x 3 key matrices.

Example 2 

x = blockcipher.                 k = 

8911

654

321

This becomes (we add an x to fill the last space) 

1 11 14 2 10 2 8 15 7 4 17 23

Now multiply each vector by M, reduce the answer mod 26, and change back to letters:

(1, 11, 14) M = (199, 183, 181) ≡ (17, 1, 25) (mod 26) = RBZ

   
(2,10, 2) M = (64,    72,   82)  ≡ (12, 20, 4)             (mod 26) = MUE, etc.

In our case, the ciphertext is: RBZMUEPYONOM.

It is easy to see that changing one letter of plaintext will usually change n letters of 
chiphertext. For example, if block is changed to clock, the fist three letters of ciphertext 
change from RBZ to SDC. This makes frequency counts less effective, though they are not 
impossible when n is small. The frequencies of two letter combinations, called diagrams, and 
three-letter combinations, trigrams, have been computed. Beyond that, the number of 
combinations becomes too large (though tabulating the results for certain common 
combinations would not to be difficult). Also, the frequencies of combinations are so low that 
it is hard to get meaningful data without a very large amount of text.
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Cryptanalysis

1. Known plaintext
- Oscar knows m plaintexts xi  (Z26)

m and (finds out) the corresponding ciphertexts  yi,
1 ≤ i ≤ m
- Consider the matrices X, Y  (Z26)

mxm having the rows xi’s and yi ’s
-The equation Y = Xk gives the key K = X-1Y (assumig X is invertible; if chosen plaintext, 
then Oscar will make sure of that)

Example: Assume m = 2 and the plaintext Friday is encrypted as PQCFKU, i.e., ek              
(5, 17) = (15, 16), ek (8, 3) = (2, 5), ek (0, 24) = (10, 20). From the first two:

       P         =        C









52

1615
   =   








38

175
k

k = 











































38

197

52

1615

152

19

52

1615

38

175
1

This can be verified by the third pair.

2. A chosen plaintext attack proceeds by the same strategy, but is a little faster. Again, if you 
do not know n, try various possibilities until one works. So suppose n is known. Choose the 
first block of plaintext to be baaa … = 1000…, the second to be abaa… = 0100…, and 
continue through the nth block begin… aaab = 0001. the blocks of ciphertext will be the rows 
of the matrix M.

3. For a chosen ciphertext attack, use the same strategy as for chosen plaintext, where the 
choise now represent ciphertext. The resulting plaintext will be the rows of the invrse matrix 
N.

Claude Shannon, in one of the fundamental papers on the theorical foundation of 
cryptography, gave two properties that a good cryptosystem should have in order to prevent 
statistical analysis: diffusion and confusion. 

Diffusion means that if we change a character of the plaintext, then several characters of 
the ciphertext should change, and similarly, if we change a character of the ciphertext, then 
several characters of the plaintext should change. We say that the Hill cipher has this 
property. This means that frequency statistic of letters, digrams, etc. in the plaintext are 
diffused over several characters in the ciphertext, which means that much more ciphertext is 
needed to do a meaningful statical attack.

Confusion means that the key does not relate in a simple way to the ciphertext. In 
particular, each character of the ciphertext should depend on several parts of the key. For 
example, suppose we have a Hill cipher with an n x n matrix, and suppose  we have a 
plaintext-ciphertext pair of length n2 with which we are able to solve for the encryption 
matrix. If we change one character of the ciphertext, one column of the matrix can change 
completely. Of course, it would be more desirable to have the entire key change. When a 
situation like that happens, the cryptanalyst would probably need to solve for the entire key 
simultaneously, rather than piece by piece.
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The Vigenere and substitution ciphers do not have the properties of diffusion and 
confusion, which is why they are so susceptible to frequency analysis.

The concepts of diffusion and confusion play a role in any well-designed block cipher. 
Of course, a disadvantage (which is precisely the cryptographic advantage) of diffusion is 
error propagation: A small error in the ciphertext becomes a major error in the decrypted 
message, and usually means the decryption is unreadable.

Permutation Cipher:

Encryption:  eπ (x1, …. , xn ) = (xπ (1), …. , xπ) = (y1, y2, ….. , yn)
Decryption:   dπ (y1, ....., yn ) = (yπ-1(1), … , yπ-1(n) ) = (x1, x2, …., xn)

Example: Suppose plaintext “she sells seas  hells by these  ashore”      

n = 6 and 









246153

654321
 for decryption 










425163

6543211 . We can then 

use π for encryption as below:
shesel          lsseas         hellsb       ythese           ashore      π
EESLSH   SALSES   LSHBLE   HSYEET    HRAEOS π-1

We show next that the permutation cipher is a particular case of Hill cipher. Given π we 
construct the matrix Kπ = (kij) by 

Kij = 






 

otherwise

iif

0

1 

It is easy to see that encrypting using π in the permutation cipher is the same as encrypting 
using Kπ in Hill cipher. Moreover, Kπ-1 = Kπ-1. 























































 

000010

001000

100000

000001

010000

000100

001000

000010

010000

000001

100000

000100

1
 KK

Viegener Cipher 

Z1= K  ans zi = xi-1, for i ≥ 2
Encryption: ez (x) = (x + z) mod 26
Decryption: dz(y) = (y - z)  mod 26

Example: suppose K = 8, we have the following encryption: 

rendezvous
irendezvou
ZVRQHDUJIM
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One- time pad: 

Notice that the autokey cipher is a modified Vigenere cipher where the key is the plaintext 
itself shifted by a fixed amount. Vigenere was possible to break by finding the length of the 
key. In autokey the key has the same length as the plaintext. Still, because it is related to the 
plaintext statistical techniques can be still applied.

Ideally, the key should be of the same length as the plaintext but completely unrelated. 
This is done in the One-time pad cipher.

One-time pad

n ≥ 1, P = C = K = (Z2)
n

ek = (x1+ k1, ……………x4 + k4) mod 26
dk = (x1 – k1,……......x4 – k4) mod 26

-advantage: implies that one-time pad is perfectly secure
-disadvantages: 

-the key (which has to be securely communicated) is as least as big as the plaintext
-each key can be used only once
-Vulnerable against know- plaintext
-severe key management problems; not commercially used but diplomatically and 

military
-much used for the Moscow- Washington hot- line
-much used for the Russian agents operating in foreing countries
Invented in 1918, it was thought to be unbreakable for many years unit Shannon proved 

it unbreakable only in 1949

Example: 

x =  i   m    p    o    s    s    i   b   l   e
x =  8, 12, 15, 14, 18, 18, 8, 1, 11, 4
k = (8,13, 24, 19, 9,  1, 0, 7, 20, 3) – random looking 10 numbers. here is given one 

example sender and receiver must agree a key in advance.
    ek(z) = (16, 25, 13, 7, 1, 19, 8, 8, 5, 7)
    ek(x) = ( Q   Z   N   H B  T   I   I  F  H ) 


