
68

9. Elliptic Curves Cryptography

In the mid-1980s, Miller and Koblitz introduced elliptic curves into cryptograph, and

Lenstra showed how to use elliptic curves to factor integers. Since that time, elliptic

curves have played an increasingly important role in many cryptographic situations. One

of their advantages is that they seem to offer a level of security comparable to classical

cryptosystems that use much larger key sizes. For example, it is estimated in that certain

conventional systems with a 4096-bit key size can be replaced by 313-bit elliptic curve

systems. Using much shorter numbers can represent a considerable saving in hardware

implementations.

An elliptic curve E is the graph of an equation

E:y ,32 baxx  and denoted by Ep(a,b).

Where a, b are in whatever is the appropriate set(rational numbers, complex numbers,

integers mod n, etc.).We also include a “point at infinity,” denoted , which is most

easily regarded as sitting at the top of the y-axis. It can be treated rigorously in the

context of projective geometry, but this intuitive notion suffices for what we need. The

bottom of the y-axis is identified with the top , so  also sits at the bottom of the y-axis.

When we are working with real numbers, the graph E has one of two possible forms,

depending on whether the cubic polynomial in x has one real root or three real roots. In

the figure below are shown example of elliptic curves illustrated using Matlab files.

We assume that the cubic polynomial x bax 3 has no multiple roots.

2. Y2=x3-2x+1

x=(-5:0.1:5);
y1=(x).^3-2*x+1;
y2=sqrt(y1);
plot(x,y2);
y3=-y2;
hold on
plot(x,y3);

-5 0 5-15

-10

-5

0

5

10

15

Fig. 9. 1

69

This means we exclude, for example, the graph of y).1(22  xx

Technical point :
Given two points P1 and P2 on E, we can obtain a third point P3 on E as follows: Draw

the line L through P1 and P2 (if P1 = P2, take the tangent line to E at P1). The line L intersects E
in third point Q. Reflect Q through the x-axis (i.e., change y to -y) to get P3. Define a law of
addition on E by

P1 + P2 = P3

Note that this is not the same as adding points in the plane.

Example: suppose E is defined by y2 = x3 + 73. Let P1 = (2, 9) and P2 = (3,10). The line L
through P1 and P2 is y = x + 7. Substituting into the equation for E yields (x + 7)2 = x3 + 73,
which yields x3 – x2 – 14x + 24 = 0. Since L intersects E in P1 and P2, we already know two
roots, namely x = 2 and x = 3. Moreover, the sum of the three roots is minus the coefficient of
x2 and therefore equals 1. so the third point of intersection has x = -4. since y = x + 7, we have
y = 3, and Q = (-4, 3). Therefore, P3 = (-4, -3).

Elliptic Curves Mod n

If n is an integer, we can work with elliptic curves mod n using the aforementioned ideas. For
example, consider

E: y2 ≡ x3 + 2x + 3(mod 5).

The points on E are the pairs (x, y) mod 5 that satisfy the equation, along with the point at
infinity. These can be listed as follows. The possibilities for x mod 5 are 0, 1, 2, 3, 4 substitute
each of these into the equation and find the values of y that solve the equation.

Historical point: Elliptic curves are not ellipses. They received their name from their relation
to elliptic integrals such as




2

1

2

1

33

z

z

z

z baxx

xdx
and

baxx

dx

That arise in the computation of the arc length of ellipses.

P1

P2

P3

Q

x

y

Fig. 8. 2

70

9.1 Addition operations over elliptic curve

The rules for addition over the elliptic group E p (a,b) are:

1. Let the points P1=(), 11 yx and)y,x(P 222  be in the elliptic group E p (a,b), and O is

the point at infinity .

P1 + P2 = P3 = (x3, y3)

x pxx mod21
2

3  

y 3 = pyxx mod)(131 

where slope  =


















21
1

2
1

21
12

12

PPif
y2

ax3

PPif
xx

yy

2. PPOOP 

3. If x 12 x and ,12 yy  that is

 P1=(), 11 yx and)y,x(P 222  =)y,x(11  = - P1 , then P1 + P2 = O

Example

E 23 (1,1), P1=(4,0), P2=(3, 10); P1#P2.

Find P1 + P2 = P3 = (x3, y3)

10
43

010

12

12 






 

xx

yy


10 , x 23mod341003  =93 mod 23= 1 mod 23;

y 3 =-10(4-1)-0 mod 23=-30 mod 23=16mod23

(4,0) + (3, 10) =(1, 16)

9. 2 Multiplication over an elliptic curve group:

The multiplication over an elliptic curve group E p (a,b) is the equivalent of the

modular exponentiation in RSA.

Let P=(3,10)).1,1(23E Then 2P=(x 3 ,y 3) is equal to:

),(),(2 1111 yxyxPPP 

Since QP  and x 2 =x1 , the values of  , x 3 and y 3 are given by:

71

1

2
1

y2

ax3 
 mod p= 623mod423mod

20

5
23mod

02

1)3(3 1
2


 

2mod3423mod10)73(6pmody)xx(y

723mod3023mod336pmodxxx

1313

2
21

2
3




Therefore)12,7(),(2 33  yxP

In the following table is given the product k P on elliptic curve E23(1,1) for k=1:10.

k

1

1

2y

a3x
λ




x 3

23mod21
2 xx 

y 3

23mod)(131 yxx 

kP

(x)3,3 y

1 (3,10)

2 6 7 12 (7,12)

3 12 19 5 (19,5)

4 4 17 3 (17,3)

5 11 9 19 (9,16)

6 1 12 4 (12,4)

7 7 11 3 (11,3)

8 2 13 16 (13,16)

9 19 0 1 (0,1)

10 3 6 4 (6,4)

9. 3 Elliptic Curve ElGamal Encryption

Elliptic curve cryptography can be used to encrypt plaintext messages, M, into ciphertexts.

The plaintext message M (Fig. 10.3) is encoded into a point P M form the finite set of points in

the elliptic group, E p (a,b). The first step consists in choosing a generator point,

G),,(baE p such that the smallest value of n such that n G=O is a very large prime number.

The elliptic group Ep(a,b) and the generator point G are made public.

Each user select a private key, n A <n and compute the public key P A =n GA . To

encrypt the message point P M for Bob, Alice chooses a random integer k and computes the

cipher text pair of points P C using Bob’s public key P B :

P c =[(KG),(P BM kP)]

72

After receiving the ciphertext pair of points, P c , Bob multiplies the first point, (kG) with his

private key, n B , and then adds the result to second point in the ciphertext pair of points,

(P BM kP)]:

(P BM kP)-[n B (kG)]=(P MBBM PkGnGkn )]([)

which is the plaintext point, corresponding to the plaintext message M. Only Bob, knowing

the private key n B ,can remove n B (kG) from the second point of the ciphertext pair of point,

i.e.(P),BM kP and hence retrieve the plaintext P M .

Ep(a,b) and G are public

Example

Consider the following elliptic curve:

751mod188

mod
32

32





xxy

pbaxxy

that is : a=-1, b=188, and p=751.The elliptic curve group by the above elliptic curve is then

E).188,1(E)b,a(751P 

If Alice wants to send to Bob the message M which is encoded as the plaintext point

P).188,1()253,443(751 M She must use Bob public key to encrypt it. Suppose that Bob’s

secret key is ,85Bn then his public key will be:

)558,671(P

)376,0(85GnP

B

BB




Alice selects a random number k=113 and uses Bob’s public key P B =(671, 558) to encrypt

the message point into the ciphertext pair of points:

Select random
prime k
Calculate
Ciphertext

Pc=[kG, PM+kPb]

Bob select secret key nb

Bob calculate:
1) public key

Pb=nbG
Receiving a ciphertext
Bob eliminate kG and

calculates:
[PM+kPb]- nbkG

=[PM+ nbkG - nbkG
= PM

Pb

Pc

BobAlice

Mapping plaintext
letters into points
on elleptic curve

PM
M

Fig. 9. 3

73

)]606,217(),633,34[(P

)]558,671(113)253,443(),376,0(113[P

)]kPP(),kG[(P

C

C

BMC






Upon receiving the ciphertext pair of points, P C = [(34,633),(217,606)], Bob uses his private

key, n ,85B to compute the plaintext point, P M , as follow:

)253,443()]([)(

))751(mod335416(sin)]335,47[()606,217()]([)(

)),((sin)]416,47[()606,217()]([)(

)]416,47[()606,217()]([)(

)]633,34(85[)606,217()]([)(

11








kGnkPP

cekGnkPP

yxPcekGnkPP

kGnkPP

kGnkPP

BBM

BBM

BBM

BBM

BBM

and then maps the plaintext point P M =(443,253) back into the original plaintext message M.

9. 4. Security of ECC

The cryptographic strength of elliptic curve encryption lies in the difficulty for a cryptanalyst

to determine the secret random number k from kP and P itself. The fastest method to solve

this problem (known as the elliptic curve logarithm problem) is the Pollard  factorization

method.

The computational complexity for breaking the elliptic curve cryptosystem, using the

Pollard  method, is 3.8x1010 MIPS-years (i.e. millions of instructions per second times the

required number of years) or an elliptic curve key size of only 150 bits. For comparison, the

fastest method to break RSA, using the General Number Field Sieve Method to factor the

composite integer n into the two primes p and q, require 2x10 8 MIPS-years for a 768-bit RSA

key and 3x10 11 MIPS-years with a RSA key of length 1024.

If the RSA key length is increased to 2048 bits, the General number Field Sieve

Method will need 3x10 20 MIPS-years to factor n whereas increasing the elliptic curve key

length to only 234 bits will impose a computational complexity of 1.6x10 28 MIPS-years(still

with the Pollard  method).

9. 5. Embedded plaintext to points in Elliptic curve

We can represent letters of the Roman alphabet by distinct points on the elliptic curve, as we

have below:

N 1 2 3 4 5 6 7 8 9 10 …

PM (3,10) (7,12) (19,5) (17,3) (9,16) (12,4) (11,3) (13,16) (0,1) (6,4) …

Letter A B C D E F G H I J …

74

In most cryptographic systems, we must have a method for mapping our original message into

a numerical value upon which we can perform mathematical operations. In order to use

elliptic curves, we need a method for mapping a message onto a point on an elliptic curve.

Elliptic curve cryptosystems then use elliptic curve operations on that point to yield a new

point that will serve as the ciphertext.

The problem of encoding plaintext messages as points on an elliptic curve is not as

simple as it was in the conventional case. In particular, there is no known polynomial time,

deterministic algorithm for writing down points on an arbitrary elliptic curve E (mod

p).However, there are fast probabilistic methods for finding points, and these can be used for

encoding messages. These methods have the property that with small probability they will fail

to produce a point. By appropriately choosing parameters, this probability can be made

arbitrarily small, say on the order of 1/2 30 .Here is one method, due to Koblitz. The idea is the

following. Let E:y)(mod32 pbaxx  be the elliptic curve. The message m (already

represented as a number)will be embedded in the x-coordinate of a point. However, the

probability is only about ½ that m bam 3 is a square mod p. Therefore, we adjoin a few

bits at the end of m and adjust them until we get a number x such that x bax 3 is a square

mod p.

More precisely, let K be a large integer so that a failure rate of 1/2 K is acceptable when trying

to encode a message as a point. Assume that m satisfies (m+1)K<p. The message m will be

represented by a number x=mK+j, where 0 .Kj  for j=0,1,....,K-1, compute x bax 3 and

try to calculate the square root x).(mod3 pbax  For example, if p),4(mod3 the method of

Section 3.9 can be used. If there is a square root y, then we take);,(yxPm  otherwise, we

increment j by one and try again with the new x. We repeat this until either we find a square

root or j=K. If j ever equals K, then we fail to map a message to a point. Since baxx 3 is a

square approximately half of the time, we have about a 1/2 K chance of failure.

In order to recover the message from the point),(yxPm  we simply calculate m by

m=[x/K],

where [x/K] denotes the greatest integer less than or equal to x/K.

Example. Let p=179 and suppose that our elliptic curve is y .7232  xx If we are satisfied

with a failure rate of 1/210 , then we may take K=10.Since we need mK+K<179, we need

0 .16 m Suppose our message is m=5.We consider x of the form mK+j=50+J.The possible

choices for x are 50,51,....,59.For x=51 we get),179(mod121723  xx and

75

11).179(mod1212 Thus, we represent the message m=5 by the point Pm=(51,11).The

message m can be recovered by m=[51/10]=5.

9. 6. Number of Points Mod p

Let E:)(mod32 pbaxxy  be an elliptic curve, where p 5 is prime. We can list the

points on E by letting x=0, 1,......., p-1 and seeing when x3+ax+b is a square mod p. Since half

of the nonzero numbers are squares mod p, we except that x bax3  will be a square

approximately half the time. When it is a nonzero square, there are two square roots: y and –y

.Therefore, approximately half the time we get two values of y and half the time we get no y.

Therefore, we expect around p points. Including the point , we except a total of

approximately p+1 points. In the 1930s, H. Hasse made this estimates more precise.

Hasse’s Theorem. Suppose E (mod p) has N points. Then

|N-p-1|<2 p

It can also be shown that whenever N and p satisfy the inequality of the theorem, there is an

elliptic curve E mod p with exactly N points.

If p is large, say around 10 ,20 it is infeasible to count the points on an elliptic curve by

listing them. More sophisticated algorithms have been developed by Scoof, Atkin, Elkies, and

others to deal with this problem.

9. 7. Discrete Logarithms on Elliptic Curves

Recall the classical discrete logarithm problem. We know that x kg (mod p) for some k, and

we want to find k. There is an elliptic curve version: Suppose we have points A,B on an

elliptic curve E and we know that B = kA = (A+A+......+A) for some integer k. We want to

find k. This might not look like a logarithm, but it is clearly the analog of the classical discrete

logarithm problem. Therefore, it is called the discrete logarithm problem for elliptic curves.

There is no good general attack on the discrete logarithm problem for elliptic curves.

There is an analog of the Pohling Hellman attack that works in some situations. Let E be an

elliptic curve mod a prime p and let n be smallest integer such that nA= .If n has only small

prime factors, then it is possible to calculate the discrete logarithm k mod the prime powers

dividing n and then use Chinese remainder theorem to find k. The Pohling-Hellman attack can

be thwarted by choosing E and A so that n has a large prime factor.

76

9. 8 Factoring with Elliptic Curves

Suppose n=pq is a number we wish to factor. Choose a random elliptic curve mod n and a

point on the curve. In practice, one chooses several (around 14 for numbers around 50 digits;

more for larger integers) curves with points and runs the algorithm in parallel.

How do we choose the curve ? First , choose a point P and a coefficient a. Then choose b so

that P lies on the curve .32 baxxy  This is much more efficient than choosing a and b and

then trying to find a point.

For example, let n=2773.Take P=(1,3) and a=4.Since we want ,1.413 32 b we take

b=4.Therefore, our curve is

)2773(mod4: 32 xxyE  .

We calculated 2P=(1771,705) in a previous example. Note that during the calculation, we

needed to find 6)2773(mod1 .This required that gcd(6,2773)=1 and used the extended

Euclidean algorithm, which was essentially a gcd calculation.

Now let’s calculate 3P=2P+P.The line through the points 2P=(1771,705) and P=(1,3)

has slope 702/1770.When we try to invert 1770 mod 2773, we find that gcd(1770,2773)=59,

so we ca not do this. So what do we do? Our original goal was to factor 2773, so we don’t

need to do anything more. We have found the factor 59, which yields the factorization

2773=59.47.

Here’s what happened. Using the Chinese remainder theorem, we can regard E as a

pair of elliptic curves, one mod 59 and the other mod 47.It turns out that)59(mod3 P ,

while).47(mod4 p Therefore, when we tried to compute 3P, we had a slope that was

infinite mod 59 but finite mod 47.In other words, we had a denominator that was 0 mod 59

but nonzero mod 47.Taking the gcd allowed us to isolate the factor 59.

The same type of idea is the basis for many factoring algorithms. If n=pq, you cannot

separate p an q as long as they behave identically. But if you can find something that makes

them behave slightly differently, then they can be found. In the example, the multiplies of P

reached  faster mod 59 than mod 47.Since in general the primes p an q should act fairly

independently of each other, one would expect that for most curves E (mod pq) and points P,

the multiplies of P would reach  mod p and mod q at different times. This will cause the

gcd to find either p or q.

Usually , it takes several more steps than 3 or 4 to reach  mod p or mod q. In practice, one

multiplies P by a large number with many small prime factors, for example, 10000!..This can

be done via successive doubling (the additive analog of successive squaring; see Exercise

77

10).The hope is that this multiple of P is  either mod p or mod q. This is very much the

analog of the p-1 method of factoring. However, recall that the p-1 method (see Section 6.4)

usually doesn’t work when p-1 has a large prime factor. The same type of problem could

occur in the elliptic curve method just outlined when the number m such that mP equals 

has a large prime factor. If this happens (so the method fails to produce a factor after a

while),we simply change to a new curve E. This curve will be independent of the previous

curve and the value of m such that mP= should have essentially no relation to the previous

m. After several tries (or if several curves are treated in parallel), a good curve is often found,

and the number n=pq is factored. In contrast, if the p-1 method fails, there is nothing that can

be changed other than using a different factorization method.

Example. We want to factor n=455839. Choose

E: y)1,1(,5532  Pxx

Suppose we try to compute 10!P.There are many ways to do this .One is to compute

2!P,3!P=3(2!P),4!P=4(3!P),.......If we do this, every thing is fine through 7!P, but 8!P requires

inverting 599 (mod n).Since gcd(599,n)=599, we can factor n as 599x761.

Let’s examine this more closely. A computation shows that E (mod 599) has 640=2 57 x

points and E (mod 761) has 777=3x7x37 points. More over, 640 is the smallest positive m

such that mP= on E (mod 599), and 777 is the smallest positive m such that mP= on E

(mod 761).Since 8! İs a multiple of 640, it is easy to see that 8!P= on E (mod 599) as we

calculated. Since 8!is not a multiple of 777, it follows that 8!P  on E (mod 761).Recall

that we obtain  when we divide by 0, so calculating 8!P asked us to divide by 0 (mod 599).

This is why we found the factor 599.

In general, consider an elliptic curve E (mod p) for some prime p. The smallest

positive m such that mP= on this curve divides the number N or a large divisor of N. In

any case, if N is a product of small primes, then B! Will be a multiple of N for a reasonably

small value of B. Therefore B!P= .

A number that has only small prime factors is called smooth. More precisely, if all

the prime factors of an integer are less than or equal to B, then it is called B-smooth. This

concept played a role in the quadratic sieve, the p-1 factoring method, and the index calculus

attack on discrete logarithms.

Recall from Hasse’s theorem that N is an integer near p. It is possible to show that the

density of smooth integers is large enough (we’ll leave small and large undefined here) that if

we choose a random elliptic curve E (mod p), then there is a reasonable chance that the

78

number N is smooth. This means that the elliptic curve factorization method should find p for

this choice of the curve. If we try several curves E (mod n), where n=pq, then it is likely that

at least one of the curves E (mod p) or E (mod q) will have its number of points being smooth.

In summary, the advantage of the elliptic curve factorization method over the p-1

method is the following. The p-1 method requires that p-1 is smooth. The elliptic curve

method requires only that there are enough smooth numbers near p so that at least one of

some randomly chosen integers near p is smooth. This means that elliptic curve factorization

succeeds much more often than the p-1 method.

The elliptic curve method seems to be best suited for factoring numbers of medium

size, say around 40 or 50 digits. These numbers are no longer used for the security of

factoring-based systems such as RSA, but it is sometimes useful in other situations to have a

fast factorization method for such numbers. For larger numbers, the quadratic sieve and

number field sieve are superior

