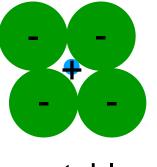

Chapter 12: Structures & Properties of Ceramics

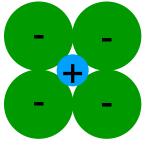
ISSUES TO ADDRESS...

- How do the crystal structures of ceramic materials differ from those for metals?
- How do point defects in ceramics differ from those defects found in metals?
- How are impurities accommodated in the ceramic lattice?
- In what ways are ceramic phase diagrams different from phase diagrams for metals?
- How are the mechanical properties of ceramics measured, and how do they differ from those for metals?

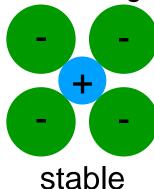
Atomic Bonding in Ceramics

- Bonding:
 - -- Can be ionic and/or covalent in character.
 - -- % ionic character increases with difference in electronegativity of atoms.
- Degree of ionic character may be large or small:



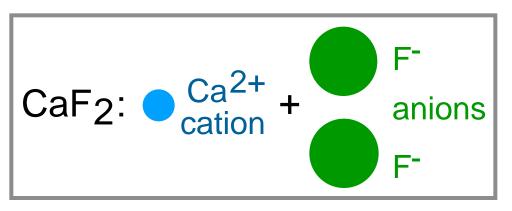

Factors that Determine Crystal Structure

1. Relative sizes of ions – Formation of stable structures:


--maximize the # of oppositely charged ion neighbors.

unstable

stable


Adapted from Fig. 12.1, Callister & Rethwisch 8e.

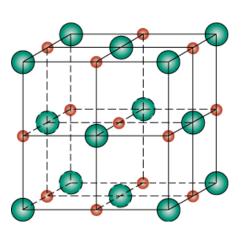
Maintenance of Charge Neutrality :

--Net charge in ceramic should be zero.

--Reflected in chemical

formula:

m, p values to achieve charge neutrality



Types of Ceramic Crystal Structure

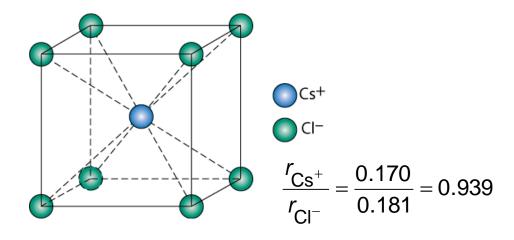
AX –Type Crystal Structures

Rock Salt Structure

Example: NaCl (rock salt) structure

Na+

CI-


 $r_{\text{Na}} = 0.102 \text{ nm}$

 $r_{\rm Cl} = 0.181 \ \rm nm$

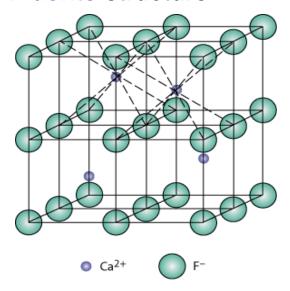
$$r_{\rm Na}/r_{\rm Cl} = 0.564$$

∴ cations (Na+) prefer octahedral sites

Cesium Chloride structure:

∴ Since 0.732 < 0.939 < 1.0, cubic sites preferred

Adapted from Fig. 12.2, Callister & Rethwisch 8e.


Adapted from Fig. 12.3, Callister & Rethwisch 8e.

Types of Ceramic Crystal Structure

 A_mX_p – type Crystal S.

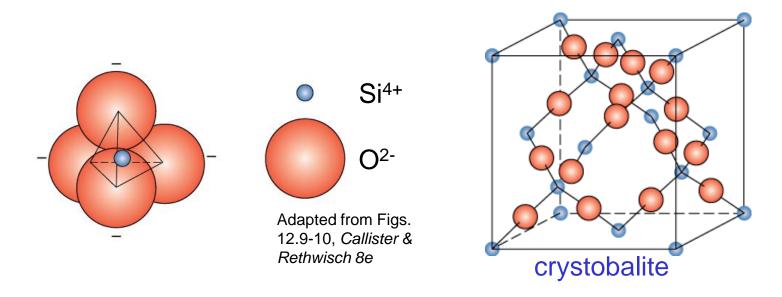
 $A_m B_n X_p$ - type Crystal S.

Fluorite structure

- Calcium Fluorite (CaF₂)
- Cations in cubic sites
- UO₂, ThO₂, ZrO₂, CeO₂

Adapted from Fig. 12.5, Callister & Rethwisch 8e.

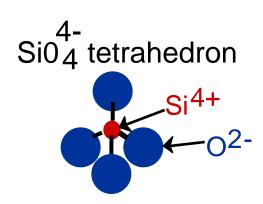
Perovskite structure


Ex: complex oxide BaTiO₃

Ti⁴⁺ Ba²⁺ O²⁻

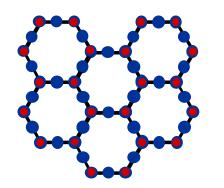
Adapted from Fig. 12.6, Callister & Rethwisch 8e.

Silicate Ceramics


Most common elements on earth are Si & O

- SiO₂ (silica) polymorphic forms are quartz, crystobalite, & tridymite
- The strong Si-O bonds lead to a high melting temperature (1710°C) for this material

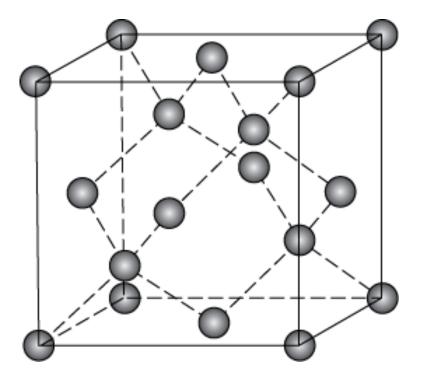
Glass Structure


Basic Unit:

Glass is noncrystalline (amorphous)

- Fused silica is SiO₂ to which no impurities have been added
- Other common glasses contain impurity ions such as Na⁺, Ca²⁺, Al³⁺, and B³⁺

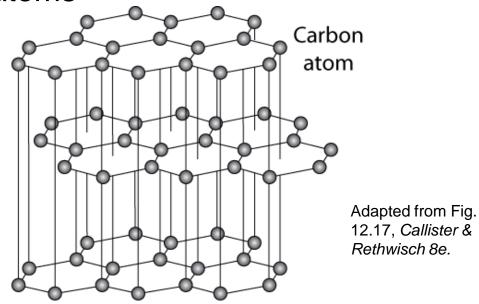
 Quartz is crystalline SiO₂:



Polymorphic Forms of Carbon

Diamond

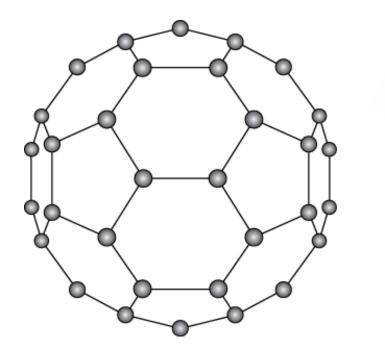
- tetrahedral bonding of carbon
 - hardest material known
 - very high thermal conductivity
- large single crystals gem stones
- small crystals used to grind/cut other materials
- diamond thin films
 - hard surface coatings used for cutting tools, medical devices, etc.

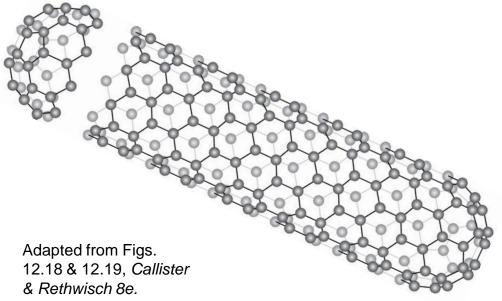


Adapted from Fig. 12.15, Callister & Rethwisch 8e.

Polymorphic Forms of Carbon (cont)

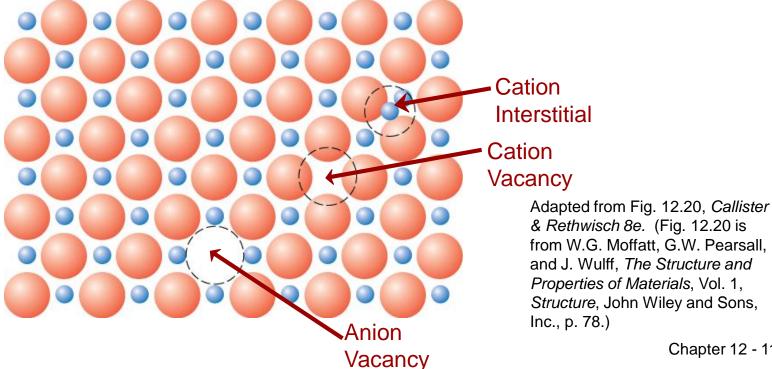
Graphite

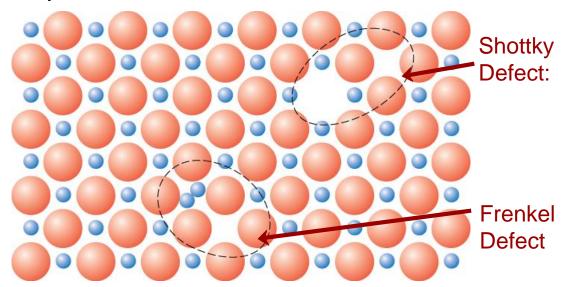

 layered structure – parallel hexagonal arrays of carbon atoms



- weak van der Waal's forces between layers
- planes slide easily over one another -- good lubricant

Polymorphic Forms of Carbon (cont) Fullerenes and Nanotubes


- Fullerenes spherical cluster of 60 carbon atoms, C₆₀
 - Like a soccer ball
- Carbon nanotubes sheet of graphite rolled into a tube
 - Ends capped with fullerene hemispheres

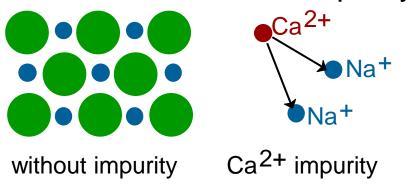

Point Defects in Ceramics (i)

- Vacancies
 - -- vacancies exist in ceramics for both cations and anions
- Interstitials
 - -- interstitials exist for cations
 - -- interstitials are not normally observed for anions because anions are large relative to the interstitial sites

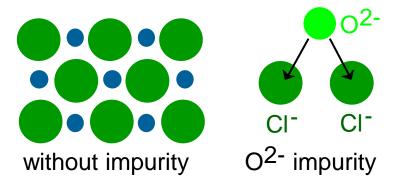
Point Defects in Ceramics (ii)

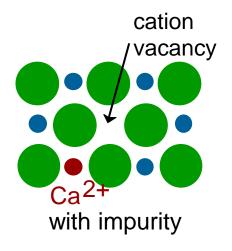
- Frenkel Defect
 - -- a cation vacancy-cation interstitial pair.
- Shottky Defect
 - -- a paired set of cation and anion vacancies.

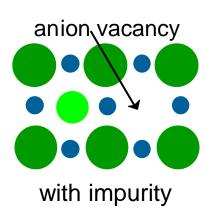
Adapted from Fig.12.21, Callister & Rethwisch 8e. (Fig. 12.21 is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, John Wiley and Sons, Inc., p. 78.)


• Equilibrium concentration of defects $\propto e^{-Q_D/kT}$

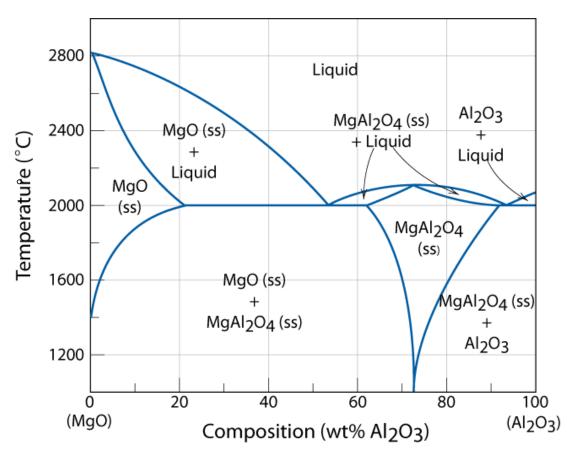
Imperfections in Ceramics


 Electroneutrality (charge balance) must be maintained when impurities are present




Substitutional cation impurity

Substitutional anion impurity

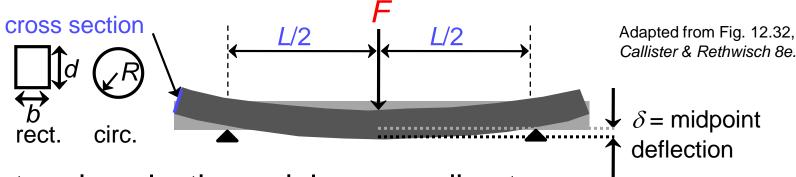


Ceramic Phase Diagrams

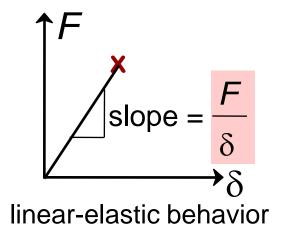
MgO-Al₂O₃ diagram:

Adapted from Fig. 12.25, Callister & Rethwisch 8e.

Mechanical Properties


Ceramic materials are more brittle than metals.

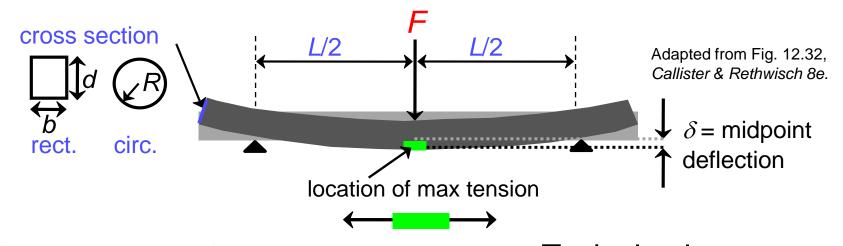
Why is this so?


- Consider mechanism of deformation
 - In crystalline, by dislocation motion
 - In highly ionic solids, dislocation motion is difficult
 - few slip systems
 - resistance to motion of ions of like charge (e.g., anions)
 past one another

Flexural Tests – Measurement of Elastic Modulus

- Room T behavior is usually elastic, with brittle failure.
- 3-Point Bend Testing often used.
 - -- tensile tests are difficult for brittle materials.

Determine elastic modulus according to:



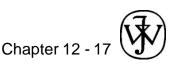
$$E = \frac{F}{\delta} \frac{L^3}{4bd^3}$$
 (rect. cross section)

$$E = \frac{F}{\delta} \frac{L^3}{12\pi R^4}$$
 (circ. cross section)

Flexural Tests – Measurement of Flexural Strength

• 3-point bend test to measure room-T flexural strength.

Flexural strength:


$$\sigma_{fS} = \frac{3F_fL}{2hd^2}$$
 (rect. cross section)

$$\sigma_{fS} = \frac{F_f L}{\pi R^3}$$
 (circ. cross section)

Typical values:

$\sigma_{fS}(MPa)$	E(GPa)
250-1000	304
100-820	345
275-700	393
ime) 69	69
	250-1000 100-820 275-700

Data from Table 12.5, Callister & Rethwisch 8e.

SUMMARY

- Interatomic bonding in ceramics is ionic and/or covalent.
- Ceramic crystal structures are based on:
 - -- maintaining charge neutrality
 - -- cation-anion radii ratios.
- Imperfections
 - -- Atomic point: vacancy, interstitial (cation), Frenkel, Schottky
 - -- Impurities: substitutional, interstitial
 - -- Maintenance of charge neutrality
- Room-temperature mechanical behavior flexural tests
 - -- linear-elastic; measurement of elastic modulus
 - -- brittle fracture; measurement of flexural strength