Chapter 10: Phase Transformations

ISSUES TO ADDRESS...

• Transforming one phase into another takes time.

- How does the rate of transformation depend on time and temperature?
- Is it possible to slow down transformations so that non-equilibrium structures are formed?
- Are the mechanical properties of non-equilibrium structures more desirable than equilibrium ones?

Chapter 10

Phase Transformations

Nucleation

- nuclei (seeds) act as templates on which crystals grow
- for nucleus to form rate of addition of atoms to nucleus must be faster than rate of loss
- once nucleated, growth proceeds until equilibrium is attained

Driving force to nucleate increases as we increase $\Delta \mathcal{T}$

- supercooling (eutectic, eutectoid)
- superheating (peritectic)

Small supercooling \rightarrow slow nucleation rate - few nuclei - large crystals

Large supercooling \rightarrow rapid nucleation rate - many nuclei - small crystals

Solidification: Nucleation Types

- Homogeneous nucleation
 - nuclei form in the bulk of liquid metal
 - requires considerable supercooling (typically 80-300°C)
- Heterogeneous nucleation
 - much easier since stable "nucleating surface" is already present — e.g., mold wall, impurities in liquid phase
 - only very slight supercooling (0.1-10°C)

Homogeneous Nucleation & Energy Effects

Adapted from Fig.10.2(b), Callister & Rethwisch 8e.

Chapter 10 - 4

Solidification

 r^* = critical radius γ = surface free energy T_m = melting temperature ΔH_f = latent heat of solidification ΔT = T_m - T = supercooling

Note: ΔH_f and γ are weakly dependent on ΔT

 \therefore *r* decreases as ΔT increases

For typical ΔT $r^* \sim 10$ nm

Rate of Phase Transformations

Kinetics - study of reaction rates of phase transformations

- To determine reaction rate measure degree of transformation as function of time (while holding temp constant)
 - How is degree of transformation measured?
 - X-ray diffraction many specimens required
 - electrical conductivity measurements on single specimen
 - measure propagation of sound waves on single specimen

Chapter 10

Rate of Phase Transformation

• For the recrystallization of Cu, since

 $rate = 1/t_{0.5}$

rate increases with increasing temperature

• Rate often so slow that attainment of equilibrium state not possible!

Chapter 10

Transformations & Undercooling

- Eutectoid transf. (Fe-Fe₃C system):
- For transf. to occur, must cool to below 727°C (i.e., must "undercool")

n):

$$\gamma \Rightarrow \alpha + Fe_3C$$

0.76 wt% C
0.022 wt% C

Adapted from Fig. 9.24, *Callister & Rethwisch 8e.* (Fig. 9.24 adapted from *Binary Alloy Phase Diagrams*, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.)

Chapter 10 -

The Fe-Fe₃C Eutectoid Transformation

• Transformation of austenite to pearlite:

Coarse pearlite \rightarrow formed at higher temperatures – relatively soft Fine pearlite \rightarrow formed at lower temperatures – relatively hard Chapter 10 - 10

Generation of Isothermal Transformation Diagrams

Consider:

- The Fe-Fe₃C system, for $C_0 = 0.76$ wt% C
- A transformation temperature of 675°C.

Austenite-to-Pearlite Isothermal Transformation

- Eutectoid composition, $C_0 = 0.76$ wt% C
- Begin at $T > 727^{\circ}C$
- Rapidly cool to 625°C
- Hold T (625°C) constant (isothermal treatment)

Transformations Involving Noneutectoid Compositions

Consider $C_0 = 1.13$ wt% C

Hypereutectoid composition – proeutectoid cementite

Chapter 10 -

Bainite: Another Fe-Fe₃C Transformation Product

- Bainite:
 - -- elongated Fe_3C particles in α -ferrite matrix
 - -- diffusion controlled
- Isothermal Transf. Diagram,

5 μ**m**

Adapted from Fig. 10.17, *Callister & Rethwisch 8e.* (Fig. 10.17 from *Metals Handbook*, 8th ed., Vol. 8, *Metallography, Structures, and Phase Diagrams*, American Society for Metals, Materials Park, OH, 1973.)

Spheroidite: Another Microstructure for the Fe-Fe₃C System

- Spheroidite:
 - -- Fe₃C particles within an α -ferrite matrix
 - -- formation requires diffusion
 - -- heat bainite or pearlite at temperature just below eutectoid for long times
 - -- driving force reduction

of α -ferrite/Fe₃C interfacial area

60 μm

Adapted from Fig. 10.19, *Callister & Rethwisch 8e.* (Fig. 10.19 copyright United States Steel Corporation, 1971.)

Martensite: A Nonequilibrium Transformation Product

- Martensite:
 - -- γ (FCC) to Martensite (BCT)

potential C atom sites

Adapted from Fig. 10.20, *Callister & Rethwisch 8e.*

Isothermal Transf. Diagram

Martensite needles Austenite

Adapted from Fig. 10.21, *Callister* & *Rethwisch* 8*e*. (Fig. 10.21 courtesy United States Steel Corporation.)

- γ to martensite (M) transformation..
 - -- is rapid! (diffusionless)
 - -- % transf. depends only on T to which rapidly cooled

Chapter 10 -

Martensite Formation

Martensite (M) – single phase – has body centered tetragonal (BCT) crystal structure

Diffusionless transformation BCT if $C_0 > 0.15$ wt% C BCT \rightarrow few slip planes \rightarrow hard, brittle

Phase Transformations of Alloys

- Effect of adding other elements Change transition temp.
- Cr, Ni, Mo, Si, Mn retard $\gamma \rightarrow \alpha$ + Fe₃C reaction (and formation of pearlite, bainite)

Continuous Cooling Transformation Diagrams

Conversion of isothermal transformation diagram to continuous cooling transformation diagram

Adapted from Fig. 10.25, *Callister & Rethwisch 8e.*

Isothermal Heat Treatment Example Problems

On the isothermal transformation diagram for a 0.45 wt% C, Fe-C alloy, sketch and label the time-temperature paths to produce the following microstructures:

- a) 42% proeutectoid ferrite and 58% coarse pearlite
- b) 50% fine pearlite and 50% bainite
- c) 100% martensite
- d) 50% martensite and 50% austenite

Solution to Part (a) of Example Problem

a) 42% proeutectoid ferrite and 58% coarse pearlite Fe-Fe₃C phase diagram, for $C_0 = 0.45$ wt% C Isothermally treat at ~ 680°C 800 **A** + α T(°C) -- all austenite transforms to proeutectoid α and A + Pcoarse pearlite. 600 $W_{\text{pearlite}} = \frac{C_0 - 0.022}{0.76 - 0.022}$ A + BΑ 50% 400 M (start <u>M (50%)</u> $= \frac{0.45 - 0.022}{0.76 - 0.022}$ = 0.58<u>M (90%)</u> 200 $W_{\alpha'} = 1 - 0.58 = 0.42$ Adapted from 10 1**0**³ 0.1 Fig. 10.29, time (s Callister 5e. Chapter 10

Solution to Part (b) of Example Problem

b) 50% fine pearlite and 50% bainite

Solutions to Parts (c) & (d) of Example Problem

- c) 100% martensite rapidly quench to room temperature
- d) 50% martensite
 δ 50% austenite
 - rapidly quench to
 ~ 290°C, hold at this temperature

Mechanical Props: Influence of C Content

• Increase C content: TS and YS increase, %EL decreases

Mechanical Props: Fine Pearlite vs. Coarse Pearlite vs. Spheroidite

- Hardness: fine > coarse > spheroidite
- %RA: fine < coarse < spheroidite

Adapted from Fig. 10.30, *Callister & Rethwisch 8e.* (Fig. 10.30 based on data from *Metals Handbook: Heat Treating*, Vol. 4, 9th ed., V. Masseria (Managing Ed.), American Society for Metals, 1981, pp. 9 and 17.)

Mechanical Props: Fine Pearlite vs. Martensite

Adapted from Fig. 10.32, *Callister & Rethwisch 8e.* (Fig. 10.32 adapted from Edgar C. Bain, *Functions of the Alloying Elements in Steel*, American Society for Metals, 1939, p. 36; and R.A. Grange, C.R. Hribal, and L.F. Porter, *Metall. Trans. A*, Vol. 8A, p. 1776.)

• Hardness: fine pearlite << martensite.

Tempered Martensite

Heat treat martensite to form tempered martensite

- tempered martensite less brittle than martensite
- tempering reduces internal stresses caused by quenching TS(MPa)

Adapted from Fig. 10.33, *Callister & Rethwisch 8e.* (Fig. 10.33 copyright by United States Steel Corporation, 1971.)

- tempering produces extremely small $Fe_3^{\prime}C$ particles surrounded by α .
- tempering decreases TS, YS but increases %RA

Summary of Possible Transformations

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems:

