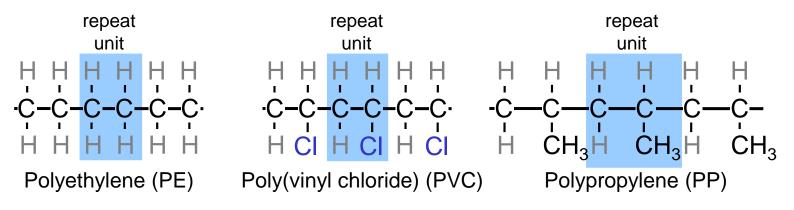
Chapter 14 & Chapter 15: Polymer Structures and Properties

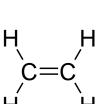

ISSUES TO ADDRESS...

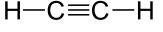
- What are the general structural and chemical characteristics of polymer molecules?
- How is the crystalline state in polymers different from that in metals and ceramics ?
- What are the tensile properties of polymers and how are they affected by basic microstructural features?

What is a Polymer?

Adapted from Fig. 14.2, Callister & Rethwisch 8e.

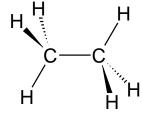
Ancient Polymers

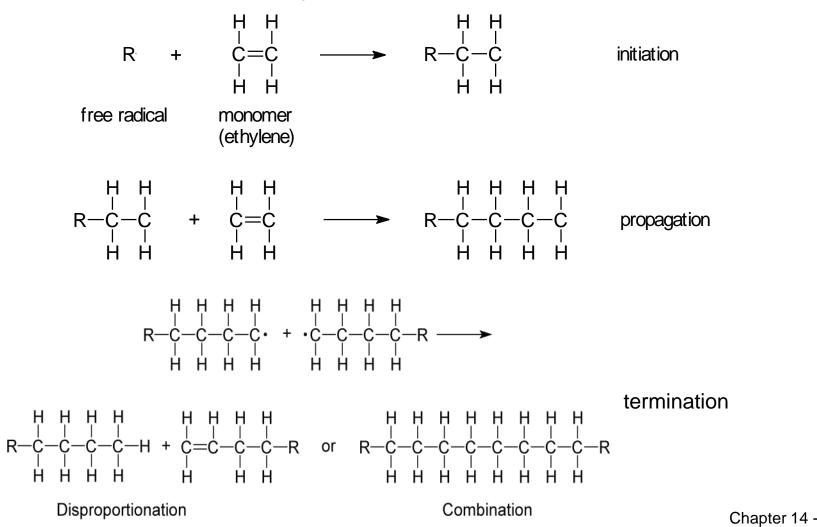

- Originally natural polymers were used
 - Wood Rubber
 - Cotton Wool
 - Leather Silk
- Oldest known uses
 - Rubber balls used by Incas
 - Noah used pitch (a natural polymer) for the ark



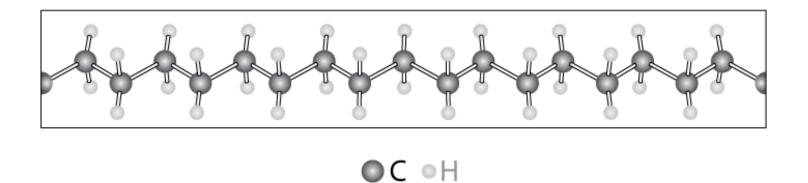
Polymer Composition

Most polymers are hydrocarbons


- i.e., made up of H and C
- Saturated hydrocarbons
 - Each carbon singly bonded to four other atoms
 - Example:
 - Ethane, C_2H_6
- Unsaturated hydrocarbons
- Double & triple bonds somewhat unstable can form new bonds
 - Double bond found in ethylene or ethene C_2H_4
 - Triple bond found in acetylene or ethyne C_2H_2


Chapter 14

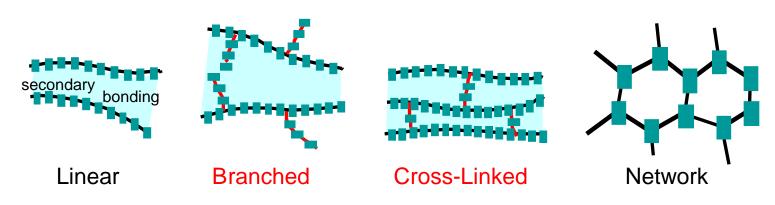
Polymerization and Polymer Chemistry


Free radical polymerization

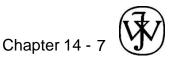
Chemistry and Structure of Polyethylene $-\frac{1}{c}-\frac{c$

Adapted from Fig. 14.1, *Callister & Rethwisch 8e.*

Repeat unit

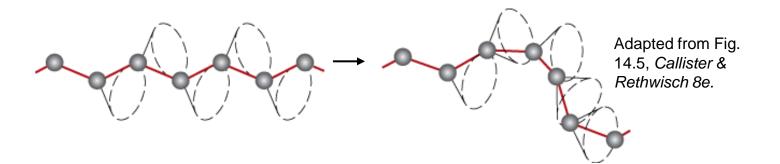

Note: polyethylene is a long-chain hydrocarbon

- paraffin wax for candles is short polyethylene



Chapter 14 -

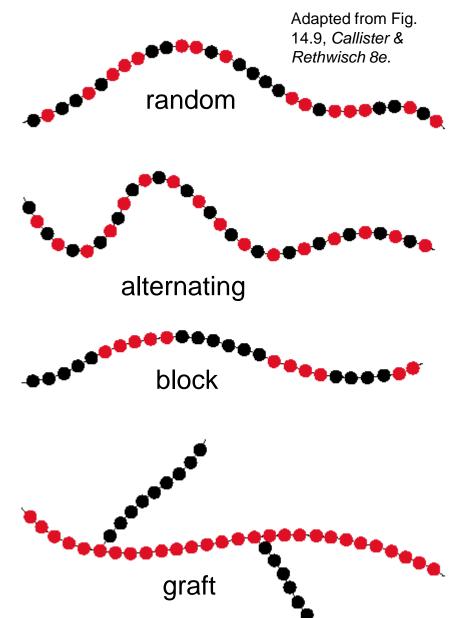
Molecular Structures for Polymers



Adapted from Fig. 14.7, Callister & Rethwisch 8e.

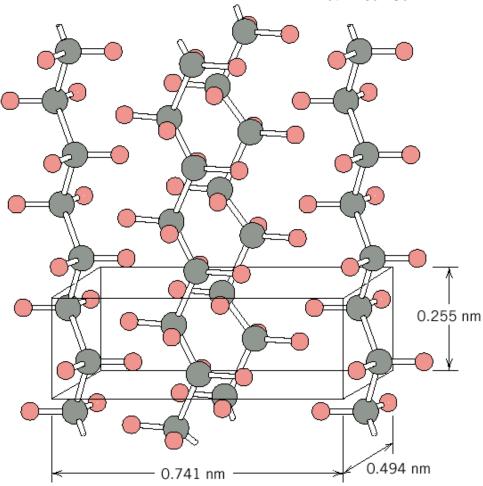
Polymers – Molecular Shape

- Molecular Shape (or Conformation) chain bending and twisting are possible by rotation of carbon atoms around their chain bonds
 - note: not necessary to break chain bonds to alter molecular shape



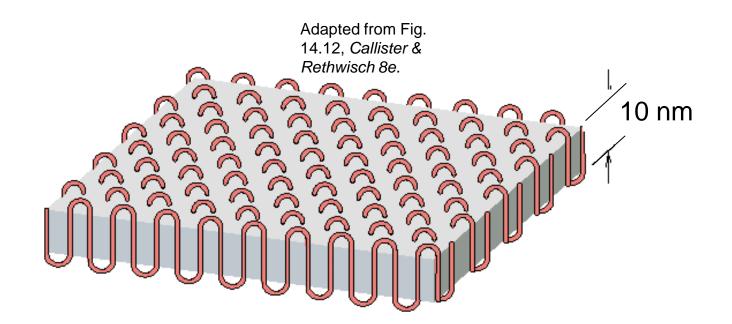
Copolymers

two or more monomers polymerized together


- random A and B randomly positioned along chain
- alternating A and B alternate in polymer chain
- block large blocks of A units alternate with large blocks of B units
- graft chains of B units grafted onto A backbone

Crystallinity in Polymers

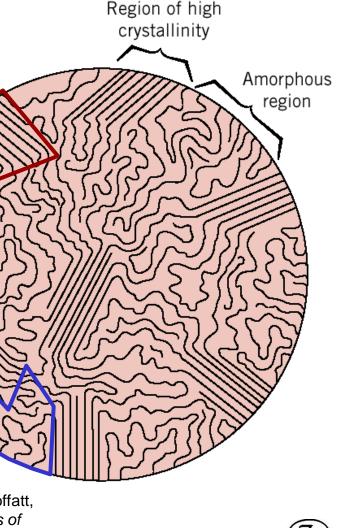
Adapted from Fig. 14.10, *Callister & Rethwisch 8e.*


- Ordered atomic arrangements involving molecular chains
- Crystal structures in terms
 of unit cells
- Example shown
 - polyethylene unit cell

Polymer Crystallinity

- Crystalline regions
 - thin platelets with chain folds at faces
 - Chain folded structure

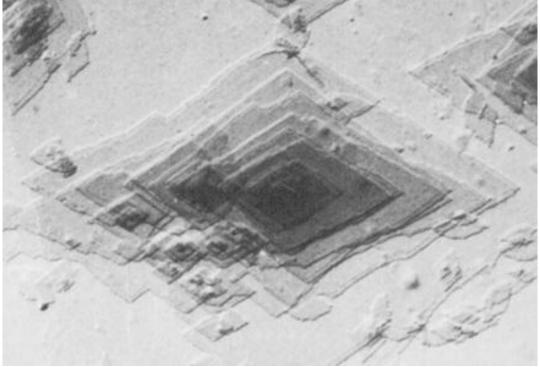
Polymer Crystallinity (cont.)


Polymers rarely 100% crystalline

- Difficult for all regions of all chains to become aligned crystalline
- Degree of crystallinity expressed as % crystallinity.
 - -- Some physical properties depend on % crystallinity.
 - -- Heat treating causes crystalline regions to grow and % crystallinity to increase.

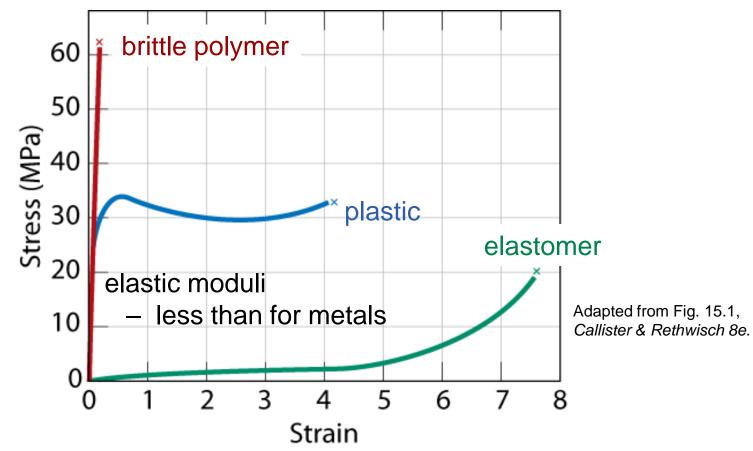
amorphous region

region


Adapted from Fig. 14.11, *Callister 6e.* (Fig. 14.11 is from H.W. Hayden, W.G. Moffatt, and J. Wulff, *The Structure and Properties of Materials*, Vol. III, *Mechanical Behavior*, John Wiley and Sons, Inc., 1965.)

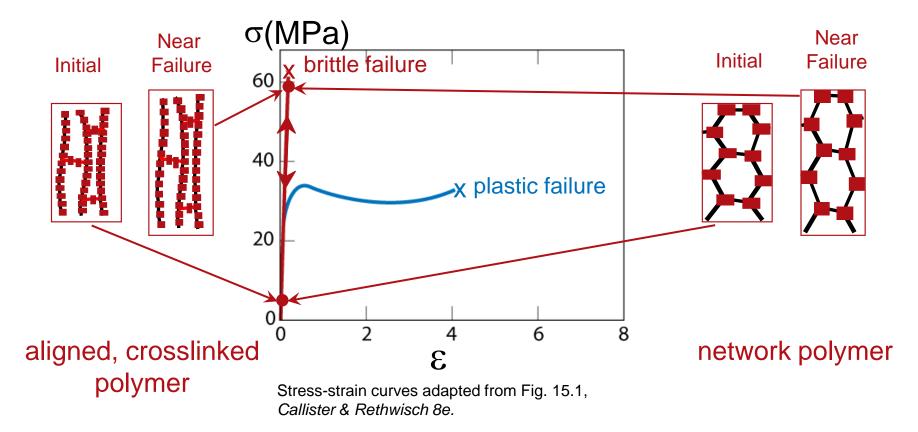
Chapter 14 -

Polymer Single Crystals


- Electron micrograph multilayered single crystals (chain-folded layers) of polyethylene
- Single crystals only for slow and carefully controlled growth rates

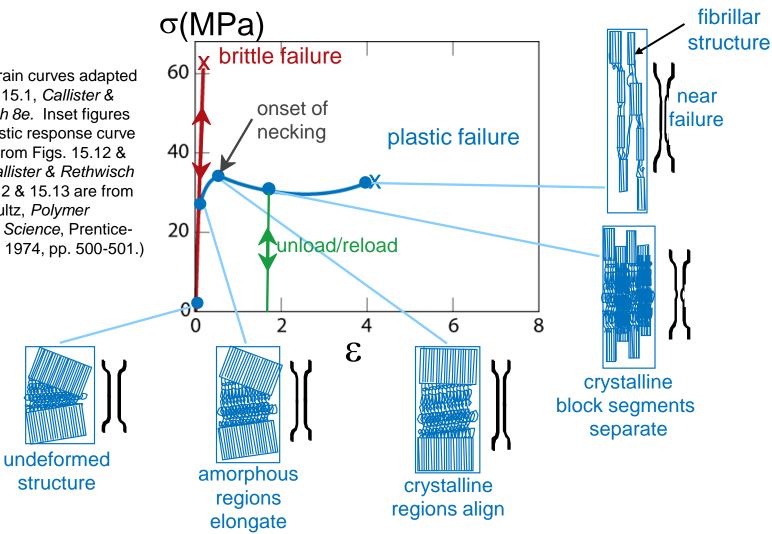
Adapted from Fig. 14.11, Callister & Rethwisch 8e.

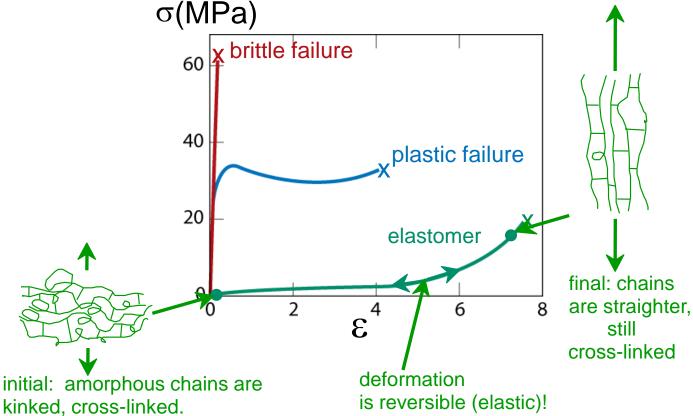
Mechanical Properties of Polymers – Stress-Strain Behavior



- Fracture strengths of polymers ~ 10% of those for metals
- Deformation strains for polymers > 1000%

- for most metals, deformation strains < 10%


Mechanisms of Deformation—Brittle Crosslinked and Network Polymers


Mechanisms of Deformation — **Semicrystalline (Plastic) Polymers**

Stress-strain curves adapted from Fig. 15.1, Callister & Rethwisch 8e. Inset figures along plastic response curve adapted from Figs. 15.12 & 15.13, Callister & Rethwisch 8e. (15.12 & 15.13 are from J.M. Schultz, Polymer Materials Science, Prentice-Hall, Inc., 1974, pp. 500-501.)

Mechanisms of Deformation— Elastomers

Stress-strain curves adapted from Fig. 15.1, *Callister & Rethwisch 8e.* Inset figures along elastomer curve (green) adapted from Fig. 15.15, *Callister & Rethwisch 8e.* (Fig. 15.15 is from Z.D. Jastrzebski, *The Nature and Properties of Engineering Materials*, 3rd ed., John Wiley and Sons, 1987.)

- Compare elastic behavior of elastomers with the:
 - -- brittle behavior (of aligned, crosslinked & network polymers), and
 - -- plastic behavior (of semicrystalline polymers) (as shown on previous slides)

