Chapter 12: Structures & Properties of Ceramics

ISSUES TO ADDRESS...

- How do the crystal structures of ceramic materials
 differ from those for metals?
- How do point defects in ceramics differ from those defects found in metals?
- How are impurities accommodated in the ceramic lattice?
- In what ways are ceramic phase diagrams different from phase diagrams for metals?
- How are the mechanical properties of ceramics measured, and how do they differ from those for metals?

Atomic Bonding in Ceramics

- Bonding:
 - -- Can be ionic and/or covalent in character.
 - -- % ionic character increases with difference in electronegativity of atoms.
- Degree of ionic character may be large or small:

IA																0	
Н															He		
2.1	IIA	_										IIIA	IVA	VA	VIA	VIIA	-
Li	Be]				Cir	ר הי	ma				В	C	Ν	0	F	Ne
1.0	1.5												2.5	3.0	3.5	4.0	-
Na	Mg							VIII				AI	Si	Р	S	Cl	Ar
0.9	1.2	HIB	IVB	VB	VIB	VIIB	<u> </u>		\neg	IB	IIB	1.5	1.8	2.1	2.5	3.0	-
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	-
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	—
Cs	Ba	La–Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.7	0.9	1.1–1.2	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	—
Fr	Ra	Ac–No															
0.7	0.9	1.1-1.7															

Adapted from Fig. 2.7, *Callister & Rethwisch 8e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.) Chapter 12 -

Factors that Determine Crystal Structure

 Relative sizes of ions – Formation of stable structures: --maximize the # of oppositely charged ion neighbors.

m, p values to achieve charge neutrality

Rock Salt Structure

Same concepts can be applied to ionic solids in general. Example: NaCl (rock salt) structure

octahedral sites

Since 0.732 < 0.939 < 1.0 cubic sites preferred

AX Crystal Structures

and zinc blende

Cesium Chloride structure:

AX–Type Crystal Structures include CsCl,

Adapted from Fig. 12.3, *Callister & Rethwisch 8e.*

= 0.939

Adapted from Fig. 12.2, *Callister & Rethwisch 8e.*

AX₂ Crystal Structures

Fluorite structure

- Calcium Fluorite (CaF₂)
- Cations in cubic sites
- UO₂, ThO₂, ZrO₂, CeO₂

Adapted from Fig. 12.5, *Callister & Rethwisch 8e.*

ABX₃ Crystal Structures

Perovskite structure

Ex: complex oxide BaTiO₃

Adapted from Fig. 12.6, *Callister & Rethwisch 8e.*

Silicate Ceramics

Most common elements on earth are Si & O

- SiO₂ (silica) polymorphic forms are quartz, crystobalite, & tridymite
- The strong Si-O bonds lead to a high melting temperature (1710°C) for this material

Glass Structure

• Basic Unit:

Glass is noncrystalline (amorphous)

- Fused silica is SiO₂ to which no impurities have been added
- Other common glasses contain impurity ions such as Na⁺, Ca²⁺, Al³⁺, and B³⁺
- Quartz is crystalline SiO₂:

Polymorphic Forms of Carbon

Diamond

- tetrahedral bonding of carbon
 - hardest material known
 - very high thermal conductivity
- large single crystals gem stones
- small crystals used to grind/cut other materials
- diamond thin films
 - hard surface coatings used for cutting tools, medical devices, etc.

Adapted from Fig. 12.15, *Callister & Rethwisch 8e.*

Polymorphic Forms of Carbon (cont)

Graphite

 layered structure – parallel hexagonal arrays of carbon atoms

- weak van der Waal's forces between layers
- planes slide easily over one another -- good lubricant

Polymorphic Forms of Carbon (cont) Fullerenes and Nanotubes

- Fullerenes spherical cluster of 60 carbon atoms, C₆₀
 - Like a soccer ball
- Carbon nanotubes sheet of graphite rolled into a tube
 - Ends capped with fullerene hemispheres

Point Defects in Ceramics (i)

- Vacancies
 - -- vacancies exist in ceramics for both cations and anions
- Interstitials
 - -- interstitials exist for cations
 - -- interstitials are not normally observed for anions because anions are large relative to the interstitial sites

Point Defects in Ceramics (ii)

- Frenkel Defect
 - -- a cation vacancy-cation interstitial pair.
- Shottky Defect
 - -- a paired set of cation and anion vacancies.

Adapted from Fig.12.21, *Callister* & *Rethwisch 8e.* (Fig. 12.21 is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, *The Structure and Properties of Materials*, Vol. 1, *Structure*, John Wiley and Sons, Inc., p. 78.)

• Equilibrium concentration of defects $\propto e^{-Q_D/kT}$

Imperfections in Ceramics

- Electroneutrality (charge balance) must be maintained when impurities are present
- Ex: NaCl Na⁺ Cl⁻
- Substitutional cation impurity

without impurity

Ca²⁺ impurity

Substitutional anion impurity

with impurity

Ceramic Phase Diagrams

MgO-Al₂O₃ diagram:

Mechanical Properties

Ceramic materials are more brittle than metals. Why is this so?

- Consider mechanism of deformation
 - In crystalline, by dislocation motion
 - In highly ionic solids, dislocation motion is difficult
 - few slip systems
 - resistance to motion of ions of like charge (e.g., anions) past one another

Flexural Tests – Measurement of Elastic Modulus

- Room *T* behavior is usually elastic, with brittle failure.
- 3-Point Bend Testing often used.
 - -- tensile tests are difficult for brittle materials.

• Determine elastic modulus according to:

$$F = \frac{F}{\delta} \frac{L^3}{4bd^3} \quad (\text{rect. cross section})$$

$$E = \frac{F}{\delta} \frac{L^3}{4bd^3} \quad (\text{rect. cross section})$$

$$E = \frac{F}{\delta} \frac{L^3}{12\pi R^4} \quad (\text{circ. cross section})$$

$$E = \frac{F}{\delta} \frac{L^3}{12\pi R^4} \quad (\text{circ. cross section})$$

Flexural Tests – Measurement of Flexural Strength

• 3-point bend test to measure room-*T* flexural strength.

SUMMARY

- Interatomic bonding in ceramics is ionic and/or covalent.
- Ceramic crystal structures are based on:
 - -- maintaining charge neutrality
 - -- cation-anion radii ratios.
- Imperfections
 - -- Atomic point: vacancy, interstitial (cation), Frenkel, Schottky
 - -- Impurities: substitutional, interstitial
 - -- Maintenance of charge neutrality
- Room-temperature mechanical behavior flexural tests
 -- linear-elastic; measurement of elastic modulus
 -- brittle fracture; measurement of flexural modulus

