Chapter 12: Structures \& Properties of Ceramics

ISSUES TO ADDRESS....

- How do the crystal structures of ceramic materials differ from those for metals?
- How do point defects in ceramics differ from those defects found in metals?
- How are impurities accommodated in the ceramic lattice?
- In what ways are ceramic phase diagrams different from phase diagrams for metals?
- How are the mechanical properties of ceramics measured, and how do they differ from those for metals?

Atomic Bonding in Ceramics

- Bonding:
-- Can be ionic and/or covalent in character.
-- \% ionic character increases with difference in electronegativity of atoms.
- Degree of ionic character may be large or small:

Adapted from Fig. 2.7, Callister \& Rethwisch Be. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, Ord edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.)

Factors that Determine Crystal Structure

1. Relative sizes of ions - Formation of stable structures: --maximize the \# of oppositely charged ion neighbors.

unstable

stable

Adapted from Fig. 12.1, Callister \& Rethwisch Be.

stable
2. Maintenance of

Charge Neutrality :
--Net charge in ceramic should be zero.
--Reflected in chemical
 formula:

m, p values to achieve charge neutrality

Rock Salt Structure

Same concepts can be applied to ionic solids in general.
Example: NaCl (rock salt) structure

- Na^{+}
$\bigcirc \mathrm{Cl}^{-}$
$r_{\mathrm{Na}}=0.102 \mathrm{~nm}$
$r_{\mathrm{Cl}}=0.181 \mathrm{~nm}$
$r_{\mathrm{Na}} / r_{\mathrm{Cl}}=0.564$
\therefore cations $\left(\mathrm{Na}^{+}\right)$prefer octahedral sites

AX Crystal Structures

AX-Type Crystal Structures include CsCl , and zinc blende
Cesium Chloride structure:

\therefore Since $0.732<0.939<1.0$, cubic sites preferred

Adapted from Fig. 12.2, Callister \& Rethwisch $8 e$.

AX ${ }_{2}$ Crystal Structures

Fluorite structure

- Calcium Fluorite (CaF_{2})
- Cations in cubic sites
- $\mathrm{UO}_{2}, \mathrm{ThO}_{2}, \mathrm{ZrO}_{2}, \mathrm{CeO}_{2}$

Adapted from Fig. 12.5,
Callister \& Rethwisch 8 e .

ABX_{3} Crystal Structures

- Perovskite structure

Ex: complex oxide BaTiO_{3}

- $\mathrm{Ti}^{4+} \bigcirc \mathrm{Ba}^{2+} \bigcirc \mathrm{O}^{2-}$

Adapted from Fig. 12.6, Callister \& Rethwisch 8e.

Silicate Ceramics

Most common elements on earth are $\mathrm{Si} \& \mathrm{O}$

- SiO_{2} (silica) polymorphic forms are quartz, crystobalite, \& tridymite
- The strong Si-O bonds lead to a high melting temperature $\left(1710^{\circ} \mathrm{C}\right)$ for this material

Glass Structure

- Basic Unit:

- Quartz is crystalline SiOn:

Glass is noncrystalline (amorphous)

- Fused silica is SiO_{2} to which no impurities have been added
- Other common glasses contain impurity ions such as $\mathrm{Na}^{+}, \mathrm{Ca}^{2+}$, Al^{3+}, and B^{3+}

Polymorphic Forms of Carbon

Diamond

- tetrahedral bonding of carbon
- hardest material known
- very high thermal conductivity
- large single crystals gem stones
- small crystals - used to grind/cut other materials
- diamond thin films
- hard surface coatings used for cutting tools, medical devices, etc.

Adapted from Fig. 12.15, Callister \& Rethwisch $8 e$.

Polymorphic Forms of Carbon (cont)

Graphite

- layered structure - parallel hexagonal arrays of carbon atoms

Adapted from Fig.
12.17, Callister \&

Rethwisch $8 e$.

- weak van der Waal's forces between layers
- planes slide easily over one another -- good lubricant

Polymorphic Forms of Carbon (cont) Fullerenes and Nanotubes

- Fullerenes - spherical cluster of 60 carbon atoms, C_{60} - Like a soccer ball
- Carbon nanotubes - sheet of graphite rolled into a tube
- Ends capped with fullerene hemispheres

> 12.18 \& 12.19, Callister
\& Rethwisch 8 e.

Point Defects in Ceramics (i)

- Vacancies
-- vacancies exist in ceramics for both cations and anions
- Interstitials
-- interstitials exist for cations
-- interstitials are not normally observed for anions because anions are large relative to the interstitial sites

Adapted from Fig. 12.20, Callister \& Rethwisch 8e. (Fig. 12.20 is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, John Wiley and Sons, Inc., p. 78.)

Point Defects in Ceramics (ii)

- Frankel Defect
-- a cation vacancy-cation interstitial pair.
- Shottky Defect
-- a paired set of cation and anion vacancies.

Shottky Defect:

Adapted from Fig.12.21, Callister \& Rethwisch Be. (Fig. 12.21 is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, John Wiley and Sons, Inc., p. 78.)

- Equilibrium concentration of defects $\propto e^{-Q_{D} / k T}$

Imperfections in Ceramics

- Electroneutrality (charge balance) must be maintained when impurities are present
- Ex: $\mathrm{NaCl} \mathrm{Na}^{+} \mathrm{Cl}^{-}$
- Substitutional cation impurity
 without impurity $\quad \mathrm{Ca}^{2+}$ impurity

- Substitutional anion impurity

without impurity

Ceramic Phase Diagrams

$\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}$ diagram:

Mechanical Properties

Ceramic materials are more brittle than metals. Why is this so?

- Consider mechanism of deformation
- In crystalline, by dislocation motion
- In highly ionic solids, dislocation motion is difficult
- few slip systems
- resistance to motion of ions of like charge (e.g., anions) past one another

Flexural Tests - Measurement of Elastic Modulus

- Room T behavior is usually elastic, with brittle failure.
- 3-Point Bend Testing often used.
-- tensile tests are difficult for brittle materials.

- Determine elastic modulus according to:

linear-elastic behavior

$$
\begin{aligned}
& E=\frac{F}{\delta} \frac{L^{3}}{4 b d^{3}} \quad \text { (rect. cross section) } \\
& E=\frac{F}{\delta} \frac{L^{3}}{12 \pi R^{4}} \text { (circ. cross section) }
\end{aligned}
$$

Flexural Tests - Measurement of Flexural Strength

- 3-point bend test to measure room-T flexural strength.

- Flexural strength:

$$
\begin{aligned}
& \sigma_{f s}=\frac{3 F_{f} L}{2 b d^{2}} \quad \text { (rect. cross section) } \\
& \sigma_{f s}=\frac{F_{f} L}{\pi R^{3}} \quad \text { (circ. cross section) }
\end{aligned}
$$

- Typical values:

Material	$\sigma_{f S}(\mathrm{MPa})$	$E(\mathrm{GPa})$
Si nitride	$250-1000$	304
Si carbide	$100-820$	345
Al oxide	$275-700$	393
glass (soda-lime) 69	69	
Data from Table 12.5, Callister \& Rethwisch 8 e.		

SUMMARY

- Interatomic bonding in ceramics is ionic and/or covalent.
- Ceramic crystal structures are based on:
-- maintaining charge neutrality
-- cation-anion radii ratios.
- Imperfections
-- Atomic point: vacancy, interstitial (cation), Frenkel, Schottky
-- Impurities: substitutional, interstitial
-- Maintenance of charge neutrality
- Room-temperature mechanical behavior - flexural tests
-- linear-elastic; measurement of elastic modulus
-- brittle fracture; measurement of flexural modulus

