ARCHITECTURAL STRUCTURES:

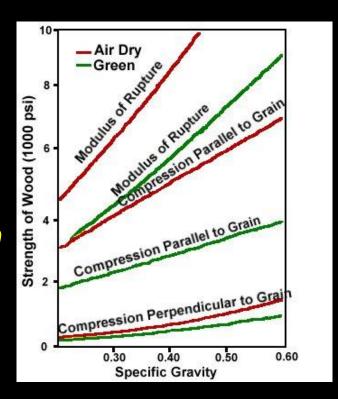
FORM, BEHAVIOR, AND DESIGN

ARCH 331 HÜDAVERDİ TOZAN SPRING 2013

ilecture fifteen

wood construction: materials & beams

NEAR EAST


Wood Beam Design

- National Design Specification
 - National Forest Products Association
- AND/LIPO NO. CONT.
- ASD & LRFD (combined in 2005)
- adjustment factors x tabulated stress = allowable stress
- adjustment factors terms, C with subscript
- i.e, bending:

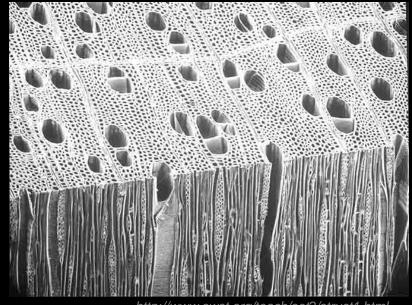
$$f_b \leq F_b' = F_b \times (product\ of\ adjustment\ factors)$$

Timber

- lightweight : strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by "flaws"
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives

Wood Properties

cell structure and density



http://www.swst.org/teach/set2/struct1.html

softwood

Wood Properties

- moisture
 - exchanges with air easily
 - excessive drying causes warping and shrinkage
 - strength varies some
- temperature
 - steam
 - volatile products
 - combustion

http://www.swst.org/teach/set2/struct1.htm

Wood Properties

- load duration
 - short duration
 - higher loads
 - normal duration
 - > 10 years

- creep
 - additional
 deformation with no additional load

Structural Lumber

- dimension 2 x's (nominal)
- beams, posts, timber, planks
- grading
 - select structural
 - no. 1, 2, & 3
- tabular values by species
- glu-lam
- plywood

	Size classification	Design values in pounds per square inch					
Species and commercial grade		Extreme fiber in bending "Fb"		Tension parallel	Horizontal	Compression perpendicular	(
		Single- member uses	Repetitive- member uses	to grain	shear "F _v "	to grain	
SOUTHERN PINE (Surfaced di	y. Used at 19% m	ax. m.c.)					
Select Structural Dense Select Structural No. 1 No. 1 Dense No. 2 No. 2 Dense No. 3 No. 3 Dense Stud	2" to 4" thick 2" to 4" wide	2000 2350 1700 2000 1400 1650 775 925 775	2300 2700 1950 2300 1650 1900 900 1050 900	1150 1350 1000 1150 825 975 450 525 450	100 100 100 100 90 90 90 90	565 660 565 660 565 660 565 660 565	
Construction Standard Utility	2" to 4" thick 4" wide	1000 575 275	1150 675 300	600 350 150	100 90 90	565 565 565	
Select Structural		1750	2000	1150	90	565	

Adjustment Factors

- terms
 - $-C_D = load duration factor$
 - $-C_{M}$ = wet service factor
 - 1.0 dry ≤ 16% MC
 - $-C_F = size factor$
 - visually graded sawn lumber and round timber > 12" depth

$$C_F = (12/d)^{\frac{1}{9}} \le 1.0$$

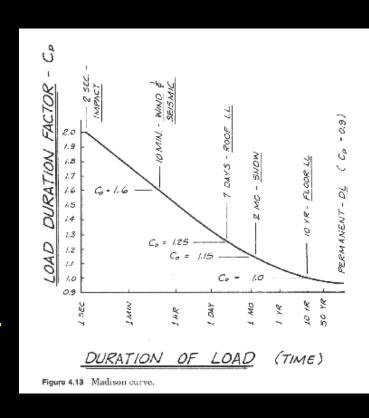


Table 10.3 (pg 376)

Adjustment Factors

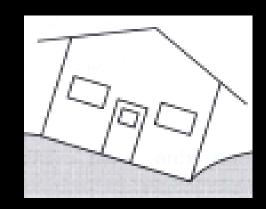
- terms
 - $-C_{fij} = flat use factor$
 - not decking
 - $-C_i = incising factor$
 - increase depth for pressure treatment
 - $-C_t = temperature factor$
 - lose strength at high temperatures

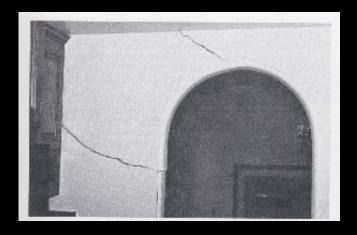
Adjustment Factors

- terms
 - $-C_r$ = repetitive member factor
 - $-C_H = shear stress factor$
 - splitting
 - $-C_V = volume\ factor$
 - same as C_F for glue laminated timber
 - $-C_L = beam stability factor$
 - beams without full lateral support
 - $-C_{C}$ = curvature factor for laminated arches

Allowable Stresses

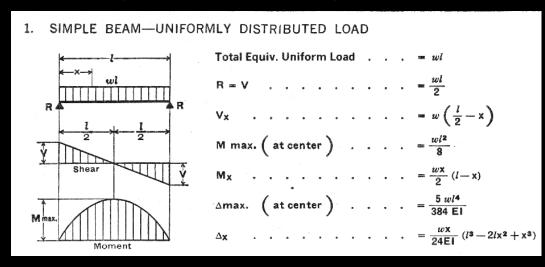
- design values
 - F_b: bending stress
 - F_t: tensile stress | strong
 - − F_v: horizontal shear stress
 - F_c: compression stress (perpendicular to grain)
 - F_c: compression stress (parallel to grain) strong
 - E: modulus of elasticity
 - $-F_p$: bearing stress (parallel to grain)

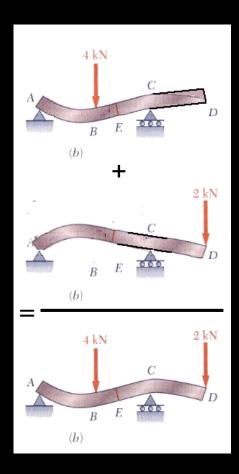



Load Combinations

- design loads, take the bigger of
 - (dead loads)/0.9
 - (dead loads + any possible combination of live loads)/C_D
- deflection limits
 - <u>no load factors</u>
 - for stiffer members:
 - Δ_T max from LL + 0.5(DL)

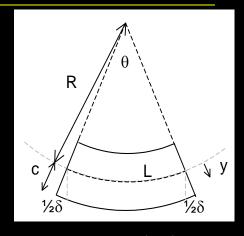
Beam Design Criteria


- strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding



Beam Design Criteria

- superpositioning
 - use of beam charts
 - elastic range only!
 - "add" moment diagrams
 - "add" deflection CURVES (not maximums)



Beam Deformations

- curvature relates to
 - bending moment
 - modulus of elasticity
 - moment of inertia

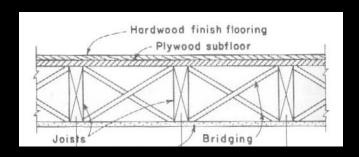
$$\frac{1}{R} = \frac{M}{EI}$$

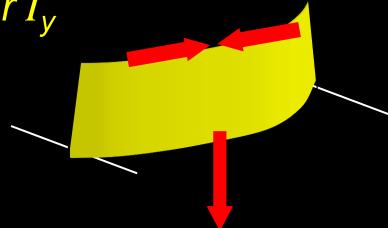
$$curvature = \frac{M(x)}{EI}$$

$$\theta = slope = \int \frac{M(x)}{EI} dx$$

$$\Delta = deflection = \int \int \frac{M(x)}{EI} dx$$

Deflection Limits


based on service condition, severity


Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damageable elements)		L/480

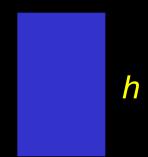
Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels

• stiffen, brace or bigger I_y

Timber Beam

Bracing


Table 9.3 Lateral bracing requirements for timber beams.

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
3 to 1	The ends of the beam should be held in position	End blocking Joist or beam
5 to 1	Hold the compression edge in line (continuously)	Sheathing or decking Joist or rafter
6 to 1	Diagonal bracing should be used	Nailed sheathing/decking Bridging Joist
7 to 1	Both edges of the beam should be held in line	Nailed sheathing/decking, top and bottom Bridging Joist

Design Procedure

1. Know F_{all} for the material or F_{ll} for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{req'd}$ $(f_b \leq F_b)$

b

4. Determine section size

$$S=\frac{bh^2}{6}$$

- 4*. Include self weight for M_{max}
 - and repeat 3 & 4 if necessary

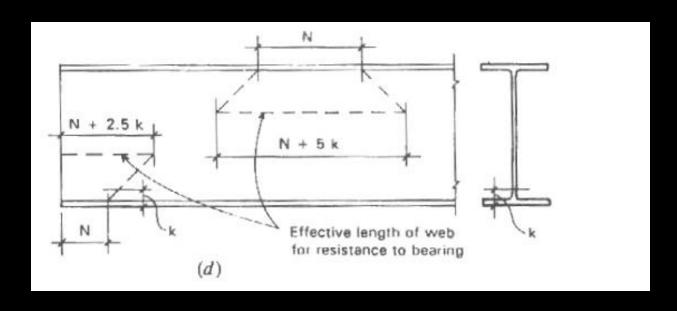
5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

6. Evaluate shear stresses - horizontal

•
$$(f_v \leq F_v)$$


• rectangles and W's $f_{v-\max} = \frac{3v}{2A} \approx \frac{v}{A_{web}}$

general

$$f_{v-\text{max}} = \frac{VQ}{Ib}$$

7. Provide adequate bearing area at supports

$$f_p = \frac{P}{A} \le F_p$$

8. Evaluate torsion

$$(f_v \leq F_v)$$

circular cross section

$$f_v = \frac{T\rho}{J}$$

rectangular

$$f_{v} = \frac{T}{c_1 a b^2}$$

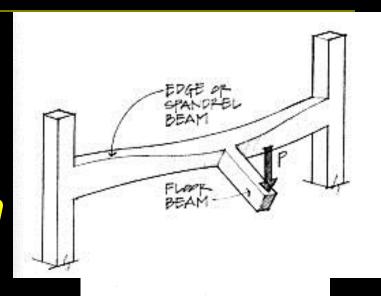
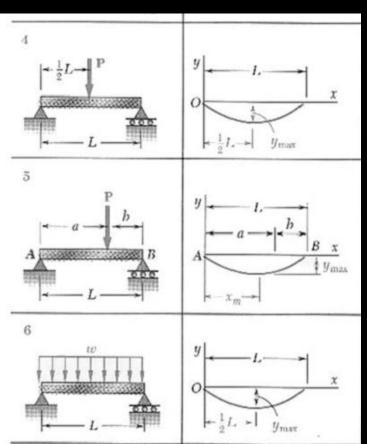
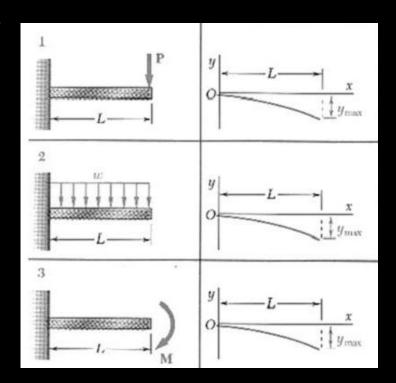




TABLE 3.1. Coefficients for Rectangular Bars in Torsion

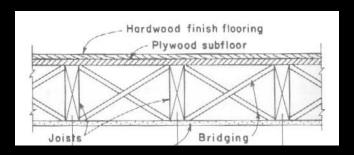
a/b	c ₁	C ₂
1.0	° 0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
∞	0.333	0.333

9. Evaluate deflections

$$y_{\text{max}}(x) = \Delta_{actual} \le \Delta_{allowable}$$

Decking

- across beams or joists
- floors: 16 in. span common
 - ¾ in. tongue-in-groove plywood
 - 5/8 in. particle board over ½ in. plywood
 - hardwood surfacing
- roofs: 24 in. span common
 - ½ in. plywood

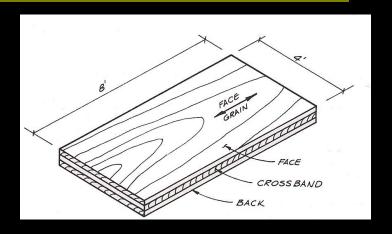


Joists & Rafters

- allowable load tables (w)
- allowable length tables for common

live & dead loads

- lateral bracing needed
- common spacings

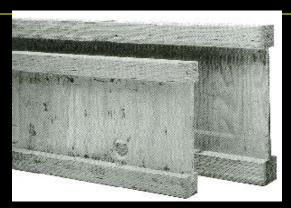


DESIGN CRITERIA: Deflection — For 40 psf (1.92 kN/m²) live load Limited to span in inches (mm) divided by 360 Strength — Live load of 40 psf (1.92 kN/m²) plus dead load of 10 psf (0.48 kN/m²) determines the Modulus of Elasticity, E, in 1,000,000 psi Size × 0.00689 for N/mm × 25.4 for mm 1.4 1.5 10-0 12.0 10-3 10-6 16.0 9-1 9-0 19.2 8-7 8-9 24.0 7-11 8-2 8-4 12.0 13-6 13-10 12-3 12-7 16.0 12-0 19.2 11 - 311-7 11-10 10-6 10-9 11-0 16-10 17-3 17-8 12.0 15-3 15-8 16-016.0 19.2 14-5 14-9 15 - 124.0 13-4 13-8 14-0 12.0 20-6 21-0 21-6 16.0 18-7 19-1 19-6 17-6 17-11 18-4 19.2 16-3 16-8 17-0 24.0 12.0 993 1,043 1,092 1,202 16.0 1,148 1,161 1,220 1,277 19.2 1,251 1,314

TABLE 5.5 Allowable Spans in Feet and Inches for Floor Joists

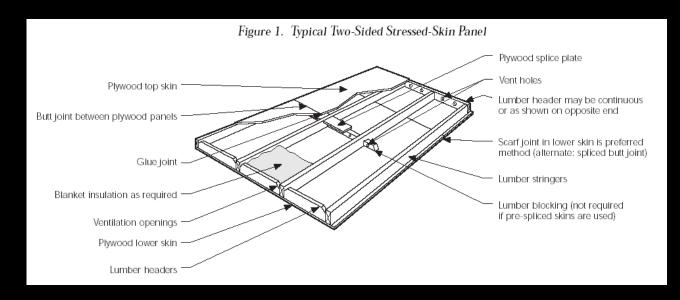
Engineered Wood

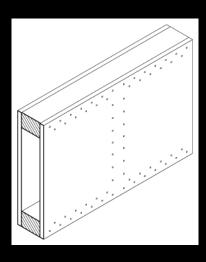
- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, decking, shear walls, diaphragms


Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms

Engineered Wood

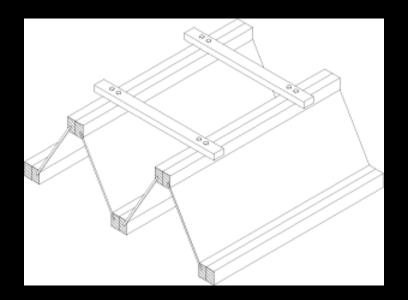

- I sections
 - beams
- other products
 - pressed veneer strip panels (Parallam)
 - laminated veneer lumber (LVL)
- wood fibers
 - Hardieboard: cement & wood



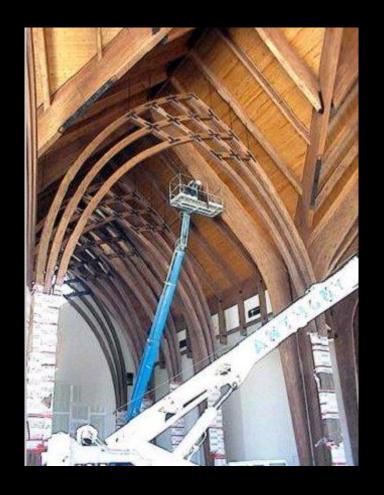
- stressed-skin elements
 - modular built-up "plates"
 - typically used for floors or roofs

- built-up box sections
 - built-up beams
 - usually site-fabricated
 - bigger spans

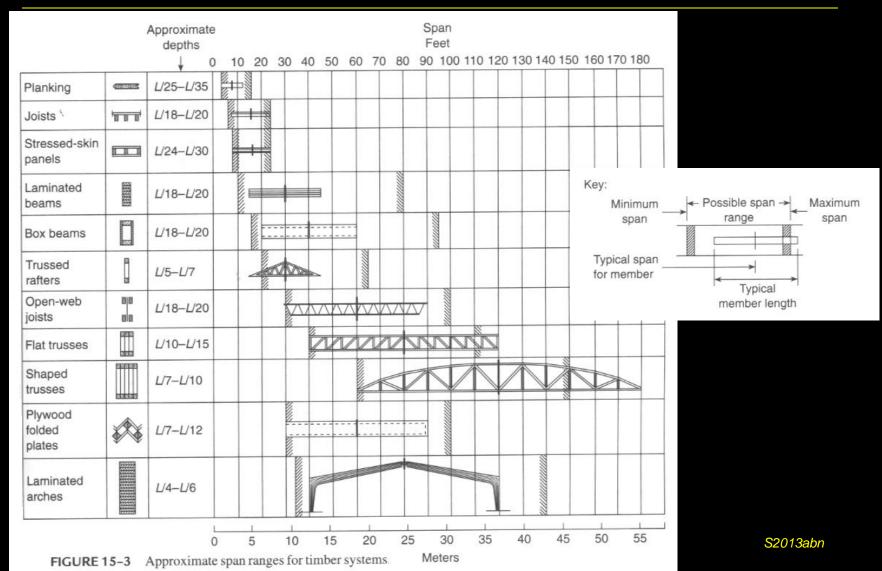
Architectural Structures
ARCH 331


- trusses
 - long spans
 - versatile

– common in roofs



- folded plates and arch panels
 - usually of plywood



- arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs

Approximate Depths

