Architectural Structures: Form, Behavior, and Design

NEAR EAST UNIVERSITY

ARCH 331
HÜDAVERDİ TOZAN
SPRING 2013

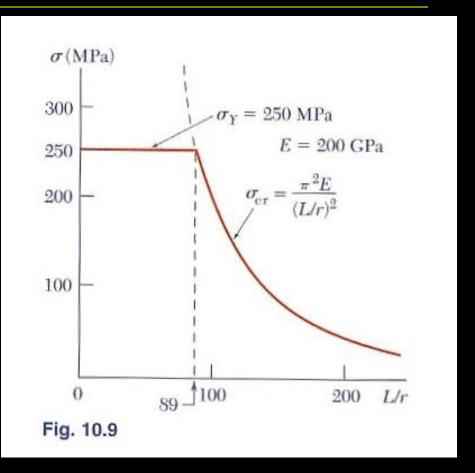
Cor-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Structures of the Everyday)

twenty

steel construction: columns & tension members

Structural Steel

- standard rolled shapes
 (W, C, L, T)
- tubing
- pipe
- built-up



Steel Columns & Tension 2 Lecture 20

Architectural Structures
ARCH 331

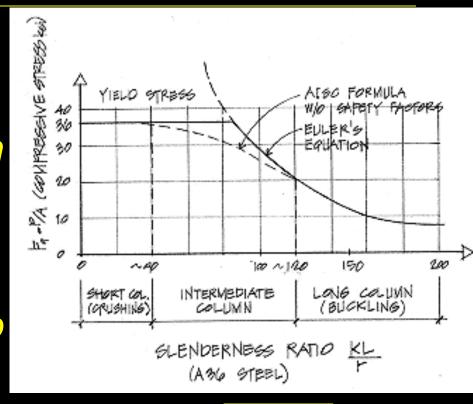
Design Methods (revisited)

- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling

Allowable Stress Design (ASD)

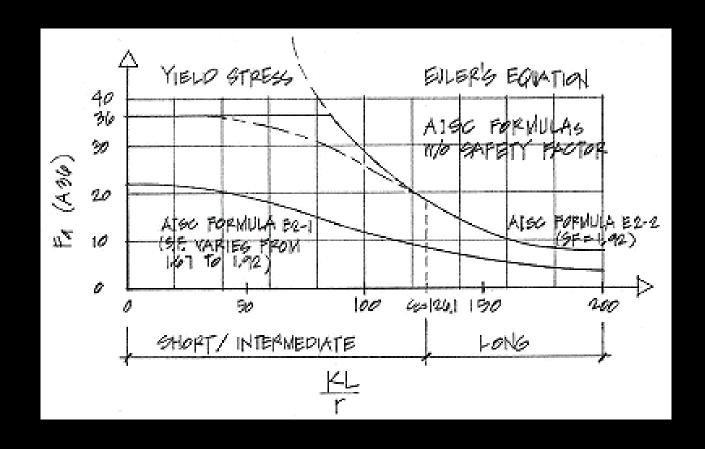
AICS 9th ed

$$F_a = \frac{f_{critical}}{F.S.} = \frac{12\pi^2 E}{23(Kl/r)^2}$$


• slenderness ratio

- for
$$kl/r \ge C_c$$
 = 126.1 with $F_y = 36$ ksi = 107.0 with $F_v = 50$ ksi

C_c and Euler's Formula


- $KI/r < C_c$
 - short and stubby
 - parabolic transition

- $KI/r > C_c$
 - Euler's relationship
 - < 200 preferred

$$C_c = \sqrt{\frac{2\pi^2 E}{F_y}}$$

C_c and Euler's Formula

Short / Intermediate

•
$$L_e/r < C_c$$

$$F_a = \left[1 - \frac{\left(\frac{Kl}{r}\right)^2}{2C_c^2}\right] \frac{F_y}{F.S.}$$

- where

$$F.S. = \frac{5}{3} + \frac{3(Kl/r)}{8C_c} - \frac{(Kl/r)^3}{8C_c^3}$$

Unified Design

limit states for failure

$$P_{a} \leq P_{n} / \Omega$$

$$P_{u} \leq \phi_{c} P_{n}$$

$$\phi_c = 0.90 \qquad P_n = F_{cr} A_g$$

1. yielding
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}} \text{ or } F_e \ge 0.44 F_y$$

2. buckling
$$\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$$
 or $F_e < 0.44F_y$

$$F_e - elastic buckling stress (Euler)$$

Unified Design

•
$$P_n = F_{cr}A_g$$

 $-$ for $\frac{KL}{r} \le 4.71\sqrt{\frac{E}{F_y}}$ $F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right]F_y$
 $-$ for $\frac{KL}{r} > 4.71\sqrt{\frac{E}{F_y}}$ $F_{cr} = 0.877F_e$
 $-$ where $F = \frac{\pi^2 E}{\sqrt{\frac{E}{F_y}}}$

Procedure for Analysis

- 1. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 2. find F_a or F_{cr} from appropriate equation
 - tables are available
- 3. compute $P_{allowable} = F_a \cdot A \underline{or} P_n = F_{cr} A_g$
 - or find $f_{actual} = P/A$
- 4. is $P \le P_{allowable} (P_a \le P_n/\Omega)$? or is $P_u \le \phi P_n$?
 - yes: ok
 - no: insufficient capacity and no good

Procedure for Design

- 1. guess a size (pick a section)
- 2. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 3. find F_a or F_{cr} from appropriate equations
 - or find a chart
- 4. compute $P_{allowable} = F_a A$ $(P_n/\Omega = F_{cr} A_g)$ or $P_n = F_{cr} A_g$
 - or find $f_{actual} = P/A$

Procedure for Design (cont'd)

- 5. is $P \le P_{allowable}$ $(P_a \le P_n/\Omega)$? or is $P_u \le \phi P_n$?
 - yes: ok
 - no: pick a bigger section and go back to step 2.
- 6. check design efficiency

• percentage of stress =
$$\frac{P_r}{P_c} \cdot 100\%$$

- if between 90-100%: good
- if < 90%: pick a smaller section and go back to step 2.

Column Charts, F_a (pg. 361-364)

Table 10.1 Allowable stress for compression members ($F_y = 36 \text{ ksi and } F_y = 250 \text{ MPa}$).

$\frac{KL}{r}$	F_a (ksi)	F _a (MPa)	$\frac{KL}{r}$	F_a (ksi)	F _a (MPa)	$\frac{KL}{r}$	F_a (ksi)	F _a (MPa)
1	21.56	148.7	41	19.11	131.8	81	15.24	105.1
2	21.52	148.4	42	19.03	131.2	82	15.13	104.3
3	21.48	148.1	43	18.95	130.7	83	15.02	103.6
4	21.44	147.8	44	18.86	130.0	84	14.90	102.7
5	21.39	147.5	45	18.78	129.5	85	14.79	102.0
6	21.35	147.2	46	18.70	128.9	86	14.67	101.1
7	21.30	146.9	47	18.61	128.3	87	14.56	100.4
8	21.25	146.5	48	18.53	127.8	88	14.44	99.6
9	21.21	146.2	49	18.44	127.1	89	14.32	98.7
10	21.16	145.9	50	18.35	126.5	90	14.20	97.9
11	21.10	145.5	51	18.26	125.9	91	14.09	97.2
12	21.05	145.1	52	18.17	125.3	92	13.97	96.3
13	21.00	144.8	53	18.08	124.7	93	13.84	95.4
14	20.95	144.5	54	17.99	124.0	94	13.72	94.6
15	20.89	144.0	55	17.90	123.4	95	13.60	93.8
16	20.83	143.6	56	17.81	122.8	96	13.48	92.9
17	20.78	143.3	57	17.71	122.1	97	13.35	92.0
18	20.72	142.9	58	17.62	121.5	98	13.23	91.2

Column Charts, ϕF_{cr}

Available Critical Stress, $\phi_c F_{cr}$, for Compression Members, ksi ($F_v = 50$ ksi and $\phi_c = 0.90$)

KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$
1	45.0	41	39.8	81	27.9	121	15.4	161	8.72
2	45.0	42	39.6	82	27.5	122	15.2	162	8.61
3	45.0	43	39.3	83	27.2	123	14.9	163	8.50
4	44.9	44	39.1	84	26.9	124	14.7	164	8.40
5	44.9	45	38.8	85	26.5	125	14.5	165	8.30
6	44.9	46	38.5	86	26.2	126	14.2	166	8.20
7	44.8	47	38.3	87	25.9	127	14.0	167	8.10
8	44.8	48	38.0	88	25.5	128	13.8	168	8.00
9	44.7	49	37.8	89	25.2	129	13.6	169	7.91
10	44.7	50	37.5	90	24.9	130	13.4	170	7.82
11	44.6	51	37.2	91	24.6	131	13.2	171	7.73
12	44.5	52	36.9	92	24.2	132	13.0	172	7.64
13	44.4	53	36.6	93	23.9	133	12.8	173	7.55
14	44.4	54	36.4	94	23.6	134	12.6	174	7.46
15	44.3	55	36.1	95	23.3	135	12.4	175	7.38
16	44.2	56	35.8	96	22.9	136	12.2	176	7.29
17	44.1	57	35.5	97	22.6	137	12.0	177	7.21
18	43.9	58	35.2	98	22.3	138	11.9	178	7.13
19	43.8	59	34.9	99	22.0	139	11.7	179	7.05
20	43.7	60	34.6	100	21.7	140	11.5	180	6.97
21	43.6	61	34.3	101	21.3	141	11.4	181	6.90
22	43.4	62	34.0	102	21.0	142	11.2	182	6.82
23	43.3	63	33.7	103	20.7	143	11.0	183	6.75
24	43.1	64	33.4	104	20.4	144	10.9	184	6.67
25	43.0	65	33.0	105	20.1	145	10.7	185	6.60

Column Charts

 $F_{\nu} = 50 \text{ ksi}$

Table 4-1 (continued) Available Strength in Axial Compression, kips W Shapes

Shape Wt/ft Design		W12×									
		96		87		79		72		65	
		P_n/Ω_c	φ _c P _n LRFD								
	6	811	1220	735	1110	667	1000	607	913	548	824
r	7	800	1200	725	1090	657	987	598	899	540	811
5	8	787	1180	713	1070	646	971	588	884	531	798
gyration	9	772	1160	699	1050	634	952	577	867	520	782
	10	756	1140	685	1030	620	932	565	849	509	765
, p	11	739	1110	669	1010	606	910	551	828	497	747

Beam-Column Design

moment magnification (P-∆)

$$M_{u} = B_{1}M_{max-factored}$$
 $B_{1} = \frac{C_{m}}{1 - (P_{u} / P_{e1})}$

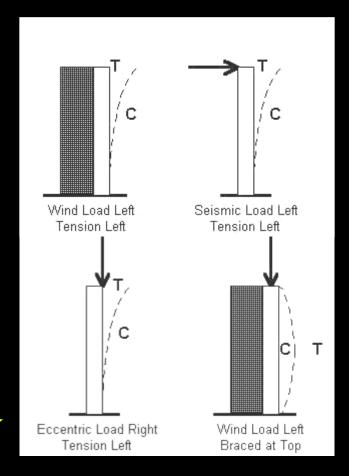
$$C_m$$
 – modification factor for end conditions
= 0.6 – 0.4(M_1/M_2) or
0.85 restrained, 1.00 unrestrained
 P_{e1} – Euler buckling strength $P_{e1} = \frac{\pi^2 EA}{(Kl/r)^2}$

Beam-Column Design

LRFD (Unified) Steel

$$- for \frac{P_r}{P_c} \ge 0.2 : \frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{ux}}{\phi_b M_{nx}} \right) \le 1.0$$

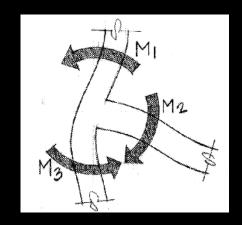
$$\frac{P_r}{P_c} < 0.2 : \frac{P_u}{2\phi_c P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{ux}}{\phi_b M_{nx}}\right) \le 1.0$$


 P_r is required, P_c is capacity

 ϕ_c - resistance factor for compression = 0.9

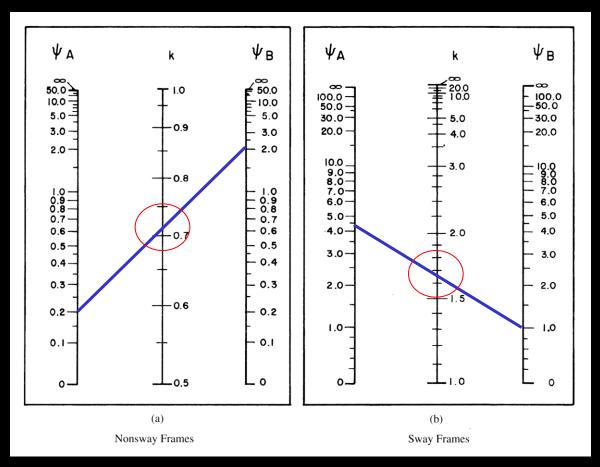
 ϕ_b - resistance factor for bending = 0.9

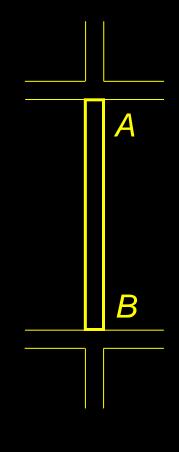
Design Steps Knowing Loads (revisited)


- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- 4. analyze stresses
- 5. section ok?
- 6. stop when section is ok

Rigid Frame Design (revisited)

- columns in frames
 - ends can be "flexible"
 - stiffness affected by beams and column = El/L

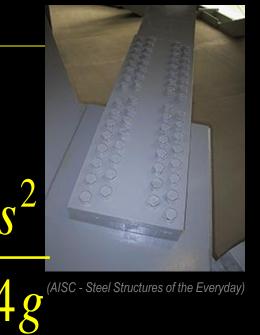

$$G=arPsi$$
 = $rac{\sum EI/l_c}{\sum EI/l_b}$ - for the joint

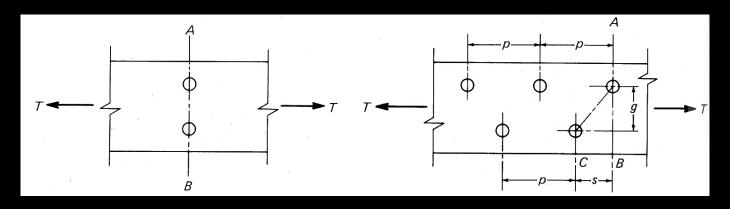


- Ic is the column length of each column
- I_b is the beam length of each beam
- measured center to center

Rigid Frame Design (revisited)

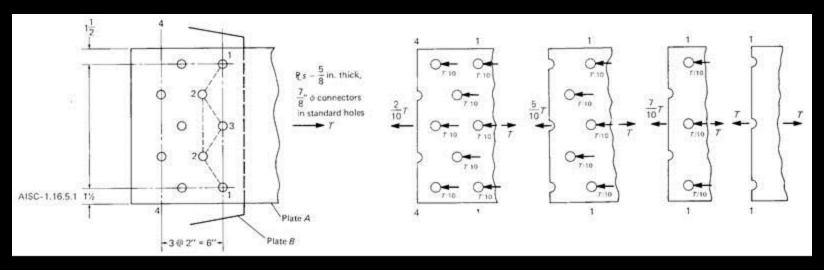
column effective length, k





Tension Members

- steel members can have holes
- reduced area


$$A_n = A_g - A_{of\ all\ holes} + t \Sigma$$
 • increased stress

Effective Net Area

- likely path to "rip" across
- bolts divide transferred force too
- shear lag $A_e \leq \overline{A_n U}$

Tension Members

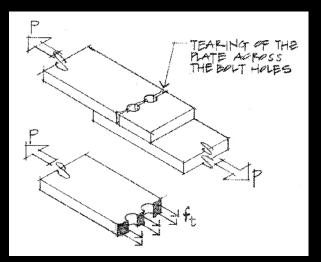
 limit states for failure

$$P_a \leq \frac{P_n}{\Omega} \quad P_u \leq \phi_t P_n$$

1. yielding
$$\phi_t = 0.90$$

$$P_n = F_y A_y$$

2.
$$rupture^* \phi_t = 0.75$$


$$\phi_{t} = 0.75$$

$$P_n = F_u A_e$$

A_a - gross area

A - effective net area (holes 1/8" + d)

 F_{ij} = the tensile strength of the steel (ultimate)

