Architectural Structures: Form, Behavior, and Design

Arch 331 hüdaverdi tozan Spring 2013

concrete construction^{http://nisee.berkeley.edu/godden} **materials & beams**

Concrete Beams 1 Lecture 22 Architectural Structures ARCH 331

NEAR EAST

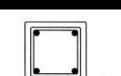
IVERS

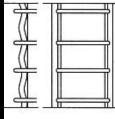
Concrete Beam Design

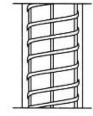
- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for maximum stresses
 - limit state design
 - service loads x load factors
 - concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity

- concrete strength = f'_c

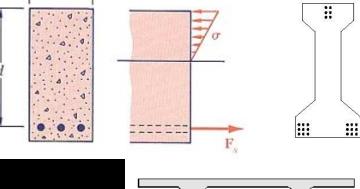
Concrete Construction

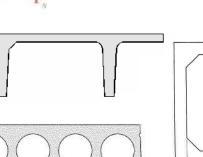

- cast-in-place
- tilt-up
- prestressing
- post-tensioning

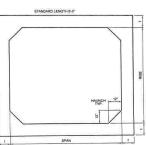

arch.mcgill.ca

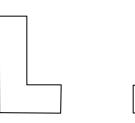


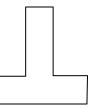
Concrete Beams 3 Lecture 22 Architectural Structures ARCH 331 http:// nisee.berkeley.edu/godden S2013abn

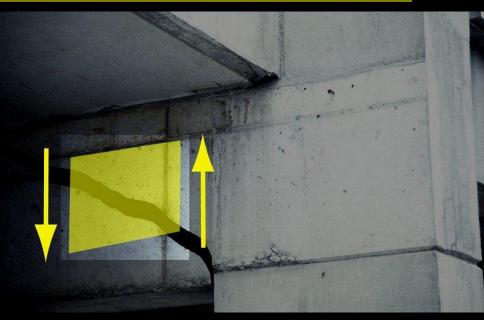



Spirally reinforced column

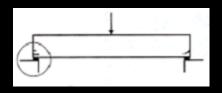

Concrete Beams


- types
 reinforced


 - precast
 - prestressed
- shapes
 - rectangular, l
 - T, double T's, bulb T's
 - box
 - spandrel

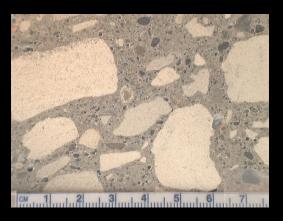


Architectural Structures ARCH 331


Concrete Beams

- shear
 - vertical
 - horizontal
 - combination:
 - tensile stresses at 45°

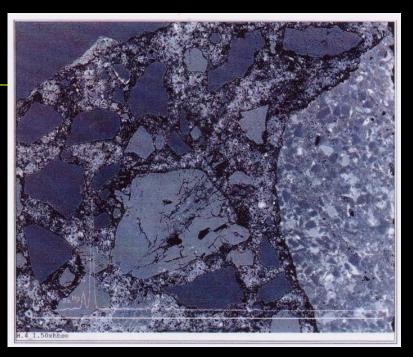
http://urban.arch.virginia.edu


• bearing - crushing

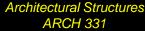
Concrete

- low strength to weight ratio
- relatively inexpensive
 - Portland cement
 - types I V
 - aggregate
 - course & fine
 - water
 - admixtures
 - air entraining
 - superplasticizers

Concrete Beams 6 Lecture 22 Architectural Structures ARCH 331


Concrete

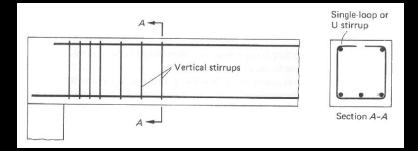
- hydration
 - chemical reaction
 - workability
 - water to cement ratio
 - mix design
- fire resistant
- cover for steel
- creep & shrinkage



Concrete Beams 7 Lecture 22 Architectural Structures ARCH 331

Concrete

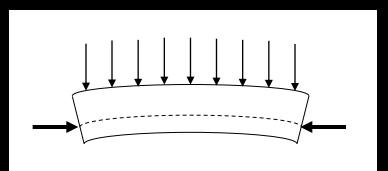
- placement (not pouring!)
- vibrating
- screeding
- floating
- troweling
- curing
- finishing



Concrete Beams 8 Lecture 22

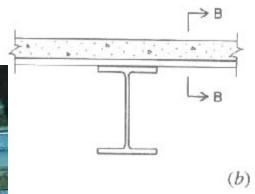
Reinforcement

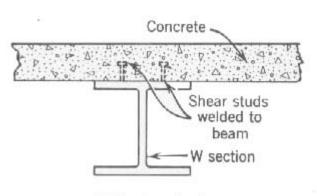
- deformed steel bars (rebar)
 - Grade 40, $F_{y} = 40$ ksi
 - Grade 60, $F_v = 60$ ksi most common
 - Grade 75, $F_{v} = 75$ ksi
 - US customary in # of 1/8" ϕ
- Iongitudinally placed
 - bottom
 - top for compression reinforcement



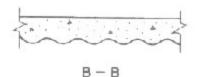
Reinforcement

- prestressing strand
- post-tensioning
- stirrups
- detailing
 - development length
 - anchorage
 - splices

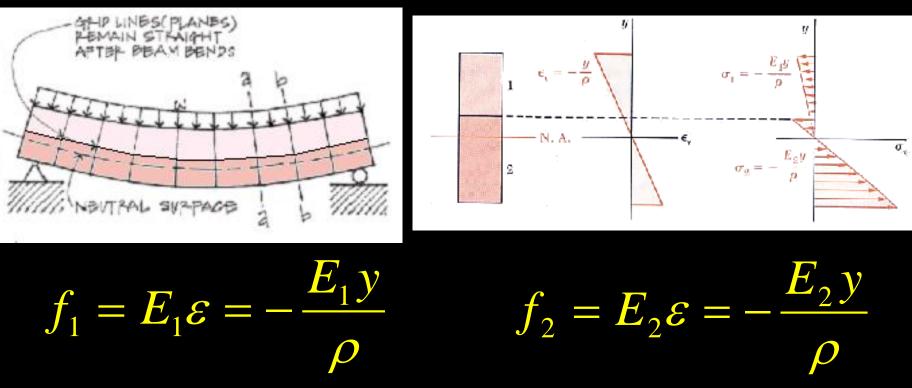




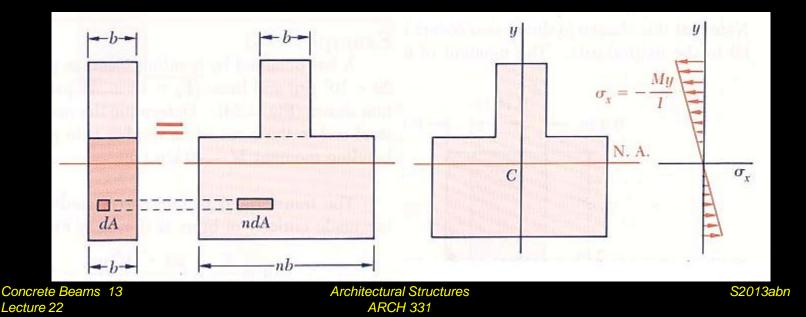
Architectural Structures ARCH 331 http:// nisee.berkeley.edu/godden \$2013abn


Composite Beams

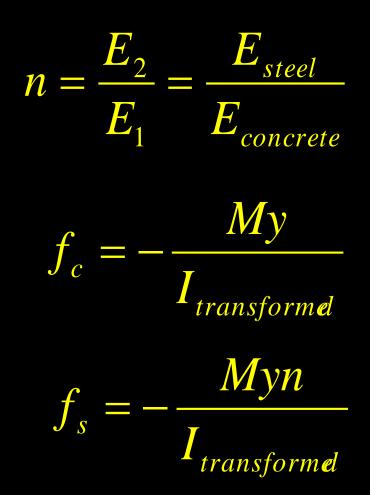

- concrete
 - in compression
- steel
 - in tension
- shear studs


(c) Composite beam.

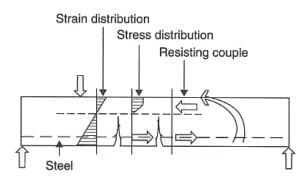
Behavior of Composite Members


- plane sections remain plane
- stress distribution changes

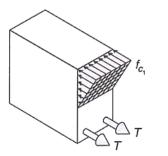
Concrete Beams 12 Lecture 22 Architectural Structures ARCH 331

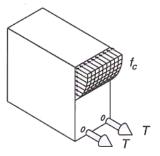

Transformation of Material

- *n* is the ratio of E's
- $=\frac{E_2}{E_1}$ effectively widens a material to get same stress distribution

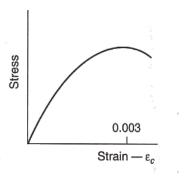


Stresses in Composite Section

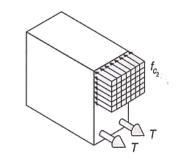

with a section $\overline{}$ transformed to one material, new l - stresses in that material are determined as usual - stresses in the other material need to be adjusted by n


Reinforced Concrete - stress/strain

Stresses in the concrete above the neutral axis are compressive and nonlinearly distributed. In the tension zone below the neutral axis, the concrete is assumed to be cracked and the tensile force present to be taken up by reinforcing steel.



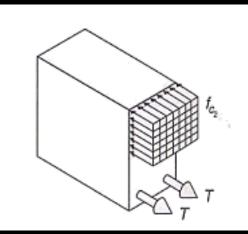
Working stress analysis. (Concrete stress distribution is assumed to be linear. Service loads are used in calculations.)



Actual stress distribution near ultimate strength (nonlinear).

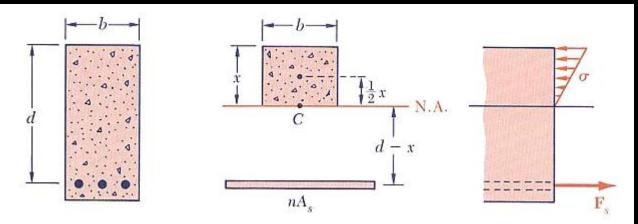
ARCH 331

Typical stress-strain curve for concrete,



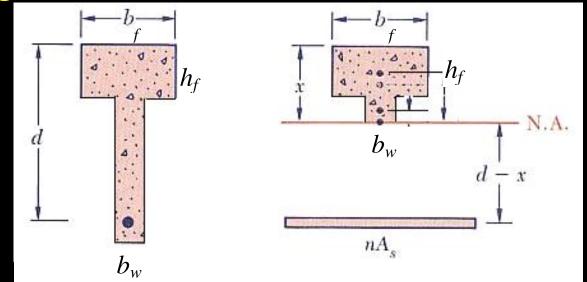
Ultimate strength analysis. (A rectangular stress block is used to idealize the actual stress distribution. Calculations are based on ultimate loads and failure stresses.)

Concrete Bea Lecture 22 FIGURE 6–37 Reinforced concrete beams.


Reinforced Concrete Analysis

- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent <u>stress block</u>
 - concrete takes no tension
 - steel takes tension
 - force <u>ductile</u> failure

Location of n.a.

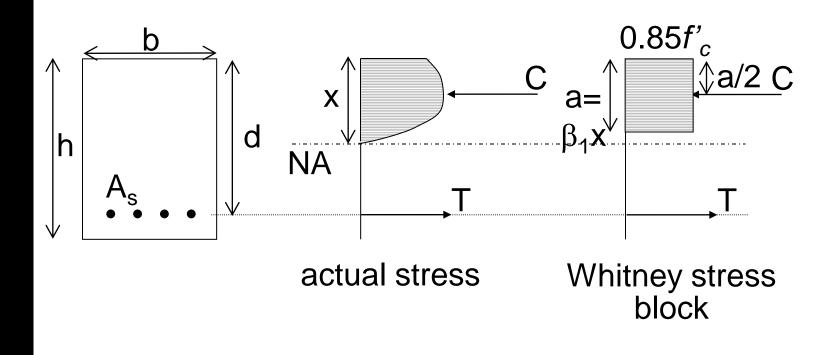

- ignore concrete below n.a.
- transform steel
- same area moments, solve for x

 $\frac{x}{d} - nA_s(d - x) = 0$ bx

T sections

• n.a. equation is different if n.a. below flange

$$b_{f}h_{f}\left(x-\frac{h_{f}}{2}\right)+\left(x-h_{f}\right)b_{w}\frac{\left(x-h_{f}\right)}{2}-nA_{s}(d-x)=0$$

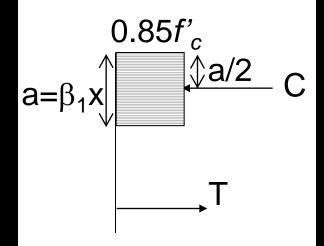

ACI Load Combinations*

- 1.4D
- $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (1.0L \text{ or } 0.5W)$
- $1.2D + 1.0W + 1.0L + 0.5(L_r \text{ or } S \text{ or } R)$
- 1.2D + 1.0E + 1.0L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E

*can also use old ACI factors

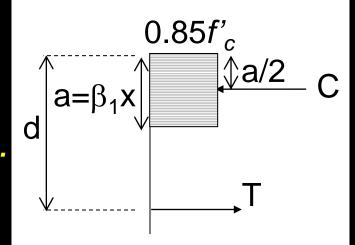
Reinforced Concrete Design

stress distribution in bending


Wang & Salmon, Chapter 3

Concrete Beams 20 Lecture 22

Force Equations


- $C = 0.85 f'_{c} ba$
- $T = A_s f_y$
- where
 - f'_c = concrete compressive strength
 - a = height of stress block
 - $-\beta_1 =$ factor based on f'_c
 - -x = location to the n.a.
 - b = width of stress block
 - $f_y = steel yield strength$
 - $-A_s = area of steel reinforcement$

Concrete Beams 21 Lecture 22

Equilibrium

- T = C
- $M_n = T(d-a/2)$ - d = depth to the steel n.a.
- with A_s $-a = \frac{A_s f_y}{0.85 f_c' b}$

 $-M_{u} \leq \phi M_{n} \quad \phi = 0.9 \text{ for flexure}$ $-\phi M_{n} = \phi T(d-a/2) = \phi A_{s}f_{y}(d-a/2)$

Over and Under-reinforcement

- over-reinforced

 steel won't yield
- under-reinforced
 steel will yield
- reinforcement ratio

http://people.bath.ac.uk/abstji/concrete_video/virtual_lab.htm

 $- \rho = \frac{-}{bd}$ $- use as a design estimate to find A_s, b, d$ $- max \rho is found with \varepsilon_{steel} \ge 0.004 (not \rho_{bal})$

A_s for a Given Section

- several methods
 - guess a and iterate 1. guess a (less than n.a.) 2. $A_{c} = \frac{0.85 f'_{c} ba}{1000}$ 3. solve for a from $M_{\mu} = \phi A_s f_{\nu} (d-a/2)$ a = 2 d - $\phi A_s f_y$ 4. repeat from 2. until a from 3. matches a in 2.

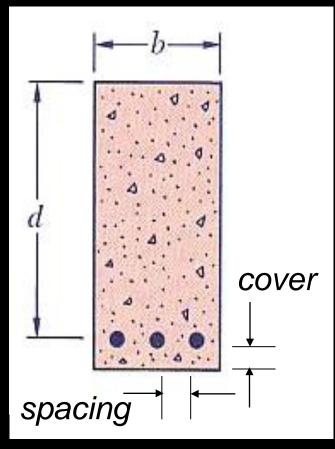
A_s for a Given Section (cont)

- chart method
 - Wang & Salmon Fig. 3.8.1 R_n vs. ρ

1. calculate $R_n = \frac{M_n}{bd^2}$

2. find curve for f'_c and f_y to get ρ 3. calculate A_s and a

• simplify by setting h = 1.1d


Reinforcement

- min for crack control
- required
- not less than $A_s = \frac{200}{c}$
- $A_{\text{s-max}}$: $a = \beta_1 (0.375d)$
- typical cover
 - 1.5 in, 3 in with soil
- bar spacing

Concrete Beams 26 Lecture 22 Architectural Structures ARCH 331

(bd)

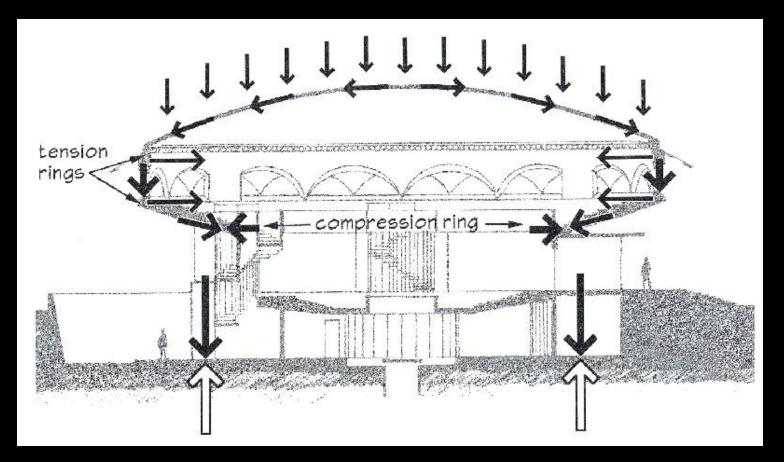
bd

Shells

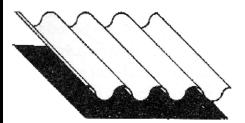
http://nisee.berkeley.edu/godden Architectural Structures Concrete Beams 27 ARCH 331 Lecture 22

Annunciation Greek Orthodox Church

• Wright, 1956

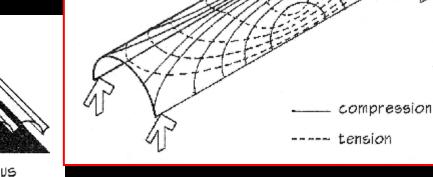

Concrete Beams 28 Lecture 22 Architectural Structures http://www ARCH 331

http://www.bluffton.edu/~sullivanm/


Annunciation Greek Orthodox Church

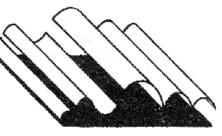
• Wright, 1956

Cylindrical Shells


- can resist tension
- shape adds "depth"

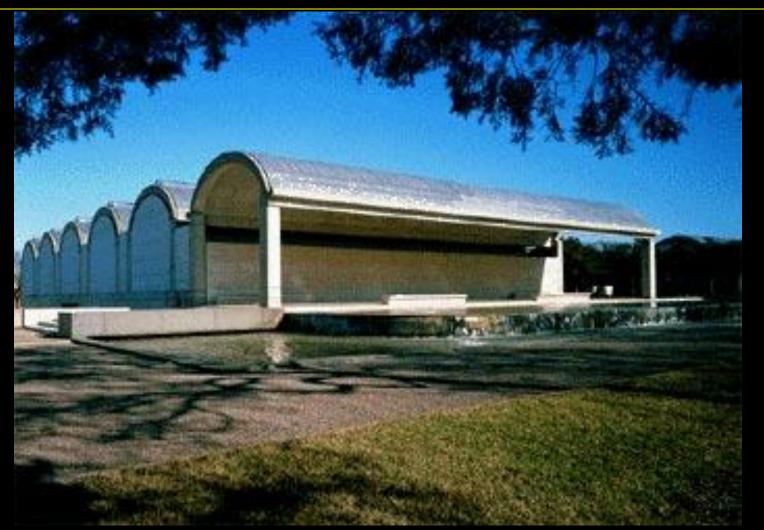


CONTINUOUS



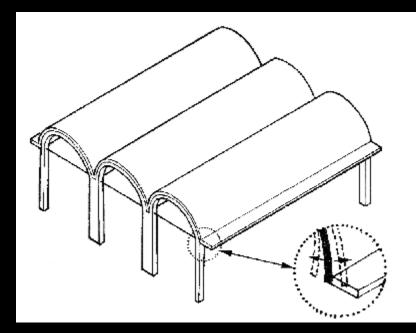
DISCONTINUOUS (to admit daylight)

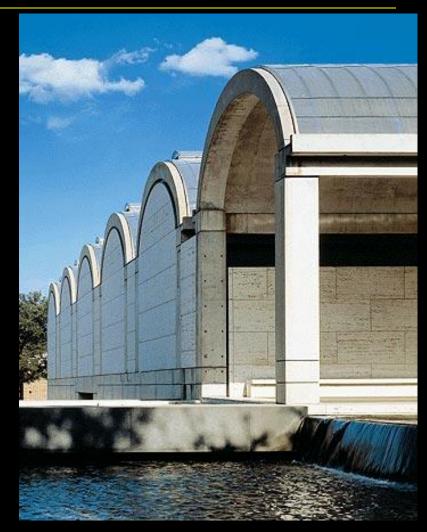
TRANSVERSE FOLDING



FREE FORM

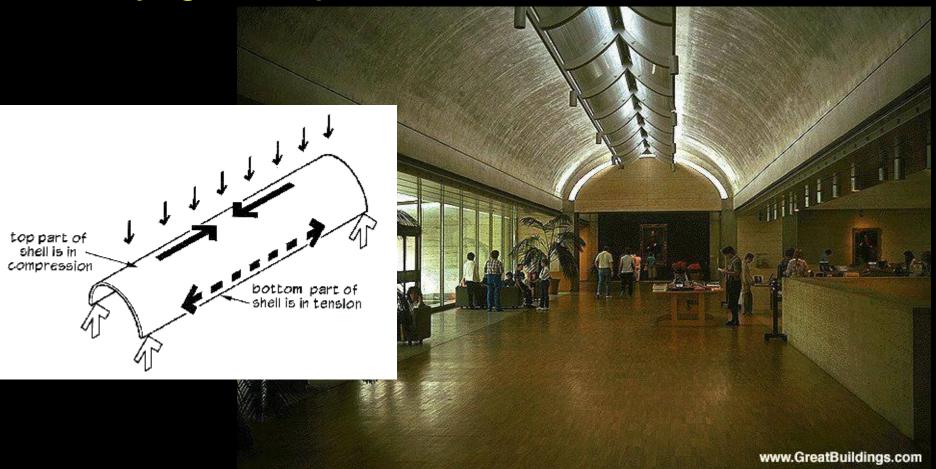
not vaultsbarrel shells


Concrete Beams 30 Lecture 22


Kimball Museum, Kahn 1972

Kimball Museum, Kahn 1972

• outer shell edges



Concrete Beams 32 Lecture 22 Architectural Structures ARCH 331

Kimball Museum, Kahn 1972

• skylights at peak

Architectural Structures ARCH 331

Approximate Depths

Concre Lectur

		22 <u>—</u> 212 ⁻ 00-00	Span	
			0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180	
Slabs (poured in place)	*********	Simply supported L/25 One end L/30 Both ends L/35 continuous		sible span 🔺 Maximui range 🖛 span
		Cantilever L/12	span	span
Beams (poured in place)		Simply supported One end continuous Both ends continuous	Typical span for member	
		Cantilever L/10		Typical member length
Pan joist system (poured in place)	1 1 1	L/20–L/25		
Folded plate (poured in place)		<i>L</i> /8– <i>L</i> /15		
Barrel shell (poured in place)		<i>L</i> /8– <i>L</i> /15		
Planks (precast)	200003	L/25-L/40		
Channels (precast)	$\sqrt[n]{}$	L/20–L/28		
Tees (precast)		L/20-L/28		
Flat plate (poured in place)		L/30-L/40		
Flat slab (poured in place)		<i>L</i> /30– <i>L</i> /40		
Two-way beam and slab (poured in place		<i>L</i> /30– <i>L</i> /40		
Waffle slab (poured in place)		L/23–L/35		
Dome (poured in place)		L/4-L/8		S2013abn
		(Meters)	0 5 10 15 20 25 30 35 40 45 50	