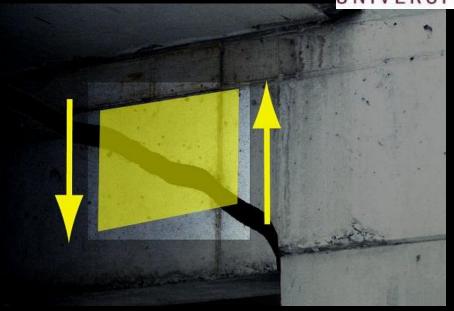
ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 331
HÜDAVERDİ TOZAN **S**PRING 2013

twenty four



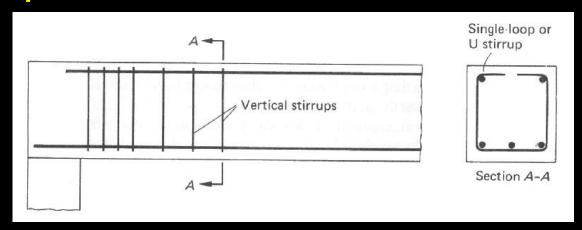
Copyright © Kirk Martini

concrete construction: shear & deflection

Shear in Concrete Beams

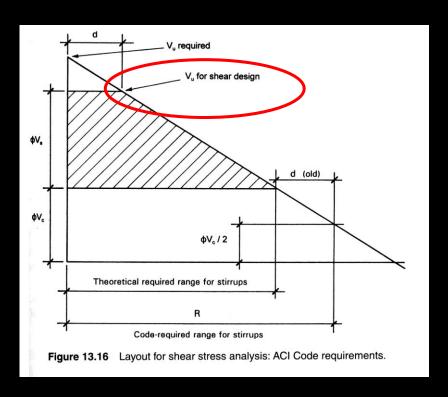
• flexure combines with shear to form diagonal cracks

- horizontal reinforcement doesn't help
- stirrups = vertical reinforcement



ACI Shear Values

- V_u is at distance d from face of support
- shear capacity: $V_c = v_c \times b_w d$
 - where b_w means thickness of web at n.a.



ACI Shear Values

shear stress (beams)

$$- \upsilon_c = 2\sqrt{f_c'}$$

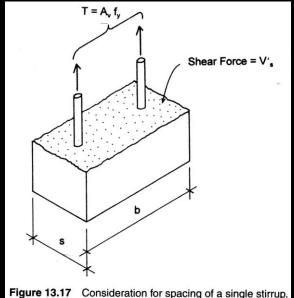
$$\phi V_c = \phi 2\sqrt{f_c'} b_w d$$

 $\phi = 0.75$ for shear f', is in <u>psi</u>

shear strength:

$$V_u \leq \phi V_c + \phi V_s$$

 V_s is strength from stirrup reinforcement



Stirrup Reinforcement

shear capacity:

$$V_{S} = \frac{A_{v}f_{y}d}{S}$$

- $-A_v = area in all legs of stirrups$
- -s = spacing of stirrup

 may need stirrups when concrete has enough strength!

Required Stirrup Reinforcement

spacing limits

Table 3-8 ACI Provisions for Shear Design*

	: 1250 , 22 <u>ලට</u> වේ	$V_u \le \frac{\phi V_c}{2}$	$\phi V_C \ge V_U > \frac{\phi V_C}{2}$	$V_{u} > \phi V_{c}$
Required area of stirrups, A _V **		none	50b _w s	$\frac{(V_u - \phi V_c)s}{\phi f_y d}$
Stirrup spacing, s	Required	1 - -,	A _v f _y 50b _w	$\frac{\phi A_V f_V d}{V_U - \phi V_C}$
	Recommended Minimum [†]	1-1-	<u>*</u>	4 in.
	Maximum†† (ACI 11.5.4)		$\frac{d}{2}$ or 24 in.	$\frac{d}{2}$ or 24 in. for $\left(V_{u} - \phi V_{c}\right) \leq \phi 4 \sqrt{f_{c}'} b_{w} d$
				$\frac{d}{4}$ or 12 in. for $\left(V_{u} - \phi V_{c}\right) > \phi 4 \sqrt{f_{c}'} b_{w} d$

^{*}Members subjected to shear and flexure only; $\phi V_c = \phi 2 \sqrt{f_c'} b_w d$, $\phi = 0.75$ (ACI 11.3.1.1)

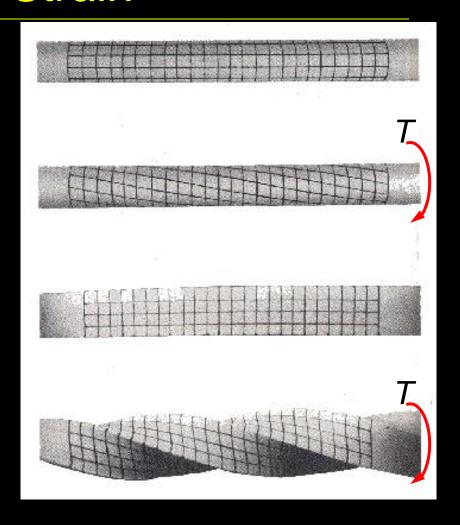
^{**} $A_v = 2 \times A_b$ for U stirrups; $f_y \le 60$ ksi (ACI 11.5.2)

[†]A practical limit for minimum spacing is d/4

^{††}Maximum spacing based on minimum shear reinforcement (= $A_v f_y / 50b_w$) must also be considered (ACI 11.5.5.3).

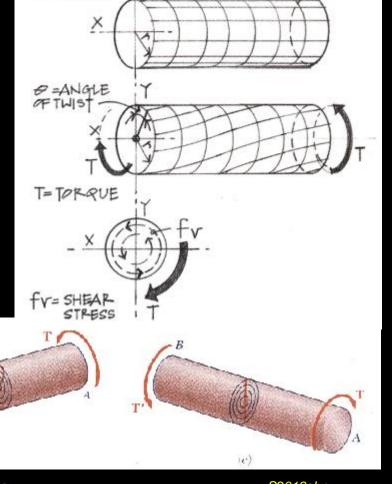
Torsional Stress & Strain

- can see torsional stresses & twisting of axi-symmetrical cross sections
 - torque
 - remain plane
 - undistorted
 - rotates
- not true for square sections....



Shear Stress Distribution

- depend on the deformation
- ϕ = angle of twist
 - measure
- can prove planar section doesn't distort



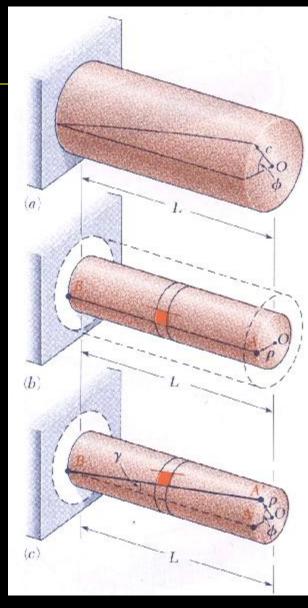
r=RADIUS

Shearing Strain

related to φ

$$\gamma = \frac{\rho \phi}{L}$$

- ρ is the radial distance from the centroid to the point under strain
- shear strain varies linearly along the radius: γ_{max} is at outer diameter



Torsional Stress - Strain

• know
$$f_v = \tau = G \cdot \gamma$$
 and $\gamma = \frac{\rho \phi}{L}$

• so
$$\tau = G \cdot \frac{\rho \phi}{L}$$

• where G is the Shear Modulus

Torsional Stress - Strain

• from

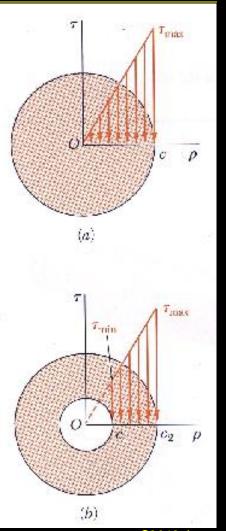
$$T = \Sigma \tau(\rho) \Delta A$$

can derive

$$T = \frac{\tau J}{\rho}$$

- where J is the polar moment of inertia
- elastic range

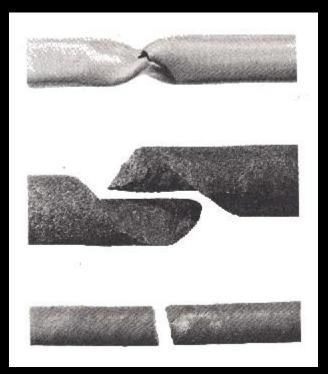
$$\tau = \frac{T\rho}{J}$$



Shear Stress

τ_{max} happens at <u>outer diameter</u>

- combined shear and axial stresses
 - maximum shear stress at 45° "twisted" plane



Shear Strain

• knowing
$$\tau = G \cdot \frac{\rho \phi}{L}$$
 and $\tau = \frac{T\rho}{J}$

• solve:
$$\phi = \frac{TL}{JG}$$

• composite shafts:
$$\phi = \sum_{i} \frac{T_{i}L_{i}}{J_{i}G_{i}}$$

Noncircular Shapes

- torsion depends on J
- plane sections don't remain plane
- τ_{max} is still at outer diameter

$$\tau_{\text{max}} = \frac{T}{c_1 a b^2} \quad \phi = \frac{TL}{c_2 a b^3 G}$$

– where a is longer side (> b)

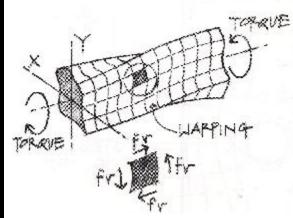
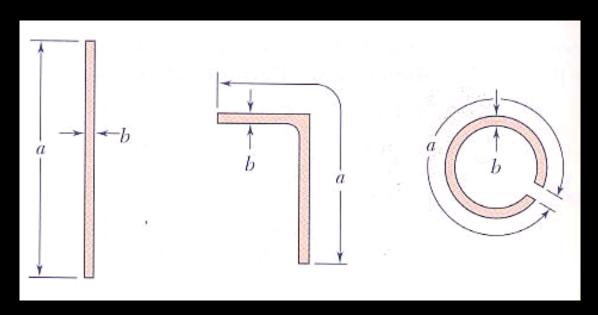


TABLE 3.1. Coefficients for Rectangular Bars in Torsion

noonangalar Dalo III IOISIOII					
a/b	c ₁	C ₂			
1.0	° 0.208	0.1406			
1.2	0.219	0.1661			
1.5	0.231	0.1958			
2.0	0.246	0.229			
2.5	0.258	0.249			
3.0	0.267	0.263			
4.0	0.282	0.281			
5.0	0.291	0.291			
10.0	0.312	0.312			
∞	0.333	0.333			

Open Thin-Walled Sections

with very large a/b ratios:



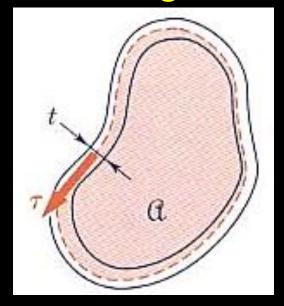
$$au_{\text{max}} = rac{T}{\frac{1}{3}ab^2} \qquad \phi = rac{TL}{\frac{1}{3}ab^3G}$$

Shear Flow in Closed Sections

q is the internal shear force/unit length

$$\tau = \frac{T}{2t\Omega}$$

$$\phi = \frac{TL}{4t\Omega^2} \sum_{i} \frac{s_i}{t_i}$$



- lpha is the area bounded by the centerline
- *s_i* is the length segment, *t_i* is the thickness

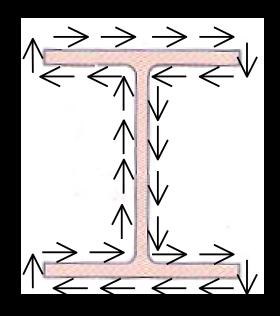
Shear Flow in Open Sections

 each segment has proportion of T with respect to torsional rigidity,

$$\tau_{\text{max}} = \frac{Tt_{\text{max}}}{\frac{1}{3} \sum b_i t_i^3}$$

total angle of twist:

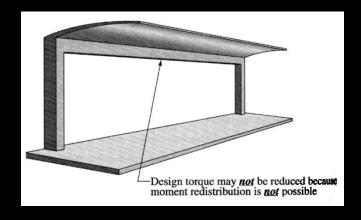
$$\phi = \frac{TL}{\frac{1}{3}G\Sigma b_{i}t_{i}^{3}}$$

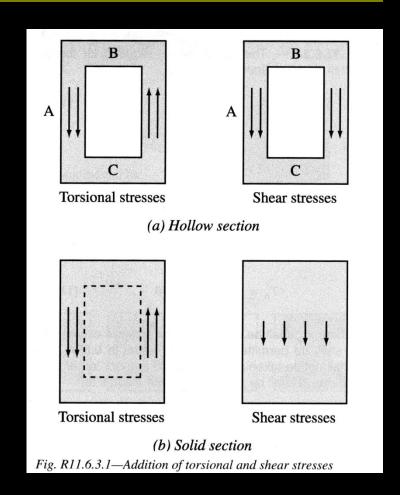


• I beams - web is thicker, so τ_{max} is in web

Torsional Shear Stress

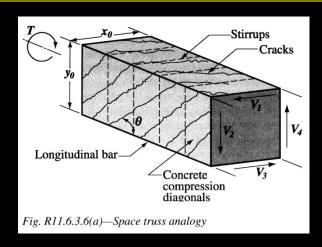
- twisting moment
- and beam shear



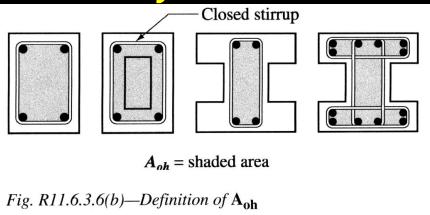


Torsional Shear Reinforcement

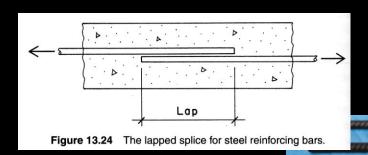
- closed stirrups
- more longitudinal reinforcement



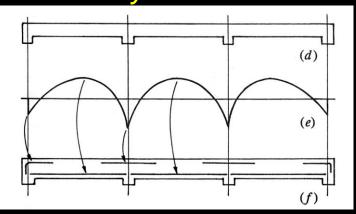
area enclosed by shear flow



- required to allow steel to yield (f_{v})
- standard hooks
 - moment at beam end



- splices
 - lapped
 - mechanical connectors





CONTRACTOR OF THE PROPERTY OF

- l_d , embedment required both sides
- proper cover, spacing:
 - No. 6 or smaller

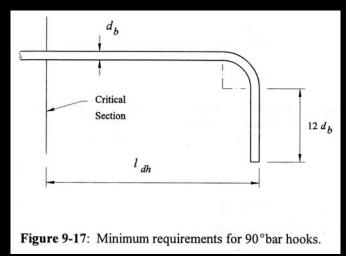
$$l_d = \frac{d_b F_y}{25\sqrt{f_c'}}$$
 or 12 in. minimum

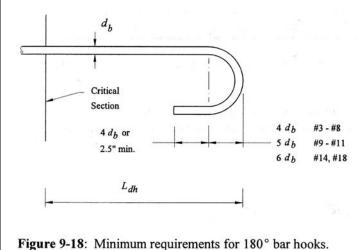
No. 7 or larger

$$l_d = rac{d_b F_y}{20 \sqrt{f_c'}}$$
 or 12 in. minimum

hooks

bend and extension





$$l_{dh} = \frac{1200d_b}{\sqrt{f_c'}}$$

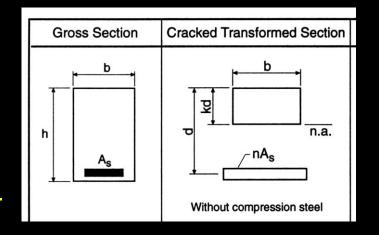
bars in compression

$$l_d = \frac{0.02d_b F_y}{\sqrt{f_c'}} \le 0.0003d_b F_y$$

- splices
 - tension minimum is function of l_d and splice classification
 - compression minimum
 - is function of d_b and F_y

Concrete Deflections

- elastic range
 - I transformed
 - $-E_c$ (with f'_c in <u>psi</u>)
 - normal weight concrete (~ 145 lb/ft³) $E_c = 57,000\sqrt{f_c'}$



concrete between 90 and 160 lb/ft³

$$E_c = w_c^{1.5} 33 \sqrt{f_c'}$$

- cracked
 - I cracked
 - E adjusted

Deflection Limits

- relate to whether or not beam supports or is attached to a damageable nonstructural element
- need to check <u>service</u> live load and long term deflection against these

roof systems (typical) – live floor systems (typical) – live + long term supporting plaster – live supporting masonry – live + long term

L/180 L/240 L/360 L/480