Architectural Structures: Form, Behavior, and Design

Arch 331 hüdaverdi tozan **S**pring 2013

masonry construction: beams & columns

www.tamu.edu

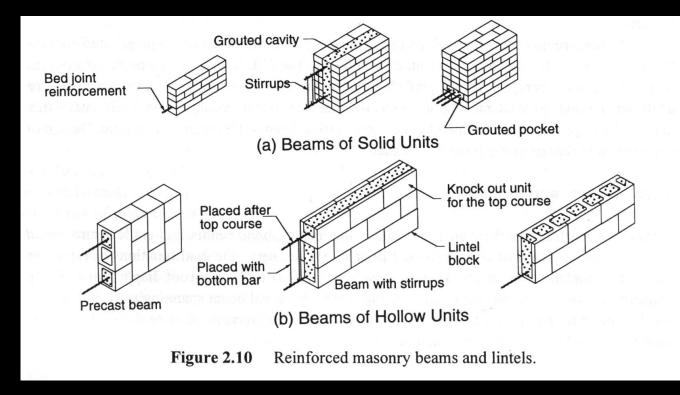
Masonry Construction 1 Lecture 28 Architectural Structures ARCH 331 S2013abn

Masonry Design

- Masonry Standards Joint Committee
 - ACI, ASCE, TMS
 - ASD (+empirical)
 - Inear-elastic stresses
 - LRFD added in 2002
 - referenced by IBC
 - unreinforced allows tension in flexure
 - reinforced all tension in steel

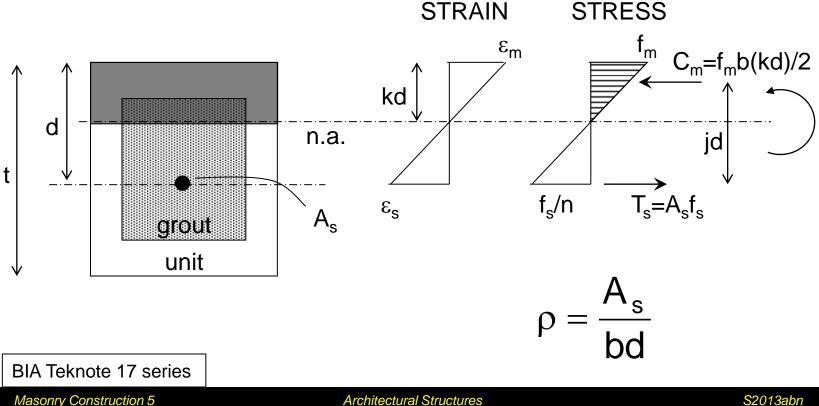
- walls are also in compression

Masonry Construction 3 Lecture 28 Architectural Structures ARCH 331

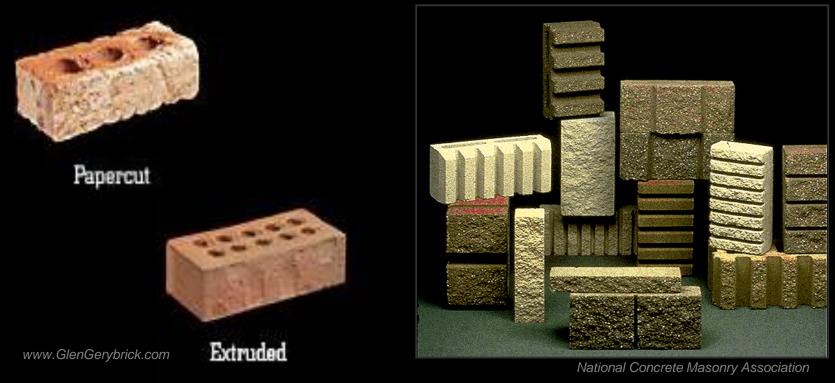


Iding Code Requirements for Missonry (ACI 530-05/ABCE 5-05/TMD 402-0

International Masonry Institute (Brian Trimble) S2013abn


Masonry Beam & Wall Design

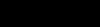
 reinforcement increases capacity & ductility


Masonry Design

- f_s is not the yield stress
- *f_m* is the stress in the masonry

• units

- stone, brick, concrete block, clay tile



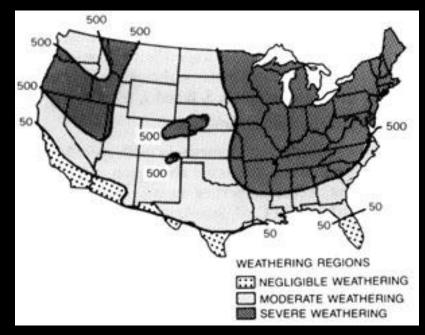
Masonry Construction 6 Lecture 28 Architectural Structures ARCH 331 S2013abn

- mortar $\overline{}$
 - water, masonry cement, sand, lime
 - types:

- M higher strength - 2500 psi (ave.)
- SozeOrk medium high strength – 1800 psi
- medium strength 750 psi
- medium low strength 350 psi
 - low strength 75 psi

National Concrete Masonry Association

- rebar
- grout
 - fills voids and fixes rebar
- prisms
 - used to test strength,
 f'_m
- fire resistant



National Concrete Masonry Association

- moisture resistance
 - weathering index for brick
 - bond and detailing
 - expansion or shrinking from water
 - provide control joints
 - parapets, corners, long walls

parapet with no control joint

Allowable Masonry Stresses

tension - <u>unreinforced</u> only

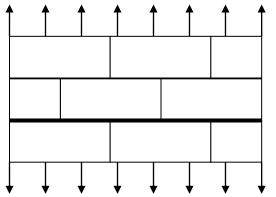
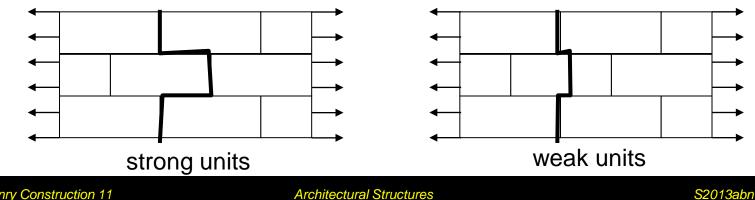

Direction of flexural tensile stress and masonry type	Mortar types			
	Portland cement/lime or mortar cement		Masonry cement or air entrained portland cement/lime	
	M or S	N	M or S	N
Normal to bed joints				
Solid units	53 (366)	40 (276)	32 (221)	20 (138)
Hollow units ¹	,			
Ungrouted	33 (228)	25 (172)	20 (138)	12 (83)
Fully grouted	86 (593)	84 (579)	81 (559)	77 (531)
Parallel to bed joints in running bond				
Solid units	106 (731)	80 (552)	64 (441)	40 (276)
Hollow units	1			
Ungrouted and partially grouted	66 (455)	50 (345)	40 (276)	25 (172)
Fully grouted	106 (731)	80 (552)	64 (441)	40 (276)
Parallel to bed joints in masonry not laid in running bond				
Continuous grout section parallel to bed joints	133 (917)	133 (917)	133 (917)	133 (917)
Other	0 (0)	0 (0)	0 (0)	0 (0)

Table 2.2.3.2 — Allowable flexural tensile stresses for clay and concrete masonry, psi (kPa)

1 For partially grouted masonry, allowable stresses shall be determined on the basis of linear interpolation between fully grouted hollow units and ungrouted hollow units based on amount (percentage) of grouting.


tension normal to bed joints

WALLS

Not allowed in MSJC code

tension parallel to bed joints

Masonry Construction 11 Lecture 28

Allowable Masonry Stresses

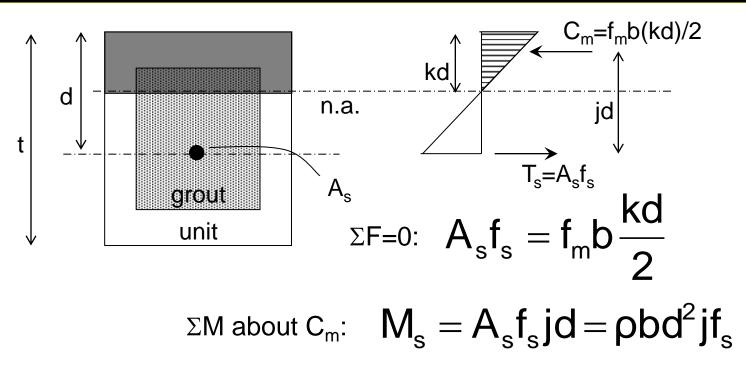
- flexure
 - $-F_b = 1/3 f'_m$ (unreinforced)
 - $-F_b = 0.45 f'_m$ (reinforced)
- shear, unreinforced masonry

$$-F_{v} = 1.5\sqrt{f'_{m}} \le 120 \text{ psi}$$

- shear, reinforced masonry
 - $M/Vd \le 0.25$:
 - $M/Vd \le 0.25$:

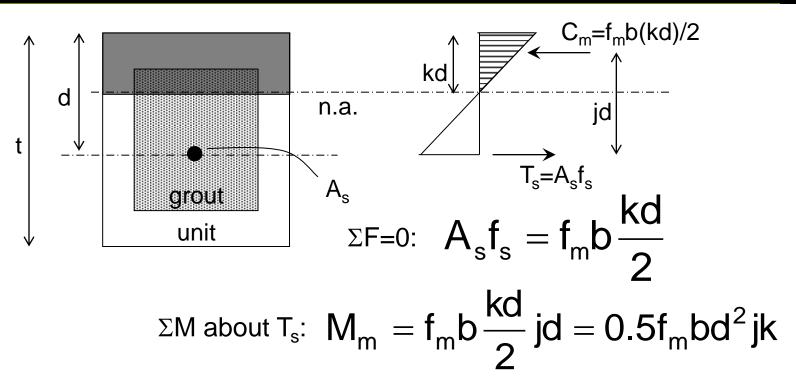
$$F_v = 3.0\sqrt{f'_m}$$

 $F_v = 2.0\sqrt{f'_m}$

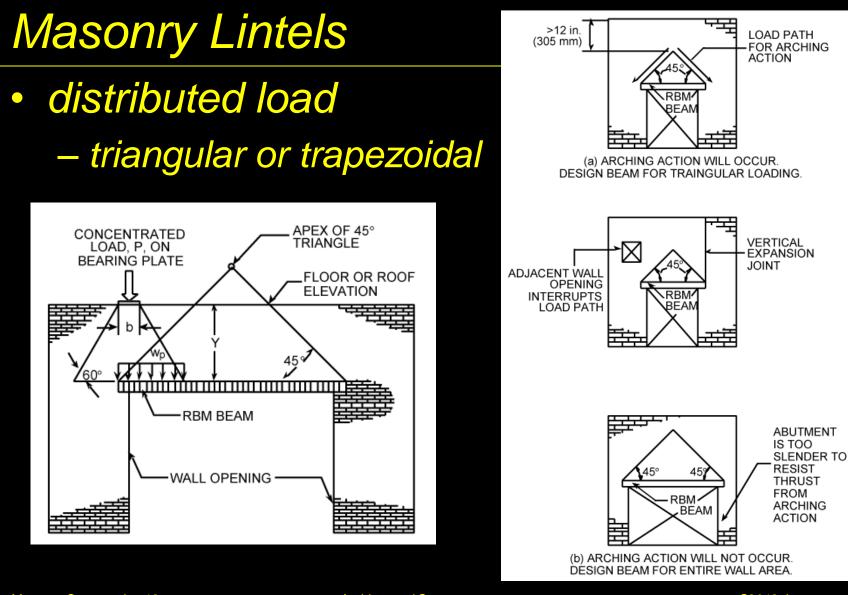

Allowable Reinforcement Stress

tension

a) Grade 40 or 50	$F_s = 20 \ ksi$
b) Grade 60	$F_s = 32 \ ksi$
c) Wire joint	$F_s = 30 \ ksi$


 *no allowed increase by 1/3 for combinations with wind & earthquake
 – did before 2011 MSJC code

Reinforcement, M_s


if $f_s = F_s$ (allowable) the moment capacity is limited by the steel MSJC: $F_s = 20$ ksi, 24 ksi or 30 ksi by type

Reinforcement, M_m

if $f_s = F_s$ (allowable) the moment capacity is limited by the steel

MSJC
$$F_b = 0.33 f'_m$$

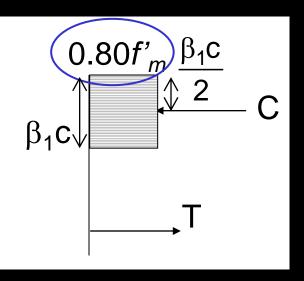
Masonry Construction 16 Lecture 28 Architectural Structures ARCH 331 S2013abn

Strategy for RM Flexural Design

- to size section and find reinforcement $\overline{}$
 - find $\rho_{\rm b}$ knowing f'_m and f_v
 - size section for some $\rho < \rho_{\rm b}$
 - get k, j $bd^2 = -\frac{M}{2}$

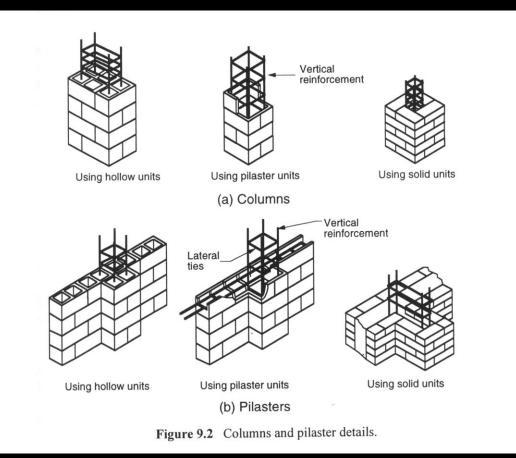
needs to be sized for shear also

• get b & d in nice units


- size reinforcement (bar size & #): $A_s = \frac{M}{E}$

- check design: $M_s = A_s F_s jd > M$

$$f_b = \frac{M}{0.5bd^2 jk} < F_b$$


Ultimate Strength Design

- LRFD
- like reinforced concrete
- useful when beam shear is high
- improved inelastic model
 - ex. earthquake loads

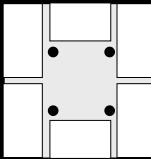
Masonry Columns and Pilasters

must be reinforced

Masonry Columns and Pilasters

- considered a column when b/t<3 and h/t>4
 - b is width of "wall"
 - t is thickness of "wall"
- slender is
 - 8" one side
 - $-h/t \leq 25$
- needs ties
- eccentricity may be required

Masonry Construction 20 Lecture 28 Architectural Structures ARCH 331 S2013abn

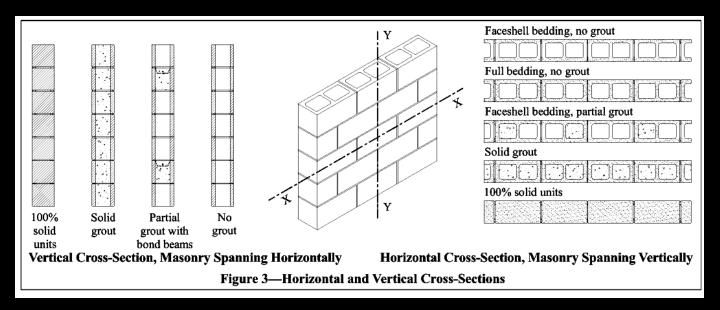

Masonry Columns

- allowable axial load

$$P_{a} = \begin{bmatrix} 0.25 f'_{m} A_{n} + 0.65 A_{st} F_{s} \end{bmatrix} 1 - \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$P_{a} = \begin{bmatrix} 0.25 f'_{m} A_{n} + 0.65 A_{st} F_{s} \end{bmatrix} \begin{bmatrix} \frac{7}{2} \\ h/r > 99 \end{bmatrix}$$

 $h = effective \ length$ $r = radius \ of \ gyration$ $A_n = effective \ area \ of \ masonry$ $A_{st} = effective \ area \ of \ column \ reinforcement$ $F_s = allowable \ compressive \ stress \ in \ column \ reinforcement$


h

Masonry Walls (unreinforced)

- allowable axial stresses

$$F_{a} = 0.25 f'_{m} \left[1 - \left(\frac{h}{140r} \right)^{2} \right]$$

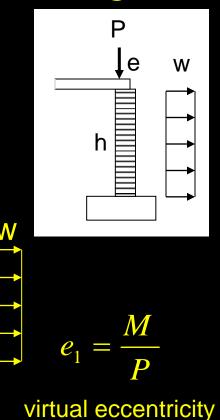
h/r \le 99

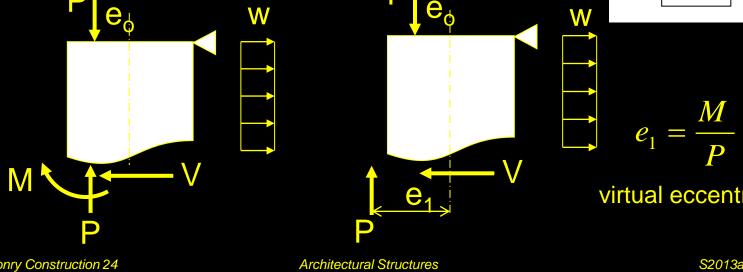
$$F_a = 0.25 f'_m \left(\frac{70r}{h}\right)^2$$

Design

• masonry columns and walls (unreinforced)

$$\frac{f_{a}}{F_{a}} + \frac{f_{b}}{F_{b}} \leq 1.0 \text{ and } f_{b} - f_{a} \leq F_{t}$$

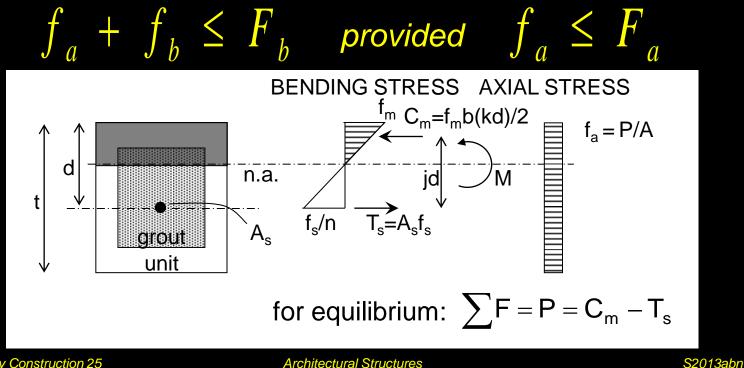

$$-h/r < 99 \quad F_{a} = 0.25 f'_{m} \left[1 - \left(\frac{h}{140r}\right)^{2} \right]$$


$$-h/r > 99 \quad F_{a} = 0.25 f'_{m} \left(\frac{70r}{h}\right)^{2}$$

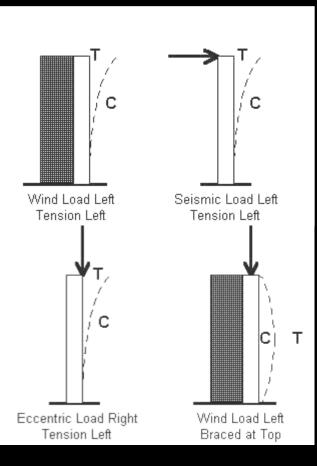
$$F_{b} = 0.33 f'_{m}$$

Design

- masonry columns and walls loading $\overline{}$
 - wind loading
 - eccentric axial load
 - "virtual" eccentricity, e_1



ARCH 331


Design

- masonry columns and walls with rebar
 - wall reinforcement usually at center and ineffective in compression

Design Steps Knowing Loads

- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- 4. analyze stresses
- 5. section ok?
- 6. stop when section is ok

Final Exam Material

- my list:
 - systems
 - components & levels
 - design considerations
 - equilibrium $\Sigma F \& \Sigma M$
 - supports, trusses, cables, beams, pinned frames, rigid frames
 - materials
 - strain & stress (E), temperature, constraints

Final Exam Material

- my list (continue):
 - beams
 - distributed loads, tributary width, V&M, stresses, design, section properties (I & S), pitch, deflection
 - columns
 - stresses, design, section properties (I & r)
 - frames
 - P, V & M, P-∆, effective length with joint stiffness, connection design, tension member design

Final Exam Material

- my list (continued):
 - foundations
 - types
 - sizing & structural design
 - overturning and sliding
 - design specifics
 - steel (ASD & LRFD)
 - concrete
 - wood
 - masonry