ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 331 HÜDAVERDİ TOZAN SPRING 2013

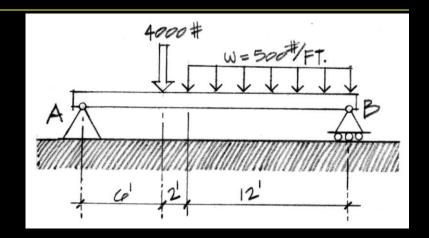
lecture SEVEN

http://nisee.berkeley.edu/godden

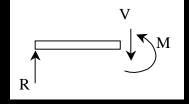
beams – internal forces

Beams

- span horizontally
 - floors
 - bridges
 - roofs



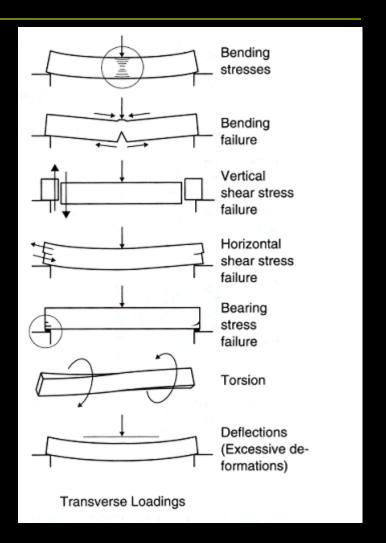
- loaded transversely by gravity loads
- may have internal axial force
- will have internal shear force



will have internal moment (bending)

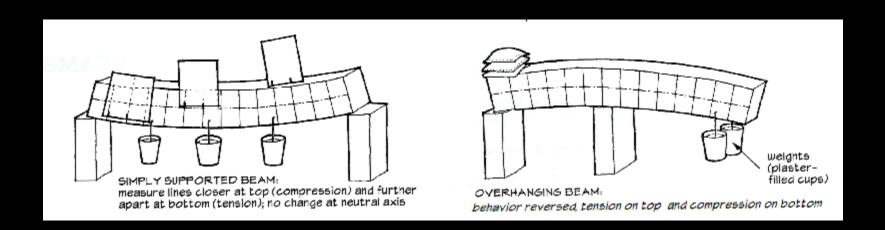
Beams

- transverse loading
- sees:
 - bending
 - shear
 - deflection
 - torsion
 - bearing
- behavior depends on cross section shape

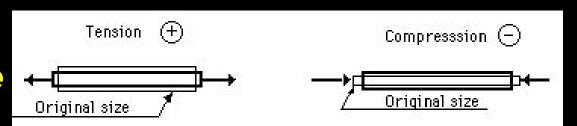


Beams

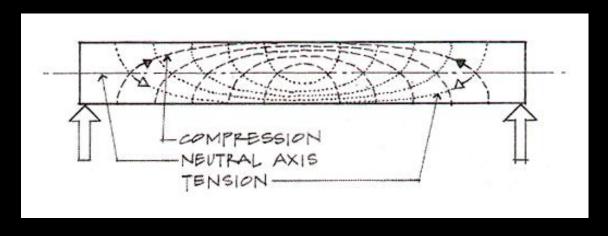
- bending
 - bowing of beam with loads
 - one edge surface stretches
 - other edge surface squishes

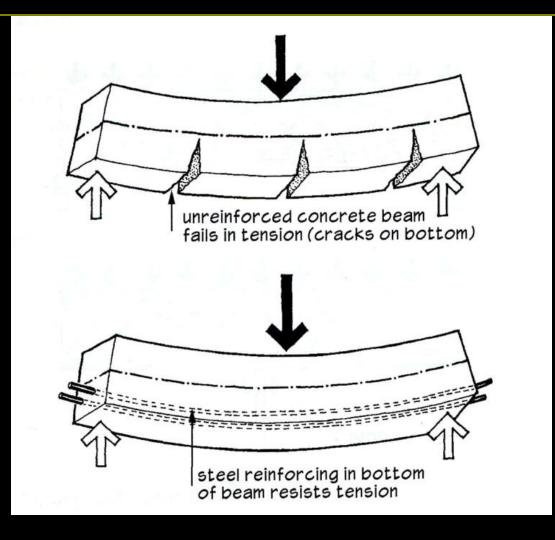


- stress = relative force over an area
 - tensile
 - compressive
 - bending

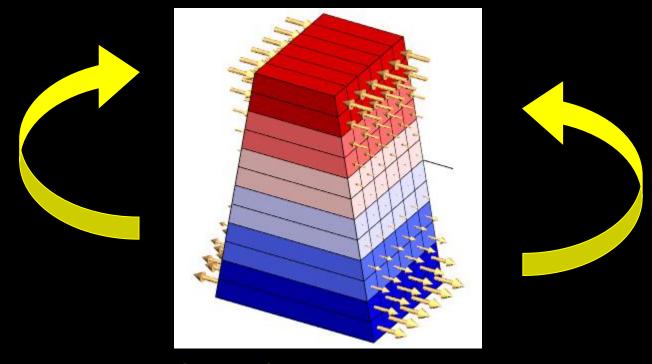


• tension and compression + ...



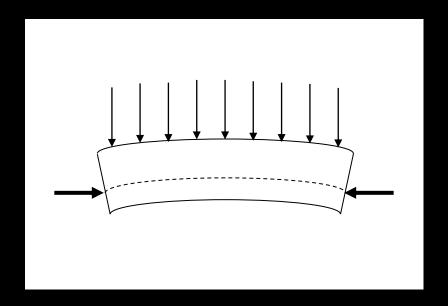


- tension and compression
 - causes moments

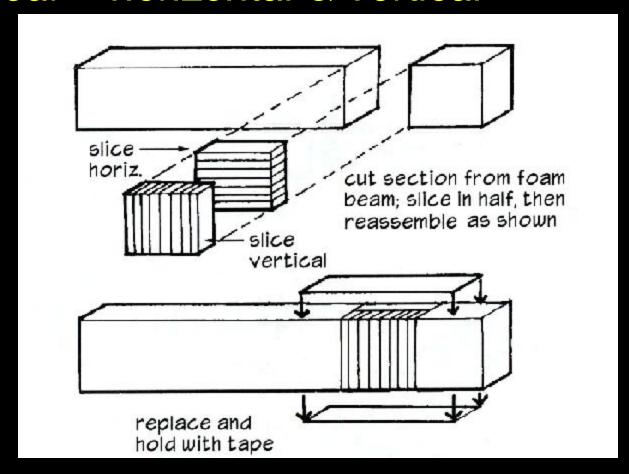


Copyright © 1996-2000 Kirk Martini.

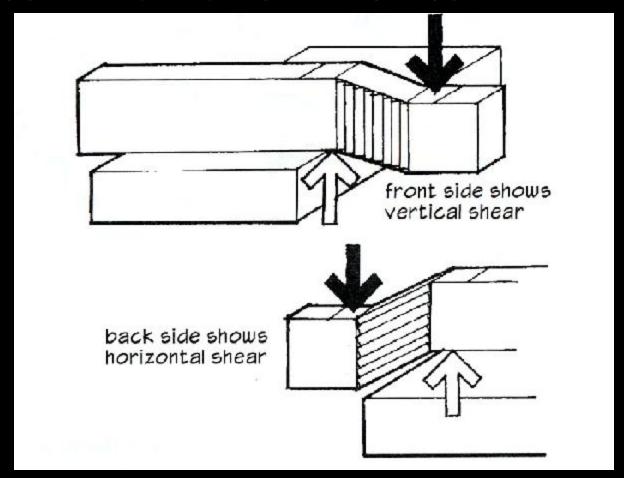
- prestress or post-tensioning
 - put stresses in tension area to "pre-compress"



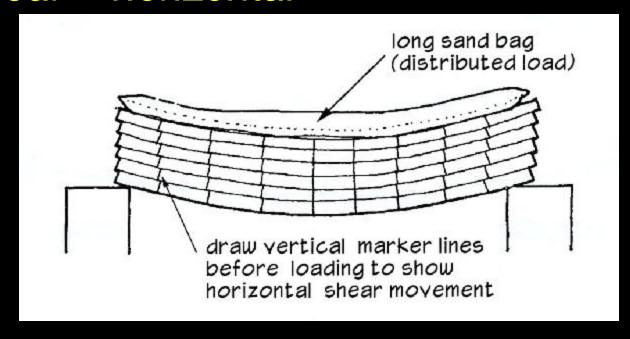
shear – horizontal & vertical



shear – horizontal & vertical



shear – horizontal



Beam Deflections

- depends on
 - load
 - section
 - material

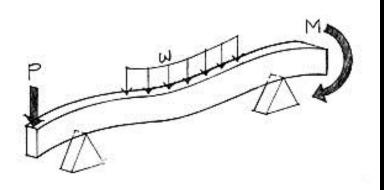
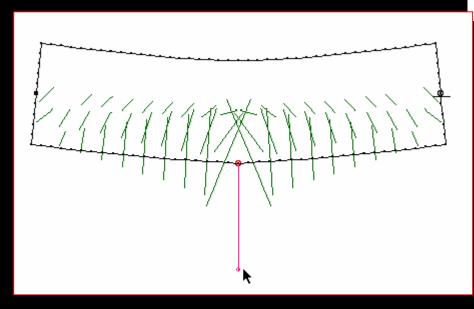
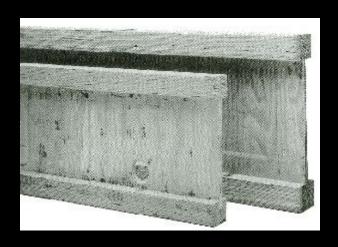


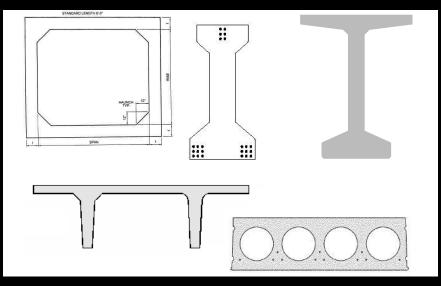
Figure 5.4 Bending (flexural) loads on a beam.

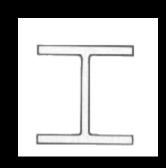


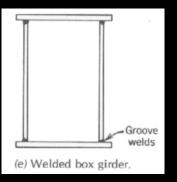
Beam Deflections

• "moment of inertia"







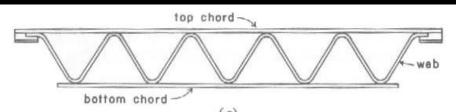


Beam Styles

vierendeel

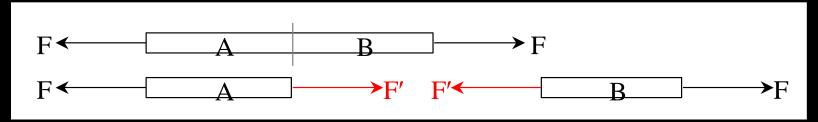
http://nisee.berkeley.edu/godden

- open web joists
- manufactured

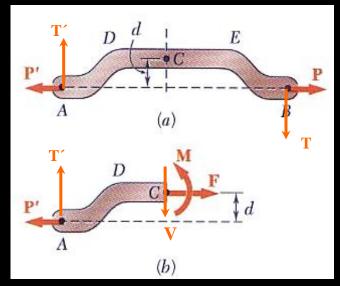


Internal Forces

- trusses
 - axial only, (compression & tension)

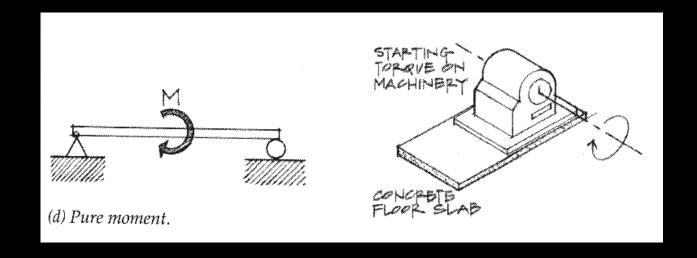


- in general
 - axial force
 - shear force, V
 - bending moment, M



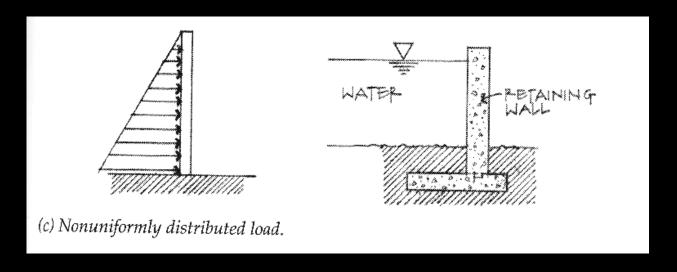
Beam Loading

- concentrated force
- concentrated moment
 - spandrel beams



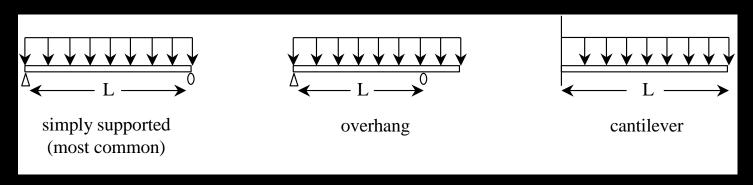
Beam Loading

- uniformly distributed load (line load)
- non-uniformly distributed load
 - hydrostatic pressure = γh
 - wind loads

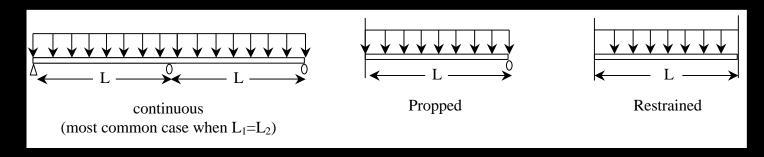


Beam Supports

statically determinate

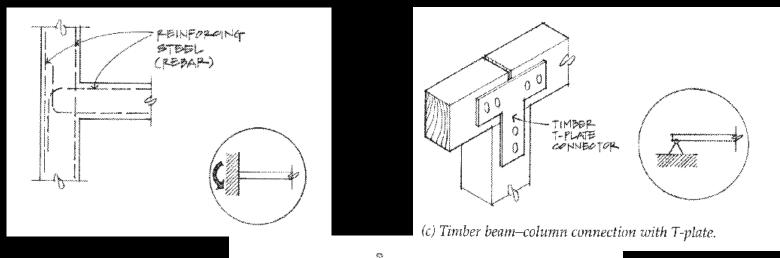


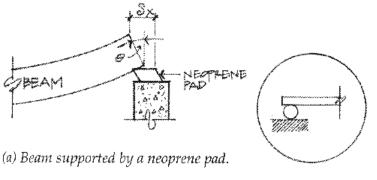
statically indeterminate



Beam Supports

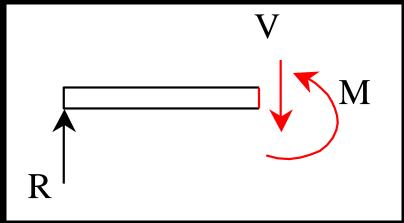
• in the real world, modeled type





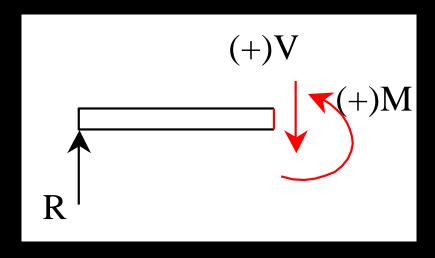
Internal Forces in Beams

- like method of sections / joints
 - no axial forces
- section <u>must</u> be in equilibrium
- want to know where biggest internal forces and moments are for designing



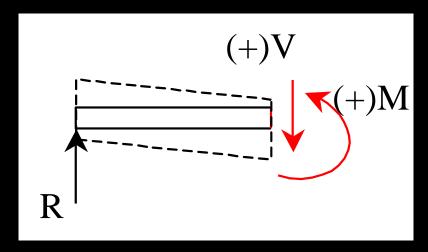
V & M Diagrams

- tool to locate V_{max} and M_{max} (at V = 0)
- necessary for designing
- have a <u>different sign convention</u> than external forces, moments, and reactions

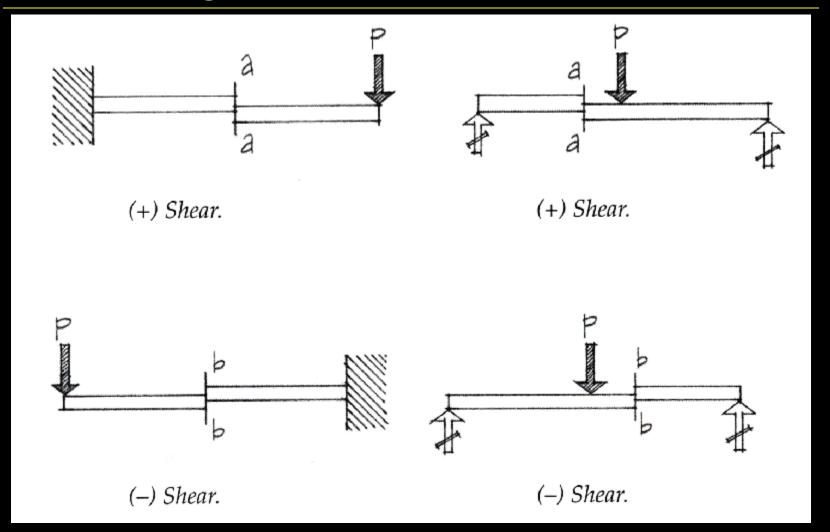


Sign Convention

- shear force, V:
 - cut section to LEFT
 - if ΣF_y is positive by statics, V acts down and is POSITIVE
 - beam has to resist shearing apart by V

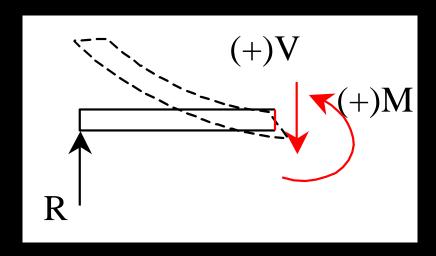


Shear Sign Convention

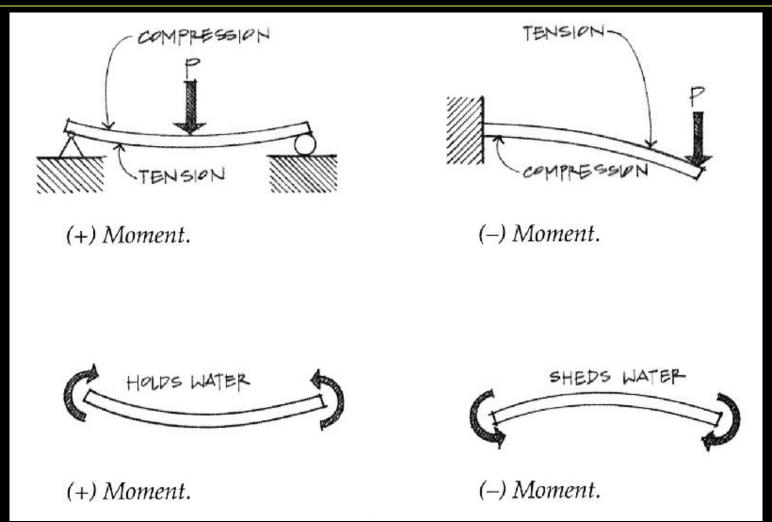


Sign Convention

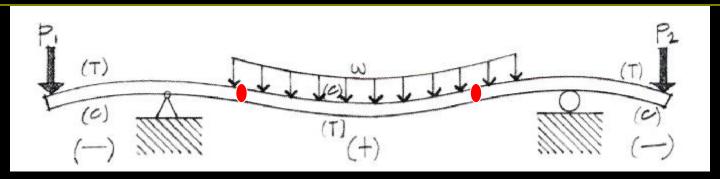
- bending moment, M:
 - cut section to LEFT
 - if $\sum M_{cut}$ is clockwise, M acts ccw and is POSITIVE- flexes into a "smiley" beam has to resist bending apart by M



Bending Moment Sign Convention



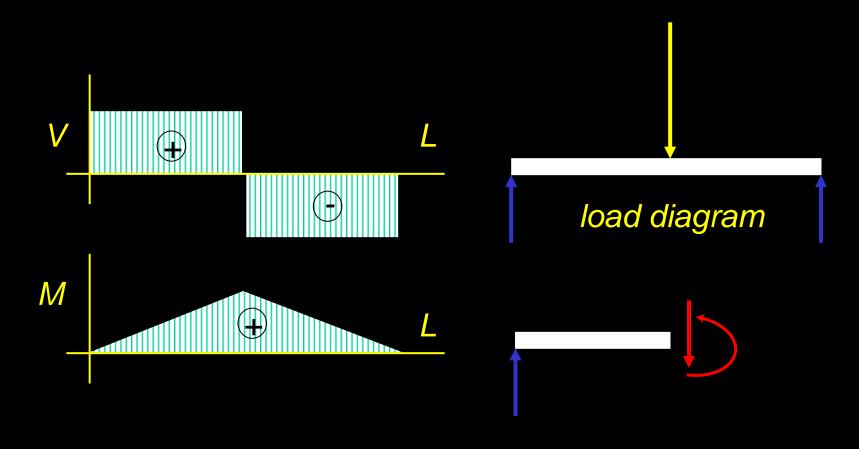
Deflected Shape



- positive bending moment
 - tension in bottom, compression in top
- negative bending moment
 - tension in top, compression in bottom
- zero bending moment
 - inflection point

Constructing V & M Diagrams

along the beam length, plot V, plot M



Mathematical Method

cut sections with x as width

write functions of V(x) and M(x)

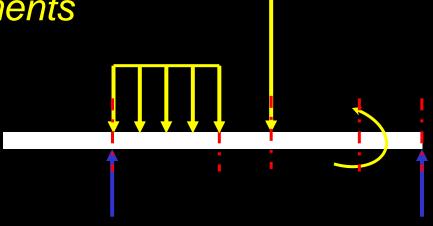
Method 1: Equilibrium

cut sections at important places

plot V & M

Method 1: Equilibrium

- important places
 - supports
 - concentrated loads
 - start and end of distributed loads
 - concentrated moments
- free ends
 - zero forces



Method 2: Semigraphical

- by knowing
 - area under loading curve = change in V
 - area under shear curve = change in M
 - concentrated forces cause "jump" in V
 - concentrated moments cause "jump" in M

$$V_D - V_C = -\int_C^{X_D} w dx \qquad M_D - M_C = \int_C^{X_D} V dx$$

$$x_C \qquad \qquad x_C$$

Method 2

relationships

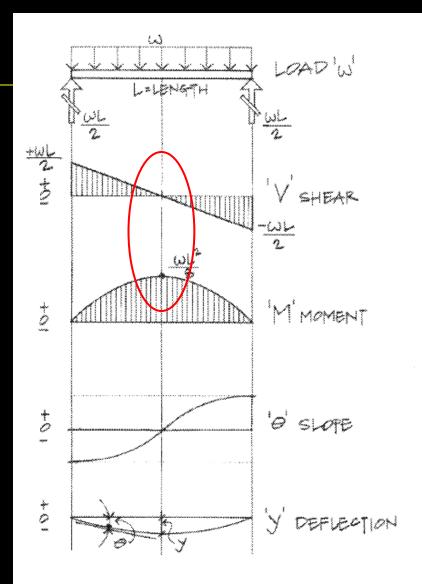
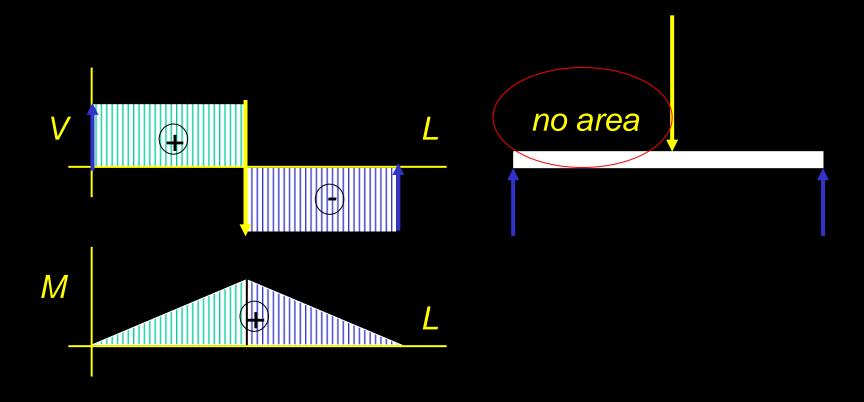


Figure 7.11 Relationship of load, shear, moment, slope, and deflection diagrams.

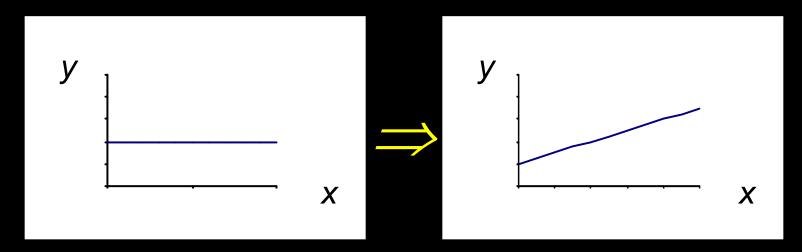
Method 2: Semigraphical

• M_{max} occurs where V = 0 (calculus)



Curve Relationships

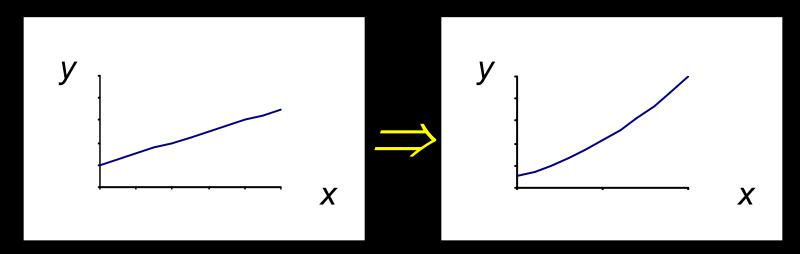
- integration of functions
- line with 0 slope, integrates to sloped



ex: load to shear, shear to moment

Curve Relationships

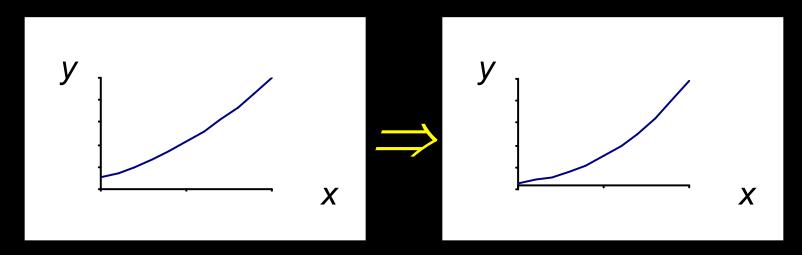
line with slope, integrates to parabola



ex: load to shear, shear to moment

Curve Relationships

parabola, integrates to 3rd order curve



ex: load to shear, shear to moment

Basic Procedure

1. Find reaction forces & moments

Plot axes, underneath beam load diagram

V:

- 2. Starting at left
- 3. Shear is 0 at free ends
- 4. Shear has 2 values at point loads
- 5. Sum vertical forces at each section

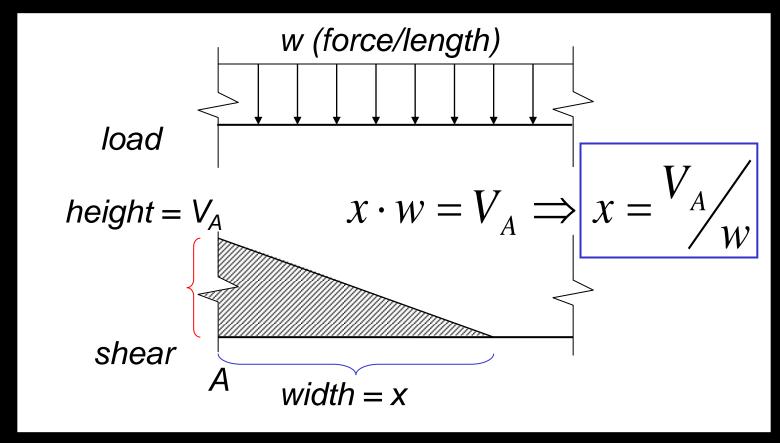
Basic Procedure

M:

- 6. Starting at left
- 7. Moment is 0 at free ends
- 8. Moment has 2 values at moments
- 9. Sum moments at each section
- 10. Maximum moment is where shear = 0! (locate where V = 0)

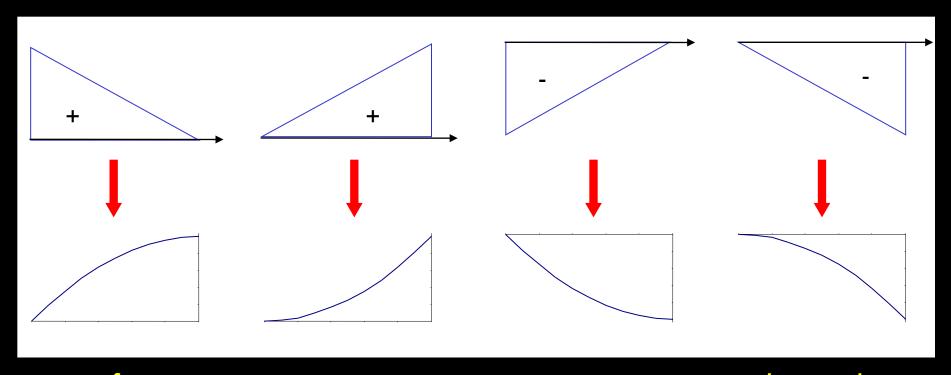
Shear Through Zero

slope of V is w (-w:1)



Parabolic Shapes

cases



up fast, then slow

up slow, then fast down fast, then slow down slow, then fast