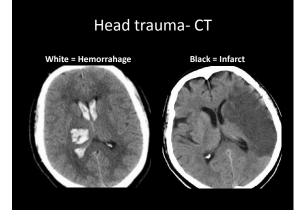
Neuroradiology Brain

Prof.Dr.Nail Bulakbaşı

Basic brain lesions

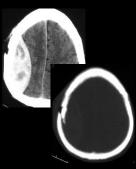

- Trauma
- Stroke
- Tumor
- Metabolic & degenerative diseases
- Infections
- Congenital anomalies

Head trauma

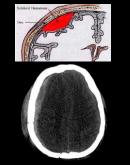
- Primary damage
 - Basic impact during injury
 - Com
 - ContusionsHematomas
 - (parenchymal, epidural, subdural, subarachnoid)
 - Axonal and vascular damage
- Secondary damage
 - Late sclae of injury
 Increased intracranial
 - pressure
 - Cerebral edema,İnfection,
 - Intection,
 Trauma
 - Trauma,
 Postoperative
 - Postoperative hypoxia and infarction

Head trauma- CT

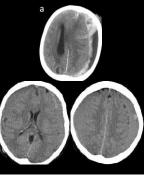
- Probable positive CT
 - Vomiting, severe headache
 - Seizure
 - Patients over age 60
 - Alcohol or drug
 - intoxication
 - Whiplash injury
 - Coagulation disorders
- Probable negative CT
 - Some anatomic regions
 Infratemporal region
 - Subfrontal region
 - Posterior fossa
 - Diffuse axonal / vascular injury

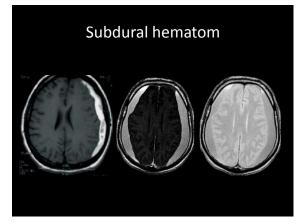

Epidural hematoma

- Bleeding into the space between the dura and internal tabula of skull
- Rupture of a/v MM due to T bone fracture
- No fx in children due to elastisity of the skull

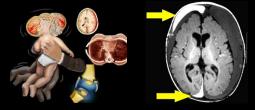

Epidural hematoma

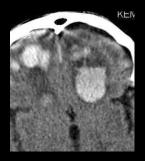
- Convex shape is typical
- In the acute stage of low-density areas (swirl sign)
- Do not cross the sutures
- In chronic stage its density drops and can become concave


Subdural hematom


- Bleeding into the space between the dura and pia / arachnoid membrane
- Traumatic rupture subdural bridging veins
- Acompanied brain damage increase the mortality upto 50%

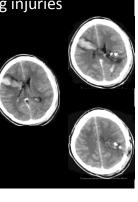
Subdural hematom


- CT findigns
 - Concave in shape
 - Hyperdense
 - Can cross the sutures
 - "swirl" sign
- Bilateral isodense subdural hematomas can be easily missed on CT


Subdural hematom

 Changing phases of the SDH in a baby / child could be evidence of the "battered child / child abuse"

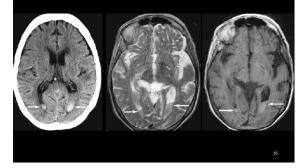
Hemorrhagic contusion


- Parenchymal damage leading to hemorrhage
- Generally in the cortex but may extend to white matter
- It can be drained into subdural or subarachnoid spaces
- Peripheral edema

Coup & Contrecoup injury

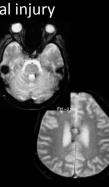
Penetrating injuries

- CT findings
 - Bone damage
- Metallic foreign bodies, fragments
- Bleeding (EDH, SDH, SAH)
- Hemorrhagic tract
- Air
- Vascular injury (ischemia, infarction, rupture, dissection ..)



Subarachnoid hemorrhage

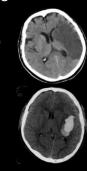
- Bleeding into the space between the arachnoid and pia
- 50% -70% as a result of aneurysm rupture
- Other reasons
 - Trauma
 - Hemorrhagic tumor
 - AVM
 - Bleeding diathesis
- May be focal or diffuse



Intraventricular hemorrhage

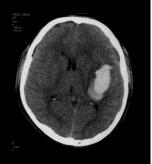
Diffuse axonal injury

- Commonly seen in
 - Gray / white matter junction
 - Corpus callosum (most commonly splenium)
 - Brainstem (poor prognosis)
 - The internal capsule
 Superior cerebellar peduncle
 - Superior cerebellar pedun
- CT is not sensitive
 - The majority of the lesions are not hemorrhagic
- T2-weighted gradient echo sequences (or susceptibilityweighted sequences, such as SWI) are the most sensitive methods

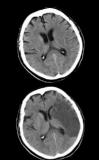


Stroke

- Stroke is a sudden deterioration in brain function due to disruption in arterial supply
- A sudden decrease in the nutrient medium providing cell viability
- Cell death (infarction) is a more complex event and occurs due to amount of ischemia
- It occurs in about 20 min when cerebral blood flow ≤ 20 ml/100 g brain/min.


Types of stroke

- Ischemic (80%)
 - Thromboembolism (AS / cardiac)
 - Global hypoxic injury
 - Vasculitis
 - Hypercoagulation
- Hemorrhagic (20%)
 - Hypertension
 - Aneurysm / AVM
 - Trauma


Goal of imaging

- Exclude hemorrhage
- Differentiate between irreversibly affected brain tissue and reversibly impaired tissue (dead tissue versus tissue at risk)
- Identify stenosis or occlusion of major extra- and intracranial arteries

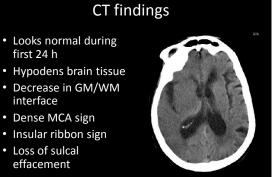
CT findings

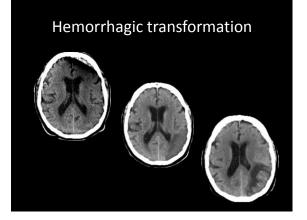
- Looks normal during first 24 h
- Hypodens brain tissue
- Decrease in GM/WM interface
- Dense MCA sign
- Insular ribbon sign
- Loss of sulcal effacement

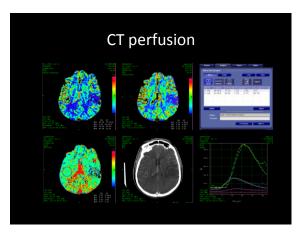
CT findings

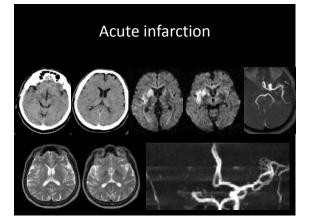
- Looks normal during first 24 h
- Hypodens brain tissue
- Decrease in GM/WM interface
- Dense MCA sign
- Insular ribbon sign
- Loss of sulcal effacement

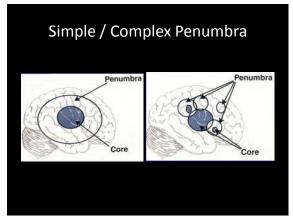
first 24 h

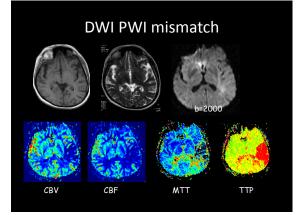

interface

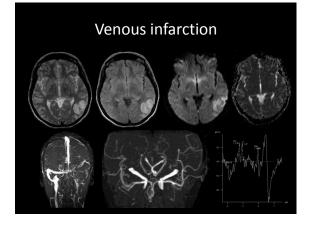


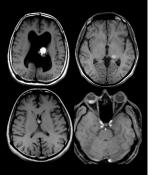

CT findings


- Looks normal during first 24 h
- Hypodens brain tissue
- Decrease in GM/WM interface
- Dense MCA sign
- Insular ribbon sign
- Loss of sulcal effacement









Brain tumors

- To determine the lesion
- To reveal location, propagation and interaction of the lesion
- Make the differential diagnosis
- To guide interventional procedures
- To guide treatment planning Evaluate the response to
 - treatment
- Patient's age, sex, and clinic
 - Number of lesions
- Location (intra / extra-axial) Location within neuroaxis (GM, WM, PV, BS)
- T1 and T2 signal intensity Existence, degree, type of
- opacification • Hemorrhage, calcification, necrosis
- DWI, DTI, PWI and MRS findings

T1 hyperintensity

- Paramagnetic effect
- Late subacute hemorrhage (metHb)
- Melanin / free radicals - Fe, Mn, Cu ions
- Non-paramagnetic effect - Increased protein content
- Oil
- Flow related enhancement

T2 hypointensity

Benign / Malign

Malign

Ill defined

+/++/+++

+/++/+++

+

+ Thick

irregular

-/+

Homogeneous Heterogeneous

- Paramagnetic effect
 - Dystrophic calcification
 - Fe deposition
 - Hemosiderin / deohb /
 - intracellular methb
 - Melanin / free radical
 - Increased protein content
- Fibrocollagenous tissue
- Increased nucleus / cytoplasm ratio

Findings

Contour

Structure

Mass effect

Calsification

Contrast

Necrosis

Bleeding

Border

Edema

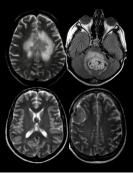
Signal void due to blood flow

Benign

Well defined

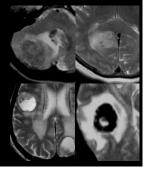
-/+

-/+

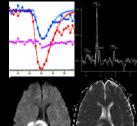

-/+

-

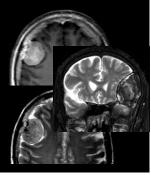
_


Thin regular

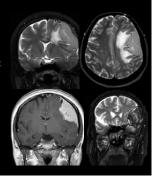
-/+


T2 hypointensity

- Increased nucleus / cytoplasm ratio
- Undifferentiated round cell tumor
 - Medulloblastoma
 - Pineoblastoma Neuroblastoma
- Lymphoma
- Mucinous adenoca. metastasis
- Amelanotic melanoma
- High-grade glioma


By increased malignancy

- ADC \downarrow
- rCBV ↑
- Permiability ↑ •
- Cho/Cr \uparrow , NAA/Cr \downarrow •
- Laktat appears •
- ml (Grade II tumor)


Extra-axial location

- Existence of CSF cleft, vascular structures or dura between the mass and the brain
- Presence of GM between the mass and WM

Extra-axial location

- Suggestive findings
- Peripheral settlement
- Dural based lesionChanges in the adjacent
- bone
- Opacification in the adjacent meninges

WHO 2007 classification

•

- Neuroepithelial tumors
 - Astrocytic tumors
 - Oligodendroglial tumors
 - Oligoaastrocytic tumors
 - Ependymal tumors
 - Choroid plexus tumors
 - Other epithelial tumors
 - Neuronal & mixed
 - neuronal-glial tumors — Pineal region tumors
 - Embryonic tumors
- Metastatic tumors

• Tumors of the meninges

Primary melanocytic

- Mesenchymal tumors

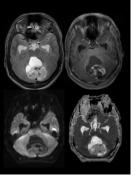
hematopoietic tumors

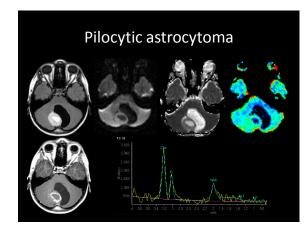
Peripheral nerve tumors

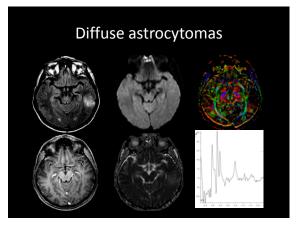
Sellar region tumors

lesions

- Other tumors,

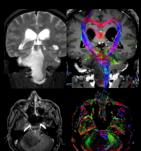

Germ cell tumors

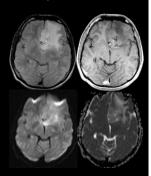

Lymphoma and


Meningothelial cell tumors

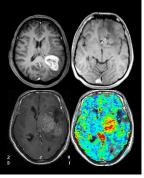
Pilocytic astrocytoma

- 90-98% of juvenile
- 2-10% of adults
- Cerebellar (<10 years)
- Hypothalamic-chiasmatic (> 12 years)
- Hemispheric (> 20 years)
- Well-circumscribed, lobular
- Solid / cystic
- Edema and calc. (-)
- MRS like advanced tumors



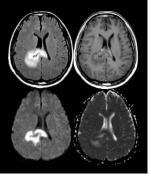

Brain stem glioma

- Constitutes 10 to 15%
 of pediatric tumors
- Most of stage II & fibrillary type
- Diffuse enlargement of the brain stem
- T2W hyperintense
- C (-), bleeding
- C (+) anaplasia?

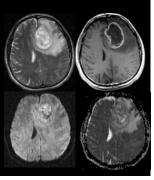

Anaplastic astrocytoma

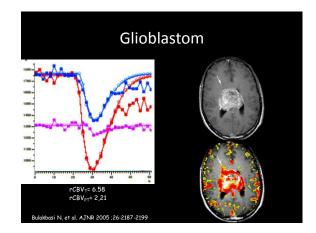
- 10% of brain tumor
- 75% developed from LGGT
- 40-50 years
- White matter
- Infiltrating
- Poor prognosis
- 5 years 20%
 - 2-3 year all

Anaplastic astrocytoma

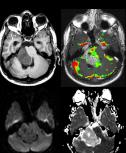

- 50-70% C (+)
 - Focal / patchy
 - Nodular
 - Annular
 - Infiltrating
- MRS and PWI
- Biopsy guidance
- DTI
 - Infiltration

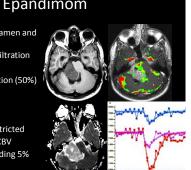
Glioblastoma


- 15-20% of brain tumors
- 65-75% astrocytoma

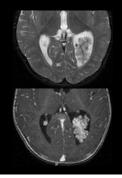

 95% primary
 5% secondary
- White matter (F, T, P), bihemispheric (CC) involvement
 - Synchronous-
 - metachronous
 - Multifocal
 - Multicentric

Glioblastom


- 5% 5-year survival
- <1 year all
- "Brain to brain"
- Infiltrating
- Tumoral edema
- Cyst / necrosis often
- Thick irregular C (+)
- Often bleeds
- Calcification is rare


Epandimom

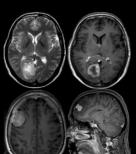
- 10% of pediatric ICT
- 60-70% of infratentorial - 4th ventricle
- 30-40% supratentorial - Hemisphere> Ventricular
- Dual peak
 - 1-5 years
 - 20-30 years
- Hydrocephalus

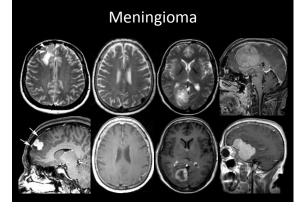

Epandimom

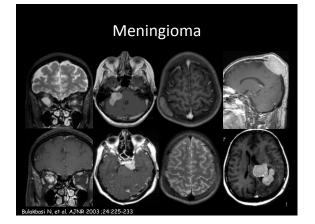
- Extension into foramen and cistern
- Periventricular infiltration
- Heterogeneity
- Punctate calcification (50%)
- Partially cystic Bleeding (10%)
- C (+)
- DWI: normal / restricted PWI: Increased rCBV
- Subarachnoid seeding 5%

Choroid plexus papilloma

- 75% <2 years
- 85% <5 years Adult
- 4th and lateral ventricles Child
- Trigon >> 3rd ventricle
- 25% calcification
- Intratumoral hemorrhage
- Vascular signal void
- Homogeneous C (+)

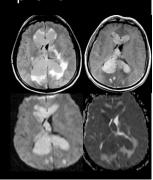

Vestibular schwannoma


- Cystic degeneration> bleeding> necrosis
- Intens (Antoni A) and loose (Antoni B) areas
- 80% of IAC involvement
- Small section (cone) in IAC, large portions (ice cream)
- CSF space
- T1 hypo / isointense, T2 hyperintense, intens C +

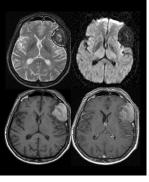


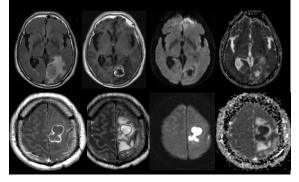
Meningioma

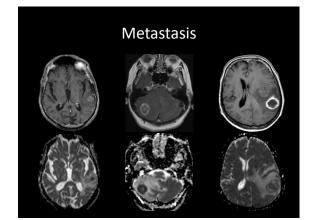
- 90% supratentorial
- 10% infratentorial
- Well demarcated
- Homogeneous internal structure
- Homogeneous C + •
- Edema \pm
- Mass effect +
- Necrosis \pm
- Tail sign

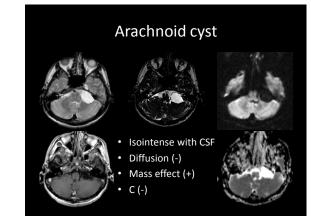


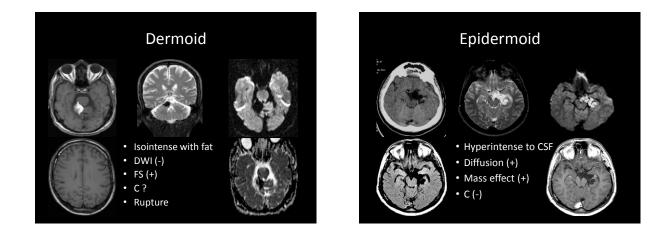
CNS Lymphoma

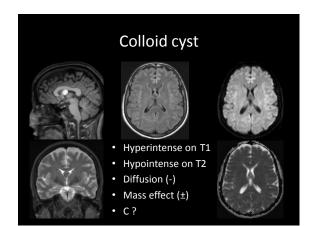

- Most non-Hodgkin's
- 2/3 solitary
- 1/3 multiple
- Periventricular WM / BG
- İrregular contour
- Intens C (+)
- Restricts diffusion

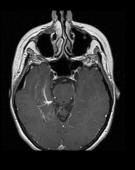

Metastasis

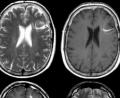

- Well-circumscribed, round
- Solid / annular C +
- Peripheral edema
- Number
 - 50% of solitary
 2 lesions 20%

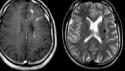

 - 30% > 2 lesions
- Location
 - Bone - Dural / leptomeningeal
 - Parenchymal



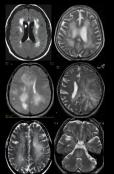

Metastasis v.s. Abscess




Developmental venous anomaly

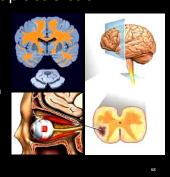

- Most common cause of malformation (60%)
- Frontal> parietal = cerebellum
- GVA ≠ venous angioma
- Angioma is a pathological lesion with high risk of bleeding
- Non-pathological, embryological variant of venous drainage

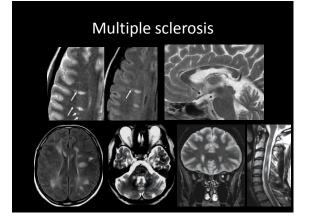
Developmental venous anomaly


- Medusa's head
 - Dilated medullary veins
 - Stellate, tubular vessels converge on collector vein
- Concomitant lesion
 - Cavernoma

White matter diseases

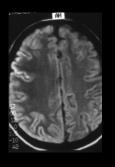
- Dismyelinating disorders:
 - Dysfunction of oligodendrocytes
 - Mostly congenital and metabolic
- Demyelinating diseases:
 - Destruction of myelin
 - Multiple sclerosis and secondary demyelination


Multiple sclerosis

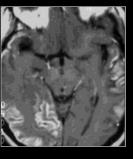

- F>M (2:1)
- 70% 20-40, % 10 > 50
- Etiology
- Autoimmune, viral, genetic, environmental, vascular
- Variants
- Classic shape (Charcot type)
- Acute (Marburg type)
 Neuromyelitis optica (Dev
- Neuromyelitis optica (Devic's disease)
- Concentric sclerosis (Baló disease)
- Diffuse cerebral sclerosis (Schilder's type)

Multiple sclerosis

- Involves
- Brain
- Spinal cord
- Optic nerve
- Vascular system



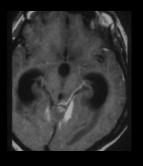
Meningitis


Early phase

- Normal / minimal hydrocephalus
- Hyperintensity in sulcus and cisterns due to the inflammatory exudate
- Early and late phase: – Meningeal enhancement • Dural
 - Pia-arachnoidal

Meningitis

- Early phase
 - Normal / minimal hydrocephalus
 - Hyperintensity in sulcus and cisterns due to the inflammatory exudate
- Early and late phase:
 - Meningeal enhancement
 - DuralPia-arachnoidal
- pidal


Complications of meningitis

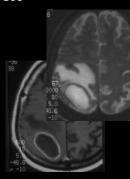
- Hydrocephalus
- Ventriculitis / ependimit
- Subdural effusion
- Empiyem
- Cerebritis / abscess
- Cerebral infarction
- Dural sinus / cortical vein thrombosis
- Venous infarction

Complications of meningitis

- Hydrocephalus
- Ventriculitis / ependimit
- Subdural effusion
- Empiyem
- Cerebritis / abscess
- **Cerebral infarction** Dural sinus / cortical vein thrombosis
- Venous infarction

Complications of meningitis

- Hydrocephalus
- Ventriculitis / ependimit
- Subdural effusion •
- Empiyem
- Cerebritis / abscess 0
- **Cerebral infarction**

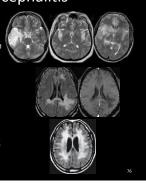

vein thrombosis

Venous infarction

Dural sinus / cortical

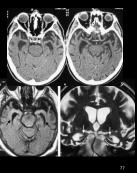
Abscess

- Stages
 - early serebritis
 - late serebritis
 - Early capsule formation Late capsule formation
- Location
 - Corticomedullary junction (the most common)
 - Frontal & parietal lobes (more often)
 - Less than 15% in the posterior fossa
 - Multiple abscesses rare

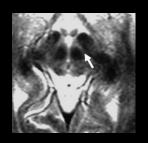

Viral encephalitis

- HSV
- The most common cause of fatal sporadic encephalitis.
- Hyperintensity in the temporal and inferior frontal lobes Late period: gyral enhancement and hemorrhage

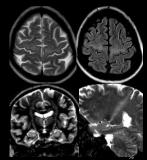
PML


- In immunodeficiency (AIDS, transplantation) Papova viruses (JC virus)

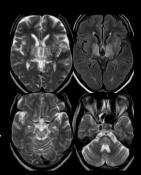
- Papova viruses (JC virus)
 bilaterally asymmetric T2-hyperintense lesions
 Contrast (-), mass effect (-)
 HIV encephalitis
- Diffuse hyperintense on T2 images and generalized atrophy and white matter changes


Alzheimer's disease

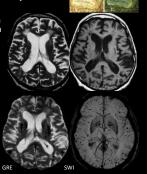
- Hippocampal and entorhinal cortex atrophy correlated with clinical findings
- Temporal lobe atrophy
 - Hypometabolism
 - CBV \downarrow
 - ADC ↑
 - NAA \downarrow , myo-inositol \uparrow


Parkinson's disease

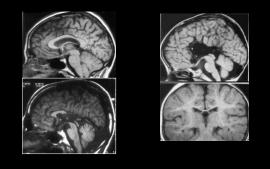
- Loss of dopaminergic • neurons in the substantia nigra pars compacta
- Neuroradiology: ddx
 - Multisystem atrophy
 - Secondary parkinsonism (vascular, hydrocephalus, tm)
- Reduction in the thickness of pars compacta (4 mm \downarrow)

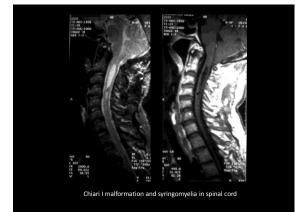

Amyotrophic lateral sclerosis

- The most common cause of degenerative motor disease
- Involves corticospinal tract and keeps 2nd motor neurons
- Death in 3-5 years
- T2 hyperintensity along the corticospinal tract
- Hypointense band in the prefrontal cortex

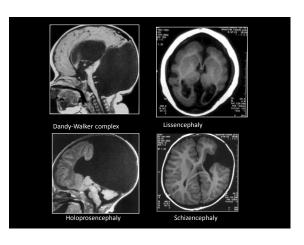

Wilson's disease

- Hepatolenticular degeneration
- Affects brain, liver, cornea, bone and kidney
- Spongiform degeneration
 - Putamen, caudate nucleus, thalamus, pontine mesencephalon, dentate nucleus




Amyloid angiopathy

- Beta-amyloid accumulation in the media and adventitia of vascular structure
- Involves cerebral cortex + leptomeniks
- Hemorrhagic episodes (40%)
- 60 A ↑ the most common cause of spontaneous hemorrhage
- CT / MRI haemorrhage different periods → → multifocal T2 * GRE hypointensity


Anomalies of corpus callosum

