

Key Concepts and Skills
Be able to Compute:

- the Future Value of an investment made today
- the Present Value of cash to be received at some future date - the Return on an Investment - the Number of periods

Time Value of Money

- A \$ in hand today is worth more than a \$ tomorrow. Why?
- Interest Rate Factor
- We know that receiving $\$ 1$ today is worth more than $\$ 1$ in the future. This is due to OPPORTUNITY COSTS.

The opportunity cost of receiving $\$ 1$ in the
future is the interest we could have earned if we had received the $\$ 1$ sooner

Compound Interest vs. Simple Interest

- Simple interest
- Interest earn only on the original investment, no interest is earned on interest
- Compound interest
- Interest is earned on both the initial principal and the interest reinvested from prior periods

Future Value Equation - Formula

- $F V=P V(1+r)^{t}$
- $F V=$ future value
- PV = present value
- $r=$ period interest rate
- $t=$ number of periods

Future Value Interest Factor $=(1+r)^{t}$

1. Future Value and Compounding

- Cash value of an investment at some time in the future
- When we talk about compounding, we mean interest earned on interest

Future Value of a Single Amount (\$100 Invested for 3 years at 10\%)

Algebraic solution

$$
\begin{aligned}
F V_{t} & =P V_{0}(1+r)^{\prime} \\
& =\$ 100(1.10)^{3}=\$ 133.10
\end{aligned}
$$

Variation with time value tables

$$
\begin{aligned}
F V_{t} & =P V_{0}\left(F V I F_{r, t}\right) \\
& =\$ 100(1.3310)=\$ 133.10
\end{aligned}
$$

Future Values

- Suppose you invest $\$ 1000$ for one year at 5% per year. What is the future value in one year?
- Simple interest
- Interest $=1000(.05)=50$

Value in one year $=$ principal + interest

$$
=1000+50=1050
$$

- Compound interest
- Future Value $(F V)=1000(1+0.05)=$ 1050

Effects of Compounding

Suppose you leave the money in for another year. How much will you have two years from now?

Answer

- Simple interest
- FV with simple interest $=1000+50+50$ $=1100$
- Compound interest
- FV with compound interest $=1000(1+0.05)^{2}=1102.50$
- The extra 2.50 comes from the interest of $.05(50)=2.50$ earned on the first interest payment

Future Values

Suppose you invest the $\$ 1000$ from the previous example for 5 years. How much would you have?

- $\mathrm{FV}=1000(1.05)^{5}=1276.28$

The effect of compounding is small for a small number of periods, but increases as the number of periods increases. (Simple interest would have a future value of $\$ 1250$, for a difference of $\$ 26.28$.)

Future Values

Suppose you had a relative deposit \$10 at 5.5% interest 200 years ago. How much would the investment be worth today?

- $F V=10(1.055)^{200}=447,189.84$

What is the effect of compounding?

- Simple interest $=10+200(10)(.055)=$ 120.00
- Compounding added $\$ 447,069.84$ to the value of the investment

The Basic PV Equation Refresher

- $F V=P V(1+r)^{t}$
- Rearrange to solve for PV
- $P V=F V$ $(1+r)^{t}$
- $\mathrm{PV}=\mathrm{FV}$

$(1+r)^{t}$

1. Present Value and Discounting

- Current value of the future CF discounted at the appropriate discount rate
- When we talk about discounting, we mean finding the present value of some future amount.
- How much do I have to invest today to have some amount in the future?

Present Value - Example 5.1

- Suppose you need $\$ 10,000$ in one year for the down payment on a new car. If you can earn 7\% annually, how much do you need to invest today?

Present Value of a Single Amount (\$100 Received in 3 years at 10\%)

Algebraic solution
$P V_{0}=F V_{(}\left(\frac{1}{(1+r)^{\prime}}\right)=\$ 100\left(\frac{1}{(1+0.10)^{3}}\right)=\$ 75.13$

Variation with time value tables
$P V_{0}=F V_{t}\left(P V I F_{r, t}\right)=\$ 100(0.7513)=\$ 75.13$

Present Values - Example 5.2

You want to begin saving for you daughter's college education and you estimate that she will need $\$ 150,000$ in 17 years. If you feel confident that you can earn 8% per year, how much do you need to invest today?

Present Values - Example 5.3

- Your parents set up a trust fund for you 10 years ago that is now worth $\$ 19,671.51$. If the fund earned 7\% per year, how much did your parents invest?

Example 5.4

- You need $\$ 50,000$ in 10 years. If you can earn 6\% interest, how much do you need to invest today?
- You should get $\$ 27,919.74$

Present Value - Important Relationship I

- For a given interest rate - the longer the time period, the lower the present value
- What is the present value of $\$ 500$ to be received in 5 years? 10 years? The discount rate is 10%
- 5 years: $\mathrm{PV}=500 /(1.1)^{5}=310.46$
- 10 years: $P V=500 /(1.1)^{10}=192.77$

Present Value - Important Relationship II

For a given time period - the higher the interest rate, the smaller the present value

- What is the present value of $\$ 500$ received in 5 years if the interest rate is 10\%? 15\%?

Rate $=10 \%: P V=500 /(1.1)^{5}=310.46$
Rate $=15 \% ; P V=500 /(1.15)^{5}=248.59$

Discount Rate

- Often we will want to know what the implied interest rate is in an investment
Rearrange the basic PV equation and solve for r
- $F V=P V(1+r)^{t}$
- $r=(F V / P V)^{1 / t}-1$

If you are using formulas, you will want to make use of both the y^{x} and the $1 / x^{\text {keys }}{ }_{s z 2}$

Discount Rate - Example 5.5

- You are looking at an investment that will pay $\$ 1200$ in 5 years if you invest $\$ 1000$ today. What is the implied rate of interest?

Finding the Number of Periods
Start with basic equation and solve for t (remember you logs)

- $F V=P V(1+r)^{t}$
- $t=\ln (F V / P V) / \ln (1+r)$
- You can use the financial keys on the calculator as well; just remember the sign convention.

Number of Periods - Example 5.8

- You want to purchase a new car and you are willing to pay $\$ 20,000$. If you can invest at 10% per year and you currently have $\$ 15,000$, how long will it be before you have enough money to pay cash for the car?

Number of Periods - Example 5.9

Suppose you want to buy a new house. You currently have \$15,000 and you figure you need to have a $\$ 21,750$. Assume that you can earn 7.5% per year, how long will it be before you have enough money to buy the house?

Table

I. Symbols:

PV = Present value, what future cash flows are worth today
$\mathrm{FV}=$ Future value, what cash flows are worth in the future
$r=$ Interest rate, rate of return, or discount rate per period-typically, but not always, one year
$t=$ Number of periods-typically, but not always, the number of years $C=$ Cash amount
II. Future Value of C Invested at r Percent for t Periods:
$\mathrm{FV}_{\mathrm{t}}=C \times\left(1+r^{T}\right.$
The term $(1+n)^{\prime}$ is called the future value factor.
III. Present Value of C to Be Recelved in t Periods at r Percent per Period:
$\mathrm{PV}=\mathrm{C} /(1+\pi)^{\prime}$
The term $1 /(1+r)^{\prime}$ is called the present value factor.
IV. The Basic Present Value Equation Giving the Relationship between Present and
Future Value is: Future Value is:
$\mathrm{PV}=\mathrm{FV}_{t} /(1+\eta)^{\prime}$

Suggested Problems
-1-15, 17-20.

