## Chapter 7

Interest Rates and Bond Valuation

## Differences Between Debt and Equity

- Not an ownership interest
- Creditors do not have voting rights
- Interest is considered a cost of doing business and is tax deductible
Creditors have legal remedy if interest or principal payments are missed
Excess debt can lead to financial distress and bankruptcy

Equity

- Ownership interest
- Common stockholders vote for the board of directors and other issues
Dividends are not considered a cost of doing business and are not tax deductible
Dividends are not a liability of the firm and stockholders have no legal remedy if dividends are not paid An all equity firm can not go bankrupt

When corp. need to investment in new plant and equipment, it required money. So' corp. need to raise cash / funds.
Borrow the cash from bank (or Issue bond
/ debt securities)
(CHP. 7)
Issue new securities (i.e. sell additional shares of common stock)
(CHP. 8)

## Bond

- Par value (face value)
- Coupon rate
- Coupon payment
- Maturity date
- Yield or Yield to maturity

Face Value (Par Value): The principal amount of a bond that will be repaid at the end of the loan.

- Par value is usually $\$ 1000$ for corporate bond
- Government bond usually have much larger par value


Present Value of Cash Flows as Rates Change

- Bond Value $=$ PV of coupons + PV of par


## The Bond-Pricing Equation

Bond Value $=\mathrm{A}\left[\frac{1-\frac{1}{(1+\mathrm{r})^{\mathrm{t}}}}{\mathrm{r}}\right]+F \frac{1}{(1+\mathrm{r})^{\mathrm{t}}}$
To determine the value of bond at a particular point in time, we need to know the number of periods remaining until maturity;

- face value
- the coupon
- the market i.r. for bond with similar features (called bonds yield to maturity)
Given all this information, we can calculate the PV of the CFs as an estimates of the BONDS CURRENT MARKET VALUE.


## Example 7.1

- Suppose that the X corp. want to borrow
- 1000*0.12=\$120 Coupon will be paid every year for 30 years $\$ 1000$ for 30 years, and the coupon rate is
- And at the end of the 30 years corp. will pay the par value of $\$ 1000$.
- (So, buying this bond is like loaning the company $\$ 1000$ for 30 years.)

THIS SUGGEST THAT A BOND IS A SIMPLE FINANCING ARRANGEMENT.

## Example 7.2

- Suppose that the corp. were to issue a bond with 10 years to maturity. The bond has an annual coupon of $\$ 80$. Similar bond have a yield to maturity of $8 \%$. What would this bond sell for?

Answer 7.2

- In practice, the value of bond in the market place is rarely equal to it's par value.
- Some bonds are value
- Below par value
- Others are value above par value
- Because as time pass a variety of forces in the economy tends to affect value, which can not be controlled by bond issuers and investors. (Ec cond'n causing a shift in the basic cost of L-T fund, eg. i.r risk)


## Graphical Relationship Between

Price and Yield-to-maturity


Discount Bond: The amount that a bond sells at a value that is less than its par value.

Premium : The amount that a bond sells at a value greater than its par value.



## Interest Rate Risk

- Risk arise from fluctuating interest rates

Long-term bonds have more interest rate risk (more price risk) than short-term bonds

Example 7.3: Valuing a Discount Bond with Annual Coupons

- Consider a bond with a coupon rate of $10 \%$ and annual coupons. The par value is $\$ 1000$ and the bond has 5 years to maturity. The yield to maturity is $11 \%$. What is the value of the bond?

Answer 7.3

Example 7.4: Valuing a Premium Bond with Annual Coupons
Suppose you are looking at a bond that has a 10\% annual coupon and a face value of $\$ 1000$. There are 20 years to maturity and the yield to maturity is $8 \%$. What is the price of this bond?

| Answer 7.4 |
| :---: | :---: |
|  |
|  |
|  |
|  |
|  |
|  |
|  |

## Computing Yield-to-maturity

- Yield-to-maturity is the rate implied by the current bond price
- Required rate of return on a bond
- Express as nominal annual interest rates
- The coupon rate is a fixed percentage of par over the life of the bond
- If you do not have a financial calculator finding the YTM requires trial and error


## Example 7.5: YTM with Annual

 Coupons- Consider a bond with a $10 \%$ annual coupon rate, 15 years to maturity and a par value of $\$ 1000$. The current price is $\$ 928.09$. $\mathrm{YTM}=$ ?
- Will the yield be more or less than $10 \%$ ?


## Example 7.6

Most corporate bonds pay interest semiannually, at a stated coupon rate, or a face value, of $\$ 1000$ that must be repaid at maturity. If investors require a $12 \%$ yield, what is the bond's value? What is the effective annual yield on the bond?

## Example 7.7: Cost of Debt

- Suppose we have a bond issue currently outstanding that has 25 years left to maturity. The coupon rate is $9 \%$ and coupons are paid semiannually. The bond is currently selling for $\$ 908.72$ per $\$ 1000$ bond. What is the cost of debt?


## Bond Ratings - Investment

 Quality- High Grade
- Moody's Aaa and S\&P AAA - capacity to pay is extremely strong
- Moody's Aa and S\&P AA - capacity to pay is very strong
- Medium Grade
- Moody's A and S\&P A - capacity to pay is strong, but more susceptible to changes in circumstances
- Moody's Baa and S\&P BBB - capacity to pay is adequate, adverse conditions will have more impact on the firm's ability to pay


## Bond Ratings - Speculative

## - Low Grade

- Moody's Ba, B, Caa and Ca
- S\&P BB, B, CCC, CC
- Considered speculative with respect to capacity to pay. The " B " ratings are the lowest degree of speculation.
Very Low Grade
- Moody's C and S\&P C - income bonds with no interest being paid
- Moody's D and S\&P D - in default with principal and interest in arrears (amount overdue)


## Government Bonds

Treasury Securities

- Federal government debt
- T-bills - pure discount bonds with original maturity of one year or less
- T-notes - coupon debt with original maturity between one and ten years
- T-bonds coupon debt with original maturity greater than ten years

Interest Rates Determination


## Inflation and Interest Rates

- Real vs. Nominal Rates
- Real Interest Rates : rate of return that have been adjusted for inflation.
- Nominal Interest Rates : rate of return that have not been adjusted for inflation


## The Fisher Effect

- The Fisher Effect tells us the relationship between real rates, nominal rates and inflation $(1+R)=(1+r)(1+h)$
- $(1+R)=(1+r)(1+h)$, where
- $R=$ nominal rate
- $r=$ real rate
- $\mathrm{h}=$ expected inflation rate
- Approximation $R=r+h$
- Nom i.r. = Real i.r. + Inflation , Hence;

Real IR = Nominal IR - INFLATION

## Example 7.8

- Suppose that prices are currently rising by 5\% per year. And investment has a $15.5 \%$ rate of return. Then, what is the real rate of return?
- You have to consider the effect of inflation. Rate of inflation is given as $5 \%$ per year.

Answer 7.8

## Example 7.9

If we require a $10 \%$ real return and we expect inflation to be $8 \%$, what is the nominal rate?

Example 7.10: The relationship between a bonds YTM and coupon interest rate can be used to predict its pricing level.

- Bond Coupon interest rate YTM Price
- A $\quad 6$
- B 8

| C | 9 | 7 |
| :--- | :--- | :--- |


| D | 7 | 9 |
| :--- | :--- | :--- |


| E | 12 | 10 |
| :--- | :--- | :--- |

Sugested Problems

