Chapter 12

Some Lessons from Capital Market History

Key Concepts and Skills

- Know how to calculate the return on an investment
- Understand the historical returns on various types of investments
- Understand the historical risks on various types of investments

Risk, Return and Capital Market History

- Required return on an investment depends on the risk of the investment.
 - The greater the risk the greater the required return.
- What Capital Market History can tell us about risk and return?
 - This perspective is essential for understanding how to analyze and value risky investment project.

Returns If you buy an asset of any sort, your gain/loss from that investment The return will be • Income component: Cash you receive while you own the investment • Capital Gain/Loss: Because the value of the asset you purchase will often change. Eg. Stock : 1. Dividend 2. Capital Gain

Dollar Returns

- Total dollar return = income from investment + capital gain (loss) due to change in price
- Example:
 - You bought a bond for \$950 one year ago.
 You have received two coupons of \$30 each.
 You can sell the bond for \$975 today. What is your total dollar return?
 - Income = 30 + 30 = 60
 - Capital gain = 975 950 = 25
 - Total dollar return = 60 + 25 = \$85

Example 12.1

Stock selling for \$37/ share.If you had bought 100 shares, you will have had a total outlay \$3,700. Suppose that over the year the stock paid of \$1.85 dividend per share. Also the value of stock has risen to \$40.33 / share by the end of the year. By the end of the year you would have received income of ?

Percentage Returns

- It is generally more perceptive to think in terms of percentages than in dollar returns 'How much do we get for each dollar we invest?'
- Dividend yield = income / beginning price
- Capital gains yield = (ending price beginning price) / beginning price
- Total percentage return = dividend yield + capital gains yield

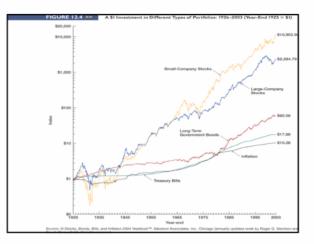
Example 12.2: Calculating Returns

- You bought a stock for \$35 and you received dividends of \$1.25. The stock is now selling for \$40.
 - What is your dollar return?
 - What is your percentage return?

To Check : Assume that you had bought 100 shares.

- Invested \$3,500
 - Dividend income: \$125
 - Capital Income: (40-35)*100 = \$500
 - Total dollar return = 125+500 = \$ 625
 - What % did your \$3,500 increased?
 - End up with : 3500+625 = 4125
 - (4125 3500)/3500 = 17.86%

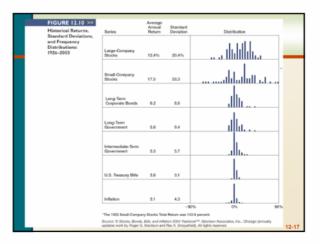
Calculating real returns using inflation rate

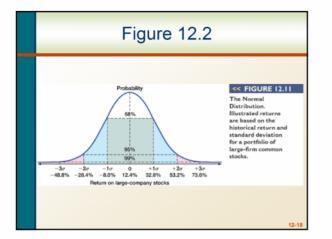

Table 12.1: Average Returns

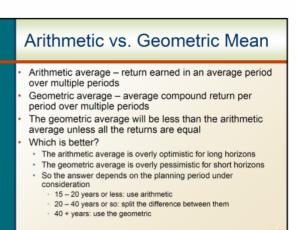
Investment	Average Return
Large stocks	12.4%
Small Stocks	17.5%
Long-term Corporate Bonds	6.2%
Long-term Government Bonds	5.8%
U.S. Treasury Bills	3.8%
Inflation	3.1%
	12-10

Risk Premiums
 The "extra" return earned for taking on risk Treasury bills are considered to be risk- free The risk promium is the return over and
 The risk premium is the return over and above the risk-free rate The additional return we earn by moving
 The additional return we earn by moving from a relatively risk free investment to a risky one.
 It can be interpreted as reward for bearing risk

	erage Annu isk Premiun	Annual Returns emiums		
Investment	Average Return	Risk Premium		
Large stocks	12.4%	8.6%		
Small Stocks	17.5%	13.7%		
Long-term Corporate Bonds	6.2%	2.4%		
Long-term Government Bonds	5.8%	2.0%		
U.S. Treasury Bills	3.8%	0.0%		


Assume that average inflation rate was 3,1. Then average real return on treasury bill is 3.8-3.1=0,7% per year





Variance and Standard Deviation Variance and standard deviation measure
 the volatility of asset returns The greater the volatility, the greater the uncertainty Historical variance = sum of squared deviations from the mean / (number of observations – 1) Standard deviation = square root of the variance

Year	Actual Return	Average Return	Deviation from the Mean	Squared Deviation
1	.15	.105	.045	.002025
2	.09	.105	015	.000225
3	.06	.105	045	.002025
4	<u>.12</u>	.105	<u>.015</u>	.000225
Totals	.42		.00	.0045

Example 12.3: Computing Averages (Arithmetic and Geometric Average) What is the arithmetic and geometric average for the following returns? Year 1 5% Year 2 -3% Year 3 12% Arithmetic average = Geometric average =

Example 12.4 : Use table 12.1 from book to calculate the average returnover the years 1996 through 2000 for large campany stocks, long term government bonds and Treasury

Year	Large Company	Long-Term Government	Treasury Bills
rear	Stocks	Bonds	
1996	0.2296	0.0013	0.0514
1997	0.3336	0.1202	0.0519
1998	0.2858	0.1445	0.0486
1999	0.2104	-0.0751	0.0480
2000	-0.0910	0.1722	0.0598

	Answer 12.4			
	Actual Returns			
Year	Large Company Stocks	Long-Term Government Bonds	Treasury Bills	
1996	0.2296	0.0013	0.0514	
1997	0.3336	0.1202	0.0519	
1998	0.2858	0.1445	0.0486	
1999	0.2104	-0.0751	0.0480	
2000	-0.0910	0.1722	0.0598	
Average	0.1937	0.0726	0.0519	

Example 12.5 Calculate the standard deviation for each security type using information from Example 12.4. Which of the investments was the most volatile over this period?

Large Long-Term Treasury Year Company Government	
Stocks Bonds	y Bill
1996 0.0359 -0.0713 -0.000	05
1997 0.1400 0.0476 0.0000	00
1998 0.0921 0.0719 0.003	33
1999 0.0167 -0.1477 -0.003)39

	Squared Devia	tion from Average F	Returns		
Year	Large Company Stocks	Long-Term Government Bonds	Treasury Bills		
1996	0.0012906	0.0050865	0.0000005		
1997	0.0195872	0.0022639	0.0000000		
1998	0.0084837	0.0051667	0.0000112		
1999	0.0002801	0.0218212	0.0000155		
2000	0.0810670	0.0099162	0.0000618		
Variance	0.0276771	0.0110636	0.0000222		
Std dev	0.1663645	0.1051838	0.0047104		

Notice that stocks had much more volatility than the bonds with a much larger average return (19.37%).

Sugested Problems

• 1-7, 9-11, 15, 16.