## Chapter 12

## - Some Lessons from Capital Market History

## Key Concepts and Skills

Know how to calculate the return on an investment

Understand the historical returns on various types of investments

- Understand the historical risks on various types of investments


## Risk, Return and Capital Market History

- Required return on an investment depends on the risk of the investment.
- The greater the risk the greater the required return.
- What Capital Market History can tell us


## Returns

 about risk and return?- This perspective is essential for understanding how to analyze and value risky investment project.

| Returns |
| :--- |
| - If you buy an asset of any sort, your |
| gain/loss from that investment |
| - The return will be |
| - Income component: Cash you receive while |
| you own the investment |
| - Capital Gain/Loss: Because the value of the |
| asset you purchase will often change. |
| Eg. Stock: 1. Dividend <br> 2. Capital Gain |

## Dollar Returns

- Total dollar return = income from investment + capital gain (loss) due to change in price
- Example:
- You bought a bond for $\$ 950$ one year ago.

You have received two coupons of $\$ 30$ each. You can sell the bond for $\$ 975$ today. What is

## Example 12.1

- Stock selling for \$37/ share.If you had bought 100 shares, you will have had a total outlay $\$ 3,700$. Suppose that over the year the stock paid of $\$ 1.85$ dividend per share. Also the value of stock has risen to $\$ 40.33$ / share by the end of the year. By the end of the year you would have your total dollar return? received income of?
Income $=30+30=60$
- Capital gain $=975-950=25$
- Total dollar return $=60+25=\$ 85$


## Percentage Returns

It is generally more perceptive to think in terms of percentages than in dollar returns 'How much do we get for each dollar we invest?'
Dividend yield = income / beginning price
Capital gains yield = (ending price beginning price) / beginning price
Total percentage return $=$ dividend yield + capital gains yield

## To Check: Assume that you had bought 100 shares.

- Invested \$3,500


## The Historical Record

Year to year historical rates of return on 5 important types of financial investments

- Dividend income: $\$ 125$
- Capital Income: $(40-35)^{\star} 100=\$ 500$
- Total dollar return $=125+500=\$ 625$
- What \% did your \$3,500 increased?
- End up with : $3500+625=4125$
- $(4125-3500) / 3500=17.86 \%$ of the companies listed on the NYSE. (mv of outstanding stock)
- L-T Corporate bonds: High quality bonds with 20 years to maturity.
- L-T US government bonds: US government bonds with 20 years to maturity
- US treasury bills: Treasury bills with a 3 months maturity

These returns are not adjusted for inflation or taxes (i.e. nominal and pretax returns)
Inflation rate: \% change on CPI (Consumer Price Index). Calculating real returns using inflation rate

Table 12.1: Average Returns

| Investment | Average Return |
| :--- | :---: | ---: |
| Large stocks | $12.4 \%$ |
| Small Stocks | $17.5 \%$ |
| Long-term Corporate Bonds | $6.2 \%$ |
| Long-term Government | $5.8 \%$ |
| Bonds $3.8 \%$  <br> U.S. Treasury Bills $3.1 \%$  <br> Inflation  ${ }^{12-10}$ |  |

## Risk Premiums

- The "extra" return earned for taking on risk
- Treasury bills are considered to be riskfree
- The risk premium is the return over and above the risk-free rate
- The additional return we earn by moving from a relatively risk free investment to a risky one.
- It can be interpreted as reward for bearing risk


## Table 12.2 Average Annual Returns and Risk Premiums

| Investment | Average Return | Risk Premium |
| :--- | :---: | :---: |
| Large stocks | $12.4 \%$ | $8.6 \%$ |
| Small Stocks | $17.5 \%$ | $13.7 \%$ |
| Long-term Corporate <br> Bonds <br> Long-term <br> Government Bonds <br> U.S. Treasury Bills | $6.2 \%$ | $2.4 \%$ |

Assume that average inflation rate was 3,1 . Then average real return on treasury bill is $3.8-3.1=0,7 \%$ per year


## Year-to-Year Total Returns

| Large-Company Stock Returns | Large Companies |
| :--- | :---: |
| Long-Term Government | Long-Term Covernment Bonds |
| Bond Returns |  |
| U.S. Treasury Bill Returns |  |

## Variance and Standard Deviation

Variance and standard deviation measure the volatility of asset returns

- The greater the volatility, the greater the uncertainty
Historical variance $=$ sum of squared deviations from the mean / (number of observations - 1)
Standard deviation = square root of the variance

| Variance and Standard Deviation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Year | Actual <br> Return | Average <br> Return | Deviation from <br> the Mean | Squared <br> Deviation |
| 1 | .15 | .105 | .045 | .002025 |
| 2 | .09 | .105 | -.015 | .000225 |
| 3 | .06 | .105 | -.045 | .002025 |
| 4 | $\frac{.12}{}$ | .105 | $\underline{015}$ | $\frac{.000225}{}$ |
| Totals | .42 | .00 | .0045 |  |
|  |  |  |  |  |

[^0]

Figure 12.2

## Arithmetic vs. Geometric Mean

## Arithmetic average - return earned in an average period

 over multiple periodsGeometric average - average compound return per period over multiple periods
The geometric average will be less than the arithmetic average unless all the returns are equal
Which is better?

- The arithmetic average is overly optimistic for long horizons
- The geometric average is overly pessimistic for short horizons
- So the answer depends on the planning period under consideration

15-20 years or less: use anithmetic
$20-40$ years or so: split the difference between them
$40+$ years: use the geometric

Example 12.3: Computing Averages
(Arithmetic and Geometric Average)

- What is the arithmetic and geometric average for the following returns?
- Year 1 5\%
- Year 2 -3\%
- Year 3 12\%
- Arithmetic average =
- Geometric average =

Example 12.4: Use table 12.1 from book to calculate the average returnover the years 1996 through 2000 for large campany stocks, long term government bonds and Treasury

| Actual Returns |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Year | Large <br> Company <br> Stocks | Long-Term <br> Government <br> Bonds |
| 1996 | 0.2296 | 0.0013 | Treasury Bills |
| 1997 | 0.3336 | 0.1202 | 0.0514 |
| 1998 | 0.2858 | 0.1445 | 0.0486 |
| 1999 | 0.2104 | -0.0751 | 0.0480 |
| 2000 | -0.0910 | 0.1722 | 0.0598 |
|  |  |  |  |



## Example 12.5

Calculate the standard deviation for each security type using information from Example 12.4. Which of the investments was the most volatile over this period?


## Sugested Problems

- Notice that stocks had much more volatility
- 1-7, 9-11, 15, 16. than the bonds with a much larger average return (19.37\%).


[^0]:    Variance $=.0045 /(4-1)=.0015 \quad$ Standard Deviation $=.03873$

