Lecture 3: Regression Analysis by Excel

Tasks for Simple Regression

Use Dataset 3, which indicates a relationship between the mean annual temperature in the region and the dehydration index, to answer the following questions:

1. Is there a relationship between the temperature and the dehydration index?
2. Find out the possible regression line for the two variables mentioned in question 1.
3. Calculate the correlation matrix between the two variables.
4. Display the regression equation and coefficient of determination $\left(R^{2}\right)$ on the chart.
5. Estimate the regression statistics between the dependent variables -dehydration index - and the explanatory variable - temperature - based on the following hypothesis: (i.e., regress temp on dehydration index).
H_{0} : There is no linear relationship between the dehydration index and the mean annual temperature.
H_{1} : There is a linear relationship.

Tasks for Multiple Regression

Use Data Set 4, which presents hypothetical information about a relationship between academic ability and its determinants, to answer the following questions:

1. Calculate the correlation matrix between the relevant variables under study.
2. How well can we predict academic ability if we know something about parents' education?
3. Estimate the regression statistics (i.e., the regression equation) between the dependent variables academic ability and its determinants based on the following hypothesis: (i.e., regress pe, r, c, g on aa).
H_{0} : The coefficients of all variables $=0$
H_{1} : At least one of the coefficient of $\neq 0$.

Tips for Simple Regression

1. Plot your data: A scattered plot can quickly point out obvious problems in assuming that a linear model fits your data. From this information, click chart wizard and choose XY scatter from the list of chart types (see fig 1).

FIG 1

Should you want to see more clearly, resize the horizontal scale (i.e., say the lower boundary is $\mathbf{3 0}$) and then resize the vertical scale (i.e., the lower boundary is 50) (see fig 2).

FIG 2
Hint: To resize both the horizontal scale and vertical scale, follow the steps below: having plotted the original graph, first make the mouse pointer to show horizontal axis numbers then right click to choose format axis > scale. When you select the scale button, type first 30 into minimum box and the other information shown in the dialog box below, then press ok as in fig 3. Apply the same procedure for vertical axis numbers as in fig 4.


```
Lunarill witiL shale
\Gamma values in reverse order
F value (v) axis crosses at maximum value
```


FIG 3

F Logarithmic scale
Γ Values in reverse order
F Value (x) axis crosses at maximum value
2. To find out the possible regression line, right click any of the data points in the graph and add trendline from the menu (see fig 5).

FIG 5

Regression line or trend on the plot gives a pretty good idea whether a straight line fits your data or not.
3. To create the correlation matrix, choose the option; tools> data analysis> correlation. Make sure you select the two variables at the same time in the input range box as in fig 6 so that this gives the final outcome as appears in fig 7.

	A	B	C
1	Temperaturpehycration		
2	Temperatu	1	
3	Dehydratio	0.874854	1
4			
E			

FIG 7
4. To display the equation and coefficient of determination on the relevant graph, first make the mouse pointer to show any of the data points on the graph then right click to choose format trendline and select option button as appears in fig 8. Finally, you can drag the text containing the regression equation and \boldsymbol{R}^{2} - value to a point above the plot as in fig 9 .

FIG 9
5. To create a table of regression statistics; click data analysis and scroll down the analysis tools list box, then select regression section and press ok. Further, enter the cell range C1:
$\mathbf{C 1 7}$ in the input Y range box and $\mathbf{B 1 : ~ B 1 7 ~ i n ~ t h e ~ i n p u t ~} X$ range box and make the necessary changes appear as shown in fig 10. This gives the final outcome as in fig 11.

Conclusion: Reject H_{o} (null hypothesis) and Accept H_{1} based on the hypothesis on page 2

Tips for Multiple Regression

1. To create the correlation matrix, choose the option; tools> data analysis> correlation. Make sure you select all variables (except ns) at the same time in the input range box as in fig 12 so that this gives the final outcome as appears in fig 13.

	A	B	C	D	E	F	G	H	
1		a	pe	sm	ae	r	g	c	
2	aa	1							
3	pe	0.774039	1						
4	sm	0.696307	0.724498	1					
5	ae	0.67323	0.689738	0.737968	1				
6	r	0.167937	-0.03229	0.055414	0.076524	1			
7	g	0.100496	0.007435	0.150005	-0.04583	0.283742	1		
8	c	0.666832	0.530525	0.577415	0.392125	-0.05954	0.174595		FIG 13

2. To determine the relationship between academic ability and parents' education click tools>data analysis and select regression section then press ok. Further, enter the cell range B1: B26 in the input Y range box and C1: C26 in the input X range box and make the necessary changes appear as shown in fig 14. This gives the final outcome as in fig 15.

FIG 14

3. Apply the same procedure as you did in the previous step and find out the relationship between academic ability and its determinants. This time, select the cell range B1: B26 in the input Y range box and C1: H 26 in the input X range box and make the necessary
changes appear as shown in fig 16. This gives the final outcome as in fig 17 (This is called Multiple Regression).

FIG 16

