

X Inactivation and Dosage Compensation

Dr.Rasime Kalkan, Ph.D.

Human Karyotype

Picture of Human Chromosomes 22 Autosomes and 2 Sex Chromosomes

X-inactivation is an epigenetic process.

Because of X-inactivation every female is a mosaic of cell lines with different active X chromosomes

X-inactivation, Dosage compensation, and the expression of X-linked genes

Same amount of X-linked gene products between males and females

- Males
 - One X chromosome
- Females
 - Two X chromosomes
- And yet, the mean amounts of gene products of Xlinked genes are the same in males as in females
- HOW?
 - Through X chromosome inactivation

X Chromosome Inactivation

- Mechanism of X Chromosome inactivation
- XIC X chromosome Inactivation Center
 - XIC controls expression of the XIST gene
 - XIST: X-inactive-specific transcript
 - XIST produces a non-coding 17 kb RNA molecule
 - "Coats" the entire local X-chromosome cis-acting

Characteristics of XIST Gene

Located in XIC

Transcribed only from the inactive X

XIC Region

The molecular mechanism behind Xinactivation

- The key player is the X-linked gene XIST
 - X(inactive)-specific transcript
 - Chromosome Xq13.2
- XIST is transcribed to produce a <u>non-coding</u> <u>RNA</u> that "coats" the X-chromosome and inactivates it
- XIST is uniquely expressed from the inactive X
- XIST RNA does not travel over to any other X chromosome in the nucleus (i.e., cis action).
- Barr bodies are inactive X chromosomes "painted" with XIST RNA.

- XIST: key master regulator for X inacitvation
- It is expressed only from the allel on the inactive X
- It is transcriptionally silent on the active X in both male and female cells.
- Have a functions in the initiation phase of X inactivation.

- Transcription of XIST ceases on the other X chromosome allowing all of its hundreds of other genes to be expressed.
- The shut-down of the XIST locus on the active X chromosome is done by methylating XIST regulatory sequences.
- So methylation permanently blocks XIST expression and permits the continued expression of all the other X-linked genes.

Process

- Xist gene (pronounced "exist")
 - ▶ Encodes a large RNA molecule
 - Coats Xi from the XIG near the centromere outward along the X chromosome

Process

- Mechanism for compacting Xi (Barr body)
 - ▶ Enzymes cause the following to occur:
 - High levels of DNA methylation
 (CH₃)
 (Chadwick et al., 2003)
 - Low levels of histone substitution of the acetyl group (CH_3CO) for a H atom in a -OH group

Xist Transcription in Embryonic Stem Cells

Differentiation ----

48 hrs.

Dosage compensation

- Ensures an equal expression of genes from the sex chromosomes even though females have 2 X chromosomes and males have only 1
- In each female cell, 1 X chromosome is inactivated and is highly condensed into a Barr body
- Females heterozygous for genes on the X chromosome are genetic mosaics

X-Chromosome Inactivation

X-Chromosome Inactivation

British geneticist Mary Lyon discovered that in female cells, one X chromosome is randomly switched off.

This chromosome forms a dense region in the nucleus known as a <u>Barr body</u>.

Barr bodies are generally not found in males because their single X chromosome is still active.

This explains why XXX females don't show symptoms.

X Chromosome Inactivation: Barr Bodies

Barr, M. L., Bertram, E. G., (1949), A Morphological Distinction between Neurones of the Male and Female, and the Behaviour of the Nucleolar Satellite. *Nature.* **163** (4148): 676-7.

Lyon, M. F., (2003), The Lyon and the LINE hypothesis. j.semcdb 14, 313-318. (Abstract)

The Lyon Hypothesis of X Inactivation

- Proposed by Mary Lyon and Liane Russell (1961)
- Which X is inactivated? Inactivation of X chromosome occurs randomly in somatic cells during embryogenesis
- Progeny of cells all have same inactivated X chromosome as original, creating mosaic individual

X chromosome

Inactivated X

chromosome

becomes Barr body

allele for orange fur

no color genes

chromosome with orange gene

chromosome with non-orange gene

X chromosome Inactivation

- Inactivation is not always random
 - A structurally abnormal X is preferentially inactivated, e.g., isochromosome X
 - E.g., extraembryonic membranes (that go on to form the amnion, placenta, and umbilical cord). In all the cells of the extraembryonic membranes, it is father's X chromosome that is inactivated.
- Inactivation is not complete
 - Some genes are known to escape inactivation (i.e. those with a functional homolog on the Y, e.g., genes located in the pseudoautosomal region, <u>still others are specific to X chr.</u>)
- Inactivation is not permanent
 - reversed in development of germ cells (not passed on to gametes)

- In normal female cells, the choice of which X is to be inactivated is random.
- Females are mosaic with respect to X linked gene expression, some cells expres allels on the paternally inherited X but not maternally inherted X, other cells do opposite.

Functional Mosaicism Resulting from X-inactivation

Females are mosaics with their X-linked genes

Mosaicism is readily detected for some

disorders e.g., DMD

Mosaicism Reveals the Random Inactivation of one X chromosome

Anhidrotic ectodermal dysplasia in a heterozygous woman

Regions where sweat glands are absent.

Inconsistencies between syndromes and X inactivation

If normal XX female has one X inactivated, why is a X Turner female not normal?

Similarly, if XXY male has one X inactivated, why does he have Klinefelter syndrome?

Perhaps not complete inactivation Or inactivation does not happen immediately, Then some overexpression of X-linked genes

Chrosomal features of X inactivation

- Inactivation of most X linked genes on the inactive X
- Random choice of one of two chromosomes in female cells
- Inactive X:
- ☐ Heterochromatic (Barr Bosy)
- □ Late-replicating in S phase
- ☐ Expresses XIST RNA
- □ Associated with macroH2A histone modifications in chromatin

Inactive X has unacetylated histone H4

Inactive X has inactive chromatin: unacetylated histone H4

Expression of X-linked Genes in Heterozyotes

- Inactivation is random, established when embryo < 100 cells → fraction of cells in carrier female with normal or mutant allele tend to be variable
- Thus, clinical variation in expression of Xlinked disorders is common in heterozygotes ranging from normal to affected
- A manifesting heterozygote is a female in whom the deleterious allele is on the active X in most or all of cells (an extreme e.g., of unbalanced or skewed X-inactivation)

Figure 6-13 X chromosome inactivation in karyotypes with normal or abnormal X chromosomes or X;autosome translocations. A, Normal female cells (46,XX) undergo random X inactivation,

X-autosome translocation

There is normally a 50% chance that a particular X will be inactivated in a cell from a female

If an X bears a piece of autosome (translocation) then the untranslocated X is always inactivated since the cell needs both copies of the autosomal genes to be active

If the translocated X has a mutant allele, all the woman's cells will be mutant