Rasime Kalkan, PhD.

"Psst, Bob...you're unzipped"

•The process of copying one DNA molecule into two identical molecules is called DNA replication.

- •DNA has to be copied before a cell divides
- •DNA is copied during the S or synthesis phase of interphase
- •New cells will need identical DNA strands

The four standard phases of a eucaryotic cell DNA replication occurring at S Phase (DNA synthesis phase) G1 and G2, gap between S and M

Campbel biology,9th edi.the molecular basis of inheritance

DNA Replication

In the mid-1950s, three competing models of DNA replication were proposed:

- conservative model
- semi-conservative model
- dispersive model

The conservative model results in one new molecule and conserves the old. The **semi-conservative replication** model results in two hybrid molecules of old and new strands. The dispersive model results in hybrid molecules with each strand being a mixture of old and new strands.

Dispersive model

Semiconservative Model of Replication

- Idea presented by Watson & Crick
- The two strands of the parental molecule separate, and each acts as a template for a new complementary strand
- New DNA consists of 1 PARENTAL (original) and 1 NEW strand of DNA

The mechanism of DNA replication

- Tightly controlled process,
- occurs at specific times during the cell cycle.
 - Requires:
- a set of proteins and enzymes,
- and requires energy in the form of ATP.
- Two basic steps:
- Initiation
- Elongation.
 - Two basic components:
- template
- primer

Replication of Strands

Semi-conservative replication has three phases: initiation, elongation, and termination.

Topoisomerase - unwinds DNA

Helicase - enzyme that breaks H-bonds

DNA Polymerase - enzyme that catalyzes connection of nucleotides to form complementary DNA strand <u>in 5' to 3' direction</u> (reads template in 3' to 5' direction)

Leading Strand - transcribed continuously in 5' to 3' direction

Lagging Strand - transcribed in segments in 5' to 3' direction (Okazaki fragments) DNA Primase - enzyme that catalyzes formation of RNA starting segment (RNA primer)

DNA Ligase - enzyme that catalyzes connection of two Okazaki fragments

Supercoiled DNA relaxed by gyrase & unwound by helicase + proteins:

Helicase protein binds to DNA sequences called origins and unwinds DNA strands.

Binding proteins prevent single strands from rewinding.

Primase protein makes a short segment of RNA complementary to the DNA, a primer.

Initiation

- Primase (a type of RNA polymerase) builds an RNA primer (5-10 ribonucleotides long)
- DNA polymerase attaches onto the 3' end of the RNA primer

Initiation of DNA replication

- Step 1 opening the helix
 - Proteins bind to specific DNA sequences known as origins of replication
 - Bacteria have one
 - Eukaryotes have thousands
 - AT rich regions
 - - Why?
 - Helicases aid in the opening of the helix
- Helicase enzymes cleave the hydrogen bonds that link the complementary base pairs.
 5'
 3'

Initiation of DNA replication

Role of SSBP

5'

3'

- Single stranded binding proteins
- After the helix has opened it is prevented from reannealing by the action of these proteins
- These proteins stabilize single stranded DNA
- Single-strand-binding proteins help to stabilize the unwound strands.
 - Topoisomerase II relieves strain on the double helix that is generated from unwinding.

3' 5' DNA can not snap back together because it is associated with these proteins

Initiation of DNA replication

- Step 2 binding of RNA primers
 - Primase adds short stretches of RNA primers
 - Purpose is to give DNA polymerase a 3'OH group from which to add new DNA nucleotides
 - Two primers are put down as the replication bubble opens

Elongation

• DNA polymerase uses each strand as a template in the 3' to 5' direction to build a complementary strand in the 5' to 3' direction

• DNA polymerase uses each strand as a template in the 3' to 5' direction to build a complementary strand in the 5' to 3' direction

\checkmark results in a leading strand and a lagging strand

- DNA polymerase III catalyzes the addition of new nucleotides to create a complementary strand to the parent strand. However, it can only attach new nucleotides to the free 3' hydroxyl end of a pre-existing chain of nucleotides.
- DNA polymerase I removes the primers and fills in the space by extending the neighboring DNA fragment. DNA ligase then joins the Okazaki fragments to create a complete strand.

Role of DNA polymerases:

- 1. Polymerases catalyze the formation of phosphodiester bonds the 3'-OH group of the deoxyribose on the last nucleotide and the 5'-phosphate of the dNTP precursor.
- 2. DNA polymerase finds the correct complement at each step in the process. 60-90 bases per second in humans.
- 3. The direction of synthesis is 5' to 3' only.

DNA polymerase enzyme adds DNA nucleotides to the RNA primer.

DNA polymerase proofreads bases added and replaces incorrect nucleotides.

DNA polymerase enzyme adds DNA nucleotides to the RNA primer.

Leading strand synthesis continues in a 5' to 3' direction.

Leading strand synthesis continues in a 5' to 3' direction.

Leading strand synthesis continues in a 5' to 3' direction.

Polymerase activity of DNA polymerase I fills the gaps. Ligase forms bonds between sugar-phosphate backbone.

Leading Strand

- 1. Topisomerase unwinds DNA and then Helicase breaks H-bonds
- 2. DNA primase creates a single RNA primer to start the replication
- 3. DNA polymerase slides along the leading strand in the 3' to 5' direction synthesizing the matching strand in the 5' to 3' direction
- 4. The RNA primer is degraded by RNase H and replaced with DNA nucleotides by DNA polymerase, and then DNA ligase connects the fragment at the start of the new strand to the end of the new strand

Lagging Strand

- 1. Topisomerase unwinds DNA and then Helicase breaks H-bonds
- 2. DNA primase creates RNA primers in spaced intervals
- 3. DNA polymerase slides along the leading strand in the 3' to 5' direction synthesizing the matching Okazaki fragments in the 5' to 3' direction
- 4. The RNA primers are degraded by RNase H and replaced with DNA nucleotides by DNA polymerase
- 5. DNA ligase connects the Okazaki fragments to one another (covalently bonds the phosphate in one nucleotide to the deoxyribose of the adjacent nucleotide)

Lagging Strand Segments

- Okazaki Fragments series of short segments on the lagging strand
- Must be joined together by an enzyme

Joining of Okazaki Fragments

 The enzyme Ligase joins the Okazaki fragments together to make one strand

Leading strand

synthesized 5' to 3' in the direction of the replication fork movement.

<u>continuous</u>

requires a single RNA primer

Lagging strand

synthesized 5' to 3' in the opposite direction.

discontinuous (i.e., not continuous)

requires many RNA primers , DNA is synthesized in short fragments.

Model of DNA Replication

A General Model for DNA Replication

- 1. The DNA molecule is unwound and prepared for synthesis by the action of DNA gyrase, DNA helicase and the single-stranded DNA binding proteins.
- 2. A free 3'OH group is required for replication, but when the two chains separate no group of that exists in nature therefore RNA primers are synthesized, and the free 3'OH of the primer is used to begin replication.

3. The replication fork moves in one direction, but DNA replication only goes in the 5' to 3' direction. This paradox is resolved by the use of Okazaki fragments. These are short, discontinuous replication products that are produced off the lagging strand. This is in comparison to the continuous strand that is made off the leading strand.

- 4. The final product does not have RNA stretches in it. These are removed by the 5' to 3' exonuclease action of Polymerase I.
- 5. The final product does not have any gaps in the DNA that result from the removal of the RNA primer. These are filled in by the 5' to 3' polymerase action of DNA Polymerase I.
- 6. DNA polymerase does not have the ability to form the final bond. This is done by the enzyme DNA ligase.

- DNA polymerases can only synthesize DNA only in the 5' to 3' direction and cannot initiate DNA synthesis
- These two features pose a problem at the 3' end of linear chromosomes

Problem at ends of eukaryotic linear Chromosomes

- If this problem is not solved
 - The linear chromosome becomes progressively shorter with each round of DNA replication
- The cell solves this problem by adding DNA sequences to the ends of chromosome:
 <u>telomeres</u>
 - Small repeated sequences (100-1000's)
- Catalyzed by the enzyme <u>telomerase</u>
- Telomerase contains protein and RNA
 - The RNA functions as the template
 - complementary to the DNA sequence found in the telomeric repeat
 - This allows the telomerase to bind to the 3' overhang

Enzymes in DNA replication

Helicase unwinds parental double helix Binding proteins stabilize separate strands

Primase adds short primer to template strand

DNA polymerase III binds nucleotides to form new strands DNA polymerase I (Exonuclease) removes RNA primer and inserts the correct bases Ligase joins Okazaki fragments and seals other nicks in sugarphosphate backbone

Replication Fork Overview

Copyright @2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Risks To DNA Replication

• DNA polymerase inserts the incorrect base once in every 100,000 bases

– Error rate of 1×10^{-5}

- At this rate your genome would be riddle with mutations
- But as it turns out DNA polymerase can proofread

Mistakes during Replication

- Base pairing rules must be maintained
 - Mistake = genome mutation, may have consequence on daughter cells
- Only correct pairings fit in the polymerase active site
- If wrong nucleotide is included
 - Polymerase uses its proofreading ability to cleave the phosphodiester bond of improper nucleotide
 - Activity $3' \rightarrow 5'$
 - And then adds correct nucleotide and proceeds down the chain again in the 5' \rightarrow 3' direction

Proofreading and Repairing DNA

- DNA polymerases proofread newly made DNA, replacing any incorrect nucleotides
 - Mismatch repair: 'wrong' inserted base can be removed
 - Excision repair: DNA may be damaged by chemicals, radiation, etc. Mechanism to cut out and replace with correct bases

(a) Mismatched bases

(b) DNA polymerase III can repair mismatches.

Copyright © 2008 Pearson Benjamin Cummings. All rights reserved.

Errors During DNA Replication

A human cell can copy its entire DNA in a few hours, with an error rate of about one per 1 billion nucleotide pairs. H_3C

• Errors naturally occur during replication.

•Mispairing of bases and strand slippage are two types of errors that cause either additions or omissions of nucleotides.

Incorrect pairing (mispairing) of bases is thought to occur as a result of flexibility in DNA structure.

Errors During DNA Replication

Strand slippage during DNA replication can cause the addition or omission of nucleotides in newly synthesized strands, which represent errors.

Factors Influencing the Rate of Spontaneous Mutations

- Accuracy of the DNA replication machinery
- Efficiency of the mechanisms for the repair of damaged DNA
- Degree of exposure to mutagenic agents in the environment

Types of Chemical Mutagens

- Chemicals that are mutagenic to both replicating and nonreplicating DNA (e.g., alkylating agents and nitrous acid)
- Chemicals that are mutagenic only to replicating DNA (e.g., base analogs and acridine dyes)

Chemical Mutagens

Alkylating agents

CI—CH₂—CH₂—S—CH₂—CH₂—CI Di-(2-chloroethyl) sulfide (Mustard gas) CH₃—CH₂—O—SO₂—CH₃ Ethyl methane sulfonate (EMS) CH₃—CH₂—O—SO₂—CH₂—CH₃ Ethyl ethane sulfonate (EES)

(a)

(b)

(d)

A Base Analog: 5-Bromouracil

^{© 2012} John Wiley & Sons, Inc. All rights reserved.

Effect of enol form of 5-bromouracil during:

Nitrous Acid Causes Oxidative Deamination of Bases

Alkylating Agents

- chemicals that donate alkyl groups to other molecules.
- induce transitions, transversions, frameshifts, and chromosome aberrations.
- Alkylating agents of bases can change base-pairing properties.
- can also activate error-prone DNA repair processes.

Alkylating agents

Cl—CH₂—CH₂—S—CH₂—CH₂—Cl Di-(2-chloroethyl) sulfide (Mustard gas) CH₃—CH₂—O—SO₂—CH₃ CH₃—CH₂—O—SO₂—CH₂—CH₃ Ethyl methane sulfonate Ethyl ethane sulfonate (EMS) (EES)

Hydroxylamine

- Hydroxylamine is a hydroxylating agent.
- Hydroxylamine hydroxylates the amino group of cytosine and leads to $G:C \rightarrow A:T$ transitions.

•

•

Mutagenesis by Ultraviolet Irradiation

- Hydrolysis of cytosine to a hydrate may cause mispairing during replication
 - Cross-linking of adjacent thymine forms thymidine dimers, which block DNA replication and activate error-prone DNA repair mechanisms.

Figure 5–49 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

Figure 5–49 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

Somatic Mutations

- Occur in cells of the body, excluding the germline
- Affects subsequent somatic cell descendants
- Not transmitted to offspring

Germline Mutations

- Mutations that occur in the germline cells
- Possibility of transmission to offspring

- <u>i-</u><u>Silent mutation</u>: i.e. the codon containg the changed base may code for the same amino acid. For example, in serine codon UCA, if A is changed to U giving the codon UCU, it still code for serine. See table.
- <u>ii- Missense mutation</u>: the codon containing the changed base may code for a different amino acid. For example, if the serine codon UCA is changed to be CCA (U is replaced by C), it will code for proline not serine leading to insertion of incorrect amino acid into polypeptide chain.
- <u>iii- Non sense mutation</u>: the codon containing the changed base may become a termination codon. For example, serine codon UCA becomes UAA if C is changed to A. UAA is a stop codon leading to termination of translation at that point.

DNA Repair I

Figure 5–50 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

DNA Repair II

Figure 5–50 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

Emergency DNA Repair for Double helix break

Figure 5–53. Molecular Biology of the Cell, 4th Edition.

		42
r - Yahoo! Mail - M Gmail - Gelen Kutusu 📑 Facebook 💈 GeneTests 💈 Home - PubMed - NCBI 💈 PubMed Health Home	🗧 😑 European Society of H	» 🧰 Diğer y
S NCBI Resources How To I		Sign in to NCBI
Nucleotide 🛛 IDH	O Search	
Save search Limits Advanced		Help
Display Settings: ☑ Summary, 20 per page, Sorted by Default order	Filter your results:	
	All (5089)	
V Found 5147 nucleotide sequences. Nucleotide (5089) EST (57) GSS (1)	Bacteria (1277)	
Results: 1 to 20 of 5089 First Page 1 of 255 Next> Last>>	INSDC (GenBank) (2970)	
	mRNA (1734)	
1 2 339 bp linear mRNA	RefSeg (2115)	
Accession: NM_005896.2 GI: 28178824 GenBank FASTA Graphics Related Sequences		Manage Filters
Homo serviens publicanhosmin (publicaler nhosphonratein 823, pumetrin) (NPM1), transprint verient 3, mRNA	▼ Top Organisms [<u>Tree</u>]	
2. 1.347 bp linear mRNA	Homo sapiens (92)	
Accession: NM_001037738.2 GI: 262331549	Giardia intestinalis (80) Pieris rapae (75)	
GenBank FASTA Graphics Related Sequences	Mus musculus (61)	
Homo sapiens pucleophosmin (pucleolar phosphoprotein B23, pumatrin) (NPM1), transcript variant 2, mRNA	Entamoeba histolytica (59)	
3. 1.362 bp linear mRNA	More	
Accession: NM_199185.3 GI: 262331548	Million Control Contro	
	Part and the state	
GenBank FASTA Graphics Related Sequences	Find related data	100
GenBank FASTA Graphics Related Sequences	Databases Octob	(Part)
GenBank FASTA Graphics Related Sequences Homo sapiens nucleophosmin (nucleolar phosphoprotein B23, numatrin) (NPM1), transcript variant 1, mRNA 4. 1.449 bp linear mRNA	Database: Select	
<u>GenBank</u> FASTA Graphics Related Sequences Homo sapiens nucleophosmin (nucleolar phosphoprotein B23, numatrin) (NPM1), transcript variant 1, mRNA 1,449 bp linear mRNA Accession: NM_002520.6 GI: 262331543	Database: Select	
GenBank FASTA Graphics Related Sequences Homo sapiens nucleophosmin (nucleolar phosphoprotein B23, numatrin) (NPM1), transcript variant 1, mRNA 4. 1,449 bp linear mRNA Accession: NM_002520.6 GI: 262331543 GenBank FASTA GenBank FASTA	Database: Select	
GenBank FASTA Graphics Related Sequences Homo sapiens nucleophosmin (nucleolar phosphoprotein B23, numatrin) (NPM1), transcript variant 1, mRNA 4. 1,449 bp linear mRNA Accession: NM_002520.6 GI: 262331543 GenBank FASTA Graphics Related Sequences	Database: Select	

S Homo sapiens isocitr	ite deh) ×		
← → G □ m	/w.ncbi.nlm.nih.gov/nuccore/NM_005896.2		९ 🖸 🗏
🔄 kalkanr - Yahoo! Mail	🎦 Gmail - Gelen Kutusu 📑 Facebook 🛛 😕 GeneTests 😒 Home - PubMed - NCBI 🛛 😒 PubMed Health Home	🖶 European Society of H 🔹 »	📋 Diğer yer imleri
kalkanr - Yahoo! Mail FEATURES source gene exon exon misc_f	<pre>Gmail-Gelen Kutusu Gracebook GeneTests Home - PubMed - NCBI PubMed Health Home publications class die Variable for ours gene. Freues see our vene record to access additional publications. ##RefSeq-Attributes-START## Transcript_exon_combination_evidence :: AF020038.1, AF113917.1</pre>	European Society of H » <u>Tin Off</u> Homo sapiens isocitrate dehydroger (NADP+), soluble (IDH1), mRNA * O IDH (5089) See r	Diğer yer imleri
misc_f	<pre>/number=2 /number=2 /gene="IDH1" /gene_synonym="IDCD; IDH; IDP; IDPC; PICD" /note="upstream in-frame stop codon" 219356 /gene="IDH1" /gene_synonym="IDCD; IDH; IDP; IDPC; PICD"</pre>		

1 . .

....

. . . .

.....
S Homo sapiens isocitrate d	leh) X
-----------------------------	--------

Q.☆ Ξ

← → C 🗋 www.ncbi.nlm.nih.gov/nuccore/NM_005896.2

🔄 kalkan	r - Yahoo! Mai	l M Gmail	- Gelen Kutusu	. 📑 Facebook	S Gene	eTests 😣 Home	- PubMed - NCBI	8 PubMed Health Home	European Society of H.	. »	📋 Diğer yer im	eri
	ORIGIN											
	1	cctgtggtcc	cgggtttctg cag	agtetac tteag.	aagog gagg	gcactgg gagteeg	gtt					-
	51	tgggattgcc	aggetgtggt tgt	gagtetg agett	stgag cggo	ctgtggc gccccaa	ctc					
	121	ttegecagea	tatcatcccg gca	g <mark>gegata aacta</mark>	atte agtt	tgagtet geaagae	tgg					
	181	gaggaactgg	ggtgataaga aat	ctattca ctgtc.	aaggt ttat	ttgaagt caaaatg	bee					
	241	aaaaaaatca	gtggcggttc tgt	ggtagag atgca.	aggag atga	aaatgac acgaatc	att					
	301	tgggaattga	ttaaagagaa act	cattttt cccta	gtgg aatt	tggatet acatage	tat					
	351	gatttaggca	tagagaatog tga	tgecace aacga	caag tead	ccaagga tgctgca	gaa					
	421	gctataaaga	agcataatgt tgg	regteaaa tgtge	acta tead	cteetga tgagaag	agg					
	481	gttgaggagt	tcaagttgaa aca	laatgtgg aaatc.	accaa atgg	gcaccat acgaaat	att					
	541	ctgggtggca	cggtcttcag aga	agecatt atetg	iaaaa atat	teeceeg gettgtg	agt					
	501	ggatgggtaa	aacctatcat cat	aggtogt catgo	tatg ggg:	atcaata cagagca	act					
	661	gattttgttg	tteetgggee tgg	aaaagta gagat.	acct acad	caccaag tgacgga	acc					
	721	caaaaggtga	catacctggt aca	taacttt gaaga.	aggtg gtgg	gtgttgc catgggg	atg					
	781	tataatcaag	ataagtcaat tga	agatttt gcaca	agtt cctt	tecaaat ggetetg	tct					
	841	aagggttggc	ctttgtatct gag	reaccasa ascact	atte tgaz	agaaata tgatggg	cgt					
	901	tttaaagaca	tettteagga gat	atatgac aagca	staca agto	cccagtt tgaagct	caa					
	951	aagatctggt	atgagcatag gct	categae gacat	ggtgg ccc;	aagctat gaaatca	gag					
	1021	ggaggettea	tetgggeetg taa	laaactat gatgg	gacg tgc.	agtogga ototgtg	gcc					
	1081	caagggtatg	getetetegg cat	gatgacc agegt	getgg tttg	gtocaga tggcaag	aca					
	1141	gtagaagcag	aggetgeeca egg	gactyta accept	cact acco	gcatgta ccagaaa	gga					
	1201	caggagacgt	ccaccaatee cat	tgettee atttt	geet ggad	ccagagg gttagcc	cac					
	1251	agagcaaagc	ttgataacaa taa	agagett geett.	tttg caa:	atgettt ggaagaa	gtc					
	1321	tctattgaga	caattgagge tgg	cttcatg accaa	ggact tgge	ctgettg cattaaa	ggt					
	1381	ttacccaatg	tgcaacgttc tga	ictacttg aatac.	atttg agtt	tcatgga taaactt	gga					
	1441	gaaaacttga	agatcaaact ago	tcaggee aaact	taag ttc:	atacctg agetaag	aag					
	1501	gataattgtc	ttttggtaac tag	gtetaca ggttt.	acatt ttto	ctgtgtt acactca	agg					
	1551	ataaaggcaa	aatcaatttt gta	latttgtt tagaa	gocag agtt	ttatett ttetata	agt					
	1521	ttacageett	tttcttatat ata	cagttat tgcca	cttt gtg.	aacatgg caaggga	ctt					
	1581	ttttacaatt	tttattttat ttt	ctagtac cagect	agga atto	cggttag tactcat	ttg					
	1741	tattcactgt	cacttttttct cat	gttetaa ttata.	aatga cca:	aaatcaa gattgct	caa					
	1801	aagggtaaat	gatagecaca gta	ttgetee etaaa.	atatg cata	aaagtag aaattca	ctg	8 17 - 1872 - 18				
	1851	ccttcccctc	ctgtccatga cct	tgggcac aggga.	agtte tggt	tgtcata gatatcc	cgt	1144				100
	1921	tttgtgaggt	agagetgtge att	aaacttg cacat	gactg gaad	cgaagta tgagtgc	aac	/gene="IDHL"				
	1981	tcaaatgtgt	tgaagatact gca	igtcattt ttgta.	agac cttg	getgaat gttteea	ata	/ gene_synony	m="IDCD; IDH; IDP; IDPC; PIC)"		
	2041	gactaaatac	tgtttaggcc gca	lggagagt ttgga.	atcog gaat	taaatac tacctgg	agg	/inference="	alignment:Splign:1.39.8"			
	2101	tttgtcctct	ccattttttct ctt	tctcctc ctggc	tggc ctg.	aatatta tactact	cta	/number=1				-
	2151	aatagcatat	ttcatccaag tgo	aataatg taagc	gaat cttt	ttttgga cttctgc	tgg					

000

Number -----

1	cctgtggtcc	cgggtttctg	cagagtctac	ttcagaagcg	gaggcactgg	gagtccggtt
61	tgggattgcc	aggctgtggt	tgtgagtctg	agcttgtgag	cggctgtggc	gccccaactc
121	ttcgccagca	tatcatcccg	gcaggcgata	aactacattc	agttgagtct	gcaagactgg
181	gaggaactgg	ggtgataaga	aatctattca	ctgtcaaggt	ttattgaagt	caaaatgtcc
241	aaaaaatca	gtggcggttc	tgtggtagag	atgcaaggag	atgaaatgac	acgaatcatt
301	tgggaattga	ttaaagagaa	actcattttt	ccctacgtgg	aattggatct	acatag <mark>ctat</mark>
361	gatttaggca	tagagaatcg	tgatgccacc	aacgaccaag	tcaccaagga	tgctgcagaa
421	gctataaaga	agcataatgt	tggcgtcaaa	tgtgccacta	tcactcctga	tgagaagagg
481	gttgaggagt	tcaagttgaa	acaaatgtgg	aaatcaccaa	atggcaccat	acgaaatatt
541	ctgggtggca	cqgtcttcag	agaagccatt	atctgcaaaa	atatcccccg	gcttgtgagt
601	ggatgggtaa	aacctatcat	cataggtoqt	catgcttatg	gggatcaata	cagagcaact
661	gattttgttg	ttcctgggcc	tggaaaagta	gagataacct	acacaccaag	tgacggaacc
721	caaaaggtga	catacctggt	acataacttt	gaagaaggtg	gtggtgttgc	catggggatg
781	tataatcaag	ataagtcaat	tgaagatttt	gcacacagtt	ccttccaaat	ggctctgtct
841	aagggttggc	ctttgtatct	gagcaccaaa	aacactattc	tgaagaaata	tgatgggcgt
901	tttaaagaca	tctttcagga	gatatatgac	aagcagtaca	agtcccagtt	tgaagctcaa
961	aagatctggt	atgagcatag	gctcatcgac	gacatggtgg	cccaagctat	gaaatcagag

