

Near East university

Faculty of Economics and Administrative Sciences CIS 363(software Engineering), course outline

Classroom: Faculty Building, CIS LAB		Course schedule:			
Instructor: Sahar SHOKOUHI TABRIZI		Office hours: check the time table			
Email: sahar.shokouhi@neu.edu.tr					
Further Reading: Check Reference Section					
Prerequisites: CIS 232	Sen	nester: Fall / Spring	Course Credit: 3		
Language of Education: English		oe of Course: apulsory	Level of Course: undergraduate		

Course objective:

The aim of this course is to give students an introduction to the principles and practice of analysis, design and implementation of software engineering principles. Through experience of building a significant software system in a team, students will further their experience and understanding of the problems that arise in building complex software systems. They will develop the analytical, critical and modeling skills that are required by a successful software engineering. Additionally, they will learn the principles of software life cycle and software documentation

Course Objectives:

- Understand software process
- Be able to create and understand Unified Modeling language(UML) diagrams
- Be able to meet software requirements
- Be familiar with documentation
- Be familiar with management

Tentative Syllabus

Week	Topic
1	Introduction to software engineering
2	Introduction to user interface design and software design standards
3	Introduction to Software life cycle model
4	Requirements analyses
5	RUP, prepare proposal for term project
6	Introduction to Modeling
7	Modeling Analyses
8	Introduction Planning and managing the process, Revision
9	Mid-Term
10	Introduction Diagrams (high level DFD), USECASE
11	Introduction Class diagram, sequence diagram, swim lane diagram
12	Introduction Requirement documentation, Prototyping approach Evaluating and testing
13	Project presentation, Review
14	Final-Exam

Course Assessment:

Grades in this course will be assigned according to the following criteria:

Class participation	5%
Class activity	5%
Term project	20%
Mid-term Examination	30%
Final Examination	40%
Total	100%

References:

1)Bohem, B. w. (1988). A spiral model of software engineering and enhancement. Computer 21(5).

2)Ghezzi, C., Jazayeri, M. & Mandrioli, D. (2003). Fundamentals of software engineering (2nd Edition) United Kingdom: Prentice Hall

3) Maciaszek, L., Liong, B., L. (2005). Practical Software Engineering: A Case-Study Approach. England: Pearson.

4)Schach, S., R. (1999). Classical and object-oriented software engineering with UML and Java.

USA: WCB/McGraw-Hill

5)Sommerville, I. (2004). Software engineering edition. England: Pearson

6) <u>Tomayko</u>, J., & <u>Hazzan</u>, <u>O.</u> (2004). Human Aspects of Software Engineering. United States:

Charles River Media.

Lecture Note:

Saied Parsa (2011), Tehran University - W. Venters (2011), University of London - Ivan Marsic (2012). Rutgers University - Peter Grogono(1995), Concordia University