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1. SYMMETRICAL COMPONENTS  

Three unbalanced phasors of a three-phase system can be resolved into three balanced systems of 

phasors. The balanced sets of components are:  

1. Positive-sequence components consisting of three phasors equal in magnitude, displaced 

from each other by 120 degrees in phase, and having the same phase sequence as the 

original phasors.  

2. Negative-sequence components consisting of three phasors equal in magnitude, displaced 

from each other by 120 degrees in phase, and having the phase sequence opposite to that 

of the original phasors.  

3. Zero-sequence components consisting of three phasors equal in magnitude and with zero 

phase displacement from each other. 

 

Fig. 1.1. Three sets of balanced phasors which are the symmetrical components of three unbalanced 

phasors. 

The three sets of symmetrical components are designated by the additional subscript 1 for the 

positive-sequence components, 2 for the negative-sequence components, and 0 for the zero-

sequence components. The positive-sequence components of , , and  are , , and . 

Similarly, the negative-sequence components are , , and , and the zero-sequence 

components are , , and . Phasors representing currents will be designated by  with 

subscripts as for voltages.  

Since each of the original unbalanced phasors is the sum of its components, the original phasors 

expressed in terms of their components are:  

           (1.1)  
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           (1.2)  

           (1.3)  

The phase displacement of the symmetrical components of the voltages and currents in a three-

phase system by , it is convenient to have a shorthand method of indicating the rotation of a 

phasor through . The result of the multiplication of two complex numbers is the product of their 

magnitudes and the sum of their angles. 

The letter a is commonly used to designate the operator which causes a rotation of  in the 

counterclockwise direction. Such an operator is a complex number of unit magnitude with an angle 

of  and is defined by the following expressions: 

 

If the operator a is applied to a phasor twice in succession, is rotated through . Three successive 

a applications of a rotate the phasor through . Thus, the phasor  

 

and 

 

 

 

 

 

We note that the number of unknown quantities can be reduced by expressing each component of 

Va and Vb as the product of some function of the operator a and a component of Va. Reference to 

Fig. 1.1 verifies the following relations:  

   

          (1.4) 

   

 

Fig. 1.2. Phasor diagram of the various powers of the operator a. 
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Upon substitution of Eqs. (4) in Eqs. (1) to (3), we obtain  

          (1.5) 

         (1.6) 

         (1.7) 

Adding Eqs. (1.5), (1.6), and (1.7) gives  

     (1.8) 

and, since ,  

         (1.9)  

Equation (1.9) enables us to find the zero-sequence components of three unsymmetrical phasors. 

We see that no zero-sequence components exist if the sum of the phasors is zero. Since the sum of 

the line-to-line voltage phasors in a three-phase system is always zero, zero-sequence components 

are never present in the line voltages, regardless of the amount of unbalance. The sum of the three 

line-to-neutral voltage phasors is not necessarily zero, and voltages to neutral may contain zero-

sequence components. 

,  

 

The equations could have been written for any set of related phasors, and we might have written 

them for currents instead of for voltages. They may be solved either analytically or graphically. 

Because some of the preceding equations are so fundamental, they are summarized below for 

currents.  

          (1.10) 

         (1.11) 

         (1.12) 
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         (1.13) 

          (1.14) 

          (1.15) 

In a three-phase system the sum of the line currents is equal to the current  in the return path 

through the neutral. Thus,  

          (1.16) 

Comparing Eqs. (1.15) and (1.16) gives  

           (1.17) 

In the absence of a path through the neutral of a three-phase system,  is zero, and the line currents 

contain no zero-sequence components. 

Example: 

 

 

 

 

 

 

 

 

 

Find the symmetrical components of the current. 

Answer: 
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2. SEQUENCE IMPEDANCES AND SEQUENCE NETWORKS 

The symmetrical components of unbalanced currents flowing in balanced impedances will produce 

voltage drops like sequence only. 

The impedance of a circuit when positive-sequence currents alone are flowing is called the 

impedance to positive-sequence current. Similarly, when only negative-sequence currents are 

present, the impedance is called the impedance to negative-sequence current. When only zero-

sequence currents are present, the impedance is called the impedance to zero-sequence current. 

These names of the impedances of a circuit to currents of the different sequences are usually 

shortened to the less descriptive terms, positive-sequence impedance, negative-sequence 

impedance, and zero-sequence impedance.  

The analysis of an unsymmetrical fault on a symmetrical system consists of finding the symmetrical 

components of the unbalanced currents which are flowing. Since the component currents of one 

phase sequence cause voltage drops of like sequence only and are independent of currents of other 

sequences, in a balanced system, currents of any one sequence may be considered to flow in an 

independent network composed of the impedances to the current of that sequence only. The single-

phase equivalent circuit composed of the impedances to current of anyone sequence only is called 

the sequence network for that particular sequence. The sequence network includes any generated 

emfs of like sequence. Sequence networks carrying the currents , , and  are interconnected 

to represent various unbalanced fault conditions. Therefore, to calculate the effect of a fault by the 

method of symmetrical components, it is essential to determine the sequence impedances and to 

combine them to form the sequence networks. 

The positive-sequence and negative-sequence impedances of linear, symmetrical, static circuits are 

identical, because the impedance of such circuits is independent of phase order provided the applied 

voltages are balanced. The impedance of such circuits to zero-sequence currents may differ from the 

impedance to positive- and negative-sequence currents. The impedances of rotating machines to 

currents of the three sequences will generally be different for each sequence.  

In deriving the equations for inductance and capacitance of transposed transmission lines, we 

assumed balanced three-phase currents and did not specify phase order. Therefore, the resulting 

equations are valid for both positive- and negative-sequence impedances. The inductance and 

capacitance of transmission lines for zero-sequence currents will be discussed later.  
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For symmetrical three-phase static loads consisting of lumped constants or loads which can be 

analyzed as having lumped constants, the impedances to current of positive, negative, and zero 

sequences are the same because each phase is isolated from, and independent of, the other phases. 

2.1. Sequence Networks of an Unloaded Generator 

 

FIG. 2.1 Circuit diagram of an unloaded generator grounded through a reactance. The emfs of each 

phase are ,  , and . 

In this section our task is simple because one generator and perhaps an impedance in the neutral 

comprise the entire circuit. The generated voltages are of positive sequence only, since the generator 

is designed to supply balanced three-phase voltages. Therefore the positive-sequence network is 

composed of an emf in series with the positive-sequence impedance of the generator. The negative- 

and zero-sequence networks contain no emfs but include the impedances of the generator to 

negative- and zero-sequence currents, respectively. The sequence components of current are shown 

in Fig. 2.2. rrhey are flowing through impedances of their own sequence only, as indicated by the 

appropriate subscripts on the impedances shown in the figure. The sequence networks shown in Fig. 

2.2 are the single-phase equivalent circuits of the balanced three-phase circuits through which the 

symmetrical components of the unbalanced currents are considered to flow. The generated emf in 

the positive-sequence network is the no-load terminal voltage to neutral, which is also equal to the 

voltages behind transient and subtransient reactances and to the voltage behind synchronous 

reactance since the generator is not loaded. The reactance in the positive-sequence network is the 



 

EE472 Power System Analysis II           

 

P
a

g
e
9

 

sub-transient, transient, or synchronous reactance, depending on whether subtransient, transient, or 

steady-state conditions are being studied. 

 

Fig. 2.2 Paths for current of each sequence in a generator, and the corresponding sequence 

networks. 

The reference bus for the positive- and negative-sequence networks is the neutral of the generator. 

So far as positive- and negative-sequence components are concerned the neutral of the generator is 

at ground potential since only zero-sequence current flows in the impedance between neutral and 

ground. The reference bus for the zero-sequence network is the ground at the generator.  
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The current flowing in the impedance  between neutral and ground is . By referring to Fig. 

2.2e, we see that the voltage drop of zero sequence from point a to ground is , 

where  is the zero-sequence impedance per phase of the generator. The zero-sequence network, 

which is a single-phase circuit assumed to carry only the zero-sequence current of one phase, must, 

therefore, have an impedance of , as shown in Fig. 2.2f. The total zero-sequence 

impedance through which  flows is  

          (2.1)  

Usually the components of current and voltage for phase a are found from equations determined by 

the sequence networks. The equations for the components of voltage drop from point a of phase a to 

the reference bus (or ground) are, as may be deduced from Fig. 2.2,  

                  (2.2) 

           (2.3) 

           (2.4) 

Where  is the positive-sequence no-load voltage to neutral,  and  are the positive- and 

negative-sequence impedances of the generator, and  is defined by Eq. (2.1). The above equations, 

which apply to any generator carrying unbalanced currents, are the starting points for the derivation 

of equations for the components of current for different types of faults. They apply to the case of a 

loaded generator if  is given the value computed for the voltage behind subtransient, transient, or 

synchronous reactance for the load existing before the fault. 

2.2. Zero-Sequence Networks of Transformers 

The zero-sequence equivalent circuits of three-phase transformers deserve special attention. The 

various possible combinations of the primary and secondary windings in  and Δ alter the zero-

sequence network. Transformer theory enables us to construct the equivalent circuit for the zero-

sequence net,vork. We remember that no current flows in the primary of a transformer unless 

current flows in the secondary, if we neglect the relatively small magnetizing current. We know, also, 

that the primary current is determined by the secondary current and the turns ratio of the windings, 

again with magnetizing current neglected. These principles guide us in the analysis of individual 

cases. Five possible connections of two-winding transformers will be discussed. These connections 

are shown in Fig. 2.3. The arrows on the connection diagrams show the possible paths for the flow of 
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zero-sequence current. Absence of an arrow indicates that the transformer connection is such that 

zero-sequence current cannot flow. The zero-sequence approximately equivalent circuit, with 

resistance and a path for magnetizing current omitted, is shown in Fig. 2.3 for each connection. The 

letters P and Q identify corresponding points on the connection diagram and equivalent circuit. The 

reasoning to justify the equivalent circuit for each connection follows. 

 

FIG. 2.3. Zero-sequence equivalent circuits of three-phase transformer banks, together with diagrams 

of connections and the symbols for one-line diagrams. 
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Example: 

 

 

 

 

 

 

Solve the (+), (-) and (0) sequence networks of the above power system. 
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2.3. Single line-to-ground Fault on an Unloaded Generator 

The circuit diagram for a single line-to-ground fault on an unloaded -connected generator with its 

neutral grounded through a reactance is shown in Fig. 2.4 where phase  is the one on which the 

fault occurs. The relations to be developed for this type of fault will apply only when the fault is on 

phase , but this should cause no difficulty since the phases are labeled arbitrarily and any phase 

may be designated as phase . The conditions at the fault are expressed by the following equations: 

 

 

FIG. 2.4. Circuit diagram for a single line-to-ground fault on phase a at the terminals of an unloaded 

generator whose neutral is grounded through a reactance. 

When  and  are substituted in Eqs. (1.13) to (1.15), we obtain  

 

 

and 

 

Therefore,  
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                     (2.5) 

By Eq. (1.5), since ,  

  

and  

 

Then, by Eq. (2.2), 

 

and from Eqs. (2.3) and (2.4)  

 

but, since ,  

 

and, solving for , we obtain  

           (2.6) 

Equations (2.5) and (2.6) are the special equations for a single line-to-ground fault. They are used 

with Eqs. (2.2) to (2.4), together with the symmetrical-component relations to determine all the 

voltages and currents at the fault. If the three sequence networks of Fig. 2.2 are connected in series 

as shown in Fig. 2.5, we see that the currents and voltages resulting therefrom satisfy the equations 

above, for the three sequence impedances are then in series with the voltage . With the sequence 

networks so connected, the voltage across each sequence network is the symmetrical component of 

 of that sequence. The connection of the sequence networks as shown in Fig. 2.5 is a convenient 

means of remembering the equations for the solution of the single line-to-ground fault, for all the 

necessary equations can be determined from the sequence network connection.  
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FIG. 2.5 Connection of the sequence networks of an unloaded generator for a single line-to-ground 

fault on phase  at the terminals of the generator  

If the neutral of the generator is not grounded, the zero-sequence network is open-circuited, and  

is infinite. Since Eq. 2.6 shows that  is zero when  is infinite,  and  must be zero. Thus no 

current flows in line  since  is the sum of its components, all of which are zero. The same result 

can be seen without the use of symmetrical components since inspection of the circuit shows that no 

path exists for the flow of current in the fault unless there is a ground at the generator neutral. 

Example: A -kva,  kv generator has a direct-axis sub transient reactance of  per unit. 

The negative- and zero-sequence reactances are, respectively,  and  per unit. The neutral of 

the generator is solidly grounded. Determine the subtransient current in the generator and the line-

to-line voltages for subtransient conditions when a single line-to-ground fault occurs at the generator 

terminals with the generator operating unloaded at rated voltage. Neglect resistance.  
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Solution  

On a base of  kva,  kv,  per unit, since the internal voltage is equal to the 

terminal voltage at no load.  

Then, in per unit, 

 

 

 

Subtransient current in line  is,  

 

The symmetrical components of the voltage from point  to ground are: 

               

       

 

Line-to-ground voltages are: 

 

  

 

 

 

Line-to-line voltages are: 
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Since the generated voltage-to-neutral  was taken as  per unit, the above line-to-line voltages 

are expressed in per unit of the base voltage-to-neutral. When expressed in volts the postfault line 

voltages are: 

 

 

 

 

If , 

 

 

 

 

 

 

 (due to the reactance of ) 
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Tutorial 1. 

 

 

 

 

 

 : , , ,  

 : , , ,  

 : , ,   

 : , ,   

 : ,  

Select system common base values as 100 MVA and 11 kV at the generator side and marking each 

respective value in p.u. draw 

Positive sequence network, negative sequence network and zero sequence network of the given 

power system. 

 

Answer: 

 :   

 :   

 :  

 :  

 : ,  

G M 
TR1 TR2 

Δ-Y Y-Δ Y Y 



 

EE472 Power System Analysis II           

 

P
a

g
e
2

0
 

 

 

 

- Positive Sequence Network, 

 

 

 

 

 

 

 

 

 

- Negative Sequence Network, 
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j0.33 p.u. 

Line 

j0.92 p.u. 

TR2 
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- Zero sequence network, 

 

  

 

 

 

 

 

 

 :  

 :  

 :  

 

Tutorial 2.Single line to ground fault at terminal a. Find the fault current value at point a? 

 

 

 

 

 

 

 and  transformers: , , ,  

,  

Answer: 

 

j0.24 p.u. j0. 25 p.u. 

(0) 

Line 

j2.3 p.u. 

TR2 

j0.4 p.u. 

TR1 

j0.33 p.u. 
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a 
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c 
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Positive Sequence Network Negative Sequence Network Zero Sequence Network 
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2.4. Double line-to-ground Fault on an Unloaded Generator 

The circuit diagram for a double line-to-ground fault on an unloaded, -connected generator having 

a grounded neutral is shown in Fig. 2.7. The faulted phases are  and . The conditions at the fault 

are expressed by the following equations: 

 

 

Substituting  and  in Eqs. (1.9), , and 

 gives 
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FIG. 2.7 Circuit for a double line-to-ground fault on phases  and  at the terminals of an unloaded 

generator whose neutral is grounded through a reactance. 

Therefore, 

            (2.7) 

Solving Eqs. (2.3) and (2.4) for  and  and substituting  for  and  , we obtain 

 

 

Replacing  by  gives 

 

and 

 

Since , 
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and 

 

               (2.8) 

 

Equations (2.7) and (2.8) are the special equations for a double line-to-ground fault. They are used 

with Eqs. (2.2) to (2.4) and the symmetrical component relations to determine all the voltages and 

currents at the fault. Equation (2.7) indicates that the sequence networks should be connected in 

parallel, as shown in Fig. 2.8, since the positive-, negative-, and zero-sequence voltages are equal at 

the fault. Examination of Fig. 2.8 shows that all the conditions derived above for the double line-to-

ground fault are satisfied by this connection. 

 

 

FIG. 2.8 Connection of the sequence networks of an unloaded genera tor for a double line-to-ground 

fault on phases  and  at the terminals of the generator 

The diagram of network connections shows that the positive-sequence current  is determined by 

the voltage  impressed on  in series with the parallel combination of  and . The same 

relation is given by Eq. (2.8).  

In the absence of a ground connection at the generator no current can flow into the ground at the 

fault. In this case  would be infinite and  would be zero. In so far as current is concerned the 

result would be the same as in a line-to-line fault. Equation (2.8) for a double line-to-ground fault 

approaches  for a line-to-line fault as  approaches infinity, as may be seen by 

dividing the numerator and denominator of the second term in the denominator of Eq. (2.8) by  

and letting  be infinitely large. 
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3. UNSYMMETRICAL FAULTS ON POWER SYSTEMS 

In the derivation of equations for the symmetrical components of currents and voltages in a general 

network during a fault, we will designate as , , and  the currents flowing out of the original 

balanced system at the fault from phases , , and , respectively. We can visualize the currents , 

, and  by referring to Fig. 3.1, which shows the three lines of the three-phase system at the part 

of the network where the fault occurs. The flow of current from each line into the fault is indicated 

by arrows shown on the diagram beside hypothetical stubs connected to each line at the fault 

location. Appropriate connections of the stubs represent various types of faults. For instance, 

connecting stubs  and  produces a line-to-line fault through zero impedance. The current in stub  

is then zero, and  is equal to . 

 

FIG. 3.1 Three conductors of a three-phase system. The stubs carrying currents , , and  may be 

interconnected to represent different types of faults 

The line-to-ground voltages at the fault will be designated , , and . Before the fault occurs, the 

line-to-neutral voltage of phase  at the fault will be called , which is a positive-sequence voltage 

since the system is assumed to be balanced. We met the prefault voltage  previously in 

͞Symmetrical Three-Phase Faults on Synchronous Machines͟ in calculations to determine the 

currents in a power system when a symmetrical three-phase fault occurred. 

A single-line diagram of a power system containing three synchronous machines is shown in Fig. 3.2. 

Such a system is sufficiently general that equations derived therefrom are applicable to any balanced 

system regardless of the complexity. Figure 3.2 also shows the sequence networks of the system. The 

point where a fault is assumed to occur is marked  on the single-line diagram and on the sequence 

networks. As we saw in ͞Symmetrical Three-Phase Faults on Synchronous Machines͟, the load 

current flowing in the positive-sequence network is the same, and the voltages to ground external to 

the machines are the same, regardless of whether the machines are represented by their voltages 



 

EE472 Power System Analysis II           

 

P
a

g
e
2

8
 

behind subtransient reactance and their subtransient reactances, or by their voltages behind 

transient reactance and their transient reactances, or by their voltages behind synchronous 

reactance and their synchronous reactances. 

 

FIG. 3.2 One-line diagram of a three-phase system, the three sequence networks of the system, and 

the Helmholtz-Thevenin equivalent of each network for a fault at  

Since linearity is assumed in drawing the sequence networks, each of the networks can be replaced 

by its Helmholtz-Thevenin equivalent between the two terminals composed of its reference bus and 

the point of application of the fault. The Helmholtz-Thevenin equivalent circuit of each sequence 

network is shown adjacent to the diagram of the corresponding network in Fig. 3.2. The internal 

voltage of the single generator of the equivalent circuit for the positive-sequence network is , the 
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prefault voltage to neutral at the point of application of the fault. The impedance  of the 

equivalent circuit is the impedance measured between point  and the reference bus of the positive-

sequence network with all the internal emfs short-circuited. The value of  is dependent on 

whether subtransient, transient, or synchronous reactance is used in the sequence network, which is, 

in turn, dependent on whether subtransient, transient, or steady-state currents are being computed.  

Since no negative- or zero-sequence currents are flowing before the fault occurs, the prefault voltage 

between point  and the reference bus is zero in the negative- and zero-sequence networks. 

Therefore, no emfs appear in the equivalent circuits of the negative- and zero-sequence networks. 

The impedances  and  are measured between point  and the reference bus in their respective 

networks and depend on the location of the fault.  

Since  is the current flowing from the system into the fault, its components ,  and  flow 

out of their respective sequence networks and the equivalent circuits of the networks at , as shown 

in Fig. 3.2. Examination of the equivalent circuits of the sequence networks shows that the voltages 

, , and  at point  are expressed by the following equations:  

           (3.1) 

           (3.2) 

           (3.3) 

The only differences between Eqs. (3.1) to (3.3) and Eqs. (2.2) to (2.4) are the substitution of  for 

 and the interpretation of , , and . For a fault at the terminals of an isolated generator at no 

load,  and  are equal, and Eqs. (3.1) to (3.3) reduce to Eqs. (2.2) to (2.4). 

Solution Algorithm for Unbalanced Faults: 

Step 1.  Draw the positive-, negative- and zero-sequence networks of the overall system. 

Step 2. Calculate and replace the sequence networks by Thevenin equivalence as seen from the fault 

points. 

Step 3.  For the given fault type find out the relationships amoung (+), (-) and (0) sequence are 

voltages and currents. 

Step 4. Interconnect sequence network such that the relations in step 3 are satisfied. 
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Step 5.  So that resulting network for the designed variables. 

 

Example: 

 

 

 

 

 

Unit  and  generate  voltage, 

 : , ,   

 : , ,   

 :    :  

All data given in  with respect to select all common bases of the power system. : 

Voltage before the fault. 

Double lin-to-ground fault occurs at , find the  
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Let’s solǀe the same problem ǁith the same fault point location for a single line to ground fault. 
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(+) sequence (-) sequence zero sequence 
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If fault through an impedance, 

 

 

 

 

 



 

EE472 Power System Analysis II           

 

P
a

g
e
3

4
 

 

4. LOAD FLOW ANAYSIS 

A load flow study is the determination of voltage, current and p.f. at the given nodes of the power 

system network under normal operating conditions. Load flow studies are essential in planning and 

future development of the system. 

   : Active power       

   : Reactive power      

   : Voltage magnitude 

   : Active power 

 

 

 

 

 

 

 

 

 

 

 

Hence we have to consider the conjugate vector. 

 

Imaginary 

Axis 

Real Axis 

 
 

 

 

 



 

EE472 Power System Analysis II           

 

P
a

g
e
3

5
 

 

 

 

 

 

 

 

Assume for a 4 bus system, 

 

   : Bus Admittance Matrix 

 

 

 

 

 

 

 

 

 

Generator Load Connection 

Positive Network 

       1             2            3           4     

 

a 

b 

c 

1 

2 

3 
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Corresponding reactance diagram all data given in p.u. With current sources replacing the equivalent 

voltage sources (values shown are admittance in p.u.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

a j1.15 p.u. j0.1 p.u. 

c j1.15 p.u. j0.1 p.u. 

j1.15 p.u. j0.1 p.u. b j0.125 p.u. 

j0.25 p.u. 

j0.4 p.u. 

j0.2 p.u. 

j0.2 p.u. 

1 

2 

3 

4 
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Properties of the Bus Admittance Matrix 

- It is a source matrix of order  

- It is symmetrical 

- It is complex 

Each off diagonal element  is the negative of the branch admittance between busses  and . 

Each diagonal element is the sum of admittances the branches terminating on the bus , including 

the branches to ground 
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5. POWER FLOW IN A SHORT TRANSMISSION LINE 

 

 

 

 

 

At the secondary end, on per phase basis 

 

 

Hence, 

 

Now suppose that, 
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For a 4 bus system 

 

 

Gauss-Seidell Method 

 

Bus system for bus 2, 

 

 

 

 

 

 

 

 

 

 (Power Angle 

Curve) 
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Example: 

 

 

 

 

 

 

 

BUS    Remarks 

1    Swing (Slack) Bus 

2   
 

Initial 
Load Bus 

3   
 

Initial 

Voltage Magnitude 

Constant 

4   
 

Initial 
Load Bus 

5   
 

initial 
Load Bus 

 

LINE 
G 

 

B 

 

1-2   

1-4   

1-5   

2-3   

2-4   

3-5   

 

 

2 

5 

1 

3 4 
 

We use that 
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Find  using Gauss-Seidell? 

Answer: 

 

 

 

 

 

(no connection between bus) 

 

 (conjugate of ) 

 



 

EE472 Power System Analysis II           

 

P
a

g
e
4

2
 

 

5.1. Load Flow with The Newton-Raphson Method 

 

For  bus system at bus , 

 

 

Let, 

 

Then, 

 

 

 

Reminder 

Consider two functions of two variables  and  such that, 

 

 

where  and  are constants. 

Let  and  be the initial estimates, 

Let  and  be the values by which, 
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We initial estimates differ from the correct solutions, 

 

 

Expanding the left hand side in a Taylor series, 

 

 

Matrix Form, 

 

 

The solution of gives  and , 

Then a better estimate at the solution, 

 

 

The iterations are continued until  and  become smaller than a predetermined value. 

Finishing Reminder 

Corresponding to the Matrix Equation for a three bus system (with bus  as the slack (swing) bus) 
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