Group No. of Electrons in Atom		Charge of Ion Formed	Examples
1	1 more than noble-gas atom	+1	Na+, K+
2	2 more than noble-gas atom	+2	Mg ²⁺ , Ca ²⁺
16	2 less than noble-gas atom	-2	O ² -, S ² -
1 7	1 less than noble-gas atom	-1	F-, CI-

TABLE 2.2 Some Common Polyatomic Ions

+1	-1	-2	-3
NH ₄ + (ammonium)	OH ⁻ (hydroxide)	CO ₃ ²⁻ (carbonate)	PO ₄ ³⁻ (phosphate)
Hg ₂ ²⁺ (mercury I)	NO ₃ ⁻ (nitrate)	SO ₄ ²⁻ (sulfate)	
	ClO ₃ ⁻ (chlorate)	CrO ₄ ²⁻ (chromate)	
	ClO ₄ ⁻ (perchlorate)	Cr ₂ O ₇ ²⁻ (dichromate)	
	CN ⁻ (cyanide)	HPO ₄ ²⁻ (hydrogen phosphate)	
	$C_2H_3O_2^-$ (acetate)		
	MnO ₄ ⁻ (permanganate)		
	HCO₃⁻ (hydrogen carbonate)		
	H₂PO₄⁻ (dihydrogen phosphate)		

Monatomic anions are named by adding the suffix -ide to the stem of the name of the nonmetal from which they are derived.

				H-	hydride
N^{3-}	nitride	O ²⁻	oxide	F^-	fluoride
		S ²⁻	sulfide	Cl-	chloride
		Se ²⁻	selenide	Br-	bromide
		Te^{2-}	telluride	I-	iodide

TABLE 2.3 Oxoanions of Nitrogen, Sulfur, and Chlorine

Nitrogen	Sulfur	Chlorine
		ClO ₄ - perchlorate
NO₃⁻ nitrate	SO ₄ ²⁻ sulfate	ClO ₃ - chlorate
NO ₂ - nitr <i>ite</i>	SO ₃ ²⁻ sulfite	ClO ₂ - chlor <i>ite</i>
		CIO- hypochlorite

TABLE 2.4 Greek Prefixes Used in Nomenclature

Number*	Prefix	Number	Prefix	Number	Prefix
2	di	5	penta	8	octa
3	tri	6	hexa	9	nona
4	tetra	7	hepta	10	deca

^{*}The prefix mono (1) is seldom used.

Many of the best-known binary compounds of the nonmetals have acquired common names. These are widely—and in some cases exclusively—used. Examples include

H_2O	water	PH_3	phosphine
H_2O_2	hydrogen peroxide	AsH_3	arsine
NH_3	ammonia	NO	nitric oxide
N_2H_4	hydrazine	N_2O	nitrous oxide
C_2H_2	acetylene	CH_4	methane

Pure Substance		Water Solution	Water Solution		
HCI(g)	Hydrogen chloride	H+(aq), Cl ⁻ (aq)	Hydrochloric acid		
HBr(g)	Hydrogen bromide	H+(aq), Br-(aq)	Hydrobromic acid		
HI(g)	Hydrogen iodide	H+(aq), I-(aq)	Hydriodic acid		

Most acids contain oxygen in addition to hydrogen atoms. Such species are referred to as *oxoacids*. Two oxoacids that you are likely to encounter in the general chemistry laboratory are

The names of oxoacids are simply related to those of the corresponding oxoanions. The -ate suffix of the anion is replaced by -ic in the acid. In a similar way, the suffix -ite is replaced by the suffix -ous. The prefixes per- and hypo- found in the name of the anion are retained in the name of the acid.

ClO_4^-	<i>per</i> chlor <i>ate</i> ion	$HClO_4$	<i>per</i> chlor <i>ic</i> acid
ClO_3^-	chlorate ion	HClO ₃	chloric acid
ClO_2^-	chlorite ion	$HClO_2$	chlorous acid
ClO-	hypochlorite ion	HClO	hypochlorous acid