Genetic Information: DNA Structure and Function

Umut Fahrioglu, PhD MSc

Genetic material

- There must be information stored in our cells such that when it is passed to new generation it influences the characteristic of each individual.
- This same information is also responsible for directing the many complex processes that lead an organism to an adult form. And obviously to keep the organism running properly.
- Until 1944, we were not clear on which chemical components of chromosomes made up the genes and counted as the genetic material. (It could have been proteins or nucleic acids since the chromosomes were known to have both. (Oswald, Avery, MacLeod and McCarty)
- Once the nucleic acid DNA was realized as the informational basis of heredity, we set out to determine its structure and unravel the mysteries that connect its structure to its function.
- In 1953, James Watson and Frances Crick put forth a hypothesis for the double helical nature of DNA.

Nucleic acids continued

- There are two kinds of nitrogenous bases
 - Nine-member double ring purines
 - Six member single ring pyrimidines
- Two types of purines and three types of pyrimidines are commonly found in nucleic acids
 - Purines are Adenine (A) and Guanine (G)
 - Pyrimidines are Cytosine (C), Thymine (T) and Uracil (U)
- Both DNA and RNA contain A, C and G but only DNA contains the base T and only RNA contains the base U.
- The pentose sugars found in nucleic acids give them their names
 - Ribonucleic acids (RNA) contain Ribose
 - Deoxyribonucleic acids (DNA) contain Deoxyribose
- If a molecule is composed of a base and a sugar it is called a **nucleoside**.
- If a phosphate group is added to the nucleoside, the molecule is now called a **nucleotide**.

BASE	NUCLEOSIDE	NUCLEOTIDE
	Deoxyribose sugar	Phosphate Added
PURINES: Adenine Guanine Hypoxanthine	Adenosine Guanosine Inosine	Adenosine Guanosine Inosine
PYRIMIDINES: Thymine Cytosine	Thymidine Cytidine	Thymidine Cytidine
	Ribose sugar	
PYRIMIDINES: Uracil	Uridine	Uridine

Data that led to Chargaff's Rules

	Number of Each Type of Nucleotide*				Nucleotide Ratios**		
Source of DNA	А	т	G	с	A/T	G/C	(A + T)/(G + C
Bovine thymus	28.4	28.4	21.1	22.1	1.00	0.95	1.31
Bovine liver	28.1	28.4	22.5	21.0	0.99	1.07	1.30
Bovine kidney	28.3	28.2	22.6	20.9	1.00	1.08	1.30
Bovine brain	28.0	28.1	22.3	21.6	1.00	1.03	1.28
Human liver	30.3	30.3	19.5	19.9	1.00	0.98	1.53
Locust	29.3	29.3	20.5	20.7	1.00	1.00	1.41
Sea urchin	32.8	32.1	17.7	17.3	1.02	1.02	1.85
Wheat germ	27.3	27.1	22.7	22.8	1.01	1.00	1.19
Marine crab	47.3	47.3	2.7	2.7	1.00	1.00	17.50
Aspergillus (mold)	25.0	24.9	25.1	25.0	1.00	1.00	1.00
Saccharomyces cerevisiae (yeast)	31.3	32.9	18.7	17.1	0.95	1.09	1.79
Clostridium (bacterium)	36.9	36.3	14.0	12.8	1.02	1.09	2.73

**The A/T and G/C ratios are not all exactly 1.00 because of experimental error.

Copyright © 2009 Pearson Education, Inc.

Alternative forms of DNA
 Under different conditions of isolation we can see different conformations of DNA. (initially A and B were known) B-DNA forms under aqueous, low salt conditions and is thought to be the biologically significant form. A-DNA is prevalent under high salt or dehydration conditions. It is slightly more compact. It is also right handed but the bases are tilted and displaced and it is probably not likely to be present <i>in vivo</i>. C-DNA forms under even higher dehydration conditions. D-DNA and E-DNA occur in helices lacking guanine in their base pair composition. P-DNA occurs when DNA is artificially stretched
 Z-DNA is quite different, it is left-handed helix that is 18 Å in diameter with 9 base pairs per turn and has a zigzag configuration. Major grove is nearly eliminated in this form.
 Z-DNA occurs where there are alternating pyrimidines and purines (on one strand). The transition of B- to Z-DNA is facilitated by 5-methylcytosine. It is thought that these different forms might exist to accommodate different functions of the DNA

Comparison	of	different	DNA	forms
companison	•	annerene		

Form	Diameter	Bp/turn	Full Turn	Direction	Description
А	2.2 nm	11	2.5 nm	Right handed	Short and broad
В	2.0 nm	10	3.4 nm	Right handed	Longer and thinner
Z	1.8 nm	9	4.6 nm	Left Handed	Longest and thinnest

Forces affecting the stability of DNA

- hydrophobic interactions stabilize
 - The hydrophobic environment inside with the bases and the hydrophilic environment outside with the sugar phosphate backbone
- stacking interactions stabilize
 - relatively weak but additive van der Waals forces
- hydrogen bonding stabilize
 - relatively weak but additive and facilitates the stacking of the bases
- electrostatic interactions destabilize
 - contributed primarily by the (negative) phosphates
 - affect intrastrand and interstrand interactions
 - repulsion can be neutralized with positive charges (e.g., positively charged Na+ ions or proteins)

DNA structure

- Primary (1°) Structure: Linear array of nucleotides
- Secondary (2°) Structure: the double helix
- Tertiary (3°) Structure: Super-coiling, stem-loop formation, cruciforms
- Quaternary (4°) Structure: Packaging into chromatin

Supercoiled DNA

- In addition to helical configuration typical of all DNA molecules, a DNA can be twisted upon itself to form a new, higher-order helix giving rise to supercoiled DNA.
- In duplex DNA, ten bp per turn of helix (relaxed form)
- Over winding of DNA helix can be compensated by supercoiling.
- Supercoiling prevalent in circular DNA molecules and within local regions of long linear DNA strands.
- Positive supercoiling results from overwinding DNA and normally occurs during DNA replication.
- Negative supercoiling results from underwinding DNA and normally occurs in the nucleosome.
- Enzymes called topoisomerases or gyrases can introduce or remove supercoils
- In vivo most DNA is negatively supercoiled. Therefore, it is easy to unwind short regions of the molecule to allow access for enzymes
- Negative coiling can sometimes cause cruciform formation.

Some nomenclature

- dsDNA: double stranded DNA
- **ssDNA:** single stranded DNA
- A standard unit of size in DNA is kilobase (kb)
 - 1 kb = 1000 bp
 - 1 Mb = 1,000,000 bp
- One thousand kilobases is a megabase (Mb)
- Genotype: An organism's genetic constitution.
- Phenotype: The observed characteristics of an organism, as determined by the genetic makeup (and the environment
- **n** = number of chromosomes in a haploid genome
- **2n** = number of chromosomes in a diploid genome

Organism	Genome Size	Estimated Gene Number
Bacteria		
Mycoplasma genitalium	0.6 Mb	470
Haemophilus influenza	1.8 Mb	1,740
Streptococcus pneumoniae	2.2 Mb	2,240
Escherichia coli	4.6 Mb	4,400
Yeast (S. cerevisiae)	12.1 Mb	6,200
Roundworm (C. elegans)	97 Mb	19,700
Mustard plant (A. thaliana)	125 Mb	25,500
Fruit fly (D. melanogaster)	180 Mb	13,600
Rice (O. sativa)	389 Mb	37,500
Mouse (Mus musculus)	2500 Mb	25,000
Human (<i>H. sapiens</i>)	3200 Mb	25,000

ble 4–1 Some Vital Statistics for the Human Genon	ne	
	HUMAN GENOME	
DNA length	3.2×10^9 nucleotide pairs*	
Number of genes	approximately 25,000	
Largest gene	$2.4 imes 10^6$ nucleotide pairs	
Mean gene size	27,000 nucleotide pairs	
Smallest number of exons per gene	1	
Largest number of exons per gene	178	
Mean number of exons per gene	10.4	
Largest exon size	17,106 nucleotide pairs	
Mean exon size	145 nucleotide pairs	
Number of pseudogenes**	more than 20,000	
Percentage of DNA sequence in exons (protein coding sequences)	1.5%	
Percentage of DNA in other highly conserved sequences***	3.5%	
Percentage of DNA in high-copy repetitive elements	approximately 50%	
* The sequence of 2.85 billion nucleotides is known preci- one in 100,000 nucleotides). The remaining DNA primaril repeated sequences that are tandemly repeated, with rep one individual to the next. * A pseudogene is a nucleotide sequence of DNA closely gene, but containing numerous mutations that prevent it pseudogenes arise from the duplication of a functional g accumulation of damaging mutations in one copy.	sely (error rate of only about y consists of short highly seat numbers differing from resembling that of a functional ts proper expression. Most ene followed by the	
*** Preserved functional regions; these include DNA enco (untranslated regions), structural and functional RNAs, ar sites on the DNA.	oding 5' and 3' UTRs nd conserved protein-binding	