NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Electrical and Electronic
Engineering

Elevator Prototype Using
Microcontrollers

Student: Khaled Wallid A'amar (20020911)

Supervisor: Assoc. Prof. Dr. Adnan Khashman

Lefkosa - 2006

ACKNOWLEDGMENTS

My utmost thanks to my Lord Allah that I could complete my graduation project. I
could not have prepared this project without the generous help of my supervisor,

colleagues, friends, and family.

First, [would like to thank my supervisor Assoc. Prof. Dr. Adnan Khashman for his
invaluable advice, and belief in my work and myself over all the courses of this Degree.
Assoc. Prof. Dr. Adnan Khashman supplied the warmth, enthusiasm, and clarity of
judgement that every student hopes for. Going beyond the limited role of literary agent,

he provided valuable advice at each stage ofthe preparation of this project.

[would like to express my gratitude to Prof. Dr. Dogan Ibrahim for his help and
support, and to Prof. Dr. Fakhraddin Mamedov for him because he provided valuable

advice at each stage of the preparation of this project also.
[will never forget the help that i got from this university for continueing my education
especially from Prof. Dr Senol Bektas, so my regards and my love

to him.

My deppest thanks are to my family. I could never have prepared this project without

the encouragement and support of my parents, brothers and sister.

The root of this success lies under the most affectionate wish of my loving FATHER. I

am grateful to him to assist me to grow in knowledge. I salute you, my father.

[would also like to thank all my friends for their help and for their patience.

ABSTRACT

As the life is getting more complicated, every one in this world searches for the
comfortable life, thus in the modem life the buildings are getting longer, which invite us to
use the elevators, the elevators are controlled by PIC microcontrollers where they are

replaced with the old wired control systems.

Actually, the elevators are the solution of carrying heaviness over long heights,
therefore the need increased recently for these elevators, so the incremental demands made

this project one ofthe optimum business alternatives.

This project represents the elevator prototype that is controlled by using PIC
microcontroller, this graduation project consists software and hardware sides, whereas the
software side includes microBasic language, compiler is used to compile the instructions
for the typed program and respectively the IC prog is going to send the data to the

programmer.

The elevator consists of three storeys and it has a bush buttons as callers thus the
stepper motor are rotating up or down according to the place of the elevator's room so this

mechanism needs a specific time.

The fully detailed explanations are included about the microBasic language and its

compiler; the electronic components are explained as well.

INTRODUCTION

The elevator is a very important auxiliary tool in the modem life where the long
buildings are existed, so to be familiar with this application I have chosen this project
which considered as a good starting point for successful business, thus the modem
programmed elevators use PIC microcontrollers.

The uncountable advantages were the cause of preference it against the wired
control systems and it took that ease during the control applications by the possibility of
varying and fixing the action from the software program.

Fundamental problems related with hardware and software implementation are
considered, a fully detailed explanation have provided in the chapters as following:

The first chapter represents classification of electronic components which used
in the elevator prototype project, the data sheets, pieces shapes and their functions were
included into this chapter.

Chapter two is devoted to the microcontrollers generally whereas the
PIC16F877A was specified because of'its adjectives which give it impartiality existence
in the manufacture control fields.

Chapter three presents the information about the microBasic language and its
compiler which convert the instructions among the user and the programmer.

Chapter four is devoted to the programmer and its construction with a
declaration of the PIC's that can be placed upon the Ziff socket.

Chapter five talks about the elevator prototype using microcontrollers' project,
circuit diagrams are explained with their functions, thus the analyses of the circuits are
followed respectively.

The conclusion presents important results and notifications about the elevator
prototype project by the author of the thesis and practical realization of the elevator

prototype using microcontrollers' project.

TABLE OF CONTENTS

ACKNOWLEDGMENT

ABSTRACT

INTRODUCTION

TABLE OF CONTENTS

1. ELECTRONIC COMPONENTS
1.1. Overview

1.2. Components
1.2.1. Resistors
1.2.2. Capacitors
1.2.2.1. Capacity
1.2.2.2. Capacitor and DC voltage
1.2.2.3. Capacitors and AC voltage
1.2.3. Semiconductor
1.2.3.1. Diodes
1.2.3.2. Led
1.2.3.3. Transistors
1.2.4. Switches
1.2.4.1. (ON)-OFF Push-to-make
1.2.4.2. ON-(OFF) Push-to-break
1.2.5. Solenoid lock
1.2.6. Stepper Motor
1.2.7.L.293D
1.3. Safety Guidelines
1.4. Summary
2. MICROCONTROLLERS

2.1. Overview
2.2. What is a Microcontroller?
2.3. General Characteristic of Microcontrollers

2.4. The Advantages of Microcontroller

v

ili

v

© O OV 9 O U A B B W W

—_
_—O O

—_— = = = =
W W W NN

17

2.4.1. Coder Efficiency

2.4.2. Reliability

2.4.3. Speed

2.4.4. Static Operation

2.4.5. Drive Capability

2.4.6. Several Options

2.4.7. Security

2.4.8. Versatility

2.4.9. Development Tools
2.5. PIC16F877A Features

2.5.1. General Features

2.5.2. Special Microcontroller Features

2.5.3. Peripheral Features

2.5.4. Analog Features

2.6. Microchip Families

2.7. Memory Types

2.8. Core Architecture of PIC Microcontrollers
2.9. Summary

MICROBASIC LANGUAGE
3.1. Overview

3.2. Advantages of MicroBasic
3.3. Basic Editor Features

3.4. Creating First Project
3.5. Error Window

3.6. Assembly View

3.7. Statistics

3.7.1. Memory Usage Window

3.7.2. Procedures (Graph) Window
3.7.3. Procedures (Locations) Window
3.7.4. Procedures (Details) Window
3.7.5. RAM Window

17
17
17
18
18
18
18
18
19

19
19
19
20
20

21
21

24
25
25
25

27
32
32

33
33
34
34
35
35

3.7.6. ROM Window
3.8. Identifiers

3.8.1. Rules
3.8.2. Note
3.8.3. Examples

3.9. Keywords

3.10. Data Types

3.10.1. Simple

3.10.2. Structured

3.10.3. Sign

3.10.4. Array
3.10.4.1. Array and Operators
3.10.4.2. Array and PIC

3.10.5. Strings

3.10.5.1. Strings and Assignment
3.10.5.2. Length

3.12. The Loops

3.12.1. Do..Loop Until Statement
3.12.2. While Statement
3.12.3. For Statement

3.13. Summary

THE PIC PROGRAMMER

4.1. Overview

4.2. The Characteristics of PIC Microcontroller
4.3. Supported Microcontrollers

4.4. Setting the IC Prog software

4.5. Troubleshooting

4.6. Common Errors

4.6.1. Privileged Instruction
4.6.2. Varify Failed
4.7. Summary

VI

36

36
36
37
37

38

39
39
39
40
40
41
41
43
43
44

45
46
47
48

49
50
50

51
52
53

55
55
55

55

5. Elevator Prototype Using Microcontroller
5.1. Overview
5.2. The Project Description

5.2.1. The Electronic Parts

5.2.2. The Circuit Connections
5.3. The Circuit Analysis

5.3.1. The Power Circuit

5.3.2. The PIC16F877 A Related Circuit

5.3.3. The 1/0 Ports Connections
5.3.3.1. Leds Circuit Connection
5.3.3.2. Push Button Connection
5.3.3.3. Solenoid Locks Connection

5.3.3.4. Stepper motor connection
5.4. The Elevator's microBasic Program

5.6. Summary

CONCLUSION
REFRENCES
APPENDIX

VII

56
56

56
57
58

58
59
59
60
60
60
60
61

62
62

63
64
65

CHAPTER ONE

ELECTRONIC COMPONENTS

1.1 Overview

This chapter presents an introduction to electronic components that are commonly
used in hardware projects. Safety guidelines for electronic projects will also be

described.

1.2 Components

In this section a detailed explanation will be given for each hardware component

used in setting up the electronic circuit.

1.2.1 Resistors

Resistors are electronic components used extensively on the circuit boards of

electronic equipment. Resistors are usually used to limit current.

They are color coded with stripes to reveal their resistance value (in ohms) as well
as their manufacturing tolerance. Resistors, like diodes and relays, are another of the
electrical components that should have a section in the installer's parts bin. They have
become a necessity for the mobile electronics installer, whether it is for door locks,

timing circuits, remote starts, orjust to discharge a stiffening capacitor.

Resistors are components that resist the flow of electrical current in the case of
higher value of resistance is located (measured in ohms) then the lower current will be

measured.

Resistors are color coded to read the color code of a common 4 band |K ohm
resistor with a 5% tolerance, start at the opposite side of the GOLD tolerance band and
read from left to right. Write down the corresponding number from the color chart

below for the 1st color band BROWN. To the right of that number, the corresponding

number should be written for the 2nd band BLACK. Now that number should be
multiplied (it should have 10) by the corresponding multiplier number of the 3rd band
(RED) (100). Your answer will be 1000 or IK. As shown in figure 1.1.

If a resistor has 5 color bands, the corresponding number of the 3rd band has to be
written to the right of the 2nd before multiplying it by the corresponding number of the
multiplier band. If only 4 color bands that include a tolerance band, this column must be

ignored and gone straight to the multiplier.

The tolerance band is usually gold or silver, but some may have none. Because
resistors are not the exact value as indicated by the color bands, manufactures have
included a tolerance color band to indicate the accuracy of the resistor. Gold band
indicates the resistor is within 5% of what is indicated. Silver = 10% and None = 20%.
The IK ohm resistor in the example below, may have an actual measurement any where
from 950 ohms to 1050 ohms. If a resistor does not have a tolerance band, start from the
band closest to a lead. This will be the 1st band. If the color bands unable to be read

than the multimeter has to be used.

1K ohim tesistor

15t color b el l l tolmame‘band
2nd colorband , 3d color band

Figure 1.1 Resistor [11]

1.2.2 Capacitors

A capacitor is an electronic device which consists of two plates (electrically
conductive material) separated by an insulator. The capacitor's value (its 'capacitance')
is largely determined by the total surface area of the plates and the distance between the

plates (determined by the insulator's thickness).

A capacitor's value is commonly referred to in microfarads, one millionth of a farad.
It is expressed in micro farads because the farad is such a large amount of capacitance

that it would be impractical to use in most situations.
1.2.2.1 Capacity

In the following diagram (Figure 1.2), 2 tanks are seen (capacitors) of different
diameter (different capacitance). It should be readily understood that the larger tank can
hold more water (if they're filling to the same level (voltage)). The larger capacitor has
more area in which to store water. Just as the larger capacitor's larger plate area would

be able to hold more electrons.

15 Vo

1.0 Farad

Figure 1.2 Capacities [8]

1.2.2.2 Capacitor and DC voltage

When a DC voltage source is applied to a capacitor there is an initial surge of
current, when the voltage across the terminals of the capacitor is equal to the applied
voltage, the current flow stops. When the current stops flowing from the power supply
to the capacitor, the capacitor is 'charged'. If the DC source is removed from the
capacitor, the capacitor will retain a voltage across its terminals (it will remain charged).
The capacitor can be discharged by touching the capacitor's external leads together.
When using very large capacitors (1/2 farad or more) in a car, the capacitor partially
discharges into the amplifier's power supply when the voltage from the alternator or
battery starts to fall. The discharge is only for a fraction of a second. The capacitor can
not act like a battery. It only serves to fill in what would otherwise be very small dips in

the supply voltage .

1.2.2.3 Capacitors and AC voltage

Generally, if an AC voltage source is connected to a capacitor, the current will flow
through the capacitor until the source is removed. There are exceptions to this situation
and the A.C. current flow through any capacitor is dependent on the frequency of the

applied A.C. signal and the value of the capacitor.

1.2.3 Semiconductor

Semiconductor has a large amount of types. Transistors have three lead-out wires
are called the base, emitter and conductor. It is essential that these are connected
correctly, as there is no chance of project working if they are not. Fortunately modern
transistors are not easily damaged, and incorrect connection is not likely to damage a
device (or other components in the circuit) only one type is used in this project to drive

a required voltage to a solenoid locks.

1.2.3.1 Diodes

Diodes are non-linear circuit elements. It is made of two different types of
semiconductors right next to each other. Qualitatively we can just think of an ideal
diode has having two regions: a conduction region of zero resistance and an infinite
resistance non-conduction region. For many circuit applications, the behavior of a
(junction) diode depends on its polarity in the circuit. If the diode is reverse biased
(positive potential on N-type material) the current through the diode is very small. The

following figures show the characteristic of diode.

Figure 1.3 Diode [12]

* Forward Biased P-N Junction: forward biasing the p-n junction drives holes to the
junction from the ~ material and electrons to the junction from the n-type
material. At the junction the electrons and holes combine so that a continuous current

can be maintained.

b [1] fmmmmmmimn

Figure 1.4 Forward Biased P-N Junction [12]

* Reverse Biased P-N Junction: the application of a reverse voltage to the p-n
junction will cause a transient current to flow as both electrons and holes are pulled
away from the junction. When the potential formed by the widened depletion layer

equals the applied voltage, the current will cease except for the small thermal current

Figure 1.5 Reverse Biased P-N Junction [12]

1.2.3.2Led

The leds are used in our project as different colors tell that which level of elevator
that we are in. Thus each color has its own threshold voltage, so several values of

resistors should be connected to protect leds, the led connection appears in figure 1.6.

LED connec:tionel

flat

cathode (-

shorter leg Anods (+)

longer leg

Finger 1.6 LED Connections [6]

1.2.3.3 Transistors

A Bipolar Transistor essentially consists of a pair of PN Junction Diodes that are
joined back-to-back. This forms a sort of a sandwich where one kind of semiconductor
is placed in-between two others. There are therefore two kinds of bipolar sandwich, the
NPN and PNP varieties. The three layers of the sandwich are conventionally called the
Collector, Base, and Emitter. The reasons for these names will become clear later once
we see how the transistor works. As shown in the figure 1.7 there are two symbol of

type of bipolar transistors.
o0
~1ig~©
~ 1
syWwa ~ 0

Figure 1.7 Symbol ofNPN and PNP transistors [6]

Some of the basic properties exhibited by a Bipolar Transistor are immediately
recognizable as being diode-like. However, when the 'filling' of the sandwich is fairly
thin some interesting effects become possible that allow us to use the Transistor as an
amplifier or a switch. To see how the Bipolar Transistor works we can concentrate on

The NPN variety. The figure 4.8 shows the energy levels in an NPN transistor.

Emitter | Baso Collectore

N : P i N o Froo Electron

© Free Hole

Collector

Busy -

Eoitter

NPN Bipolar Transistor

Figure 1.8 the energy levels in an NPN transistor [6]

Figure 1.8 shows the energy levels in an NPN transistor when we aren't externally
applying any voltages. We can see that the arrangement looks like a back-to-back pair
of PN Diode junctions with a thin P-type filling between two N-type slices of 'bread’. In
each of the N-type layers conduction can take place by the free movement of electrons
in the conduction band. In the P-type (filling) layer conduction can take place by the
movement of the free holes in the valence band. However, in the absence of any
externally applied electric field, we find that depletion zones form at both PN-Junctions,

so no charge wants to move from one layer to another.

Consider now what happens when we apply a moderate voltage between the
Collector and Base parts of the transistor. The polarity of the applied voltage is chosen
to increase the force pulling the N-type electrons and P-type holes apart. (I.e. we make
the Collector positive with respect to the Base.) This widens the depletion zone between
the Collector and base and so no current will flow. In effect we have reverse-biased the
Base-Collector diode junction. The precise value of the Base-Collector voltage we
choose doesn't really matter to what happens provided we don't make it too big and
blow up the transistor! So for the sake of example we can imagine applying a 10 Volt

Base-Collector voltage. As shown in the figure 1.9 the applying collector-base voltage.

Collector

2

Emitter l
|
|
| 0¥ €
!
!

F2)

sk +
Apply a Collector-Base Voltage

Figure 1.9 the applying collector-base voltage [6]

1.2.4 Switches

1.2.4.1 (ON)-OFF Push-to-make

A push-to-make switch returns to its normally open (OFF) position when the button
is released, this is shown by the brackets around ON. This is the standard doorbell

switch, show figure 4.10.

—0 O0—

Figure 1.10 Push-to-make switches [7]

1.2.4.2 ON-(OFF) Push-to-break

A push-to-break switch returns to its normally closed (ON) position when the

button is released, show figure 1.11.

—f] | (=

Figure 1.11 Push-to-break switches [7]

1.2.5 Solenoid lock

This solenoid locks have been connected to the circuit for adapting the case of doors
during the movement of elevator's box, thus in the case of affecting by electrical pulse,

it going to be open immediately, while normally they are closed.

The figure 1.12 shows the shape of solenoid lock which contains a coil affecting

magneto motive force upon a central bar.

Figure 1.12 Solenoid Lock

1.2.6 Stepper Motor

Stepper motors operate differently from DC motors. When power is applied to a DC
motor, the rotor begins turning smoothly. Speed is measured in revolutions per minute
(RPM) and is a function of voltage, current, and load on the motor. The precise
positioning of the motor's rotor is not usually possible or desirable. A stepper motor, on
the other hand, runs on a controlled sequence of electric pulses to the windings of the
motor. Each pulse rotates the stepper motor's rotor by a precise increment. Each
increment of the rotor is referred to as a step, hence the name stepper motors. The figure

1.13 shows the construction of stepper motor. [1]

Figure 1.13 Internal construction of stepper motor

10

1.2.7 L293D

The Device is a monolithic integrated high voltage, high current four channel driver
designed to accept standard DTL or TTL logic levels and drive inductive loads (such as

relays solenoids, DC and stepping motors) and switching power transistors.

To simplify use as two bridges each pair of channels is equipped with an enable
input, a separate supply input is provided for the logic, allowing operation at a lower

voltage and internal clamp diodes are included.

This device is suitable for use in switching applications at frequencies up to 5 kHz,
the L293D is assembled in a 16 lead plastic package which has 4 center pins connected
together and used for heat sinking. The L293DD is assembled in a 20 lead surface

mount which has § center pins connected together and used for heat sinking.

Us OUTL BUT3 Uas

s % Vet ey

18 e 3
IN1 > IN3

ENABLEL O < ENAB:
Vs Us f aa
INZ C 2) INA4
4.5,6:7
noz20901-91 OUTZ 0UT4 Sl

Figure 1.14 L293D block diagram

11

1.3 Safety Guidelines

In this project, low voltage applications are used. Thus, safety guidelines are not in
concern of human safety but in components safety, although we cannot avoid the
technical mistakes witch can occur during connecting parts and soldering them to the

circuit, so we have to be careful from current and heat.

* One of the components which are used in this circuit is the chemical capacitor, this
element has two poles and when connected to the circuit we have to care about its

polarity so as to avoid damaging it.

* While connecting the circuit components to the power supply we have to be aware of

misconnecting its polarity to assure the safety ofused components.

* While the circuit is on, avoid touching the sensitive components like the transistor,

diodes to avoid interfering with the out put signal.

* While soldering the parts to the circuit we have to be careful so as not to bum the

parts which are sensitive and can be harmed by heat.

1.4 Summary

This chapter presented an introduction to electronic components that are commonly
used in hardware projects and how they function, how they must be connected. By

applying the safety guidelines.

12

CHAPTER TWO
MICROCONTROLLERS

2.1 Overview

This chapter presents information on microcontrollers. General characteristics of
microcontrollers in addition to their advantages which gives a significant role among the

control fields are presented.

2.2 What is a Microcontroller?

A microcontroller is an inexpensive single-chip computer. Single chip means that the
entire computer system lies within the confines of the integrated circuit. The
microcontroller existing on the encapsulated sliver of silicon has features and similarities to
our standard personal computers. Primarily, the microcontroller is capable of storing and
running a program, its most important feature.

The microcontroller contains a central processing unit (CPU), random-access memory
(RAM), read-only memory (ROM), electrically erasable programmable read-only memory
(EEPROM), input / output (1/0) lines, serial and parallel ports, timers, and other built-in
peripherals, such as analog-to-digital (AID) and digital-to-analog (DIA) converters.

The microcontroller's ability to store and run unique programs makes it extremely
versatile. For instance, a microcontroller can be programmed to make decisions and
perform functions based on predetermined situations (I/O line logic) and selections its

electronic circuits.

13

Other programs can make the microcontroller behave like a neural circuit or a fuzzy
logic controller. Microcontrollers are responsible for the intelligence in most smart devices
on the consumer market.

Microcontrollers are the future of electronics, so that look in any hobbyist electronics
magazine and you will see articles that feature the use of microcontrollers either directly or
embedded inside a circuit's design. Because of their versatility, they add a lot of power,
control, and options for a small cost. It ,therefore, becomes essential that the electronics
engineer or hobbyist learns to program these microcontrollers in order to maintain a level
of competence and to gain the advantages that microcontrollers can provide in their own
circuit designs. In addition, if you examine consumer -electronics, you will find
microcontrollers embedded in just about everything.

A large variety of microcontrollers exist on the market today. We will focus on a few
versatile microcontroller chip called PIC chips (or PICMicro chips) from Microchip
Technologies. Specifically, we will use PIC 16F877A because of its own advanced

features. [1]

2.3 General Characteristic of Microcontrollers

The programmable control system and the hard-wired control system have different
criterions as written in Table 2.1, thus they have differences in criterions like strategy of
control, processing, control strategy adjustment, the occupied area, the cost, chronological
functions assurance, repetition of control system, reliability, allocation in network and
maintenance.

These comparisons between several control systems show us the significant role of

microcontroller as the programming control system.

14

Table 2.1 Comparisons between several control systems [2]

Criterion Hard-wired Programmable
Strategy of control. Elements with wires in a| Program in a circuit.
circuit.
Processing. Depends on relays and | Programmable by
other elements. computer's processor.
control strategy Very complicated. Easy by varying the
adjustment. program.
The occupied area. Very big area. Very small area.
The cost. Expensive cheap
Chronological functions Done by timer relays. Done by programmed
assurance. chronological timers
Repetition of control Needs a high effort. Only copying the program.
system.
Reliability. Low because of the High because of the
mechanical movement. electronic elements usage.
Allocation in network Very hard. Simple.
Maintenance. Needs a time and Directly and no need for
monetary ability. payment.

According to what we have read from the table, microcontrollers are preferred to other
hard-wired control system. The difference between the microcontroller and the
microprocessors that the microcontroller contains RAM, ROM and EEPROM with
addition to the peripherals system communication ports beside ADCs analog to digital

converters, the comparison appears in the following table (table 2.2):

15

Table 2.2 Comparisons between microprocessors and microcontrollers [2]

Characteristics Microprocessor Microcontroller
ALU. Available Available
PC. Available Available
ROM,RAM. Not available Available
Timers/Counters. Not available Available
1/O Ports. Not available Available
Communication Ports. Not available Available
ADC, PWM, Capture, Not available Available
Data EEPROM, LCD
Driver.
Addressing Available Available

We can express the relationship between the microprocessors and the microcontrollers
as: Microcontroller =Microprocessor+ some Peripherals

There are a lot of kinds of Microcontrollers such as: Atmel, Microchip, Siemens and
Matra, whereas the most popular one is Microchip's product because of its free software
availability in market over the whole world. Interestingly, the programmable logic
controllers (PLCs) are basically microcontroller provided with supporting units.

PLC = Microcontroller + supporting unit

Communication Ports

Input Output
insulating l I insulating
Input J and Microprocessor and Outputs
points interfacing | M- (CPU) m=) | interfacing points
circuits. l t circuits.
(Memory) RAM, ROM,
EEPROM

Figure 2.1 PLC diagram [2]

16

2.4 The Advantages of Microcontroller

The microcontrollers play a significant role in the control fields, which means they have

advantages effecting positively among the industrial life.

2.4.1 Coder Efficiency

The PIC technology is the 8-bit microcontroller which depends on hard technique thus
it has two separated internal paths, one of them is responsible to carry the data into data
memory and the second path aimed to carry the instructions the program memory which

refer to increasing the speed.

2.4.2 Reliability

The PIC microcontroller has a program word which limited to 12-bit or 14-bit so that
there is no possibility to be transferred erroneously to data memory which limited to 8-bit

whereas this mistake could happen within other microcontrollers.

2.4.3 Speed

To compute the speed of PIC microcontroller, the oscillator's frequency should be
divided over number 4 and accordingly we will find the wonted time for the execution of
one instruction which means that if we have 4MHz oscillator then 1 s is the required time
for one instruction, i.e. one million instructions could be executed during one second.

The greatest number of instructions can be executed during one second is five millions

(Oscillator frequency maximized to 20MHz).

17

2.4.4 Static Operation

The PIC microcontroller has a fully static microprocessor, that means when the PIC will

be adjusted to standby case then the registers will not lose their contents.

2.4.5 Drive Capability
The PIC microcontroller could drive LED's, triacs and other components therefore it can

sink 25mA for its input ports whereas it can give about 20mA for its output ports as a

source.

2.4.6 Several Options

Several options are available in PIC microcontroller such as speed, temperature, package,

I/O pins, serial communications, ADCs.

2.4.7 Security

The PIC microcontroller has a code protection which protects the program from any

interference.

2.4.8 Versatility

The usage fields of PIC include:
1- Computer peripherals.

2- Manufacturer control systems.

18

3- Alarm and safety systems.
4- Telecommunication.
5- Management and office systems.

6- Several applications distributed over different fields.

2.4.9 Development Tools

The PIC microcontroller has several development tools such as the simulator and the

emulator with addition to many kinds of programmers and compilers.

2.5 PIC16F877 A Features

The microcontroller has a several features causing its availability among the
automation and control systems, thus microcontroller has specialty to be preferable through

practical applications.

2.5.1 General Features

* Operating speed: 20 MHz, 200 ns instruction cycle
* Industrial temperature range (-40° to +85°C)

* 15 Interrupt Sources

* 35 single-word instructions

» All single-cycle instructions except for program branches (two-cycle)

2.5.2 Special Microcontroller Features

* Flash Memory: 14.3 Kbytes (8192 words)
Data SRAM: 368 bytes
Data EEPROM: 256 bytes

* Self-reprogrammable under software control

19

* In-Circuit Serial Programming via two pins (5V)

» Watchdog Timer with on-chip RC oscillator

Programmable code protection

* Power-saving Sleep mode

Selectable oscillator options

In-Circuit Debug via two pins

2.5.3 Peripheral Features

33 1/0 pins; 5 1/0 ports
» TimerO: 8-bit timer/counter with 8-bit prescaler
» Timer 1: 16-bit timer/counter with prescaler
o Can be incremented during Sleep via external crystal/clock
» Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
* Two Capture, Compare, PWM modules
0 16-bit Capture input; max resolution 12.5 ns
o 16-bit Compare; max resolution 200 ns
o 10-bit PWM
» Synchronous Serial Port with two modes:
o SPI Master
o 12C Master and Slave
» USART/SCI with 9-bit address detection
*Parallel Slave Port (PSP)
o 8-bits wide with external RD, WR and CS controls

* Brown-Out detection circuitry for Brown-Out Reset

2.5.4 Analog Features

* 10-bit, 8-channel AID Converters

e Brown-Out Reset

20

¢ Analog Comparator module
0 2 analog comparators
o Programmable on-chip voltage reference module
o Programmable input multiplexing from device inputs and internal VREF

o Comparator outputs are externally accessible

2.6 Microchip Families

There are three main families of Microchip and each kind of PIC contains special

features thus our PIC16F877A which we are dealing with, belongs the Mid-range family, it

consists of 40 pins and 35 instruction set. The families of Microchip are summarized as

following:
Table 2.3 The families of Microchip [3]
Low level 12xxx 8-pins 33 instruction set
Mid - range 16xxx 18-44 pins 35 instruction set
NIA 17xxx NIA NIA
High - performance | 18xxx 18-84 pins 77 instruction set

2.7 Memory Types

Program memory (FLASH)-for storing a written program. Since memory made in
FLASH technology can be programmed and cleared more than once, it microcontroller

suitable device development.

EEPROM- data memory that needs to be saved when there is no supply. It is usually used
for storing important data that must not be lost if power supply suddenly stop one such data
is an assigned temperature in temperature regulators. If during a loss of power was lost, we
would have to make the adjustment once again upon return of supply. Thus our data self -

reliance.

21

The read only memory relates with the model of PIC as appears in (Table 2.4) whereas

our PIC16F877A contains EEPROM (electrical erasable program read only memory).

Table 2.4 The memory ROM [3]

ROM 16CRXX
EPROM 16CXX
EEPROM 16FXX (Flash)

RAM - data memory used by a program during its execution. In RAM are stored all inter-

results or temporary data during run-time.

2.8 Core Architecture of PIC Microcontrollers

The core architectures of PIC16F877A microcontroller can be shown in Figure 1.2 and
Figure 1.3 below, thus it contains 40-pins and accordingly each pin has its own function as

it going to be fully explained in the next pages.

Figure 2.2 PIC16F877A shape [4]

According to the Figure 2.3 we denoted that each pin has its own function so that to deal
with sensors and actuators several ports have been needed to response the programming

demand, therefore these ports are distributed as follows:

22

PORTA-RA#~ (pin2_ pin?) = 6 pins.

PORTB-RB# ~ (pin33 pin40) = § pins.

l

PORTC-RC# (pin23 _ pin26) *+ (pinl6 _ pinl8) = § pins.
PORTD-RD# ~ (pint 9 pin22) + (pin27 _ pin30) = § pins.

PORTE-RE# ~ (pin8 _pint O) = 3 pins.

All these ports can be used as inputs or outputs respectively but the important thing is to

know which kind of signal (digital or analog) they can carry.

40-Pin PDIP
MCLRNpp =[] 1 N] w—a- RB7/PGD
RADAND w—w[] 2 39 [] w—= RBEIPGC
RATANT w—[] 3 28 [] w—= RBA
RAZANZNREF-CVREF s [4 27 [] == RB4
RANANIVREF+ wimetee[] 5 %5 [] = RB3/PGH
RAHTOCKICIOUT a—ue[] & 35 [] tn- RB2
RASAN4ESIC20UT w—e[7 & 34 [J—w RE1
REORDANS w—w[]8 1= 33 []-a—e RBOANT
RE1AVRUANG ~—m[] 0 § 2 [#— Voo
RE2TSANT w—w[]10 < 310 a—7Vss
Vio—w 11 @ 0[]« RD7PSPT
Vss —w[12 15 29 [0w—= RDGPSPG
OSCICLK| e [] 12 = 28 [] === RDSIPSPS
0SC2CLKO —0 14 E o7 | —w RD4PSP4
RCOT10SOMICKl wepe[] 15 % [a=—s RCTRX/DT
RC1T10SICCP2 campe[] 15 95 [== RCBTXICK
RC2ICCP e[17 24 [a—a RC5B00
RCISCKSCL w—w[] 18 73 [a—e RC4/SDISDA
RDO/PSPO a—s-[] 10 7 [J +— RO3PSP3
RO1/PSP1 e [] 20 91 [w—te- RD2IPSPZ

Figure 2.3 The core architecture of PICt6F877A [4]

23

For example:

PIN 33 is a digital port so its signal needs to be converted in the case of analog signal,

whereas, pin 2 till pin 5 & pin 7 till pin 10 are analog ports.

Other pins are used either for power supplying or for another several purposes like

clocking system, interruption tasks, resetting the microcontroller.

Specifically, this kind of microcontroller PIC16F877A has five ports which mean it can

be applied for large control systems.

The PIC16F877A takes and supplies five volt and its current is limited to 20mA
therefore in the case of connecting power electronics piece then snubbers are required to

avoid the unwonted voltages values.

2.9 Summary

In this chapter, information has been fully presented about the microcontrollers,

specifically, the microcontrollers of microchip which is called PIC.

PIC16F877A was the kind of PIC microcontroller that we will use in this project; it is
the most suitable PIC for the elevator because of its high pins numbers distributed over

different five ports.

24

CHAPTER THREE

MICROBASIC LANGUAGE

3.1 Overview

This chapter presents an introduction to microBasic language, which is the software
used to program the PIC microcontroller. MikroBasic is a Windows-based Integrated

Development Environment, and is much more than just Basic compiler for PIC MCUs.

3.2 Advantages of MicroBasic

With mikroBasic, you can:

1. Create Basic source code using the built-in Code Editor

. Compile and link your source code

. Inspect program flow and debug executable logic with Debugger
. Monitor variables in Watch Window

. Get error reports

S » A W N

. Get detailed statistics (how compiled code utilizes PIC MCU memory, hex
Map, charts and more ...)

The parts of microBasic window have been explained to define the function of each
part, thus it appears in figure 3.1 respectively for each.
Code Editor features adjustable Syntax Highlighting, Code Assistant, Parameters
Assistant, Auto Correct for common typos, and Code Templates.
Code browser, Keyboard shortcut browser, and Quick Help browser are at your
disposal
For easier project management.
Error Window displays all errors detected during compiling and linking.

Watch Window enables you to monitor variables, registers and PIC MCU Memory.

25

New Project Wizard is fast, reliable, and easy way to create a project.
Source-level Debugger lets you debug executable logic step-by-step by watching

program flow.

& mrsDiesic for PL by mrolwareribus (KW ronrem f it Waeetarsomrimkrotiark AL zm sy P55 § 1 70V oustoedKoumtert. php

CARHE S IRACENITEE PSR AR N PURAARE @
: e Window
Comtiuar | mice | Remevd] | B R T e e g ed
B+ a
e e g
L3 Cmens
Cod i 20 trasn
€ QO :w con
EX l - o - ¥MSTANLY LYTRIAER TS
p orer Jbow ‘ *? THIEN - {00 PORES ALY GPMRVYY - 1
L veitns o TR ~ 400 Y PEKIAY AML ONERUIY e
Busse v nucewr = o o
Sariel | - o8
i PRI O Y dimanie Gaare amtascupas Prre R
o r & neimr-s iz
»y |' 5% FIKLTMBLIK v
"i s e THRIK -2
v . + 46 TemiL - #
romg g' 1 TEK » 9 ¢ wae dmtaran: eluid, »eass "’; ¥
Code P o Lo f:
. Lo - o
Editor > Inergt T "
v ol syt S e S
sentec g ¢
pos {1 o
® ey 3
.y { us 2 3 v
. 37 " >
Fuavinn 142
- MED e ! P DL 5 9EFS
] A0 ?
i et i iawente TSRS T — T | :
5 € s | Vo] ek X Breakpoints
T e - Y i Do P v e
E r R 108 Lobaws. 7§ an Wik Oivmdedoosd e NN lats e BILINCI M. ttorted
[rol Y O Lo f 1 Nicoew
o s o
Window ' il "
Code
Assistant

Figure 3.1 microBasic window parts [5]

3.3 Basic Editor Features

General code editing is same as working with any standard text-editor, including

familiar copy, Paste, and Undo actions, common for windows environment.

Advanced code editing includes:
- Adjustable Syntax Highlighting
- Code Assistant, Parameters Assistant, Code Templates

- Auto Correct for common typos

26

You can configure Syntax Highlighting, Code Assistant and Auto Correct from
Editor Settings dialog. To access this window, click Tools > Options from dropdown

menu, or click Tools icon in Settings toolbar, show Figure 3.2 below:

T e o |)
=

Coen
Paso Canect Sehone. [nbeclrean] Desxs | [Arm tuc ax vnariie]
A Compbe pansn ¢
Tools icon. Advwced A B 1 raise « 400 ' RL8: AL OUSPVLS
Cagtuord
TICOW « $FD ¢ set Lntscned vieck, seart i
100p1 ' engicax locyp
K 4% BaoxpC 22 40 hen
'l«i‘;y PURTE = B2
Gy & FORTE = 4
4 R dalay uy HHLOD]
Thens _‘_’J PORTA ~ $0LOLGI0Y
“Tewhbutey e 32
™ e ot Aonp
¥ bele ar * "Relie ouxida®
™ Uerboine Awin
™ Stkees XOVLY 10
Fore XKUYy PORTE
E «W “} -u{:‘ s
Sire ru‘“
l Of I Carce ;

Figure 3.2 Editor Sittings [5]

3.4 Creating First Project

Step 1

From a drop-down menu, select: Project> New Project, or click New Project icon

New PEg Lo
Save Project &s...
OperiProjock,,, Clil+0
Reopen »
f Edt Preject., .
A View Assembly
I viow statistics

Figure 3.3 Step One [5]
Step 2
Fill the New Project Wizard dialog with correct values to set up your new project.
- Select a device for your project from the drop-down menu

- Set configuration bits (Device Flags) by clicking Default push-button.

27

- Select Device Clock by entering appropriate value in edit box.

- Enter a name for your new project

- Enter project description edit box for closer information about your project

- Enter project path

Popsiliare: [MiPiaws!

PFlojc! P& § Jie)
Pogot Reecigtion

Device §ame: iPim?IA v I
“Device Flags: s

L0 _Lva Ol = $3007s
4 _LVZ_OKE ~ §31715
I BeDxt 08 5 $33YY;
[_BCDXN _OFPE = $33m¥;
SUATE_OFF - 29¥YY,
PURTE_OW « 3337,
BT_OM - aerys

W, _XPT_UNE « $3rW0:

=

Lk the checkbox oo e Ml
= toeeleet CONFIG word,

Deiaadt sotvgs are a2 folows
High Spsed 0ol (M5} snabizd
VachDog Time: WD T)- dscbied
Lo Veticas Piopiaaring ILVP)- dedbicd

¥ _¥S_0SC = $I5FN: 4 Defaik 4
[Xt o o #390D; e |
7 _LP_08C « $3BFCs v b i
Desice Lhck: OLOGOTOOD WH:
oK § Lonzel

Figure 3.4 Step Two [5]
After you have set up your project, select OK push button in New Project Wizard
dialog box. mikroBasic will create project for you and automatically open the program

file in code editor. Now we can write the source code.
Step 3

After you have successfully created an empty project with New Project Wizard,

Code Editor will display an empty program file, named same as your project.

28

" oo "MW ' W .”.R.
0 mi<ir';\I\ f~r 3,10 17°W ,,fl-ll. s IT \Proi:,n FIbiW,ueroci.tronlw\m'k~I~U,.,..,,,r10y, {,1L 1Y,

ily Eat cftedi b<li<t 11 > 1<l L.~ .
T - 1]} (M
~o~diogde, o o WSS fPU<~3T i
. 1l WIAo<Ito.
C..LI,II. |an.1,] 1.1, %00 s 35045050 11> rojoct ~-
~ A'D, 1 il
1 Mfn 1v-iedrue
C;Jh>\d< | ’ (1
-etf",rnW4 - &30;
1~ . rl«le r&ogeee qxi9 li.:e
111~14" <h > tn.
i
a“imml_
" 'r)!'u,,lm,
. s.Lit I,
L= jire~fit | Sevi'19'ee 1hticlttin, (It tyi.t-4"3}:

Figure 3.5 Step Three [5]

Now we can write the code for this simple example. We want to make LED diode
blink once per second. Assuming we have the configuration given in the following
figure, LED diodes are connected to PIC16F877 PORTB pins. (it can be any other
PIC that has PORTB)

PIC16F8TTA
+5V
ek "
e [PACTRAGTHY RBIPGD
[Qracase o [R —
g [] [jravant aas [l
[razasizavest- T |
[ravansaeets R3WPGH [
[rasrrock a2 [3R A L
[Jrasans st [}
b [Jreo@bians rasn [——_
@ +5Y RESWRIANG vea {] LBs
x 19 e
[REZCSIANT vss []
Vad rRoveser [3R AN L
t SE— Y ROGPSPS
R RO&PSPS [' P
osc2 Rowesre] 330R LB4
q'u' [Jrcomsoso mewrountf]
A [resriost reenwex]] 3R AP L,
Oreacers wesfl
(res scal]
AMHzZ Oroowsre rowrsps|] 33R NN i
ik (rowsrs rozwsezf]
3R AR L,
R AN |

Figure 3.6 Step Three [5]

29

In this configuration, LED will emit light when voltage on pin is high (5V), and
will be off when voltage on pin is low (OV). We have to designate PORTB pins as

output, and change its value every second. Listing of program is below

program My LED

main:

TRISB =O' configure pins of PORTB as output
eloop:

PORTB =$FF' tum on diodes on PORTB
delay ms(! 000) ' wait | second

PORTB =O' turn of diodes on PORTB

delay ms(IOOO)wait 1 second

goto eloop ' stay in a loop

end.

Step 4
Before compiling, it is recommended to save the project (menu choice File>Save
All). Now you can compile your code by selecting menu Run> Compile, or by clicking

the Compile icon.

*» ST
i
I
|
“{5 Togge Breskpent s

& Cear M Breatprinte i
& voasrodpons :

Figure 3.7 Step Four [5]
mikroBasic has generated hex file which can be used to program PIC MCU. But
before that, let's check our program with the Debugger. Also mikroBasic generates

list and assembly files.

30

Step 5

After successful compiling, we can use mikroBasic Debugger to check our program
behavior before we feed it to the device (PIC16F877 or other). For a simple program
such as this, simulation is not really necessary, but it is a requirement for more complex
programs. To start the Debugger, select Run > Debug, or click the Debug icon, or
simply hit F9.

[Comnie olefy |
= T T

B

& Tegse Bresipoint £S5
& Gear M Brearpning
& vowsapons

Figure 3.8 Step Five [5]

Upon starting the Debugger, Watch Window appears, and the active line in Code
Editor marks the instruction to be executed next. We will set the breakpoint at line
7 by positioning the cursor to that line and toggling the breakpoint (Run> Toggle
Breakpoint or F5). See the following image.
We will use the Step Over option (Run> Step Over or F8) to execute the current
program line. Now, you can see the changes in variables, SFR registers, etc, in the
Watch Window - items that have changed are marked red, as shown in the image
below.

We could have used Run/Pause (F6) option to execute all the instructions between

the active line and the breakpoint (Run > Run/Pause Debugger).

Step 6
Now we can use hex file and feed it to the device (PIC16F877 or other). In order
to do so hex file must be loaded in programmer (PIC Flash by mikroElektronika

or any other).

31

3.5 Error Window

In case that errors were encountered during compiling, compiler will report them
and won't generate a hex file. Error Window will be prompted at the bottom of the
main window.

Error Window is located under message tab, and displays location and type of
errors compiler has encountered. Compiler also reports warnings, but these do not
affect generating hex code. Only errors can interfere with generation ofhex.

Double clicking the message line in Error Window results in highlighting the line
of source code where the error took place.

Double clicking the message line in Error Window results in highlighting the line

of source code where the error took place.

A By Mooz | B Fina]

tre/Cdumn [Meszagatla | Messace Tex [Hosie
| {Lisz: 104, Cebumre 0] a0 Watring, Dermded bowd cole s S818 tpefevse s QB p. counted
e NS, Cobumes 18] 100 Syriax Enor: especled Eud ol e, tag PORTE' lourd Ch\Piogran Fle b odeibionkatribic asc Exa.
(G020 730, Columne 2] TOR Syrtax Ewor expaled)tk W haad CA\Progieen Flaa\M brosiektionkariticl ade\Exa

Figure 3.9 Error Window [5]
3.6 Assembly View

After compiling your program in mikroBasic, you can click toolbar Assembly icon
or select Project> View Assembly from drop-down menu to review generated
assembly code in a new tab window. Assembly is human readable with symbolic
names. All physical addresses and other information can be found in Statistics or
in list file.

Ifprogram is not compiled and there is no assembly file, starting this option will

compile your code and then display assembly.

32

B counedpber O3 mm}
iy 4
2, AN cwde yeiecaied by sikecVictadMNavdiine Loe FLE - V. 2.¢.0.0 }
3. Tata/Yama: FIIRIGENN 13:05:38
A IRZBL RETL://MWREKLCHLXLEGNIRE: DO YU
L
% (43 1] »arn
I e pEooGuIo JALUSERIL wvw
2 dntercupx:
* HOVWE 1 STACK 2
0 SRAREP 8TAYVS, V
bt} Ry sTaTV9
8 HOWWY 3 STACKS
3 Hovy MY
1 HOWE 4 _9TACK 0
18 NP 2CLATH, U
36 NOUWP | _STACE A
A xR oo
i3 HOVLY 1
R ADDWE msin_ylobal TiCounk,¥
20 Hyvwr wotn giobal TiCouor
&3 novLyY 1
s SUDVE wwia_global_TiCount, ¥
3 IS YTATYS, &
i@ oo & _ocounvexs 1
28 3_cowntesd 00
26 HOVY weln glodbal Counear 1, ¥
21 HOVWE maln_gicbal toTive
s vy sain globa)l toVeive, ¥ o
4 i) &
Qoinshite Beelwly Pt s Dok omeshe

Figure 3.10 Assembly View [5]

3.7 Statistics
After successful compiling, you can review statistics on your code. Select Project

~ View Statistics from drop-down menu, or click the Statistics icon.

There are five tab windows:

3.7.1 Memory Usage Window

Provides overview of RAM and ROM memory usage in form of histogram.

 Fovreasiions | Frscadsox (] Fasabres bocuboni | Fussertaar (s | R | ROM |
L+ 4

28 eed RAAY 2376 Usdd HEM

Figure 3.11 Memory Usage Windows [5)

33

3.7.2 Procedures (Graph) Window

Displays procedures and functions in form of histogram, according to their memory

allotment.

Figure 3.12 Procedures (Graph) Window [5]

3.7.3 Procedures (Locations) Window

Displays how procedures and functions are located in microcontroller's memory.

Figure 3.13 Procedures (Locations) Window [5]

34

3.7.4 Procedures (Details) Window

Displays complete call tree, along with details for each procedure and function:

size, start and end address, frequency in program, return type, etc.

ku-ymiw}m»zm‘wmrmilmn i
S wan

Compact & X A0 0 30 Yee: forosa LS son

ot G F < dvect PR P T ey el S e
R —
CPOARLF e 2yt Siew, m oy |1
e b Nk Vg

fond
& wrpet G sl ik Wﬁ - W_i 4

dlgx b A -
5 comveut O F e wnd mnd r‘-‘m W

Sy By bt L e R S I
) G G EL, i tote P IR [gy 3 (o i oy g |]
twitoact G 8wt 3. Ll A =

P HOUIL T e 2
g A T

gk L F.

& eangud CE et weCnte

Figure 3.14 Procedures (Details) Window [5]

3.7.5 RAM Window

Summarizes all GPR and SFR registers and their addresses. Also displays symbolic

names of variables and their addresses.

| Prand e bl | Poamibons fibiks] 0584 § R |
Gerend e w0 £49) Stecaindnnrgsmt KR

Wisen [Regue o R T Ifwasm 5 ja
[T) Gy Ree
L R BOES PUSING
NIE] BOES PASHED
NN ety gt PRI
WA e Gares MiGwn
N TR R FRK
N e BHE) SRR
3w G0 4k
N ey gOoF MR
ol X KR MTE POSHALY
(A e ed 2 MO MVIES
B conpat X8R vt e, e sH0 o83 Ut Lol 13 g
BT canmper TLF 2L AL S gt { wEle mUEw2
BONE swr L bW pen e, 2 fta ERE
BOBE 0¥ TP R I0G 20 M00 S T DY R
IR K DT P K DORA $1ates
DORYT oL, Lt res 40 s ot GO Ik
DOV oL, o e, ke, bt e, 2 OFT% THRIK
DR et LF, (b e s BORE 1OCER
I0ONC | coneat L8 Wt sum b) wijpom oscen -
4 o 4. - 0 - M ta awa |, cimnsen .

Figure 3.15 RAM Window [5]

35

3.7.6 ROM Window

Lists op-codes and their addresses in form of a human readable hex code.

Maviy e] Procnbows firahi! Bracubant portuny | Pracedaes b Rt RON ,|

£ [& o {w [4 j= [oo -
gor) G]m‘ Y (3 [2 Wy) wr nEs
G ook mea ske @ W Wi wy W aee
NN g wey coe (4413 LRe wir we 00 iy #ey
I o0 Joon MR Cum PRr TMT MED DA A Wb WEr
;a‘r“ P o ww @ I T o [(Y
(I T P T T 7 TR 7S I - TR T '~ 1
N o eIz B ear WE BES Oib WA wo e
7 i P ST R P T (313 P s o2 v
N fome mE oo MR me WIF Ww X W
GREeEP COT PRy Ch e W6 P G RKER e
09 a2 0 ;cmr s e ¥k € i 12 H5es
oxu [®PF gl feM COC WE» DOW HEBA WD DS
o e aw ww e oW B s g e e
WD s (oW B SIF S0 A ok fks oF W
GFd [WKP W3 KoM fom O SRS oW R mer s
Gm o jeme ey e mea mo wer e 40 ey o

peey e n ot - s otve wran o e wnnn e "

Figure 3.16 ROM Window [5]
3.8 Identifiers

Identifiers are names used for referencing the stored values, such as variables and
constants. Every program, procedure, and function must be identified (hence the

term) by an identifier.
3.8.1 Rules

Valid identifier:

1. must begin with a letter of English alphabet or possibly the underscore U
2. can be followed by alphanumeric characters and the underscore U

3. may not contain special characters:

l@uswl & () + =] ">

mikroBasic is not case sensitive. First, FIRST, and flrST are an equivalent identifier.

36

3.8.2 Note

Elements ignored by the compiler include spaces, new lines, and tabs. All these

elements are collectively known as the white space. White space serves only to make

the code more legible; it does not affect the actual compiling.

Several identifiers are reserved in mikroBasic - you cannot use them as your own

identifiers. Please refer to Kewords. Also, mikroBasic has several pre-defined

identifiers. Pre-defined identifiers are listed in the chapter Library Functions and

Procedures.

3.8.3 Examples

' Valid identifier examples

temperature VI

Pressure

no hit

dat

' Some invalid identifier examples

7temp ' cannot begin with a numeral
%higher ' cannot contain special characters
xor ' cannot match reserved word

j23.07.04' cannot contain special characters

37

3.9 Keywords

The following keywords (reserved words) cannot be redefined or used as identifiers.

Table3.1 Keywords [5]

a0so011ne aos

ana array
asm begin
ooolean case
Cllar cnr
Clear canst.
aiwv do
oouole else
ena exit

ror runcuon
goto gosuo

n mn

mt interrupt
B l00p
moo new
next not

or print
procedure program
nam reao
se1ecl step
sumg swncn
men to
module unnt
Inciuoe aimm
wena wniie
wim XOor

In mikroBasic, all SFR (Special Function Registers) are defined as global variables
and represent special reserved words that cannot be redefined. For example -
TMRO,PCL, STATUS, etc.

Also, mikroBasic has a number of predefined identifiers (refer to Library Routines).
These can be replaced by your own definitions, but that would impede

the functionality of mikroBasic.

38

3.10 Data Types

Type determines the allowed range of values for variable, and which operations
may be performed on it. It also determines the amount of memory used for one

instance of that variable.

3.10.1 Simple

To deal with programming within memory, the range of instructions should be known.

Table 3.2 Simples (5]

Type Size Range of values

byte 8-bit 0. 255

char* 8-bit 0. 255

word 16-bit 0 . 65535

short 8-bit -128 .. 127

Integer 16-bit -32768 .. 32767

1ongint 32-bit -2147483648 .. 147483647

3.10.2 Structured

Array represents an indexed collection of elements of'the same type, often called

the base type. Base type can be any simple type.

String represents a sequence of characters. It is an array that holds characters and

the first element of string holds the number of characters (max number is 255).

39

3.10.3 Sign

Sign is important attribute of data types, and affects the way variable is treated by
the compiler.

Unsigned can hold only positive numbers:
byte 0 .. 255
word 0 .. 65535

Signed can hold both positive and negative numbers:
short -128 .. 127
integer -32768 .. 32767
longint-2147483648 .. 214748364

3.10.4 Array

Array is a set of data stored in consecutive memory locations. Defining an array
and manipulating its elements is simple. Elements of array are always of same data type
(any simple).
dim days_of the week as byte[7]
dim months as byte[12]

dim AD Conversion_result as word|lii]

First declaration above generates 7 variables of byte type. These can be accessed
by array name followed by number in the square brackets [] (this number is also known
as index). Indexing is zero based, meaning that in our example, index spans numbers
from O to 6. Instead of byte, you can define array of any other simple type (word, short,

integer or longint).

40

Note that:
dim something as integer|[lO]

occupies 20 RAM locations (bytes), not 10.

3.10.4.1 Array and Operators

You can use any kind of operator with array elements - Arithmetic Operators,
Logical (Bitwise) Operators, and Relation (Comparison) Operators. Technically,
array element is treated as a simple type. Also, instead of a number, index can be

any expression with result type of byte.

For example:

m[a +b] =90

m[l] =m[2] + 67
m[1] =m[2] divm[3]

3.10.4.2 Array and PIC

When you declare an array, mikroBasic allocates a certain amount of RAM for it.
Elements of array consume consecutive RAM locations; in case of array of bytes, if the
address of m[O] is Ox23, m[l] will be at Ox24, and so on. Accessing these elements is
almost as fast as accessing any variable of simple type. Instead of byte you can define
array of any other simple type (word, short, integer or longint). Don't forget that you are
restricted by the amount of free space

in PIC RAM memory.

For example:

dim size as longint[10]

occupies 40 RAM locations (bytes).

41

P

Array is just a spedfied set
of data in memory,
stored in consequent
locations

PIC MCU RAM

Example:

program Array _test
dim mas byte[13]
dim j as byte[5]
jI0] = m[3]+6
m[4] = m[2] mod 3
j[2] = notj[O]

if m[O] >0 then

m[l] =9
else

m([l] =90
end if
end.

After you have declared an array,
for example:

dim m as byte[5]

you can easily access its elements
®m{0] ,m{1],m(2])....

Figure 3.17 Array and PIC [5]

42

3.10.5 Strings

String represents a sequence of characters. String type is similar to array, but can
hold only characters.
dim M _name as string[16)

dim Start message as string[6]

For each string declaration, compiler will reserve the appropriate amount of memory
locations. For example, string M_name will take 16+1 locations; additional
memory location is reserved to contain the length ofthe string.

If we assign string literal to variable M_name, M_name = "mik", then:
M_name[OJwill be 3 (contains length ofthe string)
M name[l) will be 'm'
M name[2] will be '
M name[3] will be k'

and all other locations will be undefined.

\
3.10.5.1 Strings and Assignment

Assignment operator can be used with string variables:
dim M as string[20]
S as string|8]
main:
M = "port" ' Assign 'port' to M
S = "portl" 'Assign 'portl' to S

end.

43

3.10.5.2 Length

mikroBasic includes a built-in function Length for working with strings:
sub function Length(dim text as string) as byte
It returns string length as byte, and is quite useful for handling characters within
string:
M = "mikroElektronika"
for i = | to Length(M)
LCD_ Chr(L,i,M[i])

nexti

3.11 If Statement

There are two forms of if statement:
Syntax of if. then statement is:
if expression then
statements

end if

where expression returns a True or False value. If expression is True, then statement
is executed, otherwise it's not.

Syntax of if... Then ...Else statement is:

if expression then
statements |

else

statements2

end if

44

Where expression returns a True or False value. If expression is True, then
statements! are executed; otherwise statements?2 are executed. Statementsl and

statements?2 can be statements of any type.

Nested if statements require additional attention. General rule is that the nested
conditionals are parsed starting from the innermost conditional, with each else bound to

the nearest available if on its left.

if expressionl then
if expression2 then
statements|

else

statements2

end if

end if

3.12 The Loops

Loops are a specific way to control the program flow. By using loops, you can
execute a sequence of statements repeatedly, with a control condition or variable to
determine when the execution stops.

You can use the standard break and continue to control the flow of a do..loop until,
while, or for statement. Break terminates the statement in which it occurs, while

continue begins executing the next iteration of the sequence.

45

mikroBasic has three kinds of control loop instructions:

* DO..LOOP UNTIL statement
e WHILE statement

* FOR statement

Note that certain operations may take longer time to be executed, which can lead to
undesired consequences. If you add two variables of short type and assign the result to
short, it will be faster than to add two longint and assign value to longint, naturally.
Take a look at the following code :

dim Sa as short

dim Sb as short

dim Saaaa as longint
dim Sbbbb as longint
for Sa=0to 100
Sb= Sb+ 2

next Sa

for Saaaa=0to 100
Sbbbb = Sbbbb + 2
next Saaaa

end.

PIC will execute the first loop considerably faster.

3.12.1 Do..Loop Until Statement
Syntax of do..loop statement is:
do

statement |

statement N

loop until expression

46

where expression returns a True or False value. Do..loop statement executes
statement 1 .. statement N continually, checking the expression after each iteration.
Eventually, when expression returns True, do..loop statement terminates. The sequence

is executed at least once because the check takes place in the end.

Example:

i=0

do

i=1%1"execute these 2 statements
,PORTB =1i"'until i equals 10 (ten)
loop until i= 10

3.12.2 While Statement

Syntax of while statement is:
while expression
statement 0

statement |

statement N

wend

Expression is tested first. If it returns True, all the following statements enclosed by
while and wend will be executed. It will keep on executing statements until the
expression returns False.

Eventually, as expression returns False, while will be terminated without executing
statements.

While is similar to do..loop until, except the check is performed at the beginning of

the loop. If expression returns False upon first test, statements will not be executed.

47

while 1 <90

while i >0
1=1div3
PORTA= i

wend

3.12.3 For Statement

For statement requires you to specify the number of iterations you want the loop
to go through. Syntax of for statement is:
for counter= initial Value to final Value [step step value]
statement 1

statement 2

statement N

next counter

Where counter is variable; initial Value and final Value are expressions compatible
with counter; statement is any statement that does not change the value of counter; step

value is value that is added to the counter in each iteration.

Step value is optional, and defaults to | if not stated otherwise. Be careful when
using large values for step value, as overflow may occur. Every statement between for

and next will be executed once for each iteration.
Example:

Here is a simple example of a for loop used for emitting hex code on PORTB.

Nine digits will be printed with one second delay, by incrementing the counter.

48

for i=1t09
portb =i
delay ms(1000)

next i

3.13 Summary

In this chapter, while the importance of microBasic language exercising its influence
through PIC microBasic compiler, detailed information have been denoted and covered.
This compiler was one of the best programming software for microcontrollers, thus

it is used for our application in this project.

49

CHAPTER FOUR
THE PIC PROGRAMMER

4.1 Overview

This chapter presents information on PIC microcontroller. General characteristics of
PIC microcontroller in addition to its characteristics which gives a significant role

among the control fields are presented.

4.2 The Characteristics of PIC Microcontroller

The PIC programmer is able to program most microchip 8,14,18,28 and 40
microcontrollers, from both Mid-range 16xxx and High-End 18xxx microcontrollers,
using the IC-Prog Universal Serial programmer which is free software. Along with the
programmer and the microcontroller; a wall mount power supply of 12-15Volts DC
output, which can supply a minimum of 200mA of current is needed.
Using a parallel port extension cable, will make your life easier, especially when the
microcontroller many times is needed to be programmed, but still the programmer
directly to the parallel port of your PC can be connected. Settlement of the different

Microchip microcontrollers:

Figure 4.1 PIC programmer

50

- ol ; —

I

1

K
8-PI

NId-82

rY
1

— ZIF Socket |-i-
- 40-PIN ['"

Nid -0

l

L4

B
181

— b | 7w

—— o § Gy

—— o | G

- = 20

Figure 4.2 Different PIC layout

the manual should be always consulted before inserting any device in the ZIF Socket.

4.3 Supported Microcontrollers

Microchip microcontrollers is Pin-Out Compatible, that is, all the same pin count
PIC microcontrollers can be programmed by using the same hardware, using a
compatible software is provided, the PIC Programmer circuitry can support the

Microchip 8, 14, 18, 28, 40 Pin microcontrollers.

51

The IC-Prog Universal Serial Programmer Verl.05C supports the following PIC

microcontrollers in table 4. 1:

Table 4.1 The supported microcontrollers

12C508 16C73A 16C765 18F242
12C508A 16C73B 16C770 18F248
12C509 16C74B 16C771 18F252
12C509A 16C76 16C773 18F258
12C671 16C77 16C774 18F442
12C672 16F72 16C781 18F448
12F629 16F73 16C782 18F452
12F675 16F74 16F818 18F458
16C433 10F76 16F819 18F1320
16C54 16F77 16F870 18F2.320
16C56 16C622 16F871 18F4320
16CS& 16C622A 16F872 16F84
16C61 16F627 16F873 16F84A
16C62A 16F628 16F873A 16C84
16C62B 16F630 16F874 16F876
16C63 16F676 16C923 16F8?76A
16C63A 16C710 16C924 16F877
16C64A 16C711 16C620 16F877A
16C65A 16C712 16C620A

16C6SB 16C715 16C621

16C66 16C716 16C621A

16C67 16C717 16F83

16C71 16C745

16C72 16C505

16C72A

4.4 Setting the IC Prog software

Copy-paste the hole folder named IC-Prog from the CD-ROM as it is to the desktop,
copying the program alone is forbidden whereas the hole folder can be copied, then it

should be able to be operated from its folder.

52

4.5 Troubleshooting

This device is experimentally tested and verified to be operating fine, any comments
regarding this device would be appreciated, perform this procedure if any error

messages ocCcur:

1) The IC-Prog software should be opened from the Settings pull-down menu; select

Hardware (or F3 can be pressed directly), the following window should appear:

Hardware settings o e ~
P : ;
rogrammer lﬁfeﬁ"?é&?ﬁo "
IProPic 2 Programmer)
7" \Nindows API
+Ports --- -communicaiion
~ LPT1 P' Invert Data Out
(" LPT 2 P' Invert Data In
" LP13 P' Invert Clock
V LPT 4 I Invert MCLR
00 Delay (4) I Invertvee
r I Invert vPP
JoetueL 41000 I 11 11141
OK ‘ L ~nce,l ..

Figure 4.3 IC-Prog Hardware settings window

If it is not as Fig.2 then it should be configured to be so.

2) If Windows XP are used or Windows 2000, then it should be made sure that the
WinNT/2000/XP driver is installed, to check it; the program has to be opened from the
Settings pull-down menu; selecting Options, then selecting the Misc tap, checking the

"Enable NT/2000/XP Driver" check box, it should lock like the following window:

53

Confirmstion | Ntificaon | PC | Pragramming | Shotcuts |

Drag & Drop [Sarcad l Language] Shel {::::_‘:3

Optione :
Wik« ¥ Enalsic NTf20004<P Driver
® moimsl
1 Enable Yee control for JDM
(" High I~ Make all oLiputs high (Combi)
¢ Rosltine I~ Sekct device from file

DRl . |

Figure 4.4 IC-Prog Options window

If the window doesn't appear to be like Fig.4.4, then the IC-Prog folder must be
opened to make sure that the "IC Prog" driver is installed in the same folder of the I1C-

Prog.exe; like the following folder window:

He e g rpote e
O - Q7SR |2

DI L — ' B

In
Ay irpreg
Lrvuarmal SoadiOevece Fragen..
P
g
@ Qystemiis
S8
4 Tgpreg
. Complat 17138 Halp din
7 3368

| 3 Ve s oxerfckisr
|) ko da o
e Wan

§3 Shere tis feldar

Olber Plices

| e oromt
€3 M Boasments
i Shared Donaments
i M Conpi

S 2y BetsorkHaces

Figure 4.5 IC-Prog containing Folder

54

4.6 Common Errors

4.6.1 Privileged Instruction

In the case of using windows XP and when an error message "Privileged instruction”
appears then the program hangs-out, so a driver is used to solve this problem, from the CD-
ROM included with the device, IC-Prog folder must be opened, then WinXP driver folder,
and copying the driver "icprog" to the same folder of the IC-Prog software, (i.e. If you run the
IC-Prog from C:\Program Files\IC-Prog, then the driver should be pasted in C:\Program
Files\IC-Prog). Then during the program pressing ok to the Error message, going to Settings
pull-down menu, selecting Options, selecting the Misc tap checking the box "Enable
NT/2000/XP Driver", pressing OK to the message appears, the IC-Prog will then restart, then

the device should program properly.

4.6.2 Varify Failed

The IC-Prog operates fine but while programing a device; a "Verify failed at address OOOOh!"
message appears,thus the following stepes should be followen:

1) Checking if the parallel port cable is well connected to the programmer and the PC port.

2) Checking the settlement ofthe device on the ZIF socket.

3) Checking the power supply is well connected to the programmer hardware, the ON led
should be well lighting, if it is not the case, then probably the power supply is not sourcing

enough current, trying to change the power supply.

4.7 Summary

This chapter has included the information about how to deal with PIC programmer and

how to fit the suitable kind of PIC with its true position upon the programmer.

99

CHAPTER FIVE
ELEV ATOR PROTOTYPE USING
MICROCONTROLLER

5.1 Overview

This chapter presents a description for the project and the circuit analysis, beside to
the elevator's microBasic program, fully detailed explanation over whole system follows

in this chapter.

5.2 The Project Description

The project is all about elevator uses PICI6F877A microcontroller, thus it

separated into hardware and software action, it consists of three storeys, the shape of the

elevator is in figure 5.1 below:

Figure 5.1 The prototype elevator

56

5.2.1 The Electronic Parts

The electronic Parts that were used in the project are denoted below:

Table 5.1 The used electronic pieces

The electronic piece Appliances
Red led 4
Green led 3
Yellow led 3
Regulator 7805 (5V,1A) |
Oscillator (crystal) |
Multilayer capacitor (0.1 Uf) 2
Capacitor (22PF) 2
Capacitor (220uF-35V) |
Capacitor (220uF-25V) |
Resistor (3000) 6
Resistor (4.7kii) 3
Resistor (51 Oii) 9
Resistor (1 Okii) 4
Resistor (1kii) I
Transistor NPN (2N2222) 3
L293B |
Push button 4

Adaptor (AC-DC-{++)

Stepper motor

PICI6F877A

57

~.2.2 The Circuit Connections

The circuit was built according to the characterizes of PIC16F877A microcontroller, thus

different voltage values usage was avoided by using opto couplers, the figure 5.2 shows

circuit diagram of'the elevator.

ov
+V

/ZS, LED3 4
510

%1103 LED3 #ZS LED2 I% LED24Z2S LED2 LED1 (%f LED1 /7% LED1
510 510 510 510 510 510 510 510

10k
14
ov sy
+V +V
ov sy
v ou 'I 10k
gJ 2 PIC16F877A
Stepper 3-{ U 3—
motor _‘__t
0.1ufF -
(il R
1h

2

1

SOLENOIDE

22pF 2L 3

¥ 1 exc
= ='I 4.000MHZ b

I

TTTTT TT
w
|
»

0.1uF

TTTTT

L293B

A+<

OPTOISO

12V ¢
4V ‘OCK'
§

2N2222

Figure 5.2 Elevator circuit diagram

5.3 The Circuit Analysis

The circuit is a combination of several special circuits to arrive the required purpose till

actuate the elevator properly, microcontroller, IC, coils applications devices and protection

pieces are used.

58

5.3.1 The Power Circuit

AC-DC adaptor is used as a supplier for the circuit, thus it gets the voltage from
the common AC voltage source (230V-50Hz), it has 230V-50Hz 12W in its Primary
side, whereas it has 12V == 500mA 6VA in its secondary side, the 7805 regulator is
used to regulate the voltage value till 5V and a maximum current limited up to | A, the
capacitors are used to filtrate the signal, where the red led is located to indicate the
power existence and 1K.O. resistor is connected to the led for limiting the entering

current to avoid burning the led, figure 5.3 shows the power circuit diagram.

7805
BRIDGE 5V

TRANS -1C 1K
+ SIE RESISTOR
& J\ g T”O“F » LED1

Figure 5.3 The power circuit

5.3.2 The PIC16F877A Related Circuit

The PIC16F877A has its own configured circuit, thus pin one (MCLR) is the pin
where resets the downloaded program during pressing on the reset push button,
Oscillator is used to clock wising till timing the instruction in a specific interval points
to how much fast achieving the program process, the voltage is supplied through certain

pins while the grounding occur by other pins as shown in figure 5.4 below:

ov 5V
v +V
5—3 PIC16F877A
-{ 10k
1\

SV

5V +V
+V

32 _l—j_
0.1uF ? al 0.1uF

Ti‘l—f:

:

= 4.000MHZ

[N)
= o
L i

5]

o]

et

N
N

5 &

Figure 5.4 The 16F877A related circuit

59

5.3.3 The 1/0 Ports Connections

The /O ports can be chosen among five groups according to the required process

that needs to actuate specific amount of sensors and actuators, thus the ports are :

PORTA-RA#-+ (pin2_pin7) = 6 pins.

PORTB-RB# -t (pin33_pin40) =8 pins.
PORTC-RC#+ (pin23 _pin26) + (pinl6 _ pinl8) = § pins.
PORTD-RD#+ (pinl9 pin22) + (pin27 _pin30) = § pins.

PORTE-RE#-+ (pin8 pinlO) =3 pins.

5.3.3.1 Leds Circuit Connection

The leds are used in our project as different colors tell that which level of elevator
that we are in. Thus each color has its own threshold voltage, so several values of

resistors should be connected to protect leds, in our project it behaves as an output.

5.3.3.2 Push Button Connection

A push-to-make switch returns to its normally open (OFF) position when the
button is released, this is shown by the brackets around ON. This is the standard

doorbell switch, thus in our project it behaves as a sensor (input).

5.3.3.3 Solenoid Locks Connection

This solenoid locks have been connected to the circuit for adapting the case of doors
during the movement of elevator's box, thus in the case of affecting by electrical pulse,

it going to be open immediately, while normally they are closed.

60

The solenoid lock needs more than 12V whereas 5V is supported from PIC which
means that it needs external voltage to be actuated, so, to solve this problem the opto

couplers are used as shown in figure 5.5 below:

from the PIC 5v +V

+V Z
sy 4V A
i OPTOISO -
_EF?*K: 4.7k
2N2222

300 300

Figure 5.5 Solenoid locks connection

5.3.3.4 Stepper motor connection

Stepper motors operate differently from DC motors. When power is applied to a DC
motor, the rotor begins turning smoothly. Speed is measured in revolutions per minute
(RPM) and is a function of voltage, current, and load on the motor. The precise
positioning of the motor's rotor is not usually possible or desirable. A stepper motor, on
the other hand, runs on a controlled sequence of electric pulses to the windings of the
motor. Each pulse rotates the stepper motor's rotor by a precise increment. Each
increment of the rotor is referred to as a step, hence the name stepper motors, from
figure 5.2 we observe that L293B should be connected to the stepper motor,
respectively each pin responsible to actuate certain coil in the stepper motor during tidy

steps programmed as elevator up or down.

61

5.4 The Elevator's microBasic Program

The software can be briefly described and fully listed in an appendix at the end
of the project.

5.6 Summary

This chapter presented the circuit analyses that are used in the projects and how
they function, how they must be connected beside it talked about the project description

and the elevator's microBasic program.

62

CONCLUSION

In this project we have arrived to many points. We tried to apply the optimum
controlled design while we were developing the system, so all were about how to deal
with the programmed systems instead ofthe wired control system.

When we started the project, we were realizing the importance of the elevators
in our modem life where the people look for comfortable applications.

Many software programs were required such as the microBasic compiler and the
ICprog, whereas the hardware side was represented as the programmer device and the
driving elevator circuit.

The PIC16F877A was used because of its several good features, the PIC
microcontrollers were more preferable than any wired system, actually, the trouble
shooting
simplicity during the programmable system against the complicated wired system was
the main reason of compensation the PIC in the long buildings, manufacturing
applications and in carrying heavy targets.
followed respectively. A fully detailed explanation was provided in the chapters as
following:

The first chapter represented classification of electronic components which used
in the elevator prototype project, the data sheets, pieces shapes and their functions were
included into this chapter.

Chapter two 1is devoted to the microcontrollers generally whereas the
PIC 16F877 A was specified because of its adjectives which give it impartiality existence
in the manufacture control fields.

Chapter three presented the information about the microBasic language and its
compiler which convert the instructions among the user and the programmer.

Chapter four is devoted to the programmer and its construction with a
declaration of the PIC's that can be placed upon the Ziff socket.

Chapter five talked about the elevator prototype using microcontrollers' project,

circuit diagrams are explained with their functions.

63

REFERENCES

[1] John Lovine, PIC microcontroller project book, second edition,
McGraw-Hill, New York 2004.

[2] Nezar Khateb, system design using Microchip controller, first

edition, RAY publishing and science, Syria 2001.

[3] Electronic Al Baheth center, advance control system using PIC
microcontrollers, course duration: 40 hours, Amman_2005.

[4] PIC microcontrollers, http://www.mikroelektronika.co.yu/english/
product/books/ PIC book/ I-chapter.htm, 2005.

[5]Basic compiler for Microchip PIC microcontrollers, user's manual,
http://www.mikroelektronika.co.yu, 2005.

[6] http://www.resistor.com

[7] http://www.audioheritage.org/main/html/products/altec/604. Html

[8] http://www.statcounter.com

[9] http://www.thel2volt.com

[10] http://www.thel2volt.com/diodes/diodes.asp

64

APPENDIX

The microBasic elevator program is listed below:

khkkkkkkhkkhhkhkkhkhhhkrhkhhhkrhhhhhhhhhkrhkhhhrhkhhhrhhhhrkhhkxkd%x

program Khaled Elevator

DIM I AS BYTE

DIMJ AS BYTE

DIM ONE FLOOR AS BYTE

DIM CURRENT POSITION AS BYTE

SUB PROCEDURE MOVE_STEPPER (DIM POSITION AS BYTE, DIM
DIRECTION AS BYTE)
IF DIRECTION== | THEN 'UPPER MOVING: ASUMING THAT THE
CONFIGURATION OF
FOR I== 0 TO POSITION 'THE STEPPER INPUTS WILL MOVE THE
ELEVATOR UP
FOR J =0 TO ONE FLOOR
PORTC.O = |
DELAY_ MS(10)
PORTC.I = I
DELAY_ MS(10)
PORTC.2 = |
DELAY_ MS(IO)
PORTC.3 = |
DELAY_ MS(1O)
NEXT]J
NEXT 1
END IF

65

IF DIRECTION= 0 THEN 'DOWN MOVING
FOR I-=0 TO POSITION

FOR J=0 TO ONE FLOOR
PORTC.3 =1

DELAY MS(IO)
PORTC.2 = |
DELAY_MS(I 0)
PORTC.1 =1
DELA Y_MS(IO)
PORTC.O= |
DELAY MS(IO)
NEXT]J
NEXT 1
END IF

END SUB
'main procedure
main:
TRISA= OXFF
TRISB =0
TRISC =0
CURRENT POSITION =0

ONE_FLOOR= 20
LOOPS OF THE

'"THE ONE_FLOOR IS THE VALUE OF THE NUMBER OF

' STEPPER TO MOVE FROM ONE FLOOR TO ANOTHER

#F**YOU SHOULD TEST AND CALIBRATE THIS VALUE FOR THE
OPTIMAL

'PERFORMANCE**###%*

wExA*THE VALUE OF 20 DOESN'T MEAN ANY THING YET*#**
RUN TIME:

66

stk GROUND FILOQR % %k ks s etk o
IF PORTA.3 =0 THEN
SELECT CASE CURRENT POSITION
CASE 0 'IF THE ELEV ATOR IS ALREADY IN THE GOUND
FLOOR
GOTO GROUND FLOOR

CASE | 'IF THE ELEVATOR IS IN THE FIRST FLOOR
MOVE_STEPPER(],0) 'MOVE DOWN TO THE GROUND FLOOR

CASE 2 'IF THE ELEVATOR IS IN THE SECOUND FLOOR
MOVE_STEPPER(2,0) 'MOVE DOWN TO THE GROUND FLOOR

END SELECT
GROUND FLOOR:

PORTB.O = | 'DIRECTLY ENABLE GROUND SOLENOID (OPEN THE
DOOR)

CURRENT POSITION= 0 'MARK THE CURRENT POSITION AS GROUND
FLOOR

END IF

"'”********FIRST FLOOR*****************

IF PORTA.4 =0 THEN
SELECT CASE CURRENT POSITION

CASE 0 'IF THE ELEV ATOR IS IN THE GOUND FLOOR
MOVE_STEPPER(],1) 'MOVE UP TO THE FIRST FLOOR
CASE | 'IF THE ELEV ATOR IS ALREADY IN THE FIRST FLOOR

GOTO FIRST FLOOR
CASE 2 'IF THE ELEVATOR IS IN THE SECOUND FLOOR

MOVE_STEPPER(],0) 'MOVE DOWN TO THE FIRST FLOOR
END SELECT

67

FIRST FLOOR:

PORTB.I = | 'DIRECTLY ENABLE FIRST SOLENOID (OPEN THE
DOOR)

CURRENT POSITION = | 'MARK THE CURRENT POSITION AS GROUND
FLOOR

END IF

sk sk ko %k QECOUND FLOQR ke s s ke
IF PORTA.5 = 0 THEN
SELECT CASE CURRENT POSITION
CASE 0 'IF THE ELEVATOR IS IN THE GOUND FLOOR
MOVE STEPPER(2,1) 'MOVE UP TO THE SECOUND FLOOR

CASE | 'IF THE ELEVATOR IS IN THE FIRST FLOOR
MOVE_ STEPPER(l,1) '™OVE UP TO THE SECOUND FLOOR

CASE2 'IF THE ELEVATOR IS ALREADY IN THE SECOUND
FLOOR
GOTO SECOUND FLOOR
END SELECT

SECOUND FLOOR:

PORTB.2 = | 'DIRECTLY ENABLE SECOUND SOLENOID (OPEN THE
DOOR)

CURRENT POSITION =2 'MARK THE CURRETN POSITION AS SECOUND
FLOOR

END IF

GOTO RUN TIME

end.

3k st st s s sk ok sk sk sk sk sk sk s sk sk sk sk sk sk sk sk s s sk sk sk sk sk sk sk s s sk sk sk sk sk sk sk sk sk sk sk sk ok ke sk sk sk skoskoskoskok

68

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGMENTS

	Page 3
	Titles
	ABSTRACT

	Page 4
	Titles
	INTRODUCTION

	Page 5
	Page 6
	Tables
	Table 1

	Page 7
	Tables
	Table 1

	Page 8
	Titles
	····~···

	Tables
	Table 1

	Page 9
	Titles
	CHAPTER ONE

	Page 10
	Images
	Image 1

	Page 11
	Images
	Image 1

	Page 12
	Page 13
	Titles
	-
	I p lıj ı---------

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 14
	Images
	Image 1
	Image 2
	Image 3

	Page 15
	Titles
	~iiq~©

	Images
	Image 1

	Page 16
	Images
	Image 1

	Page 17
	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1
	Image 2

	Page 19
	Images
	Image 1

	Page 20
	Page 21
	Titles
	CHAPTER TWO

	Page 22
	Page 23
	Tables
	Table 1

	Page 24
	Images
	Image 1

	Tables
	Table 1

	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Tables
	Table 1

	Page 30
	Titles
	,~- .. ~

	Tables
	Table 1

	Page 31
	Images
	Image 1

	Page 32
	Page 33
	Titles
	CHAPTER THREE

	Page 34
	Images
	Image 1

	Page 35
	Images
	Image 1
	Image 2

	Page 36
	Images
	Image 1

	Page 37
	Titles
	29

	Images
	Image 1

	Tables
	Table 1

	Page 38
	Images
	Image 1

	Page 39
	Images
	Image 1

	Page 40
	Images
	Image 1

	Page 41
	Images
	Image 1
	Image 2

	Page 42
	Images
	Image 1
	Image 2

	Page 43
	Images
	Image 1
	Image 2

	Page 44
	Titles
	- ! @#$%I\ & * () +' - = { } [] : " ; I<>?'./ I\

	Images
	Image 1

	Page 45
	Page 46
	Tables
	Table 1

	Page 47
	Tables
	Table 1

	Page 48
	Page 49
	Page 50
	Images
	Image 1

	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Titles
	CHAPTER FOUR

	Images
	Image 1

	Page 59
	Images
	Image 1

	Page 60
	Tables
	Table 1

	Page 61
	Tables
	Table 1

	Page 62
	Images
	Image 1
	Image 2

	Page 63
	Titles
	55

	Page 64
	Titles
	CHAPTER FIVE
	ELEV ATOR PROTOTYPE USING

	Images
	Image 1

	Page 65
	Tables
	Table 1

	Page 66
	Images
	Image 1
	Image 2

	Page 67
	Images
	Image 1
	Image 2

	Page 68
	Page 69
	Images
	Image 1

	Page 70
	Page 71
	Titles
	CONCLUSION

	Page 72
	Titles
	REFERENCES

	Page 73
	Titles
	APPENDIX
	**

	Page 74
	Page 75
	Page 76

