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5. SPEECH FEATURE EXTRACTION AND VECTOR QUANTIZATION 

5.1 Overview 

Speech feature extraction is one of the fundamental steps in any speaker recognition system. 

This Chapter describes how the speech feature extraction and vector quantization steps can be 

carried out in a speaker recognition system. 

5.2 Speech Feature Extraction 

There are several methods of speech feature extraction. Some commonly used methods are 

Linear Predictive Coding (LPC), Linear Predictive Cepstral Coefficient (LPCC) and Mel 

Frequency Cepstral Coefficients (MFCC). 

5.2.1 Linear Predictive Coding (LPC) 

Linear predictive coding (LPC) is one of the earliest standardized coders. LPC has been 

proven to be efficient for the representation of speech signal in mathematical form. LPC is a 

useful tool for feature extraction as the vocal tract can be accurately modelled and analysed. 

Studies have shown that the current speech sample is highly correlated to the previous sample 

and the immediately preceding samples [30]. LPC coefficients are generated by the linear 

combination of the past speech samples using the autocorrelation or the auto variance method 

and minimizing the sum of squared difference between predicted and actual speech sample.  

𝑥  𝑛 = 𝑎1𝑥 𝑛 − 1 + 𝑎2𝑥 𝑛 − 2 + ⋯𝑎𝑀𝑥 𝑛 − 𝑀 =  𝑎𝑖𝑥 𝑛 − 𝑖 

𝑀

𝑖=1

 

𝑥 ̃(𝑛) is the predicted 𝑥 𝑛  based on the summation of past samples. 𝑎𝑖  is the linear prediction 

coefficients. M is the number of coefficients and n is the sample.  

The error between the actual sample and the prediction can then be expressed by 

ℰ 𝑛 = 𝑥 𝑛 − 𝑥 (𝑛) 
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ℰ 𝑛 = 𝑥 𝑛 − 𝑎𝑖𝑥 𝑛 − 𝑖 

𝑀

𝑖=1

 

𝑥 𝑛 =  𝑎𝑖𝑥 𝑛 − 𝑖 

𝑀

𝑖=1

+ ℰ(𝑛) 

The speech sample can then be accurately reconstructed by using the LP coefficients 𝑎𝑖  and 

the residual error ℰ(𝑛). ℰ 𝑛  can be represented by the following in z domain. 

𝐴 𝑧 = 1 − 𝑎𝑖𝑧
−𝑖

𝑀

𝑖=1

 

The figure below shows the analysis filter   

 

 

[31] 

The transfer function H(z) can be expressed as an all pole function , where G represents the 

gain of the system. 

𝐻 𝑧 =
𝐺

1 −  𝑎𝑖𝑧
−𝑖𝑀

𝑖=1

 

The figure below shows the speech synthesis filter 

 

 

[31] 

 

  

Figure 5.1 Speech Analysis Filter 
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Figure 5.2 Speech Synthesis Filter 
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Schroeder [32] mentioned that the LPC model can adequately model most speech sound by 

passing an excitation pulse through time-varying all-pole filter using LP coefficients. S. 

Kwong [33] considers LPC as a method that provides a good estimate of the vocal tract 

spectral envelope. Gupta [34] mentioned that LPC is important in speech analysis because of 

the accuracy and speed with which it can be derived. The feature vectors are calculated by 

LPC over each frame. The coefficients used to represent the frame typically ranges from 10 to 

20 depending on the speech sample, application and number of poles in the model. However, 

LPC also have disadvantages. Firstly, LPC approximates speech linearly at all frequencies that 

is inconsistent with the hearing perception of humans. Secondly, LPC is very susceptible to 

noise from the background which may cause errors in the speaker modeling.  

5.2.2 Linear Predictive Cepstral Coefficients 

Linear predictive cepstral coefficients (LPCC) combine the benefits of LPC and cepstral 

analysis and also improve the accuracy of the features obtained for speaker recognition. LPCC 

is equivalent to the smooth envelop of the log of the speech that allows for the extraction of 

speaker specific features.  The block diagram of the LPCC is shown in the figure below [31]. 

 

 

 

 

 

 

 

 

LPC is transformed into cepstral coefficients using the following recursive formula 

 

𝑐1 = 𝑎1  

Figure 5.3 Block diagram of Linear Predictive Cepstral Coefficient 
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𝑐𝑛 = 𝑎𝑛 +   1 −
𝑘

𝑛
 𝑎𝑘𝑐𝑛−𝑘

𝑛−1

𝑘=1

 

where 𝑐𝑖  and 𝑎𝑖  are the ith-order cepstrum coefficient and linear predictor coefficient, 

respectively. Atal [35] did a study on various parameters for the LPC and found the cepstrum 

to be the most effective parametric for recognition for speakers. Eddie Wong [36] mentioned 

that LPCC is more robust and reliable than LPC. However, LPCC also performs poorly under 

noisy environment. 

5.2.3 Mel-Frequency Cepstral Coefficients (MFCC) 

Mel-frequency Cepstral coefficient is one of the most prevalent and popular method used in 

the field of voice feature extraction. The difference between the MFC and cepstral analysis is 

that the MFC maps frequency components using a Mel scale modeled based on the human ear 

perception of sound instead of a linear scale [7]. The Mel-frequency cepstrum represents the 

short-term power spectrum of a sound using a linear cosine transform of the log power 

spectrum of a Mel scale [31]. The formula for the Mel scale is  

𝑀 = 2595 log10  
𝑓

700
+ 1  
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Vergin [37] mentioned that MFCC as frequency domain parameters are much more consistent 

and accurate than time domain features. Vergin [37] listed the steps leading to extraction of 

MFCCs: Fast Fourier Transform, filtering and cosine transform of the log energy vector. 

According to Vergin [38], MFCCs can be obtained by the mapping of an acoustic frequency to 

a perceptual frequency scale called the Mel scale. MFCCs are computed by taking the 

windowed frame of the speech signal, putting it through a Fast Fourier Transform (FFT) to 

obtain certain parameters and finally undergoing Mel-scale warping to retrieve feature vectors 

that represents useful logarithmically compressed amplitude and simplified frequency 

information [39]. Seddik [40] mentioned that MFCC are computed by applying discrete cosine 

transform to the log of the Mel-filter bank. The results are features that describe the spectral 

shape of the signal. Rashidul [7] describe the main steps for extraction of MFCC, shown on 

figure. The main steps are as follow: pre-emphasis, framing, windowing, perform Fourier fast 

transform FFT), Mel frequency warping, filter bank, logarithm, discrete Cosine transform 

(DCT). 

 

 

 

 

 

 

 

 

[31]. 

The main advantage of MFCC is the robustness towards noise and spectral estimation errors 

under various conditions [41]. A. Reynolds did a study on the comparison of different features 

and found that the MFCC provides better performance than other features [42]. 

Figure 5.5 Block diagram of Mel-Frequency Cepstral 

[]Coefficient 

A/D Pre 

emphasis 

Framing/ 

Windowin

g  Speech Input 

Fourier 

Transform 

Mel-

frequency 

wrapping 

                  

Logarithm 

Discrete 

Cosine 

Transform 

Mel-Frequency 

Cepstral 

Coefficients 



49 
 

   

 

 

5.2.3.1 Sampling 

In sampling the data, the digitized audio signal is considered as formed of a set of discrete 

values on regular intervals, and thus one has to ensure that the sample rate is high enough so 

that there are sufficient points to characterize the waveform. Sampling should be at least twice 

the frequency of the waveform as indicated by Nyquist‟s theorem in (e.g. frequency of 4 kHz 

should be sampled at 8kHz).  Common sampling rates are 8000, 11025, 22050 and 44000. 

Usually, 10 kHz and above are used. 

 

5.2.3.2 Framing and windowing  

Speech is a dynamic and non-stationary process, as the amplitude of the speech waveform 

varies with time due to variations in the vocal tract and articulators. However, speech analysis 

usually presumes that the statistical properties of the non-stationary speech process change 

relatively slowly over time. Although this assumption is not strictly valid, it makes it possible 

to process short-time speech frames, ranging typically from 10 ms to 40 ms, as a stationary 

process. Generally speaking, the use of short frame duration and overlapping frames is chosen 

to capture the rapid dynamics of the spectrum. Speech parameters are extracted on a frame-by-

frame basis and the amount of overlap determines how quickly parameters can change from 

frame to frame. As shown in the Figure 5.8, the speech signal is slowly varying over time and 

it is called quasi- stationery. The framing process is shown in Figure 5.7. 

 

The speech signal is slowly varying over time (quasi-stationary). When the signal is examined 

over a short period of time (5-100msec), the signal is fairly stationary. Therefore speech 

signals are often analyzed in short time segments, which are referred to as short-time spectral 

analysis. This practically means that the signal is blocked in frames of typically 20-30 msec. 

Adjacent frames typically overlap each other with 30-50%, this is done in order not to lose any 

information due to the windowing. 
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Figure 5.6 Speech signal varying over time (quasi- stationary). [1] 

 
Figure 5.7 Framing the signal. [25] 

 

    

After the signal has been framed, each frame is multiplied with a window function w(n) with 

length N, where N is the length of the frame. Typically the Hamming window is used: 

 

𝑤 𝑛 =  0.54 − 0.46 cos  
2𝜋𝑛

𝑁 − 1
 , 0 ≤ 𝑛 ≤ 𝑁 − 1 

 

The windowing is done to avoid problems due to truncation of the signal. Windowing means 

multiplication of a speech signal s(n) by a window w(n) to weight or favor samples by the 

shape and duration of the window. Coupled with overlapping short-term frames, successive 

windowing is equal to applying a sliding window to the long-term speech signal. The simplest 

window has a rectangular shape, weighting all samples of speech signal equally. In fact, not 

windowing segmented short duration frames at all is equivalent to applying a rectangular 

window. 
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Window duration determines the amount of averaging used in power or energy calculation. 

Window duration and frame duration can be adjusted as a pair. For instance, a frame duration 

of 20 ms can be coupled with a window duration of 30 ms. An alternative is to choose the 

window duration equal to the frame duration for simplicity. 

 

5.2.3.3 Hamming window 

Hamming window is also called the raised cosine window. The equation and plot for the 

Hamming window shown below (Figure 5.8). In a window function there is a zero valued 

outside of some chosen interval. For example, a function that is stable inside the interval and 

zero elsewhere is called a rectangular window. When signal or any other function is multiplied 

by a window function, the product is also zero valued outside the interval.  Window function 

has some other applications such as spectral analysis, filter design, and audio data 

compression such as Vorbis. 

𝑤 𝑛 =  0.54 − 0.46 cos  
2𝜋𝑛

𝑁
  

 

 

Figure 5.8 Hamming window. [1] 
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5.2.3.4 Fast Fourier Transform (FFT) 

The Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT) is performed to find 

frequency components of a signal buried in a noisy time domain. As well, the original signal 

needs to be Fourier transformed to pass through a set of band-pass filters for the Mel 

frequency-warping process. Standard Fourier Transform is not used because the audio signal 

is not known over all time. DFT is therefore a much more usable frequency transformation and 

is essentially a Fourier representation of a sequence of samples of limited length. 

 

 

Figure 5.9 Time Domain Signal and its Equivalent Frequency Representation. [25]. 

 

5.2.3.5 Mel frequency warping 

Mel Frequency Warping smoothes the spectrum and emphasizes perceptually meaningful 

frequencies. The Fourier Transformed signal is passed through a set of band-pass filters in 

order to simplify the spectrum without significant loss of data. This is achieved by collecting a 

number of spectral components into a number of frequency bins. The spectrum is simplified 
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because using a filterbank separates the spectrum into channels. Filters are spaced uniformly 

on a Mel Scale and logarithmically on a frequency scale, thus this implies that lower 

frequency channels are linearly spaced while higher frequency channels are logarithmically 

spaced.  

 

This is ideal since human perception of audio frequency does not follow a linear scale. 

Therefore for each tone with an actual frequency f (Hz), a subjective pitch is measured on a 

scale called the „mel‟ scale. The mel-frequency scale is a linearly spaced below 1 kHz and 

logarithmically spaced for frequencies above that. The pitch of 1 kHz tone is used as a 

reference point is defined as 1000 Mel‟s. This is also 40dB above the perceptual hearing 

threshold. The Mel scale can easily be converted from the frequency scale using the equation: 

 

𝑚𝑒𝑙 𝑓 = 2595" ∗ 𝑙𝑜𝑔10(1 +
𝑓

700 ) 

The subjective spectrum is stimulated using a filter bank spaced uniformly on the mel scale. 

Spacing of the filterbank is determined by a constant mel frequency interval. The modified 

spectrum S(ω) thus consists of the output power of these filters when S(ω) is the input. Since 

this filter bank is applied in the frequency domain, it can be regarded as taking points of the 

filter windows on the spectrum, where each filter can be viewed as a histogram bin in the 

frequency domain (Figure 5.10). For smaller frames it is best to use triangular or even 

rectangular filters because the resolution is too low for the lower frequencies 

 

Each filter in the bank is multiplied by the spectrum so that only one single value of 

magnitude per filter is returned. This can be achieved through simple matrix operations. This 

reflects the sum of amplitudes in a particular filter band and thus reduces the precision to the 

level of human ear. Figure 5.11 shows the results. The x-axis represents the index of a filter 

and so follows the mel-scale. 
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Figure 5.10 Mel Spaced FilterBank. [25] 

 

 
Figure 5.11 Mel Spectrum. [25] 
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The process of Mel Frequency Warping may be computed in three steps as shown below:  

- The area under each filter is constant and sometimes scaled to 1. Let M = desired 

number of filter banks.  

- Distribute these uniformly across the Mel frequency space  

- Convert to Hz to get ωi‟s on linear scale. The relationship between mel and frequency 

is given by m = ln(1 + f/700) * 1000 / ln(1+1000/700)  

 

5.2.3.6 Discrete Cosine Transform 

The final stage performs the Discrete Cosine Transform to decorrelate the mel logarithmic 

magnitude spectrum to the mel frequency cepstral coefficients MFCC. The cepstrum is the 

inverse Fourier transform of the frequency spectrum of a signal in logarithmic amplitudes. It 

displays the ripples and “waveform” of spectral representation in terms of “quefrencies”, the 

unit of which is a second. A common practical procedure is to replace the inverse Fourier with 

cosine transformation (DCT) since the log- power is real and symmetric so the inverse Fourier 

with cosine transformation reduces to a Discrete Cosine Transform. In addition, the DCT has 

the ability to produce more highly correlated feature and cepstral coefficients are more 

compact since they are sorted in variance order. Figure 5.14 shows Mel spectral vectors of 

highly correlated components decorrelated into 13 Mel Frequency Cepstral Coefficients. 

 

Figure 5.12 Highly Correlated Mel-Spectral Vectors Decorrelated into 13 MFCCs. [25] 
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The discrete form for a signal x(n) is defined in Equation 5.5 as  

 

𝑦 𝑘 = 𝑤(𝑘) 𝑥 𝑛 𝑐𝑜𝑠
𝜋 2𝑛−1  𝑘−1 

2𝑁
,       𝑘 = 1,…… . . , 𝑁𝑁

𝑛=1    (5.5) 

 

Where 

𝑤 𝑘 =

 
 

  1
𝑁 ,               𝑘 = 1

     2
𝑁 ,           2 ≤ 𝑘 ≤ 𝑁       

  

 

By performing DCT, the Mel Cepstrum is obtained and is shown in Figure 5.15. It can be seen 

that the 0𝑡𝑕  coefficient 𝐶0  has been excluded. This is because it represents the mean value of 

the input signal and carries little information. Beth Logan indicated that the zeroth cepstral 

coefficient contains only magnitude information. 

 

Figure 5.13 Mel Cepstrum. [25] 
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Observing Figure 5.13, we see that the coefficient amplitudes reduce at the higher frequencies. 

 

5.2.3.7 Cepstrum 

In this final step, we convert the log mel spectrum back to time. The result is called the mel 

frequency cepstrum coefficients (MFCC).  The cepstral representation of the speech spectrum 

provides a good representation of the local spectral properties of the signal for the given frame 

analysis. Because the mel spectrum coefficients (and so their logarithm) are real numbers, we 

can convert them to the time domain using the Discrete Cosine Transform (DCT).  Therefore 

if we denote those mel power spectrum coefficients that are the result of the last step are  

1,...,2,0,
~

0  KkS , we can calculate the MFCC's, ,~
nc  as 

 

  (5.6) 

Note that we exclude the first component, ,~
0c  from the DCT since it represents the mean 

value of the input signal, which carried little speaker specific information. 

 

5.3 Cepstral Analysis 

Among all popular speech parameters, the most functional and efficient ones extract spectral 

information (in the frequency domain) from speech, because a more concise and easier 

analysis of speech can be performed spectrally rather than temporarily (in the time domain). 

Although speech signals demonstrate a range of inter-speaker variations for the same utterance 

in the time domain, this utterance still exhibits consistency in the frequency domain, to some 

extent. For this reason, spectral analysis is preferred over temporal analysis to discriminate 

between phonemes and extract speaker-independent features from speech signal.[17] 

 

Cepstral analysis is a special case of homomorphic signal processing [2]. A homomorphic 

system is defined as a nonlinear system whose output is a linear superposition of the input 

signals under a nonlinear transformation. Cepstral analysis has become popular in speech 
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recognition since its discovery in the late 1960s, due to the powerful yet simple engineering 

model of human speech-production behind it. According to this linear acoustic model, a 

speech signal is produced by filtering an excitation waveform through the vocal tract filter as 

depicted in Figure 5.14. 

 

Figure 5.14 Linear Acoustic Model of Human Speech-Production [29]. 

 

In this model, the speech signal is expressed as the convolution of an excitation signal e(n) 

with the vocal tract response h(n) . The excitation sequence is either a quasi periodic vocal 

cord pulse in the case of producing voiced speech or just random noise at the vocal tract 

constriction, which generates unvoiced speech. Homomorphic signal processing offers a fairly 

simple method, known as cepstral deconvolution, to decouple the vocal tract response from 

the excitation response, thereby enabling it to model the vocal tract characteristics better. The 

decomposition of a speech signal s(n) into the excitation sequence e(n) and the vocal tract 

function h(n) can be described as follows: 

 

𝑠 𝑛 = 𝑒 𝑛 ⨂𝑕(𝑛)                                       (5.1) 

 

Where the operator, “  “ represents the convolution operation. Recall that the convolution 

operation in time corresponds to a multiplication in the frequency domain. Thus, equation 

becomes: 

 

S(f) = E(f)⋅H(f).                                     (5.2) 
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Note that the complex speech spectrum  S(f) is composed of a quickly varying part, excitation 

spectrum E(f) (which corresponds to high frequency components) and a slowly-varying part, 

vocal tract response H(f) (which corresponds to low frequency components). Considering that 

the speech signal is real-valued, the logarithm of equation (5.2 ) on both sides leads to: 

 

log  𝑆 𝑓   = log  𝐸 𝑓 . 𝐻 𝑓   = log  𝐸 𝑓   + log  𝐻 𝑓   .            (5.3) 

 

Now that the signal components in Eq. (5.3) are linearly combined, a linear filter (also known 

as liftering operation in speech engineering terminology) can be applied to remove the noise-

like, quickly-varying excitation part from the speech spectrum. Then, the inverse Fourier 

transform is applied to the remaining component to compute the real cepstrum. In short, under 

a cepstral transformation, the non-linear convolution of two signals 𝑒 𝑛 ⨂𝑕(𝑛) becomes 

equivalent to the linear sum of the cepstral representations of the signals 𝐶𝑒 𝑆 + 𝐶𝑕(𝑆). As a 

result, the real cepstrum is the inverse Fourier transform of the logarithm of the power 

spectrum of a speech signal: 

 

𝐶𝑠 𝑛 =
1

𝑁
 log⁡|𝑆(𝑘)|𝑒

𝑗2𝜋𝑘𝑛
𝑁 𝑁−1

𝑘=0    , for n = 0,1,…….,N-1.         (5.4) 

 

Figure 5.15 A block diagram representation of the short-term real cepstrum  

Computation [17] 
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Figure 5.16 The real cepstrum computed for the voiced phoneme, /ae/ in the word “pan.” [24] 

 

Figure 5.16 illustrates the fact that the dominant contents of the cepstra are located near the 

origin, and that a small number of cepstrum coefficients can be used to provide enough 

spectral information about the phoneme /ae/. In addition, pitch period information may be 

extracted by the spacing between successive cepstral peak locations (in this case, the pitch 

period is about 75 samples or equivalently 9.375 ms). Figure 5.17 plots the first 20 coefficients 

of the real cepstrum computed above, which shows that the first 8-10 coefficients carry most 

of the spectral information about the voiced phoneme /ae/. 
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Figure 5.17 The First 20 Coefficients of the Real Cepstrum for the Phoneme /ae/. [24] 

5.4 Summary of Feature Extraction Techniques  

A summary of the feature extraction technique is compiled in table 5.1 that compares the 

techniques mentioned in this report in terms of filtering, relevant variables, inputs and 

corresponding outputs 
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Table 5.1 Comparison of features extraction in terms of filtering techniques [31] 

Process Technique Type of 

Filter 

Relevant 

variables/Data 

structure 

Output 

Feature 

Extraction 

Linear 

Predictive 

Coding (LPC) 

All Pole 

Filter 

Statistical Features 

Linear Predictive 

Coefficients 

Linear Predictive 

Coefficients (LPC) 

Linear 

Predictive 

Cepstral 

Coefficients 

All Pole 

Filter 

Statistical Features 

Linear Predictive 

Cepstral Coefficients 

Linear Predictive 

Cepstral 

Coefficients 

(LPCC) 

Mel-Frequency 

Cepstral 

Coefficient 

(MFCC) 

Mel-Filter 

Bank 

Statistical Features Mel-

Frequency Cepstral 

Coefficients 

Mel-Frequency 

Cepstral 

Coefficients 

(MFCC) 
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Table 5.2 Comparison of criteria of feature extraction techniques [31] 

Criteria LPC LPCC MFCC 

Main Task Features extracted by 

analysing past speech 

samples. 

Features extracted by 

combining LPC with 

spectral analysis   

Features extracted 

based on frequency  

domain using Mel-

scale that represents 

human hearing 

Speaker 

Dependence 

High Speaker 

dependent 

High Speaker 

dependent 

Moderate Speaker 

dependent 

Robustness Poor Poor Good 

Motivation 

Representation 

Speech production 

motivated 

representation 

Speech production 

motivated 

representation 

Perceptually 

motivated 

representation 

Filter Bank All-Pole Filters All-Pole Filters Triangular Mel 

Filters 

Typical 

Applications 

Speech compression  Speaker and speech 

recognition 

Speaker and speech 

recognition 

 

5.5 Summary 

In this Chapter the speech feature extraction and vector quantization techniques have been 

described, and the steps in generating the MFCC coefficients (Framing, Windowing, Fast 

Fourier Transform, Mel Frequency Wrapping, Discrete Cosine Transform) have been outline.
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