NEAR EAST UNIVERSITY

GRADUATE SCHOOL OF APPLIED

AND SOCIAL SCIENCES

SEMICONDUCTOR ACCELEROMETER SENSORS AND THEIR USE IN MICROCONTROLLER BASED SYSTEMS
Jehad Mohammed Hassan Tabash

MASTER THESIS
Department Of Computer Engineering

Nicosia - 2006

ACKNOWLEDGEMENTS

Firstly, I would like to present my special appreciation to my supervisor Prof. Dr. Doğan Ibrahim, without whom it would have not been possible for me to complete my thesis. His trust in my work and me and his priceless awareness for the project has made me do my work with full interest. His friendly behavior with me and his words of encouragement kept me doing my thesis.

Secondly, I offer special thanks to my parents, who encouraged me in every field of life and tried to help whenever I needed. He enhanced my confidence in myself to make me able to face every difficulty easily. I am also grateful to my sisters, brothers and my fiancée. And because of them I am able to complete my work.

Finally, I would also like to pay my special thanks to all of my friends who helped me and encouraged me for doing my work. Their continuous encouragement and friendly environment has helped me to complete this thesis successfully. I wish to express my sincere thanks to them as they spent their time and provided very helpful suggestions to me.

ABSTRACT
Accelerometers are frequently used in applications where there is some kind of movement. For example, the acceleration of a vehicle can be determined using an accelerometer. Many car manufacturers use accelerometers to test the speed and acceleration properties of the new cars they manufacture. The performance of a car is usually measured in terms of its speed and acceleration in a given time. For example, the time taken for a car to reach from 0 to 60mph is usually the performance figure used my most car manufacturers. Accelerometers are also used to determine the speed and the distance traveled by a moving object. In a typical application the acceleration is measured and then integrated to give the speed, integrating the speed then gives the distance traveled by the object.

There are many accelerometer sensor devices in the market. Analog Devices ADXL series is one of the most popular dual-axis accelerometers used in many commercial and industrial applications. The Analog Devices lines of accelerometers are called ADXLs. These are tiny devices has an overall size of a few hundred microns to a few millimeters that contain a new technology called micro-electro-mechanical Systems, or (MEMS), are integrated micro devices or systems combining electrical and mechanical components.

The Analog Devices accelerometer chip ADXL202E is a popular accelerometer chip. The chip is designed to be used in navigation systems, microwave antenna systems, vehicle security systems and 2-axis tilt sensing. Many applications can be found in the world. The ADXL202E has a measuring range of +/- 2 g (one g is earth gravitation) and resolution of down to 0.2 mg. The device has two analog outputs (one for each axis) and two duty cycle outputs (one for each axis).

This thesis describes the theory and also the design of a microcontroller based accelerometer system using the ADXL202E chip. The system designed by the author measures the acceleration using a simple microcontroller circuit and then displays the result on a LCD display. A PIC microcontroller has been used in this project since it is a low-cost, widely available and a popular microcontroller. However, the ideas presented in this thesis can be applied to any type of microcontroller chip.
TABLE OF CONTENTS
IACKNOWLEDGEMENTS

IIABSTRACT

IIITABLE OF CONTENTS

VILIST OF FIGURES

VIIILIST OF TABLES

1INTRODUCTION

5CHAPTER 1. ACCELEROMETERS

51.1. Overview

51.2. Physical Principles of Accelerometers

71.3. Accelerometer-Related Errors and Characteristics

91.4. Open-Loop vs. Closed-Loop Accelerometers

91.5. Types of Accelerometers

91.5.1. Primary Transducers

101.5.2. Secondary Transducers

121.6. Calibration Principles

131.7. Vibrating Beam Accelerometer

151.8. Pendulous Accelerometer

151.9. Summary

16CHAPTER 2. ADXL ACCELEROMETER

162.1. Overview

162.2. Introduction to Sensors

172.3. Types of Sensors

182.4. Micro-Electro-Mechanical Systems (MEMS)

192.4.1. Advantages of MEMS

202.4.2. MEMS Applications

212.4.3. Current Challenges

222.5. ADXLs Accelerometers

232.6. ADXLs Family

252.6.1. Accelerometer (ADXL50)

262.6.2. Accelerometer (ADXL103)

262.6.3. Accelerometer (ADXL203)

272.6.4. Accelerometer (ADXL213)

272.6.5. Accelerometer (ADXL320)

282.6.6. Accelerometer (ADXL321)

282.6.7. Accelerometer (ADXL311)

292.6.8. Accelerometer (ADXL210)

302.6.9. Accelerometer (ADXL78)

302.6.10. Accelerometer (ADXL193)

302.6.11. Accelerometer (ADXL278)

312.6.12. Accelerometer (ADXL150)

322.6.13. Accelerometer (ADXL190)

322.6.14. Accelerometer (ADXL250)

332.6.15. Accelerometer (ADXL202E)

372.7. Applications of Accelerometers

382.8. Summary

39CHAPTER 3. MICROCONTROLLERS AND THEIR DEVELOPMENT CYCLES

393.1. Overview

393.2. Microcontrollers

413.3. Basic Elements of A Microcontroller

433.4. Microcontroller Applications

443.5. PIC Microcontrollers

453.5.1. The PIC16F84 Microcontroller

543.6. Microcontroller System Development Cycle

543.6.1. Basic Elements of PIC Basic Language

613.7. PIC Basic Compiler

623.8. Writing and Compilation of a Basic Program

633.9. Loading a Program Into the Microcontroller Memory

653.10. Running a Program

663.11. Summary

67CHAPTER 4. DESIGNING A MICROCONTROLLER BASED ACCELEROMETER WITH LCD OUTPUT

674.1. Overview

674.2. Programming Languages of PIC Microcontrollers

684.3. Examples of Using PIC Microcontrollers

684.3.1. LED Diode Example

694.3.2. Button Example

734.3.3. Building Light Control Example

754.4. Liquid Crystal Displays (LCD)

754.4.1. LCD HD44780 Module

804.4.2. Connecting an LCD to a Microcontroller Example

824.5. Accelerometer Application on PIC Microcontrollers

824.5.1. The Circuit Block Diagram

834.5.2. Accelerometer (ADXL 202E)

844.5.3
PIC Microcontroller (PIC 16F84A)

854.5.3. LCD Display

854.5.4. The Circuit Diagram

884.5.5. Implementing the Flow Chart and Program

964.6. Test Results

994.7. Summary

100CONCLUSION

102REFERENCES

LIST OF FIGURES

5Figure 1.1: The Basic Accelerometer: A classical second order mass-spring mechanical system with damping and applied force.

7Figure 1.2: Step response of a second order system

14Figure 1.3: A mass-string vibratory system

14Figure 1.4: Resolution of two frequencies

17Figure 2.1: The sensing process

23Figure 2.2: Using an accelerometer to measure tilt.

24Figure 2.3: Block diagram of accelerometer board design.

24Figure 2.4: ADXL-Family micromachined accelerometers (top view of IC)

25Figure 2.5: ADXL-Family accelerometers internal signal conditioning.

26Figure 2.6: Functional block diagram of ADXL50

26Figure 2.7: Functional block diagram of ADXL103

27Figure 2.8: Functional block diagram of ADXL203

27Figure 2.9: Functional block diagram of ADXL213

28Figure 2.10: Functional block diagram of ADXL320

28Figure 2.11: Functional block diagram of ADXL321

29Figure 2.12: Functional block diagram of ADXL311

29Figure 2.13: Functional block diagram of ADXL210

30Figure 2.14: Functional block diagram of ADXL78

30Figure 2.15: Functional block diagram of ADXL193

31Figure 2.16: Functional block diagram of ADXL278

31Figure 2.17: Functional block diagram of ADXL150

32Figure 2.18: Functional block diagram of ADXL190

32Figure 2.19: Functional block diagram of ADXL250

33Figure 2.20: Functional block diagram of ADXL202E.

34Figure 2.21: PIN Configuration for the ADXL202E

35Figure 2.22: Duty cycle output from ADXL202E

37Figure 2.23: Circuit design for the ADXL202E

46Figure 3.1: Pin configuration of PIC16F84.

47Figure 3.2: Flash program memory.

48Figure 3.3: Special function registers.

50Figure 3.4: Block diagram of PIC16F84A.

62Figure 3.5: The PIC BASIC compiler.

64Figure 3.6: The connection between PC, programming device and the microcontroller.

65Figure 3.7: LM7805 regulator circuit.

66Figure 3.8: LED diodes are connected to portB and are turned on by a logical one.

69Figure 4.1: LED diodes are connected to port B and are turned on by a logical one.

70Figure 4.2: Button with “PULL-UP” resistor.

71Figure 4.3: Button with “PULL-DOWN” resistor.

73Figure 4.4: Building light control.

76Figure 4.5: HD44780 Block diagram

81Figure 4.6: Connecting an LCD display to a microcontroller.

83Figure 4.7: Block diagram of the circuit.

83Figure 4.8: PIN Configuration for the ADXL202E

84Figure 4.9: PIN Configuration of PIC16F84.

86Figure 4.10: The circuit diagram

87Figure 4.11: The picture of design.

94Figure 4.12: The BASIC program

96Figure 4.13: The BASIC program

LIST OF TABLES
18Table 2.1: Stimulus.

34Table 2.2: PIN Function descriptions for the ADXL202E

46Table 3.1: Pin Descriptions

49Table 3.2: SFR Functions.

54Table 3.3 Initialization circuits

57Table 3.4: The size of the sequence

59Table 3.5: The use of a direction DEFINE

77Table 4.1: Pin Functions

97Table 4.3: Test results.

98Table 4.4: Test results.

INTRODUCTION
The ability to measure and quantify the motion of an object is one of the most basic senses required in advanced control systems. Accelerometers have been used in many recent applications from automobiles to airplanes to computer interfaces. Previously, high resolution accelerometers have been large and expensive to manufacture creating a market for a new design and manufacturing methodology, such as micromachining.

Many micromachined accelerometers have been developed. A technology involving micromachined devices embedded below the surface of a wafer, prior to fabrication of microelectronic devices, was developed and applied to build complex sensor systems on a single chip. A three-layer polysilicon process made possible intricate coupling mechanisms that link linear comb-drive actuators to multiple rotating gears. This technology has been used to build devices such as microengines, microtransmissions, and micromirrors. These devices were also combined to yield intricate mechanical systems-on-a-chip.

The Analog Devices ADXL202 is an MEMS type accelerometer which uses capacitive sensing to measure distance between a reference mass and a proof mass. The output of the ADXL202 is a pulse-width modulated signal whose duty cycle is proportional to acceleration. The microprocessor measures the period of the pulses to determine the correct acceleration measurement.

The word, accelerometer, is a bit of a misnomer because force is the unit really being measured. The most striking example is that accelerometers can measure the magnitude and direction of gravity. Like the magnetometers, three mutually perpendicular accelerometers were needed to fully resolve the magnitude and direction of any force. In a static situation (i.e. when the sensor was immobile), the gravity vector was the only force acting on the accelerometers. Partial orientation information could be obtained based on the gravity vector’s relationship to the frame of the sensor, much the same way the Earth’s magnetic field yielded orientation information. The gravity vector in conjunction with the magnetometers could provide exact orientation information. Of course, under actual acceleration, the gravity vector could not be extracted.
Today's microcontrollers are fast, cheap and low power machines that can handle just about any control or data processing application imaginable. However, with the wide array of microcontroller offerings available from over 25 manufacturers, it can be difficult to keep up with the features, market, theory, and terminology involved with the microcontroller world. Microcontrollers were developed out of the need for small, low power systems. Microcontrollers typically do not have the expandability or performance that microprocessors have. They are designed with control and consumer applications in mind, such as data logging, appliances, personal electronic devices such as walkmans and digital watches, etc. In the past, when a designer needed to design the electrical interface for a microwave, it was done with dedicated hardware. These days such control electronics are completely replaced with a small, fast, and cheap microcontroller. This allows software upgradeability and modularity of design. When the company decides to design their next microwave, they can use all the same hardware only needing to change the software.

The microcontrollers that are at the heart of these and many more devices are becoming easier and simpler to use. The sheer volume of embedded controllers used in the world drives us to understand how they work and then how to troubleshoot and repair them. The support chips used in these controllers are becoming smarter and easier to use. This is bringing the design and use of embedded controllers to more and more engineers hence the need for a good understanding of what embedded controllers are and how to troubleshoot them.

Microcontrollers are intelligent electronic devices used to control and monitor devices connected to the real world. This can be a microwave oven, programmable logic controller, distributed control system, car braking system, cruise missile control system, or a smart sensor. As time goes on electronic devices get smarter and smaller, the embedded controller will be in or associated with everything we touch throughout the day. Early embedded controllers contained a CPU and a multitude of support chips. As time went on, support chips were included in the CPU chip until it became a microcontroller. A microcontroller is defined as a CPU plus random access memory (RAM), electrically erasable programmable read only memory (EEPROM), input-outputs (I/O), and communication circuits. The embedded controller is a microcontroller with peripherals such as keypads, displays, and relays connected to it and are often connected to other embedded controllers by way of some type of communications system.

The microcontroller is a direct descendent of the CPU, in fact every microcontroller has a CPU as the heart of the device. It is therefore important to understand the CPU in order to ultimately understand the microcontroller and embedded controller.

The central processor unit is the brain of the microcontroller. The CPU controls all functions and uses the program that resides in RAM, EEPROM or EPROM to function. The program may reside in one or more of these devices at the same time. Part of the program might be in RAM while another might be in EEPROM. A program is a sequence of instructions that tell the CPU what to do. These instructions could be compared to instructions a teacher may give to a student to get a desired result. The instructions sent to the CPU are very, very simple and it usually takes many instructions to get the CPU to do what is necessary to accomplish a task.

Microcontrollers have traditionally been programmed using the native assembly language of the target processor. It is very common nowadays to use high-level languages such as Basic, Pascal, and C in programming microcontrollers. Assembly language has the advantage that the execution speed is very fast. On the other hand, developing an assembly language based program is a complex task. High-level languages have the advantage that it is much easier to develop and maintain programs developed using these languages. The main disadvantage of the high-level languages is that the speed of execution is not as fast as the programs developed using the assembly language.

This thesis is about the use of accelerometer ADXL202E on simple low-cost microcontrollers, such as the PIC family of microcontrollers. The thesis describes the measurement and display of the acceleration using a PIC microcontroller device. The PIC16F84 microcontroller is taken as an example in the thesis. The program has been developed using the PIC Basic high-level programming language. It is shown in the thesis that the low-cost microcontrollers can be programmed to measure and display the acceleration on a LCD.
The thesis consists of the introduction and four chapters:

Chapter 1 provides an introduction to the accelerometers and describes the types of accelerometers.
Chapter 2 provides an introduction to the sensors and MEMS. This chapter also explains ADXL accelerometers and applications of accelerometers.

Chapter 3 provides an introduction to the architecture of the PIC microcontrollers and describes the important features of the popular PIC16F84 microcontroller. This chapter also explains the microcontroller system development cycle, the use of program description language, and the important features of the PIC Basic compiler.

Chapter 4 presents some simple practical examples on programming and using the PIC microcontrollers. This chapter also explains the liquid crystal displays (LCD) and how they can be used in microcontroller based applications to display data. The microcontroller based accelerometer system designed by the author is described in detail in this chapter. This chapter also gives the test results when the system designed by the author is compared to a commercially available accelerometer.
A conclusion and a list of references are provided at the end of the thesis.

CHAPTER 1. ACCELEROMETERS
1.1. Overview

This chapter describes the principles of accelerometers. The Accelerometers are devices that produce voltage signals in proportion to the acceleration experienced. There are several techniques for converting acceleration to an electrical signal.

1.2. Physical Principles of Accelerometers
The most general approach to acceleration measurement is to take advantage of Newton's law, which states that any mass that undergoes an acceleration is responding to a force given by F = ma. At its [1,2] most basic level, an accelerometer can be viewed as a classical second order mechanical system; that is a damped mass-spring system under an applied force as shown below in Figure 1.1. When an accelerometer experiences acceleration, with a component parallel to its sensitive axis, the accelerometer's proof mass develops a corresponding D'Alembert (inertial) force (
[image: image1.wmf]ma

f

=

). This force acts on and displaces the spring a distance
[image: image2.wmf]k

f

x

/

=

 where k is the spring constant. The sensor's output is related either to the spring's displacement or to the spring's internal force, both of which are proportional to the applied acceleration.

[image: image3.png]Spring= K

F

input
foree

Mass

m

Dump:%{r ¢

Figure 1.1: The Basic Accelerometer: A classical second order mass-spring mechanical system with damping and applied force.

When a force is applied to an accelerometer, we can look at the response of the second order mechanical system model by summing the forces acting on the proof mass.

[image: image4.png]z,

ovver = Fy +7,

nertes + Faanying + Fong
= mi+ei+hx

 Where: c = damping coefficient. Equation may be rewritten as

 [image: image5.png]

Where
[image: image6.wmf]=

=

m

k

w

n

natural frequency of system

[image: image7.wmf]=

=

=

km

c

w

k

c

n

2

2

x

damping ratio of system.

Considering the characteristic equation or the homogeneous solution to Equation above, we find the following two roots:

 [image: image8.png]Ag=—&w, Tw,AfE2 -1

Based on the value of the system's damping ratio,
[image: image9.wmf]x

, three forms of the system's homogeneous solution are possible as shown below in Figure 1.2:

[image: image10.wmf]1

0

<

<

x

 (Underdamped - overshoot and oscillation).

[image: image11.wmf]q

x

x

-

-

=

-

t

w

Ce

t

x

n

t

w

h

n

2

1

sin

)

(

[image: image12.wmf]1

=

x

 (Critically damped - shortest rise time without overshoot).

[image: image13.wmf]t

t

h

te

C

e

C

t

x

2

1

2

1

)

(

l

l

+

=

[image: image14.wmf]1

>

x

 (Overdamped - no overshoot, but slow rise time).

[image: image15.wmf]t

t

h

e

C

e

C

t

x

2

1

2

1

)

(

l

l

+

=

[image: image16.png]Ueplacement

Figure 1.2: Step response of a second order system

The system's actual frequency is differs slightly from the natural frequency because of the damping. The damped frequency is given as

[image: image17.wmf].

1

2

x

-

=

n

w

w

The bandwidth of an accelerometer refers to it's useful range of operating frequencies. This is usually defined by the frequency where the amplitude ratio falls to 0.5, the 3 dB point.

A system's quality factor,
[image: image18.wmf]Q

, describes the sharpness of the system's response.
[image: image19.wmf]Q

 is equal to the ratio of the center frequency to the bandwidth.
[image: image20.wmf]Q

 is also used to describe the amplitude of the resonant response, which is roughly equal to resonant frequency divided by the driving frequency.

1.3. Accelerometer-Related Errors and Characteristics

· Nonlinearity

The relationship between input and output in acceleration sensors will not always be a linear one. This may be due to imperfections in the manufacturing process or properties of the material itself, and if the resulting 2nd or 3rd order relationship can be determined, error correcting is often possible. Another common error is temperature nonlinearity, a property of materials whose physical characteristics change with temperature. Most accelerometers show signs of both of these nonlinearities on the order of less than 0.5 full scale readings.

· Hysteresis

Hysteresis is the tendency of a sensor's components to maintain their perturbed-state characteristics after the perturbation is removed. An example of hysteresis within an accelerometer is the presence of residual deflection strain within the sensor's spring after acceleration has been applied and then removed. In the presence of hysteresis, an accelerometer will not be able to successfully repeat its null position; this will lead to unstable bias.

· Rotation-Induced Error

Some accelerometers will exhibit an error-causing sensitivity to angular acceleration they will not be able to distinguish angular movements from linear movements. Strapdown systems are generally more susceptible then gimbaled ones as their components experience the same rotations as the moving body.

· Cross Coupling, Vibropendulous Error

Accelerometers like the open-loop pendulous type, who's proof masses deviate from the input axis under an applied acceleration, have a tendency to develop some off-axis errors.

· Accelerometer Signal Noise

The noise affecting an accelerometer's signal typically increases with the sensor's bandwidth - the more frequencies it looks at, the more noise it hears.
· System Position Error

An determines position from acceleration measurements with the classical kinematic equation

[image: image21.wmf]2

0

2

1

at

t

x

+

=

u

Position errors also aggregate by the same equation, and as position error increases as
[image: image22.wmf]2

t

, any causal accelerometer errors need to be minimal for accurate position measurements.
· Important Characteristics of Accelerometers

Important characteristics of accelerometers include range of acceleration, frequency response, transverse sensitivity (i.e. sensitivity to motion in the non-active direction), mounting errors, temperature and acoustic noise sensitivity, and mass.
1.4. Open-Loop vs. Closed-Loop Accelerometers

All accelerometers can be divided into two groups: Open-Loop and Closed-Loop. The difference between the two groups is based on a simple operational characteristic: open-loop accelerometers have proof masses that are displaced, and that displacement is measured; closed-loop accelerometers proof masses are maintained in a fixed position and the force (or current, power, etc) necessary to maintain that position is measured.

Open-loop accelerometers suffer from cross-coupling errors and are subject to pickoff nonlinearity and the hysteresis of their mechanical springs.

Closed-loop accelerometers are generally desirable over open-loop ones. As closed-loop accelerometers proof masses are held in a basically constant position, the connecting springs are not experiencing the same wear and fatigue as those in open-loop systems. Since the springs/hinges are not needed to move much, they may be made weaker, reducing the effects of hysteresis. Also, in a closed-loop accelerometer, cross-coupling error may be corrected.

In open-loop sensors, pickoffs are needed to measure large displacements, so a low linearity error is crucial, but in closed-loop sensors the displacement is minimal, therefore closed-loop accelerometers rely less on pickoff linearity than open-loop ones.

1.5. Types of Accelerometers

In the study of [3] physical systems, it is often desirable to observe the motion of a system and, in particular, its acceleration. Accelerometers can be described as a combination of two transducers -- the primary transducer, typically a single-degree-of-freedom vibrating mass or seismic mass, which converts the acceleration into a displacement, and a secondary transducer which converts the displacement of the seismic mass into an electric signal.

1.5.1. Primary Transducers

There are two types of primary transducers, which describe the internal mechanism of the accelerometer, include:

· Spring-Retained Seismic Mass

In most accelerometers, acceleration forces a seismic mass that is damped, and restrained by a spring, so that it moves relative to the casing along a single axis. The secondary transducer then responds to the displacement and/or force associated with the seismic mass. The displacement of the mass and the extension of the spring are proportional to the acceleration only when the oscillation is below the natural frequency.

· Double-Cantilever Beam

Other accelerometers use a double-cantilever beam as a primary transducer. However, the dual-cantilever beam can be modeled as a spring-mass-dashpot.

1.5.2. Secondary Transducers

There are eight types of secondary transducers, which describe how the electric signal is generated from mechanical displacement, include:

· Piezoelectric

Piezoelectric transducers are often used in vibration-sensing accelerometers, and sometimes in shock-sensing devices. The piezoelectric crystals (often quartz or ceramic) produce an electric charge when a force is exerted by the seismic mass under some acceleration. The quartz plates (two or more) are preloaded so that a positive or negative change in the applied force on the crystals results in a change in the electric charge. Although the sensitivity of piezoelectric accelerometers is relatively low compared with other types of accelerometers, they have the highest range (up to 100,000 g's) and frequency response (over 20 kHz).

· Potentiometric

The displacement of the spring-mass system is linked mechanically to a wiper arm, which moves along a potentiometer. The system can use gas, viscous, or magnetic damping to minimize acoustic noise caused by contact resistance of the wiper arm. Potentiometric accelerometers typically have a frequency range from zero to 20 - 60 Hz, depending on the stiffness of the spring, and have a high-level output signal. They also have a lower frequency response than most other accelerometers, usually between 15 - 30 Hz.
· Reluctive

Reluctive accelerometers use an inductance bridge, similar to that of the LVDT (Linear Variable Differential Transducer) to produce an output voltage proportional to the movement of the seismic mass. The displacement of the seismic mass in inductance-bridge accelerometers causes the inductances of two coils to vary in opposing directions. The coils act as two arms of an inductance bridge, with resistors as the other two arms. The AC output voltage of the bridge varies with applied acceleration. A demodulator can be used to convert the AC signal to DC. An oscillator can be used to generate the required AC current when a DC power supply is used, as long as the frequency of the AC signal is far greater than that of the frequency of the acceleration.

· Servo

In servo accelerometers, acceleration causes a seismic mass "pendulum" to move. When motion is detected by a position-sensing device, a signal is produced that acts as the error signal in the closed-loop servo system. After the signal has been demodulated and amplified to remove the steady-state component, the signal is passed through a passive damping network and is applied to a torquing coil located at the axis of rotation of the mass. The torque developed by the torquing coil is proportional to the current applied, and counteracts the torque acting on the seismic mass due to the acceleration, preventing further motion of the mass. Therefore, the current through the torquing coil is proportional to acceleration. This device can also be used to measure angular acceleration as long as the seismic mass is balanced. Servo accelerometers provide high accuracy and a high-level output at a relatively high cost, and can be used for very low measuring ranges .

· Strain Gauge

Strain gauge accelerometers, often called "piezoresistive" accelerometers, use strain gauges acting as arms of a Wheatstone bridge to convert mechanical strain to a DC output voltage. The gauges are either mounted to the spring, or between the seismic mass and the stationary frame. These accelerometers can be made more sensitive with the use of semiconductor gauges and stiffer springs, yielding higher frequency response and output signal amplitude. And unlike other types of accelerometers, strain gauge accelerometers respond to steady-state accelerations.

· Capacitive

A change in acceleration causes a change in the space between the moving and fixed electrodes of a capacitive accelerometer. The moving electrode is typically a diaphragm-supported seismic mass or a flexure-supported, disk-shaped seismic mass. The element can act as the capacitor in the LC or RC portion of an oscillator circuit. The resulting output frequency is proportional to the applied acceleration.

· Vibrating Element

In a vibrating element accelerometer, a very small displacement of the seismic mass varies the tension of a tungsten wire in a permanent magnetic field. A current through the wire in the presence of the magnetic field causes the wire to vibrate at its resonant frequency (like a guitar string). The circuitry then outputs a frequency modulation (deviation from a center frequency) that is proportional to the applied acceleration. Although the precision of such a device is high, it is quite sensitive to temperature variations and is relatively expensive.

· Piezoresistive

Piezoresistive accelerometers act as both AC- and DC-response sensors. Piezoresistive materials have the property of changing their resistance under physical pressure or mechanical work, so if a PR material is strained or deflected, it's internal resistance will change and will stay changed until the material's original position is restored. In order to detect this change in resistance, a power supply is necessary.

One problem with piezoresistive materials is that they're temperature- sensitive (they're used in thermistors).

1.6. Calibration Principles

The accelerometer can be calibrated by applying a harmonic forcing function to the apparatus to determine the relationship between the forcing function and the output of the accelerometer.

For the accelerometer, the voltage output is proportional to the velocity and is given by:

[image: image23.wmf]2

2

dt

x

d

C

A

a

=

The accelerometer can be calibrated by comparing the voltage measured to the acceleration of the vibrating beam. The displacement versus time data that can be acquired with the strain gauges or the LVDT can be differentiated with respect to time twice to find the acceleration. The acceleration can then be compared with the voltage measured from the output of the accelerometer to find a calibration factor for the accelerometer.

Alternately the accelerometer can be calibrated by Static and Periodic methods.

· Static Calibration: To perform a static calibration of the accelerometer, the device is subjected to a constant acceleration. The simplest method is to measure the output when the sensitive axis is upright, and again when the device has been reversed. Limitations of this 2-point calibration are clear, and include a limited range.

Another static calibration method involves a centrifuge. The resulting range is larger than the rollover method, but can be more expensive.

· Periodic Calibration: A periodic calibration involves harmonic forcing of the accelerometer to determine the relationship between the forcing function and the output of the accelerometer. This may be done by rotation or with an apparatus.

1.7. Vibrating Beam Accelerometer

The vibrating beam accelerometer is based on vibrational and wave theory. Looking at Figure 1.3, we see a proof mass attached to a string that has an applied acceleration. If the string is made to vibrate, the natural frequency of vibration,
[image: image24.wmf]0

f

, varies with the component of applied acceleration that is parallel to the string.

[image: image25.wmf]2

0

)

(

2

1

M

ma

f

p

=

Where

m = proof mass

a = applied acceleration

M = string's mass/length

[image: image26.png]A
i
o

e

Figure 1.3: A mass-string vibratory system

One problem associated with this design approach is measuring the strings' vibrations. One attempted approach was to electromagnetically drive the strings to resonate. Other vibrating-beam design approaches include the tuning fork family of sensors (although this is more popular with gyros).

The resolution of a vibrating beam accelerometer is related to the sensor's
[image: image27.wmf]Q

 (the sharpness of the resonance curve). If
[image: image28.wmf]G

is the bandwidth (range of frequencies between 3-dB points) then

[image: image29.wmf]G

=

0

f

Q

Referring to Figure 1.4, for two near-frequencies (with the same Q) to be resolved, their frequency difference must be greater than their bandwidth

[image: image30.wmf]Q

f

f

0

>

D

[image: image31.png]

Figure 1.4: Resolution of two frequencies
1.8. Pendulous Accelerometer

The vast majority of modern accelerometers are of the pendulous type. A common type of commercially available low-g pendulous accelerometer is made from micromachined silicon. These sensors are a variation of the mass-spring system, where now the spring stiffness is the rotational stiffness of the hinge and the pickoff may be implemented capacitively, magnetically, or otherwise.

Although there are a number of different implementations of pendulous accelerometers, they all work by similar principles. A generic closed-loop pendulous accelerometer, consisting of a hinge, a proof mass, pickoffs, damping, and a forcer, the input, output, and pendulous axes. let us define a pendulous accelerometer's pendulosity,
[image: image32.wmf]p

, as the proof mass multiplied by the length from its CG to the hinge

[image: image33.wmf]mk

p

=

When an acceleration is applied parallel to the input axis, the torque on the output axis is given by

[image: image34.wmf]ap

mak

fk

T

=

=

=

Where

f = m a = inertial force

k = length from proof mass CG to hinge

m = proof mass

a = applied acceleration

p = mk = pendulosity

In a closed-loop accelerometer, the force coils' output torque is proportional to the feedback current, the differential amplifier's output,
[image: image35.wmf]i

k

T

F

=

. Since a
[image: image36.wmf]p

T

=

 we see the acceleration can be found as

[image: image37.wmf]p

i

k

a

F

=

1.9. Summary

Today, accelerometers are used in many applications. There are many types of accelerometers. This chapter has described the basic features of the accelerometers.

CHAPTER 2. ADXL ACCELEROMETER
2.1. Overview

This Chapter describes the basic elements and the architecture of semiconductor accelerometer ADXL202E. Moreover, it discusses the principles of the sensors, micro-electro-mechanical systems (MEMS), ADXLs family also explains the uses and benefits of accelerometers
2.2. Introduction to Sensors

A sensor is [4,5] a measuring device used to collect data from the manufacturing processes. Sensors are also known as feedback devices in control units. All sensors are transducers. The words sensor and transducer are both widely used in the description of measurement systems. Sensor is derived from entire meaning to perceive and transducer is from transducer meaning to lead across. A transducer is a device that converts energy from some physical parameter into corresponding electrical signals. Sensors are input transducers (like a microphone). Actuators (sometimes called effectors) are output transducers (like speakers).

Some sensors are strictly electrical like thermocouples, and have no moving parts. Other sensors are electromechanical and translate motion into an electrical signal. (A tipping bucket rain gauge is an example of this type.) Electro-chemical sensors, such as pH probes, monitor changing chemical concentrations.

Some sensors produce a continuously varying voltage signal (i.e. an analog signal), while others produce only discrete voltages (i.e. digital signal).

Devices that sense more complex parameters and manipulate the raw data prior to generating an output can be classified in the general category of instrumentation. Mass Spectrometers and gas chromatographs are examples of instrumentation. There is a primary sensor in every piece of instrumentation (such as the photomultiplier tube in a spectrometer), but its signal is processed and conditioned before being output from the instrument.

With only a few exceptions, sensors and instrumentation have electrical outputs that vary in either voltage, resistance or current. Some sensors, like photogates, motion detectors, and radiation monitors can have digital output.

[image: image38]
Figure 2.1: The sensing process
· Sensor

The sensor is a device that detects a change in a physical stimulus and turns it into a signal which can be measured or recorded.
· Transducer

The transducer is a device that transfers power from one system to another in the same or in the different form.

There are two [6] main types of sensors based on the output they produce: digital sensors and analog sensors.

Digital sensors produce an output signal that is a digital representation of the input signal, and has discrete values of magnitude measured at discrete times. A digital sensor must output logic levels that are compatible with the digital receiver. Some standard logic levels include transistor-transistor logic (TTL) and emitter-coupled logic (ECL). Examples of digital sensors include switches and position encoders.

Analog sensors produce an output signal that is directly proportional to the input signal, and is continuous in both magnitude and in time. Most physical variables such as temperature, pressure, and acceleration are continuous in nature and are readily measured with an analog sensor. For example, the temperature of an automobile cooling system and the acceleration produced by a child on a swing all vary continuously.

2.3. Types of Sensors

There are many sensors [7] available and the choice of a particular sensor depends very much on the application. Any sensor is based on a simple concept that physical property of a sensor must be altered by an external stimulus to cause that property either to produce an electric signal or to modulate (to modify) an external electric signal. Quite often, the same stimulus may be measured by using quite different physical phenomena, and subsequently, by different sensors. Selection criteria depend on many factors, such as availability, cost, power consumption, environmental conditions, etc. The best choice can be done only after all variables are considered. Sensor schemes range from very simple to the complex. One good way to look at a sensor is to consider all of its properties, such as stimulus, specifications, physical phenomenon, conversion mechanism, material and application field. Stimulus is shown in Table 2.1.

Table 2.1: Stimulus.

	Stimulus
	

	Acoustic
	Wave (amplitude, phase, polarization), Spectrum, Wave velocity.

	Electric
	Charge, Current, Potential, Voltage, Electric field (amplitude, phase, polarization & spectrum), Conductivity and Permittivity.

	Magnetic
	Magnetic field (amplitude, phase, polarization & spectrum), Magnetic flux, Permeability.

	Optical
	Wave (amplitude, phase, polarization & spectrum), Wave velocity, Refractive index, Emissivity, Reflectivity, Absorption.

	Thermal
	Temperature, Flux, Specific heat, Thermal conductivity.

	Mechanical
	Position (Linear, angular), Acceleration, Force, Stress, Pressure, Strain, Mass, Density, moment, Torque, Shape, Roughness, Orientation, stiffness, Compliance, Crystallinity, Structural.

2.4. Micro-Electro-Mechanical Systems (MEMS)

Micro-electro-mechanical [8] Systems, or MEMS, are integrated micro devices or systems combining electrical and mechanical components. They are fabricated using integrated circuit (IC) batch processing techniques and can range in size from micrometers to millimeters. These systems can sense, control and actuate on the micro scale, and function individually or in arrays to generate effects on the macro scale.

MEMS is an enabling technology and current applications include accelerometers, pressure, chemical and flow sensors, micro-optics, optical scanners, and fluid pumps. The MEMS industry has a projected 10-20% annual growth rate, with the potential of a greater than $8 billion market by the year 2001. Due to the enabling nature of MEMS and because of the significant impact they can play on both the commercial and defense markets, both industry and the federal government have taken special interest in seeing growth nurtured in this field.

2.4.1. Advantages of MEMS

MEMS is an [9] extremely diverse technology that could significantly affect every category of commercial and military product. MEMS are already used for tasks ranging from in-dwelling blood pressure monitoring to active suspension systems for automobiles. The nature of MEMS technology and its diversity of useful applications make it potentially a far more pervasive technology than even integrated circuit microchips.

MEMS blurs the distinction between complex mechanical systems and integrated circuit electronics. Historically, sensors and actuators are the most costly and unreliable part of a macroscale sensor-actuator-electronics system. MEMS technology allows these complex electromechanical systems to be manufactured using batch fabrication techniques, increasing the reliability of the sensors and actuators to equal that of integrated circuits. Yet, even though the performance of MEMS devices and systems is expected to be superior to macroscale components and systems, the price is predicted to be much lower so the main advantages point are:

· Reduced cost
· Reduced size
· Reduced power
· High precision
· New capabilities
· Improved performance
2.4.2. MEMS Applications
There are numerous possible applications for MEMS. As a breakthrough technology, allowing unparalleled synergy between previously unrelated fields such as biology and microelectronics, many new MEMS applications will emerge, expanding beyond that which is currently identified or known. Here are a few applications of current interest:

· Biotechnology
MEMS technology is enabling new discoveries in science and engineering such as the Polymerase Chain Reaction (PCR) Microsystems for DNA amplification and identification, micromachined Scanning Tunneling Microscopes (STMs), biochips for detection of hazardous chemical and biological agents, and microsystems for high-throughput drug screening and selection.

· Communications
High frequency circuits will benefit considerably from the advent of the RF-MEMS technology. Electrical components such as inductors and tunable capacitors can be improved significantly compared to their integrated counterparts if they are made using MEMS technology. With the integration of such components, the performance of communication circuits will improve, while the total circuit area, power consumption and cost will be reduced. In addition, the mechanical switch, as developed by several research groups, is a key component with huge potential in various microwave circuits. The demonstrated samples of mechanical switches have quality factors much higher than anything previously available.

Reliability and packaging of RF-MEMS components seem to be the two critical issues that need to be solved before they receive wider acceptance by the market.

· Accelerometers
MEMS accelerometers are quickly replacing conventional accelerometers for crash air-bag deployment systems in automobiles. The conventional approach uses several bulky accelerometers made of discrete components mounted in the front of the car with separate electronics near the air-bag; this approach costs over $50 per automobile. MEMS technology has made it possible to integrate the accelerometer and electronics onto a single silicon chip at a cost between $5 to $10. These MEMS accelerometers are much smaller, more functional, lighter, more reliable, and are produced for a fraction of the cost of the conventional macroscale accelerometer elements.

2.4.3. Current Challenges
MEMS technology is currently used in low- or medium-volume applications. some of the obstacles preventing its wider adoption are:

· Limited Options
Most companies who wish to explore the potential of MEMS technology have very limited options for prototyping or manufacturing devices, and have no capability or expertise in microfabrication technology. Few companies will build their own fabrication facilities because of the high cost. A mechanism giving smaller organizations responsive and affordable access to MEMS fabrication is essential.

· Packaging
The packaging of MEMS devices and systems needs to improve considerably from its current primitive state. MEMS packaging is more challenging than IC packaging due to the diversity of MEMS devices and the requirement that many of these devices be in contact with their environment. Currently almost all MEMS development efforts must develop a new and specialized package for each new device. Most companies find that packaging is the single most expensive and time consuming task in their overall MEMS product development program. As for the components themselves, numerical modeling and simulation tools for MEMS packaging are virtually non-existent. Approaches which allow designers to select from a catalog of existing standardized packages for a new MEMS device without compromising performance would be beneficial.

· Fabrication Knowledge Required
Currently the designer of a MEMS device requires a high level of fabrication knowledge in order to create a successful design. Often the development of even the most mundane MEMS device requires a dedicated research effort to find a suitable process sequence for fabricating it. MEMS device design needs to be separated from the complexities of the process sequence.
2.5. ADXLs Accelerometers

The Analog Devices lines of accelerometers are called ADXLs. These are tiny devices that contain a new technology called MEMS. Accelerometers are the current leaders in commercially successful MEMS technology. Devices with integral [10] electronics offer readout electronics and self-test capability. The physical mechanisms underlying MEMS accelerometers include capacitive, piezoresistive, electromagnetic, piezoelectric, ferroelectric, optical, and tunneling. The most successful types are based on capacitive transduction; the reasons are the simplicity of the sensor element itself, no requirement for exotic materials, low power consumption, and good stability over temperature. Although many capacitive transducers have a nonlinear capacitance vs. displacement characteristic, feedback is commonly used to convert the signal to a linear output. The output can be analog, digital, ratiometric to the supply voltage, or any of various types of pulse modulation. Sensors with digital output are convenient when the data must be transmitted without further noise degradation.

Among the specifications to consider when choosing an accelerometer are bandwidth, noise floor, cross-axis sensitivity, drift, linearity, dynamic range, shock survivability, and power consumption. Resonant frequency is also important because the sensor’s upper useful frequency range is usually some fraction of its resonant frequency, which also determines its sensitivity and displacement per g of acceleration:

[image: image39.png]

Where:

dg = displacement per g

M and ksp= mass and spring constant of the device
g = 9.8 m/s2

[image: image40.png]

0 = angular resonant frequency

In general, the displacement of a sensing element is an essential part of the sensing process, and dg is part of the open-loop gain of the sensor, so there tends to be a strong inverse relationship between sensitivity and bandwidth for any class of sensors.

An interesting application [11] of low-g accelerometers is measuring tilt. Figure 2.2 shows the response of an accelerometer to tilt. The accelerometer output on the diagram has been normalized to 1g full scale. The accelerometer output is proportional to the sine of the tilt angle with respect to the horizon. Note that maximum sensitivity occurs when the accelerometer axis is perpendicular to the acceleration. This scheme allows tilt angles from –90º to +90º (180º of rotation) to be measured. However, in order to measure a full 360º rotation, a dual-axis accelerometer must be used.
[image: image41.png]w x|

19
o Acceleration

o l
—90°

+1g

Acceleration = 1 * sin 6

09

0 +90°

Figure 2.2: Using an accelerometer to measure tilt.
2.6. ADXLs Family
Acceleration will be [12] measured using four Analog Devices accelerometer chips. The chips contain a micro-machined beam which deflects in response to accelerations. This deflection causes a change in a differential capacitor, which is measured by the chips circuitry. External circuitry will be provided on each acceleration sensor to scale the sensor to read the expected range of acceleration during flight. After the output is scaled it is run through a 5-pole low pass filter to prevent signal aliasing. After filtering the analog signal is ready to be sampled by the A/D converter on the flight computer. Figure 2.3 shows a block diagram of the accelerometer board design.

[image: image42]
Figure 2.3: Block diagram of accelerometer board design.
The basic unit cell sensor building block for these accelerometers is shown in Figure 2.4. The surface micromachined sensor element is made by depositing polysilicon on a sacrificial oxide layer that is then etched away leaving the suspended sensor element. The actual sensor has tens of unit cells for sensing acceleration, but the diagram shows only one cell for clarity. The electrical basis of the sensor is the differential capacitor (CS1 and CS2) which is formed by a center plate which is part of the moving beam and two fixed outer plates. The two capacitors are equal at rest (no applied acceleration). When acceleration is applied, the mass of the beam causes it to move closer to one of the fixed plates while moving further from the other.

This change in differential capacitance forms the electrical basis for the conditioning electronics shown in Figure 2.5.

[image: image43.png]ATREST cst ||| cs2 APPLIED ACCELERATION
cewter
PLATE
TETHER

=cs2 <csz

FIXED
OUTER
PLATES.

Figure 2.4: ADXL-Family micromachined accelerometers (top view of IC)
[image: image44.png]APPLIED ACCELERATION

sYNe

OSCILLATOR

g

PLATE

BEAM

180°

PLATE

cs2

cs2> st

SYNCHRONOUS |
DEMODULATOR|

Vour |

Figure 2.5: ADXL-Family accelerometers internal signal conditioning.

The sensor's fixed capacitor plates are driven differentially by a 1MHz square wave: the two square wave amplitudes are equal but are 180º out of phase. When at rest, the values of the two capacitors are the same, and therefore the voltage output at their electrical center (i.e., at the center plate attached to the movable beam) is zero. When the beam begins to move, a mismatch in the capacitance produces an output signal at the center plate. The output amplitude will increase with the acceleration experienced by the sensor. The center plate is buffered by A1 and applied to a synchronous demodulator. The direction of beam motion affects the phase of the signal, and synchronous demodulation is therefore used to extract the amplitude information. The synchronous demodulator output is amplified by A2 which supplies the acceleration output voltage, VOUT.
There are many kinds of ADXL accelerometers sensors split according to:
single-axis or dual-axis
analog or digital output
dynamic and/or static (tilt) measurements
2.6.1. Accelerometer (ADXL50)
The Analog Devices [13] ADXL50 is a micro-machined stand-alone accelerometer which consists of a mass spring system as well as a system to measure displacement and the appropriate signal conditioning circuitry.

[image: image45.png]

Figure 2.6: Functional block diagram of ADXL50

2.6.2. Accelerometer (ADXL103)

The ADXL103 is a high accuracy, high stability, low cost, low power, complete single axis accelerometer with a signal conditioned voltage output, all on a single monolithic IC.
[image: image46.png]Coc outpuT
i

Figure 2.7: Functional block diagram of ADXL103
2.6.3. Accelerometer (ADXL203)

The ADXL203 is a high accuracy, high stability, low cost, low power, complete dual axis accelerometer with signal conditioned voltage outputs, all on a single monolithic IC.

[image: image47.png]w

Vo

ADXL203

Figure 2.8: Functional block diagram of ADXL203

2.6.4. Accelerometer (ADXL213)

The ADXL213 is a precision, low power, complete dual axis accelerometer with signal conditioned, duty cycle modulated outputs, all on a single monolithic IC.

[image: image48.png]

Figure 2.9: Functional block diagram of ADXL213

2.6.5. Accelerometer (ADXL320)
The ADXL320 is an ultra small package (4 mm x 4 mm x1.45 mm LFCSP) and low power (350 µA current at 2.4 V) ±5 g.
[image: image49.png]Coc

v

=

—

ADXL320
= ac Houreur| | oureur|
W A% [oewon [0 | | %0
-
sensoR
Rar b Reur
— Bai @
Tvor I Xur o

Figure 2.10: Functional block diagram of ADXL320
2.6.6. Accelerometer (ADXL321)
The ADXL321 is an ultra-small package (4mm x 4mm x 1.45 mm LFCSP) and low power (350 µA current at 2.4 V) ±18 g.

[image: image50.png]

Figure 2.11: Functional block diagram of ADXL321
2.6.7. Accelerometer (ADXL311)

The ADXL311 is a low cost, low power, complete dual axis accelerometer with signal conditioned voltage outputs, all on a single monolithic IC.
[image: image51.png]coc

Reur
0

seLr TEST

ADXL31

Figure 2.12: Functional block diagram of ADXL311

2.6.8. Accelerometer (ADXL210)

The ADXL210 is a low cost, +/-10 g, dual-axis accelerometer with a digital output, all on a single monolithic IC. The ADXL210 will measure accelerations with a full-scale range of ±10g.

[image: image52.png][g

Xour

DE

Gnazeon

=

Figure 2.13: Functional block diagram of ADXL210

2.6.9. Accelerometer (ADXL78)

The ADXL78 is a small package (5 mm x 5 mm x 2 mm ceramic LCC), low power (1.3 mA current at 5V) and single axis high-g.
[image: image53.png]

Figure 2.14: Functional block diagram of ADXL78

2.6.10. Accelerometer (ADXL193)

The ADXL193 is a small (5 mm x 5 mm x 2 mm ceramic LCC package), low power (1.5 mA current at 5V) and single axis high-g.

[image: image54.jpg]o

Figure 2.15: Functional block diagram of ADXL193

2.6.11. Accelerometer (ADXL278)

The ADXL278 is a small (5 mm x 5 mm x 2 mm ceramic LCC package), low power (2.2 mA current at 5V), dual axis high-g.

[image: image55.jpg]

Figure 2.16: Functional block diagram of ADXL278

2.6.12. Accelerometer (ADXL150)

The ADXL 150 (single) and ADXL250 (dual axis) accelerometers offer lower noise and superior signal to noise ratio over the ADXL50.
[image: image56.png]AL

(DO NOT CONNECT)
0
Ve
"’S—I(ADXL150 g
01pF GAIN
! >
[SeNsoR]-» DENODULATOR]
BUFFER
T t 20 AMP
CLOCK]|

0
seLFTesT OOM

Figure 2.17: Functional block diagram of ADXL150

2.6.13. Accelerometer (ADXL190)

The ADXL190 is a complete acceleration measurement system on a single monolithic IC.
[image: image57.png]TP
(DO NOT CONNECT)

ADXL190
GAIN

A
ERER >. DEMODULATOR

f StocK] | I

BUFFER
AP

SELFTEsT COM ZEROg ADIUST

Figure 2.18: Functional block diagram of ADXL190

2.6.14. Accelerometer (ADXL250)

The ADXL150 (single) and ADXL250 (dual axis) accelerometers offer lower noise and superior signal to noise ratio over the ADXL50.
[image: image58.png]

Figure 2.19: Functional block diagram of ADXL250

2.6.15. Accelerometer (ADXL202E)

Analog Devices [14,15] has packed the ADXL202E dual-axis integrated MEMS accelerometer into a tiny leadless chip-carrier (LCC) package as shown below in Figure 2.20. The technology also has improved the monolithic accelerometer's resolution, robustness, and stability over temperature while lowering its noise floor. The low-cost and low power dual-axis accelerometer package has cut the the motion sensor's price tag as well.
[image: image59.png]

Figure 2.20: Functional block diagram of ADXL202E.
Unlike previous-generation models, the ADXL202E implements a thicker MEMS structure to achieve robustness and lower the noise floor. It can survive a shock of 1000 g, while its noise floor has been reduced to 250 µg/(check)Hz. With this reduction, the accelerometer can resolve signals as low as 2.5 mg—yet it can still measure acceleration with a full-scale range of ±2 g (gravity). It is capable of both dynamic (e.g., vibration) and static (e.g. gravity) acceleration.

The improved process gives the device better stability, too. The drift over temperature is now only 2 mg/°C.

Integrating signal-conditioning circuitry with a microscopic MEMS structure on a single chip, the ADXL202E provides a duty-cycle output that is proportional to acceleration. It uses a single 3V to 5.2V supply for operation, and it consumes less than 250 µA per axis. It comes in an 8-pin LCC that measure 5 by 5 by 2 mm. In 100,000-piece batches, it costs $4.99 each. As shown below in Figure 2.21.
[image: image60.png]e U
g © e
o o e

Figure 2.21: PIN Configuration for the ADXL202E

Table 2.2: PIN Function descriptions for the ADXL202E

	Pin No.
	Mnemonic
	Description

	1.
	ST
	Self-Test

	2.
	T2
	Connect RSET to Set T2 Period

	3.
	COM
	Common

	4.
	YOUT
	Y-Channel Duty Cycle Output

	5.
	XOUT
	X-Channel Duty Cycle Output

	6.
	YFILT
	Y-Channel Filter Pin

	7.
	XFILT
	X-Channel Filter Pin

	8.
	VDD
	3V to 5.25V

ST: Controls the self-test feature.
T2: Length of the total cycle.

COM: Ground.

YOUT and XOUT: Digital Output.

YFILT and XFILT: Analogue Output.

VDD: Power supply.
The output from the sensor can be digital duty cycle modulated (DCM) signals as shown in Figure 2.22 or analog voltage output. The duty cycle output from the sensor is used instead of the voltage output because it gives better accuracy. These outputs may be measured directly with a microprocessor counter, requiring no A/D converter or glue logic.

The output of the duty cycle period is adjustable from 0.5ms to 10ms via a single resistor (RSET). If an analog output is desired, an analog output proportional to acceleration is available from the XFILT and YFILT pins, or may be reconstructed by filtering the duty cycle outputs.

[image: image61.png]|

T

Alg) = (T1T2 - 0.5)/12.5%
0g=50% DUTY CYCLE
T2 =Rger/125MQ

Figure 2.22: Duty cycle output from ADXL202E

The bandwidth of the filter for output of ADXL202E may be set from 0.01 kHz to 6 kHz via capacitors CX and CY. This filter is used to filter the anti-aliasing and noise reduction. The typical noise floor is 200 µg
[image: image62.wmf]Hz

 allowing signals below 2 mg to be resolved for bandwidths below 60Hz. A minimum capacitance of 1000 pF is required for all cases. This sensor can give 2mg resolution at 60Hz. ADXL202E is the improved version of the ADXL202QC.

This sensor is very hard to obtain in the market. It can only be obtained or bought from direct distributor or retailers in only through bulk buying. Also these sensors are available as samples from the purchase of Analog Devices. This sensor needs only a few capacitors and resisters for a working circuit.

· Using Accelerometer Adxl202e As Tilt Sensor
The sensor outputs a Pulse Width Modulated (PWM) signal proportional to acceleration. A typical scale factor is fixed at 12.5% per g. The formula to find the acceleration is as follows:

[image: image63.wmf]%

5

.

12

0

2

1

¸

÷

ø

ö

ç

è

æ

-

=

cycle

duty

g

T

T

on

accelerati

T1 is the pulse width and T2 is the period of the ADXL202E PWM output. A typical value for “0g duty cycle” is 0.5. Over a range of ± 35° each degree of tilt is very close to 16mg. Even though the scale factor is supposed to be 12% per g, an actual scale factor may vary from 10% to 15% resulting in ±8° error over the range of±40° of tilt.
· Choosing The Period Of The Duty Cycle Output
The period of the DCM output can vary from 10 ms to 0.5ms. Choosing a right period is crucial. Choosing a period will affect the resolution of tilt and reaction time of the sensor. The sensor input is needed to sample 12 times and then averaged is calculated and reaction time of the sensor is 25 samples per second as proposed. The calculation of the sensor is as follow:

25 samples
[image: image64.wmf]1

-

s

 x 12 sample for averaging = 300 per second is needed

1/300 = 3.33 ms

The calculated period is needed to evaluate as an appropriate period. Calculation to evaluate the period is as follow:

3.33ms x 12.5 %
[image: image65.wmf]1

-

g

 = 416 µs
[image: image66.wmf]1

-

g

Assume that 1 degree of tilt is equal to 16 mg

416 µs
[image: image67.wmf]1

-

g

 x 16x
[image: image68.wmf]3

10

-

g = approximately 7 µs

Micro-controller is running at 4 MHz and effectively the timer will count every 0.25 µs. The desire resolution is 3 degree. Therefore the period of timer will interrupt every

7 µs / 0.25 µs = 28 count.
28 counts means approximately 28 instructions can be executed. This is good enough for the micro-controller to execute require timer interrupt service routine. The calculation proves that 3 ms is appropriate.

· Circuit Design
For most of the applications, 0.1µF capacitor is adequate for the decoupling the accelerometer from noise and signal on the power supply. This capacitor is placed between the VDD pin and COM pin of the sensor, which is shown below in the Figure 2.23 Since the sensor share the power supply with the micro-controller, an extra resistor (100
[image: image69.wmf]W

 or less) should be used to reduce the digital noise to the sensor output caused by the microcontroller’s oscillator crystal.

[image: image70.png]

Figure 2.23: Circuit design for the ADXL202E

It is relatively easy to choose the suitable capacitors and resistors for the sensor circuit.

The value of capacitor and resistor can also be calculated from the following equations:

[image: image71.wmf](

)

dB

y

x

F

F

C

3

,

5

-

=

m

[image: image72.wmf](

)

W

´

=

W

M

T

R

SET

125

2

2.7. Applications of Accelerometers
Accelerometers are widely used to measure tilt, inertial forces and vibration. They find wide usage in automotive, medical, industrial control. Modern micromachining techniques allow these accelerometers to be manufactured on CMOS processes at low cost with high reliability.

Accelerometers are used mostly for shock testing. Shock testing includes automobile and aircraft crash testing, and studying the effects of explosions or earthquakes on buildings and other large structures.

Combining these improvements with a low-cost miniature package. The Accelerometers will bring motion-sensing capabilities to consumer products like disk drives, laptops, and electronic games. Such accelerometers will let disk-drive makers relentlessly pursue higher storage densities by minimizing vibrations. They'll also increase a laptop's security by sounding an alarm when it leaves a secure perimeter. The main applications of accelerometers are summarized as follow:
· Tilt or Inclination

· Car Alarms

· Patient Monitors

· Inertial Forces

· Laptop Computer Disc Drive Protection
· Airbag Crash Sensors
· Car Navigation systems
· Elevator Controls
· Shock or Vibration
· Machine Monitoring
· Control of Shaker Tables

· Weapons Systems Arming

· Communication

· Control System

· Fluid Dynamics
2.8. Summary
This chapter has discussed the basic concepts of the sensors and has described the basic features of the popular ADXL accelerometers family and (ADXL202E) which is used in this thesis.

CHAPTER 3. MICROCONTROLLERS AND THEIR DEVELOPMENT CYCLES

3.1. Overview
This chapter describes the principles of microcontrollers and also explains the uses and benefits of microcontroller applications. Moreover, it discusses the PIC microcontrollers and the programming for PIC microcontroller in the BASIC language. In this chapter the following topics will be discussed:

· Microcontroller
· Microcontroller applications
· PIC microcontrollers
· Microcontroller system development cycle
3.2. Microcontrollers
A microcontroller was first manufactured by Intel in 1969. A microcontroller [16,17,18] is a computer on a chip. Because they have on-chip memory and I/O circuitry and other circuitries that enable them to function as small standalone computers without other supporting circuitry. All computers, whether it is a microcomputer, a personal computer, a mini computer, or a large mainframe computer have several things in common:

· All computers have a CPU (central processing unit) that executes programs.

· The CPU loads the program from somewhere. On your desktop machine, the browser program is loaded from the hard disk.

· The computer has some RAM (random-access memory) where it can store "variables."

· And the computer has some input and output devices so it can talk to the outside world. On your desktop machine, the keyboard and mouse are input devices and the monitor and printer are output devices. A hard disk is an I/O device -- it handles both input and output, and it is also a storage device which stores data.

The desktop computer you are using is a "general purpose computer" that can run any of thousands of commercially available programs. Microcontrollers are "special purpose computers." There are a number of other common characteristics that define microcontrollers. If a computer matches a majority of the following characteristics, then one can call it a "microcontroller":

Microcontrollers are generally "embedded" inside some other device (often a consumer product) so that they can control the features or actions of the product. Another name for a microcontroller, therefore, is "embedded controller."

· Microcontrollers are dedicated to one task and run one specific program. The program is stored in ROM (read-only memory) and generally does not change. Microcontrollers typically have a limited amount of memory, less than 1MByte total.

· Microcontrollers are often low-power devices. A desktop computer is almost always plugged into a wall socket and might consume 50 watts of electricity. A battery-operated microcontroller on the other hand might only consume 50 milliwatts or less.

· A microcontroller has usually just a few I/O pins, as few as 8 or as many as 100.Larger processors, such as the ones founds in a typical PC, will typically have hundreds of pins.

· A microcontroller is often small and low cost. Microcontrollers are usually very cheap, sometimes even less than $1 each. The components are chosen to minimize size and to be as inexpensive as possible.

· A microcontroller is often, but not always, ruggedized in some way.

· A microcontroller frequency (speed) of the system slow, less than 20MHz.

Any microcontroller chip might have X bytes of ROM and Y bytes of RAM on the chip, along with Z number of I/0 pins. In large quantities, the cost of these chips can sometimes be just pennies. You certainly are never going to run Microsoft Word on such a chip -- Microsoft Word requires perhaps 30 megabytes of RAM and a processor that can run millions of instructions per second. But then, you don't need Microsoft Word to control a microwave oven, either. With a microcontroller, usually one has a specific task to accomplish, and low-cost, low-power performance is what is important in such applications.

3.3. Basic Elements of A Microcontroller
The microcontroller contains 8 basic elements as following:
1. Memory Unit
Memory on a microcontroller can be used to store data and/or the program to be run.

There are often several types of memory [19] on a microcontroller:

· Random Access Memory (RAM)

· Read Only Memory (ROM)

· Programmable Read Only Memory (PROM)

· Erasable Programmable Read Only Memory (EPROM)

· Electronically Erasable Programmable Read Only Memory (EEPROM)

· Flash Memory – a type of EEPROM

RAM can be either read or written, and this usually happens quite fast. Data stored on a microcontroller is often stored in RAM. However, the data stored in RAM is volatile

which means that it is lost when power is turned off. ROM is non-volatile and therefore stored between power cycles, but may not be written to.

PROM is therefore a compromise between these two types of memory. PROM is nonvolatile and also allows a user to program it at least once and possibly erase it. Some PROM may be erased by exposure to UV light, but more common today is EEPROM. EEPROM allows read and write access and is also non-volatile, but the sacrifice here is that data transfers take much longer than with RAM (order of milliseconds v.microseconds).

Flash memory is a type of EEPROM. This is also the same as the memory used in digital cameras and cell phones. Data transfer using flash is much faster than EEPROM because it works in blocks of bytes instead of single bytes. This makes it perfect for program memory in our case.

2. Central Processing Unit
This is brains of the microcontroller – the CPU executes instructions such as add, move, jump, multiply, etc. To do so, it must first fetch the instruction and any required data over its data bus.

3. Bus
A “Bus” physically represents a group of 8, 16, or more wires. There are usually two types of busses: address bus and data bus. The first one consists of as many lines as the amount of memory we wish to address and the other one is as wide as data, in our case 8 bits or the connection line. First one serves to transmit address from CPU memory, and the second to connect all blocks inside the microcontroller.

4. Input-Output Unit
The locations we have just added are called "ports". There are several types of ports: input, output or bidirectional ports. When working with ports, first of all it is necessary to choose which port we need to work with, and then to send data to, or take the data from the port. Some microcontrollers only have a few ports, while some others can have 30 or more ports.

5. Timer Unit
Timers are internal clocks. Each timer can be scaled by some factor from the system clock. These timers can then give us a sense of time and duration – information of great importance in digital control systems. In most cases, you’ll just use a timer to count from 0 to 255 (for an 8-bit timer) or 0 to 65536 (for a 16-bit timer).

In addition, many interrupts can be triggered off of timers. An interrupt is a piece of code triggered by a particular event. That event might be a timer overflowing, or reaching a particular value.
6. Watchdog
The flawless functioning of the microcontroller during its run-time. To over come the obstacle of some interference which often does occur in industry we need to introduce one more block called watchdog.

This block is in fact another free-run counter where our program needs to write a zero in every time it executes correctly.

7. Analog to Digital Converter
In most cases, the real world gives us analog signals. Reading light levels from a photoresistor will give us an analog voltage relating to the current light falling on the photoresistor. For the microcontroller to deal with this information, it must be converted to a digital format. An analog-to-digital converter (ADC) does exactly that.

8. Serial Ports
Since the number of pins on a microcontroller is limited, serial data transmission is increasingly becoming the most popular form of communication between microcontrollers and other subsystems. Today's microcontrollers have a number of different styles and configurations of serial ports.

3.4. Microcontroller Applications
Today's microcontrollers are fast, cheap and low power machines that can handle just about any control or data processing application imaginable. Microcontrollers typically do not have the expandability or performance that microprocessors have. Microcontrollers are found in almost all "smart" electronic devices. They are designed with control and consumer applications in mind, such as data logging, personal electronic devices such as walkmans and digital watches, [20] are frequently found in: appliances (microwave oven, refrigerators, television and VCRs, stereos), computers and computer equipment (laser printers, modems, disk drives), automobiles (engine control, diagnostics, climate control), environmental control (greenhouse, factory, home), instrumentation, aerospace, and thousands of other uses. In many items, can be found:

· Inside a TV takes inputs from the remote control unit and displays outputs on the TV screen. The controller controls the channel selector, the speaker system and certain adjustments on the picture tube electronics such as tint and brightness.

· The engine controller in a car takes inputs from sensors such as the oxygen and knock sensors and controls things like fuel mix and spark plug timing.

· A microwave oven controller takes input from a keypad, displays outputs on an LCD display and controls a relay that turns the microwave generator on and off.

The microcontroller controlling a car's engine, for example, has to work in temperature extremes that a normal computer generally cannot handle. A car's microcontroller in Alaska has to work fine in -30 degree F (-34 C) weather, while the same microcontroller in Nevada might be operating at 120 degrees F (49 C). When you add the heat naturally generated by the engine, the temperature can go as high as 150 or 180 degrees F (65-80 C) in the engine compartment. On the other hand, a microcontroller embedded inside a VCR need not be ruggedized at all.

· The automotive market is the most important single driving force in the microcontroller market, especially at its high end. Several microcontroller families were developed specifically for automotive applications and were subsequently modified to serve other embedded applications. The automotive market is demanding. Electronics must operate under extreme temperatures and be able to withstand vibration, shock, and EMI. The electronics must be reliable, because a failure that causes an accident can (and does) result in multi-million dollar lawsuits. Reliability standards are high - but because these electronics also compete in the consumer market - they have a low price tag.

· Microcontrollers are used extensively in robotics. In this application, many specific tasks might be distributed among a large number of controllers in one system.

3.5. PIC Microcontrollers
PIC (Peripheral Interface Controller) [21] is the integrated circuit which was originally developed to control the peripheral devices. The Microchip PIC is a very popular microcontroller dispersing the function of the main CPU. When compared to a human being, the brain is the main CPU and the PIC shares the part which is equivalent to the autonomic nervous system. PIC has the calculation function and the memory like the CPU, and is controlled by the software.

There are over 150 types of PIC microcontrollers available in the market place. Some devices are small with only 8-pins, some are bigger with 18 or 24-pins and some devices have up to 64-pins. All PIC microcontrollers are RISC type controllers and their instruction sets consists of 33 carefully chosen instructions. The small devices in the family have only a few digital input-output pins and small data and program memories. Larger devices are equipped with larger amounts of memory, timer circuits, interrupt facilities, watchdog timers, and internal USART circuitry for serial communications. Even larger devices have analog-to-digital converter circuits, pulse-width-modulation (PWM) ports, several general purpose timers, several interrupt sources, and much larger data and program memories. But all different models in the family have similar instruction sets and are compatible with each other.

However, the throughput and the memory capacity are not big. It depends on the kind of PIC but the maximum operation clock frequency is about 20 MHz and the memory capacity to write the program is about 1K to 4K words. The clock frequency is related to the speed to read the program and to execute the instruction. Only at the clock frequency, the throughput can not be judged. It changes with the architecture in the processing part. As for the same architecture, the one with the higher clock frequency gives higher throughput. The instruction set of the PIC16F84A microcontroller is composed of 14 bits. It is 1 x 1,024 x 14 = 14,336 bits when converting the 1K words to bits. It is 14,336/(8 x 1,024) = 1.75K bytes when converting this to bytes.
The point where the PIC microcontroller is convenient for is that the calculation part, the memory, the input/output part and so on are all incorporated into the same one piece of the integrated circuit.

3.5.1. The PIC16F84 Microcontroller
This is the microcontroller used in this thesis. The reason for using the PIC16F84 is because currently this is one of the most popular microcontrollers available in the market, used widely in many commercial and industrial applications.
PIC16F84 has a total of 18 pins. It is most frequently found in a DIP18 type of case but can also be found in SMD case, which is smaller in size than a DIP. DIP is an abbreviation for Dual in Package. SMD is an abbreviation for Surface Mount Devices suggesting that holes for pins to go through when mounting aren't necessary in soldering this type of a component. Figure 3.1 shows the pin configuration of the PIC16F84 microcontroller.

[image: image73.png]RA2 +—s [1]
A e]
RAL/TOCKT e (]
R —]

vss — 1]
RB/INT +—]
[

RB2 +e]

B3 s [

¥r849101d

P
7+ R0

Il +— OSB1/CLKIN
IF — 0SE2/CLKOUT
8~ Y

1+ FE7

[+ B8

I+ B5

I+ B4

TOP VIEW

Figure 3.1: Pin configuration of PIC16F84.

The functions of each pin are described in Table 3.1

Table 3.1: Pin Descriptions

	OSC1/CLKIN
	Oscillator crystal input. External clock source input.

	OSC2/CLKOUT
	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode.

	MCLR(inv)
	Master clear (reset) input. Programming voltage input. This pin is an active low reset to the device.

	RA0 - RA3
	Bi-directional I/O port.

	RA4/T0CKI
	Bi-directional I/O port. Clock input to the TMR0 timer/counter.

	RB0/INT
	Bi-directional I/O port. External interrupt pin.

	RB1 - RB7
	Bi-directional I/O port.

	VSS
	Ground.

	VDD
	Positive supply (+2.0V to +5.5V).

3.5.1.1. Internal Components of PIC16F84
As we see in the block diagram (Figure 3.4) the PIC 16F84 microcontroller consists of:-

1. Flash Program Memory

The flash memory (Figure 3.2) is used for the memory which stores the user program. One word is composed of 14 bits and 1,024 words (the 1K words) are installed in this microcontroller. Even if the power supply is switched off, the content which is stored in the flash memory do not disappear. The contents of the flash memory can be rewritten using a suitable programmer device. But, the programming is limited to about 1000 times, after which the device must be replaced.

[image: image74.png]0000h
oonsh

aaFEn
Lty

Uninplenented

1FFEL
2000k

z0m

rFiguration

Figure 3.2: Flash program memory.

Reset Vector (0000h)

When the reset is executed by applying power to the microcontroller, or when the reset button (MCLR) is activated, the user program starts from address 0 of the program memory.

Peripheral Interrupt Vector (0004h)

This is the interrupt service routine (ISR) of the microcontroller. When there is time-out interrupt from the timer (TMR0), or when the external interrupt pin (INT0) is activated, the processor jumps to address 4 of the program memory to handle the interrupt.

Configuration word (2007h)

The basic operation of the PIC is specified by this memory location. The enable bit of the Power-up timer, the enable bit of the Watchdog timer, the Oscillator Selection bits can be set. The configuration word can either be set during the programming of the device, or as part of the program code.

2. RAM (Random Access Memory) File Registers

Figure 3.3 shows the structure of the RAM memory. The memory is 80 bytes long and is organized in two banks. The first 12 bytes (00h-0Bh) of each bank are called SFR (Special Function Registers) and are used to record the operating states of the PIC, the conditions of the input/output ports, the other conditions. Each use is decided.

The 68 bytes (0Ch-4Fh) of the 13th byte are called GPR (General Purpose Registers) and are possible to make record the results and the conditions on the way which executes the program temporarily.

The contents which depend on each bank are managed and there are 16 kinds of registers in SFR. But, some part of SFR is common to both banks of memory.

When the power supply is switched off, the contents of RAM are lost. There is not limitation on the number of times to rewrite to the RAM during the running of a program.

SFR Registers

SFR (Special Function Registers) can specify 16 kinds of the registers by the bank changing. The whole memory capacity is the 160 bytes. But, the contents of the left arrow are the same on any bank. As for the part of SFR, the contents change with the bank changing. There are not memories in the gray part.

[image: image75.png]Address
0h
oth
ozh
ush
tah
[
[
h
th
0sh
th
o8

0ch - 4Fh

3

Univg enented

Address
8h
8th
sh
8h
8th
#h
sh
87h
sh
8h
8th
sh

8h - OFh

Figure 3.3: Special function registers.

Each SFR has the function as listed in Table 3.2.

Table 3.2: SFR Functions.

	INDF
	Data memory contents by indirect addressing

	TMR0
	Timer counter

	PCL
	Low order 8 bits of the program counter

	STATUS
	Flag of the calculation result

	FSR
	Indirect data memory address pointer

	PORTA
	PORTA DATA I/O

	PORTB
	PORTB DATA I/O

	EEDATA
	Data for EEPROM

	EEADR
	Address for EEPROM

	PCLATH
	Write buffer for upper 5 bits of the program counter

	INTCON
	Interruption control

	OPTIN_REG
	Mode set

	TRISA
	Mode set for PORTA

	TRISB
	Mode set for PORTB

	EECON1
	Control Register for EEPROM

	EECON2
	Write protection Register for EEPROM

3. EEPROM (Electrically Erasable Programmable Read Only Memory)

This memory is the type which maintains its contents even if the power supply is switched off (i.e. non-volatile). The contents of this memory can be rewritten by the program. The memory capacity is the 64 bytes. As for this memory, the rewriting number of times is limited. It is the about one million time. So, it is not possible to use to store the data on the processing way and so on. It is used to store the data with few change frequencies.
This memory is said to be able to maintain the memorized contents for the about 40 years.

[image: image76.emf]
Figure 3.4: Block diagram of PIC16F84A.

4. Program Counter

This is the counter which shows the reading address (Fetch address) of the program which is written into the flash memory. It is basically a 13 bits up counter. Generally, the count increments by one every time an instruction is executed and the position of the following instruction is shown. But, when JUMP is executed, the contents of this counter are rewritten to the jump address.

5. Level Stack

The stack is the memory which stores the return address of the program. For example, when doing the same processing at more than once, it makes the processing in the form of the subroutine. At the end of the subroutine, the instruction of RETURN is written. The memory is saved in making the processing the subroutine. A program which uses a subroutine jumps to the subroutine using the CALL instruction. At this time, the return address is stored in the stack. This operation is sometimes called the PUSH. When the processing by the subroutine ends and the instruction of RETURN is executed, it jumps to the return address which is written at the stack. This operation is sometimes called the POP. If being in this way, even if CALL to the subroutine is written at more than one part, the processing can be returned to the original program which jumped to the subroutine.

The fact that there are eight stacks can do the subroutine the eight times at the serial. When doing the subroutine the nine times, the return address has been written at the first stack. Because the contents of the first stack are rewritten, the processing can not be returned to the original program. The eight times can not be exceeded. The subroutine must always return the processing to the called original program using the instruction of RETURN. A JUMP instruction must not be used to return from a subroutine.

6. Instruction Register

The instruction of the program which is specified by the program counter is read to this register. This operation is called the FETCH.

7. Instruction Decode & Control

The instruction which was fetched to the instruction register is analyzed here and the operation according to the contents is done by the decode and control logic.

8. Multiplexer and Arithmetic Logic Unit

The calculation operation is done by the Multiplexer and the Arithmetic Logic Unit (ALU). It is not the computer when there are not these.

9. W Register

This is the “work” register, also known as the accumulator register. It is used to keep the calculation result of the ALU temporarily. For the calculation operation, it is the indispensable register. The contents of this register are stored in the various register and are utilized. It is also used for the output control of the input-output port.

10. STATUS Register

This is the register which stores the result of the ALU (Zero, positive or negative), the time-out condition, the indication of the bank of the file register, so on. This register is usually used when we wish to test for the zero condition at the end of an ALU operation (for example, after comparing two values in the ALU).
11. FSR Register

FSR (File Select Register) is used when specifying the address of the RAM file register by the indirect addressing method. The direct address method is the way of specifying the address of the register directly by the instruction code. In this case, the addressing bit can specify the address from 0 to 127 by the 7 bits. This specification range is for the one bank. To change the bank, it is necessary to combine with RP0 bits of the STATUS register. Because FSR is the 8 bits, it is possible to be specified at once including the bank specification. In PIC16F84, the memory is not installed at the address of 80(50h) to 127(7Fh). It is convenient when using the FSR for the addressing when making the data area which was continued at the file register. The processing is simplified when inclement the FSR when doing the writing or the reading continuously.
12. Address Multiplexer

It distinguishes the indirect addressing or the direct addressing.

13. EEDATA

This is the register to use when writing or reading the data to or from the EEPROM memory. Reading or writing to the EEPROM memory is generally a slow process, and the memory location should be checked after a read or a write to confirm that the operation has been completed successfully.

14. EEADR

This is the register which specifies the address of the EEPROM. Because it is composed of 8 bits, the address from 0 to 255 can be specified. In PIC16F84A, the EEPROM is only 64 bytes installed. When setting the data of the EEPROM by the source coding, it specifies 2100h as the memory address. When writing data to the EEPROM by the processing of a program, it is necessary to do the processing to set 55h and AAh to the EECON2 register in the order.

15. Timer

PIC16F84A microcontroller has only one timer (TMR0) which is 8 bits wide. It is in the time-out mode when the count becomes 256 and the T0IF bit of the INTCON register of SFR becomes "1". It is possible to make the interrupt occur when being in the time-out mode. To make the interrupt occur, the GIF bit and the T0IE bit of the INTCON register of SFR must be made "1". The timer interrupt is used frequently in microcontroller applications in order to obtain accurate time delays (e.g. in controlling the bit timing of a serial communication).

16. I/O Ports

The input-output architecture of the PIC16F84 microcontroller is very simple. There are 13 pins with individual direction control. The mode (the input or the output) of each pin can be set by the program. The 13 pins are divided into the two groups. They are the five pins as the A port and the eight pins as the B port. There is limitation on the timing of the control but each of the 13 pins can be controlled. The direction of each port pin can be controlled by setting a bit in special registers. Port A direction is called by a register called TRISA, and Port B direction is controlled by a register called TRISB.

17. Timing Generation

This circuit generates the clock pulse which fixes the operation speed. the oscillation operation is done by putting the capacitors the crystal(or ceramic) oscillator outside. When having the oscillation with the high stability, it uses the crystal. Generally, the circuit becomes simple when using the resonator which incorporated the ceramic and the capacitors into the one module. The clock pulse can be inputted from outside, too.
The PIC16F84A execute the one instruction (the 1 cycle) by the four clock pulses using the pipeline architecture. But, in case of the JUMP to change the program address, the 2 cycles are necessary. In the execution time of usual instruction, it is the 200 nanoseconds because the pulse period of 20MHz is 1/(20MHz) = 50 nanoseconds. The 5,000,000 instructions can be executed within the 1 second.

18. Initialization circuits

The PIC16F84A microcontroller has various initialization circuits as summarized in Table 3.3.

Table 3.3 Initialization circuits

	POWON Timer
	This is the timer to limit the operation until the voltage is stable in case of the turning on.

	OSC Start Timer
	This is the timer to limit the operation until the clock is stable in case of the turning on.

	POWON Reset
	This initializes the inner circuit of the PIC in case of the turning on.

	Watchdog Timer
	This is the timer to watch over the normal operation of the software of PIC.
This timer must be regularly cleared by the software. When the timer does in the time-out, the PIC returns to the condition immediately after the turning on. This timer is used to recover the extraordinary operation when the software has the defect (the bug). Even if it is initialized, the bug doesn't pass away.

3.6. Microcontroller System Development Cycle
The high-level programming languages make the program development a relatively easy task. C, PASCAL and BASIC are some of the most commonly used high-level languages when programming microcontrollers. With high-level languages the development time is shortened and the possibility of making errors is reduced. As a result, the development cycle is much shorter when a high-level language is used. In this thesis the popular PIC BASIC language is used during the software development.

3.6.1. Basic Elements of PIC Basic Language
A programming language [22] is understood as a set of commands and rules according to which we write the program and therefore we distinguish various programming languages such as BASIC, C, PASCAL etc. For the BASIC programming language the existing literature is pretty extensive and as a result of this, most of the attention will be dedicated to the part concretely dealing with the programming of microcontrollers.

A program consists of a sequence of commands of language that our microcontroller executes one after another. The structure of a BASIC program is explained with more details.

1. Identifiers
An identifier represents the name of some PIC BASIC element. Identifiers are used in PIC BASIC in order to assign program lines and the names of various symbols. An identifier itself could be any string of letters, numbers or even dashes with the limit that it is not allowed to begin an identifier with a number. In BASIC, identifiers do not distinguish small and capital letters, so that the strings TASTER and Taster are treated the same way. The maximum length for such strings is 32 characters.

2. Labels
Labels represent textual signs for some programming lines or respectively some of its fragments on which the program can jump through some of the instructions used to change the program flow. It is obligatory to end the label with a colon. Contrary to many old BASIC versions, PIC BASIC does not allow numerical values as labels. i.e. all labels must start with a character and terminate with a colon.

3. Constants
Constant declarations allow constant values to be assigned to identifiers. For example the constant minute has the value of 60 seconds, bearing the recollection to the number of seconds in a minute. Written at whatever program position, minute will be interpreted by complier as if it had been written 60. There are two very important reasons for such habit in program writing. The first one is the programmers wish to be more manifest. Good visibility is achieved by giving to the variables and constants those names that could be associated with the very function they assume within the program.

Constants can equally be written in decimal, hexadecimal and binary form. Decimal constants are written without any prefix. Hexadecimal constants start with a Dollar sign $ and binary constant start with percent sign %. To make the programming easier, single letters are converted into their ASCII counterparts. The sign constants must be placed into the inverted commas and they contain only one letter as a rule (in adverse case they are string constants).

' 60 decimal

$0A

 ' 10 hexadecimal

%10001000

 ' 136 binary

"A"

 ' ASCII value for decimal 65

"d"

 ' ASCII value for decimal 100

4. Variables
Variables serve for temporary storing of data and results of various arithmetic and logical operations. Variables are stored in the microcontrollers RAM locations, which means that the total numbers of the variables that can be used depend on the size of available RAM.

Variable definition is achieved with the formal word var at the beginning of the program. PIC BASIC supports variables like bit, byte and word. Variable type is selected with reference to the expected value that this same variable can assume in the course of the program run. Therefore the variable of the bit type can take value of 0 or 1, the variable of the byte values from 0 to 256 and finally, word from 0 to 65535.

Fleg

var

bit
' Fleg is a variable of the type bit

B1

var

byte
'B1 is a variable of the type byte

W0

var

word
' W0 is a variable of the type word

5. Sequences
Sequences of the variables are defined in a similar way as we have done with the variables.

The number of the elements of the sequence is given through value between "[]". Each element of the sequence is accessible by an index. Index starts with zero. When we come to define the number of the elements of the sequence one must always have in mind that the number of locations in RAM memory on which we intend to store variables is finite. Table 3.4 shows the maximum number of the elements of various types.

Table 3.4: The size of the sequence

	The size of the sequence

	Element of the sequence
	Maximal number of elements

	BIT
	256

	BYTE
	96*

	WORD
	48*

* Depends on microcontroller

Some examples of sequences are given below.

Sequence1 var byte[10] ' the sequence of 10 elements of the type byte

Sequence1 [0] represents the first element of the sequence and sequence1 [9] the last element of the sequence "sequence1".

Sequence2 var byte[8] ' the sequence of 8 elements of the type byte

Sequence2 [0] represents the first element of the sequence and sequence2 [7] the last element of the sequence "sequence2".

6. Modifiers
By means of a modifier it is possible to introduce a new name for a variable already defined. This direction is used relatively rarely but it ought to be mentioned for the sake of completeness. It is used in an identical way as a direction for the definition of the variables. Introduction of a new name is effectuated through the official word var.

7. Symbols
Symbols are granted the function exactly the same as direction for modifying variables, i.e. they serve for assigning the new names to the variables and constants. Symbols are introduced for the compatibility of the programs written for Basic Stamp and cannot be used for introducing variables.

8. Direction Include
Direction INCLUDE serves for inserting files or file segments to a BASIC program. In this manner it is rendered possible to store some general definitions of variables or subroutines that are being executed as parts of several different programs. The effect achieved is the same as if at the location on which is placed the direction INCLUDE simultaneously copied the contents of whole file.

9. Comments
In the course of program writing it is generally recommended to use comments even if it may be self-evident what the main purpose of the program is. Although it may well seem as a shear waste of time, it may play later a crucial role (comments don't occupy an additional memory space in the memory of a microcontroller). Comments should give useful instructions about all that the program is doing. Comment as Set Pin0 to 1 simply explains the syntax of the language but fails to pinpoint the purpose of the act. Something of a sort Turn the Relay on may prove itself to be much more useful.

At the beginning of the program the aim of the program should be described together with the names of the authors and when it was written. Stipulating the information concerning revision and the exact date may be useful too. Even every concrete statement about connection to each pin can be crucial in an effort to memorize the very hardware for which this program was designed to operate.

10. Programming Line With More Instructions
Compactness and better visuality of a program can be achieved by logically grouping instructions by using ":". In that way the block of instructions can be placed all in a single line, while instructions remain mutually separated with ":".

B2 = B0
B0 = B1
B1 = B2

The three upper instructions can be written in a single row as:

B2 = B0 : B0 = B1 : B1 = B2

11. Transfer of Instruction Into Another Line
In case that an instruction is very long and can not be fitted into a single line, it must be continued to the next line. The character "_" is used at the end of a line to mark the continuation of the line.

lookup KeyPress,["1","4","7","*","2","5","8","0","3","6","9","#","N"]

12. Define
Instructions of the PIC BASIC language can have some parameters from which depend the exact way the instructions are executed. Those parameters assume some predefined values that appear in most of the cases. A frequency of an oscillator is a good example for that. If not otherwise stated the tact of the oscillator is taken by default as 4MHz. In case that the used oscillator is of a different frequency from 4MHz it is necessary using the DEFINE direction to specify that frequency and communicate it to all the programs that contain instructions depending on the clock of the microcontroller. One such instruction is for the serial transfer. In case that the instructions DEFINE is omitted and in gear is 8Mhz instead of 4Mhz oscillator, all the instructions that depend on the tact of microcontroller will be executed 2 times quicker. For instance, if the parameter of the speed of transfer amounts to 9600 bauds by using SERIN instruction, the data transfer would be effectuated at the speed 19200. In the same way the instruction pause 1000 the delay realized would be 0.5s instead of 1.0s. It is also possible similarly to upgrade the resolution of the instructions. What is next is the review of the usage for DEFINE direction in case of adjusting of parameters explained within each particular instruction as shown in Table 3.5.

Table 3.5: The use of a direction DEFINE

	The use of a direction DEFINE

	parameter
	description
	instruction on which it acts

	I2C_HOLD 1
	pause 12C transfer while the tact is on a low level
	I2COUT, I2COUT

	I2C_INTERNAL 1
	internal EEPROM in series 16Cexxx and 12Cxxx of the PIC microcontroller
	I2COUT, I2COUT

	I2C_SCLOUT 1
	serial tact is a bipolar at the place of an open collector
	I2CWRITE, I2CREAD

	I2C_SLOW 1
	for the tact > BMHz OSC with the devices of a standard velocity
	I2CWRITE, I2CREAD

	LCD_DREG PORTD
	LCD data port
	LCDOUT, LCDIN

	LCD_DBIT 0
	Initial bit of a data 0 or 4
	LCDOUT, LCDIN

	LCD_RSREG PORTD
	RS (Register select) port
	LCDOUT, LCDIN

	LCD_RSBIT 4
	RS (Register select) pin
	LCDOUT, LCDIN

	LCD_EREG PORTD
	enable port
	LCDOUT, LCDIN

	LCD_EBIT 3
	enable bit
	LCDOUT, LCDIN

	LCD_RWREG PORTD
	read/write port
	LCDOUT, LCDIN

	LCD_RWBIT 2
	read/write bit
	LCDOUT, LCDIN

	LCD_LINES 2
	No of LCD lines
	LCDOUT, LCDIN

	LCD_INSTRUCTIONUS 2000
	the time of delay of instruction in microseconds (us)
	LCDOUT, LCDIN

	LCD_DATAUS 50
	the time of delay of data in microseconds
	LCDOUT, LCDIN

	OSC 4
	tact of the oscillator in MHz: 3(3.58) 4 8 10 12 16 20 25 32 33 40
	all instructions of the serial transfer and next pause

	OSCCAL_1K 1
	setting of OSCCAL for PIC12C671/CE673 microcontrollers
	

	OSCCAL_2K 1
	the number of data bits
	

	SER2_BITS 8
	the slowing of the tact of transfer
	SHIFTOUT, SHIFTIN

	SHIFT_PAUSEUS 50
	instruction LFSR in 18Cxxx microcontrollers
	LFSR

	BUTTON_PAUSE 10
	
	BUTTON

	CHAR_PACING 1000
	
	SEROUT, SERIN

	HSER_BAUD 2400
	
	HSEROUT, HSERIN

	HSER_SPBRG 25
	
	HSEROUT, HSERIN

	HSER_RCSTA 90h
	
	HSEROUT, HSERIN

	HSRE_TXSTA 20h
	
	HSEROUT, HSERIN

	HSER_EVEN 1
	
	HSEROUT, HSERIN

	HSER_ODD 1
	
	HSEROUT, HSERIN

13. Disable
Before entering the interrupt routine, it is necessary to switch off the interrupts in order to avoid any new interruption in the course of data processing. The interruptions are forbidden in a manner that the instruction "DISABLE" reset the bit GIE in the register INTCON.
14. Enable
In the course of execution of the interruption routine, the interrupts must be forbidden by resetting the bit GIE in the INTCON register. When the interruption processing is finished, the interruptions must be allowed once again with the instruction "ENABLE".

15. ON Interrupt
The "On interrupt" label indicates the start of the program segment where the interrupts are handled. In the following example, the interrupt service routine is called “ISR” and the program jumps to this label when an external or an internal interrupt occurs.

[image: image77.png]ISR!

teruupt 1SR

gota Main

Disable

Resume
Enable

The interruption routine starts from the label ISR

Main program

Start of the interruption routine

The end of the interruption routine

16. Resume
This statement is used to resume the program execution at the end of an interrupt service routine. i.e. return from the interrupt routine to the main program.

3.7. PIC Basic Compiler
The compiler program runs on PC and its task is to translate the original BASIC code into the language of 0 and 1 understandable to the microcontroller. The process of translation of a BASIC program into a HEX code is shown on the Figure 3.5 below. The program written in PIC BASIC and registered as a file Program.bas is converted into an assembler code (Program.asm). So obtained assembler code is further translated into executive HEX code which is written to the microcontroller memory by a programmer. (Programmer is a device used for transferring HEX files from PC to the microcontroller memory)

[image: image78.png]Program transiated
into assemblars

Fragram writen in PIC
BASIC language ade

| 1

Program transiated into
HEX cads understandatle
to micrasantrolar

|

BLINKBAS

[ormpier

BLINKASH]

FrogrammRg

Pu—— oo

BLINK HEX

!

FIC BASIC compiler
converts program into
‘assemblers cods.

1 1

Frogramming device
wiites HEX sads inta
themamary ot
rmisrocontroler

Assambler sonvarts
ASM cods inta HEX.
Gode

oo b
o il
i g o
" 16F84]
ot orf

Figure 3.5: The PIC BASIC compiler.
3.8. Writing and Compilation of a Basic Program
The first step in the writing of a program code is to use a text editor (for example, the Windows Notepad text editor). Every written code must be saved on a single file with the ending .BAS exclusively as ASCII text. An example of one simple BASIC program - BLINK.BAS is given.

Example uses instructions High, Low and Pause to turn on and off LEDs diodes connected to port B every half second.

Loop:

PORTB = $FF

‘Switch on LEDs of port B.

Pause 500

‘0.5 sec pause.

PORTB = $00

‘Switch off LEDs of port B.

Pause 500

‘0.5 sec pause.

Goto loop

‘Go back to loop.

End

‘End of program.
When the original BASIC program is finished and saved as a single file with .BAS ending it is necessary to start PIC BASIC compiler. The compiling procedure takes place in two consecutive steps.

Step 1. In the first step compiler will convert BAS file into assembler code and save it as BLINK.ASM file.
Step 2. In the second step compiler automatically calls assembler, which converts ASM - type file into an executable HEX code ready for reading into the programming memory of a microcontroller.

The transition between first and second step is for a user - programmer an invisible one, as everything happens completely automatically and is thereby wrapped up as an indivisible process. In case of a syntax error of a program code, the compilation will not be successful and HEX file will not be created at all. Errors must then be corrected in original BAS file and repeat the whole compilation process. The best tactics is to write and test small parts of the program, than write one gigantic of 1000 lines or more and only then embark on error finding.

After the program is compiled, it can be simulated on a PC using a simulator program. The simulation process does not require any hardware and enables the programmer to simulate the program operation by running the program on a PC in single step mode. Simulation is very helpful as it enables the programmer to test the program and remove any possible errors before implements the program on the target hardware.
3.9. Loading a Program Into the Microcontroller Memory
As a result of a successful compilation of a PIC BASIC program the following files will be created.

- BLINK.ASM - assembler file
- BLINK.LST - program listing
- BLINK.MAC - file with macros
- BLINK.HEX - executable file which is written into the programming memory

File with the HEX ending is in effect the program that is written into the programming memory of a microcontroller. The programming device with accessory software installed on the PC is used for this operation. Programming device is a contrivance in charge of writing physical contents of a HEX file into the internal memory of a microcontroller. The PC software reads HEX file and sends to the programming device the information about an exact location onto which a certain value is to be inscribed in the programming memory. PIC BASIC creates HEX file in a standard 8-bit Merged Intel HEX format accepted by the vast majority of the programming software. In the text below the contents of file BLINK.HEX is given (this file is in Intel format, where a checksum is used at the end of every line of code).

[image: image79.png]$1000000028288F018E00FF308E07031CEF07031CEL
10001000232603308000DF 300 200325500 1EB3EBS
+100020008C008D09FC3003 11828900703 16152538
100030008C0764008D0F 15260C 161E28501¢222694
1000400000002228080053 13031383 12 640008008
10005000 F30860001308F 00F4300220860101302D
0C0060008F00F430022028286300342850
:02400800703F72

o

Besides reading of a program code into the programming memory, the programming device serves to set the configuration of a microcontroller. Here belongs the type of the oscillator, protection of the memory against reading, switching on of a watchdog timer etc. The connection between PC, programming device and the microcontroller is shown in Figure 3.6.

[image: image80.png]e
oo wl]

&= e i owl]

RS232 [vss 16F84 vid| T
ReomT ReT| i

& RB6| T

= e wfy

Figure 3.6: The connection between PC, programming device and the microcontroller.

The programming software is used exclusively for the communication with the programming device and is not suitable for any code writing. The one comprising text editor, software for programming microcontroller and possibly the simulator as an entity bears the name IDE i.e. Integrated Development Environment. One such environment is a Microchip's software package MPLAB. MPLAB is a complete microcontroller development package, including an editor, a simulator, a librarian, and an assembler. The package is distributed free of charge and can easily be downloaded from the company’s web-site. MPLAB supports all of the company’s over 200 models of microcontrollers.

3.10. Running a Program
For correct operation of a microcontroller, i.e. correct running of a program it is necessary to assure the supply of the microcontroller, oscillator and the reset circuit. The supply of the microcontroller can be organized with a simple regulator (e.g. LM7805) as shown in the Figure 3.7 below. The circuit consists of a transformer which converts the 220V mains voltage to 9V. Then a bridge rectifier circuit is converts the signal into full-wave regulated signal. This signal is the applied to the LM7805 regulator which generates the required +5V voltage for the microcontroller.

[image: image81.png]220~

Transformer

~ | eeocio0n

el

Lu7eo:

sy

o

.
~

2,5, C2= 1002,
0pE, £ = 1K

Figure 3.7: LM7805 regulator circuit.

The oscillator of the microcontroller can be a 4MHz crystal and two small 22pF capacitors or a ceramic resonator of the same frequency (ceramic resonator already contains the mentioned capacitors, but contrary to the oscillator has three termination instead of only two). The speed at which the microcontroller operates i.e. the speed at which the program runs depends heavily on this frequency of an oscillator. In the course of an application development the easiest to do is to use the internal reset circuit in a manner that MCLR pin is connected to +5V through a 10K resistor. In the sequence of text the scheme of a rectifier with circuit of LM7805 which gives the output of stable +5V, as well as the minimal configuration relevant for the operation of a PIC microcontroller.

[image: image82.png]s o3
R Ralf]

g
i Wl e
Retock! osc]|

E]
o e osofl— T
vss 16F84 vao

G o e
ReuT Re7

)
ret Ret

)
Re2 R L

p— s
5 4
res reaff—om P

Figure 3.8: LED diodes are connected to portB and are turned on by a logical one.
Note:-Minimal hardware configuration necessary for the operation of PIC microcontroller.

After the supply is brought to the circuit designed according to the Figure 3.8, the LEDs diode should be twinkling once each second. If the signal is completely missing (LEDs diode doesn't twinkle), a check should be done to ascertain if the +5V is present at the microcontroller VDD pin. Notice that a limiting resistor is used in series with the LEDs. This is necessary to limit the current through the LEDs to about 10mA.

3.11. Summary
Today, microcontrollers are used almost in all electronic system applications either as stand-alone units, or as embedded controllers. There are many types of microcontrollers, manufactured by various companies, with different processing powers.

This chapter has described the architecture and the basic features of the popular PIC16F84 microcontroller which is used in this thesis and the features of the PIC Basic language and the microcontroller development environment.

CHAPTER 4. DESIGNING A MICROCONTROLLER BASED ACCELEROMETER WITH LCD OUTPUT

4.1. Overview
The principles of accelerometers have been described in detail in Chapter 2. In this Chapter a simple hardware and software have been developed by the author to test the accelerometer device designed. In addition, a microcontroller simulator has been used to test and evaluate the program. PIC Basic language of PIC microcontrollers have been used in the application.

4.2. Programming Languages of PIC Microcontrollers
Programming of a PIC microcontroller can be done in several languages and Assembler, C and Basic are most commonly used languages. Assembler belongs to lower level languages that are programmed slowly, but take up the least amount of space in memory and gives the best results where the speed of program execution is concerned.

Programs in C language are easier to develop, easier to understand, but are slower in execution compared to assembler programs. Basic is the easiest one to learn and its instructions are simple, but like C programming language it is also slower than Assembler. In any case, before you make up your mind about one of these languages you need to consider carefully the demands for execution speed, for the size of memory and for the amount of time available for its assembly.

After the program is written, we would load the program into the program memory of a microcontroller and then start the system. But before using a microcontroller we need to add a few more external components necessary for the operation of a microcontroller. First we must give life to a microcontroller by connecting it to a power supply (power needed for operation of all electronic instruments) and an oscillator whose role is similar to the role that heart plays in a human body. Based on its clocks microcontroller executes instructions of a user program. As soon as it receives supply, the microcontroller will perform a small check up on itself, look up the beginning of the program and start executing it. Execution normally starts from address zero of the program memory.

4.3. Examples of Using PIC Microcontrollers
In this section some examples [22] are given which demonstrate the principles of program development and running on a PIC microcontroller. These examples are based on the popular PIC Basic programming language described in earlier chapters. A PIC16F84 microcontroller has been used in these examples since it is very easy to program and use this microcontroller.

4.3.1. LED Diode Example
One of the most frequently used components in electronics is the LED diode (LED stands for Light Emitting Diode). Some common LED diode features include: size, shape, color, working voltage (voltage across the diode) Ud and electric current Id (current through the diode). LED diodes can have round, rectangular or triangular shapes, although manufacturers of these components can produce any needed shape by order. Size i.e. diameter of round LED diodes ranges from 3 to 12 mm, with 3 or 5 mm sizes most commonly used. Color of emitting light can be red, yellow, green, orange, blue, etc. Working voltage i.e. necessary for LED diode to emit light is 1.7V for red, 2.1V for green and 2.3 for orange color. This voltage can be higher depending on the manufacturer. Normal current Id through a diode is 10 mA, while maximal current reaches 25 mA. High current consumption can present problem to devices with battery power supply, so in that case low current LED diode (Id ~ 1-2 mA) should be used.

LED diode can be connected to microcontroller in two different ways. One way is to have microcontroller "turning on" LED diode with logical one (i.e. +5 volts) and the other way is with logical zero (i.e. ground potential). The first way is not used very frequently because it requires the microcontroller to be diode current source. The second way works with higher current LED diodes.
The following example uses instructions High, Low and Pause to turn on and off an LED diode every half a second. In this example 8 LEDs are connected to Port B of the microcontroller but only the LED connected to bit 7 of Port B is used (see Figure 4.1) in the program:

[image: image83.png]a2
a3

Raamocki 0861 1— oy
R e 08—

Rat[]
relf]

v

]
[TR —

LED diodes are conected to
part B and are tumed on by a
lngical ane

LED dioe is connected to pin

s
i -

Re0NT Rer[] P
e o

ret a6

e
e

RBS
Rl

< RET inthe sample

Figure 4.1: LED diodes are connected to port B and are turned on by a logical one.

Loop:

 High PORTB.7

 Pause 500

 Low PORTB.7

 Pause 500

 Goto loop

 End

The above example controls the flashing of the LED in an endless loop with 500ms between each output.
4.3.2. Button Example
Button is a mechanical component which connects or disconnects two points A and B over its contacts. By function, button contacts can be normally open or normally closed.

[image: image84.png]!
¢

Button with normally
open contact

T

o
Button with narmally
closed contact

Pressing the button with normally open contact connects the points A and B, while pressing the button with normally closed contact disconnects A and B. Buttons can be connected to the microcontroller in one of two ways:

In the first case, button is connected in a way that logical one (+5V) remains on microcontroller input pin while button is not pressed. Resistor between a button and power voltage is necessary as a protection from glitch on input pin that might cause misinterpretation of program, i.e. as if button is pressed when it is not as shown bellow in Figure 4.2.

[image: image85.png]K0

5
RasToCK 08C1
Button with T 3

e osez
“pull-up” ‘ 5 PIC
resistor {lis 16F84 it
[{reonnt Re7|
i
[Jret Ras|
= = g
[|re2 Res|
b
[Jres Re4|

Figure 4.2: Button with “PULL-UP” resistor.

When the button is pressed, input pin is short circuited to the ground (0V) which indicates change on input pin. Voltage has dropped from 5V to 0V. This change is interpreted by program and executes the specific part. This way of defining pin states is called defining with "pull-up" resistors, associating that the line is held up on the logical one level.

In the other case, button is connected in a way that logical zero remains on input pin. Now, resistor is between input pin and a logical zero, meaning that pressing the button brings logical one to input pin. Voltage goes up from 0V to +5V. Microcontroller program should recognize change on input pin and execute the specific part of program code. This way of defining pin states is called defining with "pull-down" resistors, associating that the line is held down on the logical zero level as shown bellow in Figure 4.3.

[image: image86.png]Button with
“pull-down”
resistor

K0

5y

hd 15
R rat]
4
Ry Bl e
Rasocki osct l— 4
CE
e S
[vss 16F84 vuu]—T
0
ReonNT rerf]
i3
Rt reof]
ol
re2 res[]
o
res resf]

Figure 4.3: Button with “PULL-DOWN” resistor.

Common way to connect a button is with pull-up resistors, meaning that pressing the button changes pin state from logical one to logical zero. One of the problems that may occur when working with buttons is the contact debounce the moment a button is pressed. Debounce is a consequence of the contact vibration and heavily depends on the type of button used. PIC Basic provides an instruction called Button which can be used to debounce button contact problems and to read the status of buttons. In the following program code the BASIC instruction Button is used which eliminates the contact debounce.

The program reads buttons Button0 and Button1 which are connected to the pins RA0 and RA1, respectively. Pressing the button 0 executes part of program code which turns on LED diode on pin RB0. Pressing the button 1 executes part of program code which turns off LED diode on the same pin. The mentioned instruction is among the most complex instructions of BASIC program language. Besides few arguments that should be defined, instruction has an argument for setting the delay time between recognition of two different button pressures (the third argument). Its setting depends on the purpose of the button as well as mechanical properties of the button. Still, it came clear over time that maximal value of last argument represents the best solution for most applications, because of great disproportion in human reaction and microcontroller speed.

 B0 var byte

'Variable used by instruction BUTTON

 Symbol Button0 = PORTA.0

'Button 0 is connected to pin RA0

 Symbol Button1 = PORTA.1

'Button 1 is connected to pin RA1

 Symbol LED = PORTB.0

'LED diode is connected to RB0

 TRISA = $FF

'ALL pins of port A are input

 TRISB = $00

'ALL pins of port B are Output

 PORTB = $00

'Turn off all LED diodes at start

 Main:

 B0 = 0

'Initialize the variable B0

'If Button 0 is pressed jump onto LedOn

 Button button0,0,255,0,B0,1,LedOn

 B0 = 0

'If Button 1 is pressed jump onto LedOff

 Button button0,0,255,0,B0,1,LedOff

 GOTO Main

'Jump back to the beginning of the program

LedOn:

 LED = 1

'Turn on LED diode

 Goto Main

LedOff:

 LED = 0

'Turn off LED diode

 Goto Main

 End

'End of program

The above code is another example on a microcontroller.

4.3.3. Building Light Control Example
This is a more complex example showing how a light can be controlled. Building light control is a very simple device that can be realized using the microcontroller technology. The principle is simple - pressing the button turns on the light in the building for a time period T. Upon that time, all lights turn off. Variable T is defined with potentiometer. It is possible to determine for how long the light will be on by reading the potentiometer as shown in Figure 4.4 below.

[image: image87.png]Setling the time periad on

i - timer
T i "
" w
W o
W pic o
Is 1684 1w
rn [l
m -
"]
Addifional button for each " "
floor

Building light control Ly

,jﬂl@

Figure 4.4: Building light control.

 Symbol Button0 = PORTA.0

'Button 0 is connected to pin RA0

 Symbol Time_in = PORTA.1

'Potentiometer for setting the

'timer

 Symbol Light = PORTA.3

'Output for light

 Symbol LED = PORTB.7

'Output for control LED diode

 B0 var byte

'Temporary variable used by instr. POT

 B1 var byte

'Temporary variable used by instr. BUTTON

 i var byte

'Variable in FOR....NEXT instruction

 TRISA = %00000111

'Pins RA0, 1, 2 input

 TRISB = %01111111

'Pin RB7 is output

 Low Light

'Turn off the light

 Low LED

'Turn off the control LED diode

 Main:

'Beginning of the program

 B0 = 0

 Pot Time_in,255,B0

'Time period for which the light is

'on

 B1 = 0

 Button button0,0,255,0,B1,1,Lite
'If Button=0

'turn on the light

 Pause 50

'50 ms pause

 Goto Main

'Jump to beginning

 Lite:

 High light

'Turn on the light

 High LED

'Turn on the control LED

 For i=0 to 60 + B0

'If B0 = 0 light is on for 1 min

 Pause 1000

'If B0 = 255 light is on for 5 min

 Next i

 Low light

'Turn off the light

 Low LED

'Turn off the control LED diode

 Goto Main

'Jump to beginning

 End

'End of program

In the above circuit buttons are used to simulate the light switches at each floor of a building. These buttons are connected to the supply voltage using pull-up resistors. Normally pin RA0 of the microcontroller is at logic 1. Pressing any button lowers the RA0 voltage to logic 0 which is then sensed by the program. Port pin RA3 drives an opto-coupler device. Normally the output of the opto-coupler device is at logic 0 and the light is OFF. When pin RA3 is raised to logic 1, the opto-coupler output changes to logic 1 and the relay at the output is activated, turning the light ON. A small LED is connected to port pin RB1 to indicate when the relay is activated. Port pin RA1 is connected to a resistor-capacitor circuit. The resistor is in the form of a potentiometer. Normally the capacitor is fully charged and the PIC Basic POT command is used to detect the capacitor discharge rate and hence the potentiometer setting, without the need of using an analog-to-digital converter.
4.4. Liquid Crystal Displays (LCD)

More microcontroller devices [23] are using LCD displays to output visual information. The following covers the connection of LCD display to a PIC microcontroller. LCD displays designed around LCD HD44780 module, are inexpensive, easy to use, and it is even possible to produce a readout using the 8 x 80 pixels of the display. LCD displays have a standard ASCII set of characters plus Japanese, Greek and mathematical symbols.

4.4.1. LCD HD44780 Module
The HD44780 as shown in Figure 4.5 below is a dot-matrix liquid crystal display controller and driver LSI which can display alphanumeric, Japanese kana characters, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a 4-or 8-bit microprocessor. Since all the functions such as display RAM, character generator, and liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimal system can be interfaced with this controller/driver. A single HD44780 can display up to one 8-character line or two 8-character lines. The HD44780 has pin function compatibility with the HD44780S which allows the user to easily replace an LCD-II with an HD44780.

The HD44780 character generator ROM is extended to generate 208 5 * 8 dot character fonts and 32 5 * 10 dot character fonts for a total of 240 different character fonts. The low power supply (2.7V to 5.5V) of the HD44780 is suitable for any portable battery-driven product requiring low power dissipation.

[image: image88.jpg]0sct 08C2

p—
= .
plEa] .
i Disglay coMt ©
T e e seceser || ‘oomam Lol S (| |22
g Pl lrepbtee || aver
sl
v . =
-} -
s ;
o o LA B -
2+ | S ;
N L LCO drivel
= =
S| B
o lfied
Sabyes || 9920 bag [|o0ober]

o jr s {

Figure 4.5: HD44780 Block diagram

· Pin Functions

Table 4.1: Pin Functions
	Signal
	No. of Lines
	I/O
	Device Interfaced with
	Function

	RS
	1
	I
	MPU
	Selects registers.

0:Instruction register (for write)Busy flag:

address counter (for read)

1:Data register (for write and read)

	R/W
	1
	I
	MPU
	Selects read or write.

0:Write 1:Read

	E
	1
	I
	MPU
	Starts data read/write.

	DB4 to DB7
	4
	I/O
	MPU
	Four high order bidirectional tristate data bus

pins. Used for data transfer and receive between

the MPU and the HD44780.DB7 can be used

as a busy flag.

	DB0 to DB3
	4
	I/O
	MPU
	Four low order bidirectional tristate data bus pins. Used for data transfer and receive between the MPU and the HD44780.

These pins are not used during 4-bit operation.

	CL1
	1
	O
	Extension driver
	Clock to latch serial data D sent to the extension

Driver

	CL2
	1
	O
	Extension driver
	Clock to shift serial data D

	M
	1
	O
	Extension driver
	Switch signal for converting the liquid crystal

drive waveform to AC

	D
	1
	O
	Extension driver
	Character pattern data corresponding to each

segment signal

	COM1 to COM16
	16
	O
	LCD
	Common signals that are not used are changed

to non-selection waveforms.COM9 to COM16

are non-selection waveforms at 1/8 duty factor

and COM12 to COM16 are non-selection

Waveforms at 1/11 duty factor.

	SEG1 to SEG40
	40
	O
	LCD
	Segment signals

	V1 to V5
	5
	—
	Power supply
	Power supply for LCD drive

VCC –V5 =11 V (max)

	VCC ,GND
	2
	—
	Power supply
	VCC :2.7V to 5.5V,GND:0V

	OSC1,OSC2
	2
	—
	Oscillation

resistor clock
	When crystal oscillation is performed, a resistor must be connected externally. When the pin inputis an external clock, it must be input to OSC1.

· Registers

The HD44780 has two 8-bit registers, an instruction register (IR)and a data register (DR).The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM)and character generator RAM (CGRAM).The IR can only be written from the MPU. The DR temporarily stores data to be written into DDRAM or CGRAM and temporarily stores data to be read from DDRAM or CGRAM. Data written into the DR from the MPU is automatically written into DDRAM or CGRAM by an internal operation. The DR is also used for data storage when reading data from DDRAM or CGRAM. When address information is written into the IR, data is read and then stored into the DR from DDRAM or CGRAM by an internal operation. Data transfer between the MPU is then completed when the MPU reads the DR. After the read, data in DDRAM or CGRAM at the next address is sent to the DR for the next read from the MPU. By the register selector (RS) signal, these two registers can be selected (Table 4.2).

· Busy Flag (BF).

When the busy flag is 1, the HD44780 is in the internal operation mode, and the next instruction will not be accepted. When RS =0 and R/W =1 (Table 4.2), the busy flag is output to DB7.The next instruction must be written after ensuring that the busy flag is 0.

· Address Counter (AC).

The address counter (AC) assigns addresses to both DDRAM and CGRAM. When an address of an instruction is written into the IR, the address information is sent from the IR to the AC. Selection of either DDRAM or CGRAM is also determined concurrently by the instruction. After writing into (reading from) DDRAM or CGRAM, the AC is automatically incremented by 1 (decremented by 1).The AC contents are then output to DB0 to DB6 when RS =0 and R/W =1 (Table 4.2).
Table 4.2: Register selection
	RS
	R/W
	Operation

	0
	0
	IR write as an internal operation (display clear, etc.)

	0
	1
	Read busy flag (DB7)and address counter (DB0 to DB6)

	1
	0
	DR write as an internal operation (DR to DDRAM or CGRAM)

	1
	1
	DR read as an internal operation (DDRAM or CGRAM to DR)

· Display Data RAM (DDRAM)

Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its extended capacity is 80 * 8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be used as general data RAM.

· Character Generator ROM (CGROM)

The character generator ROM generates 5 * 8 dot or 5 *10 dot character patterns from 8-bit character Codes. It can generate 208 5 * 8 dot character patterns and 32 5 * 10 dot character patterns.

· Character Generator RAM (CGRAM)

In the character generator RAM, the user can rewrite character patterns by program .For

5* 8 dots, eight character patterns can be written, and for 5 * 10 dots, four character patterns can be written.

· Timing Generation Circuit

The timing generation circuit generates timing signals for the operation of internal circuits such as DDRAM,CGROM and CGRAM.RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DDRAM, for example, there will be no undesirable interferences, such as flickering, in areas other than the display area.

· Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 16 common signal drivers and 40 segment signal drivers. When the character font and number of lines are selected by a program, the required common signal drivers automatically output drive waveforms, while the other common signal drivers continue to output non-selection waveforms. Sending serial data always starts at the display data character pattern corresponding to the last address of the display data RAM (DDRAM). Since serial data is latched when the display data character pattern corresponding to the starting address enters the internal shift register, the HD44780 drives from the head display.

· Cursor/Blink Control Circuit

The cursor/blink control circuit generates the cursor or character blinking. The cursor or the blinking will appear with the digit located at the display data RAM (DDRAM) address set in the address counter (AC).
· Interfacing to the MPU

The HD44780 can send data in either two 4-bit operations or one 8-bit operation, thus allowing interfacing with 4-or 8-bit MPUs.

For 4-bit interface data, only four bus lines (DB4 to DB7) are used for transfer. Bus lines DB0 to DB3 are disabled. The data transfer between the HD44780 and the MPU is completed after the 4-bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit operation, DB4 to DB7) are transferred before the four low order bits (for 8-bit operation, DB0 to DB3). The busy flag must be checked (one instruction) after the 4-bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data. For 8-bit interface data, all eight bus lines (DB0 to DB7) are used.

4.4.2. Connecting an LCD to a Microcontroller Example
This is
an example showing how a LCD display can be controlled in 4-bit mode. LCD control device that is realized using the microcontroller technology. As shown in Figure 4.6.

[image: image89.jpg]|

+5¢ Rz [l
Tos e :V—m +By
1 & -
i ool WEY
PIC
—Z:Vss 16680 i REETT O]
il [
¥ (]]
—%an R i
9

B3 Rb

Cantral lines

Figure 4.6: Connecting an LCD display to a microcontroller.

Before an LCD can be controlled, we have to specify the interface details (the connection details) between the LCD and the microcontroller. The following connection details are required to be specified:

· Connection of LCD data bus pins (D4 – D7)

· Connection of LCD RS pin

· Connection of LCD E pin

· Connection of LCD RW pin

These details are normally specified using a set of DEFINE commands as shown below:

DEFINE LCD_DREG PORTB

' Set LCD Data port

DEFINE LCD_DBIT 0

' Set starting Data bit (0 or 4) if 4-bit bus

DEFINE LCD_RSREG PORTB

' Set LCD Register Select port

DEFINE LCD_RSBIT 4

' Set LCD Register Select bit

DEFINE LCD_EREG PORTB

' Set LCD Enable port

DEFINE LCD_EBIT 6

' Set LCD Enable bit

DEFINE LCD_BITS 4

' Set LCD bus size (4 or 8 bits)

DEFINE LCD_LINES 2

' Set number of lines on LCD

DEFINE LCD_RWREG PORTB
 ' Set LCD Read/Write register

DEFINE LCD_RWBIT 5

'Set LCD Read/Write bits

LCDOut $fe,1, "Character "

'Clear LCD and print first line

LCDOut $fe,$C0," Jehad Tabash "
 ' Move cursor to next line

Pause 1000

In this example we use an LCD display with 2x16 characters. The message 'character' is written in the first row. In the second row we have produced the word ' Jehad Tabash '.

4.5. Accelerometer Application on PIC Microcontrollers
In this section accelerometer ADXL 202E has been used on a PIC microcontroller to measure acceleration. The PIC Basic language is used to program the microcontroller. A PIC microcontroller system hardware has been developed in order to test the operation of the accelerometer system developed by the author. This hardware consists of the following:

· ADXL 202E accelerometer

· PIC16F84 microcontroller

· LCD display

The circuit basically measures the acceleration using an ADXL 202E sensor integrated circuit. The acceleration is then fed to a PIC16F84 type microcontroller which shows the acceleration on the LCD display.

4.5.1. The Circuit Block Diagram
The block diagram of this circuit is shown in Figure 4.7. The ADXL 202E accelerometer receives and sends the X and Y directions signals to the PIC16F84A microcontroller. The microcontroller then drives the LCD display.

[image: image90]
Figure 4.7: Block diagram of the circuit.

4.5.2. Accelerometer (ADXL 202E)

The ADXL202E provides a duty-cycle output that is proportional to acceleration. It uses a single 3V to 5.2V supply for operation, and it consumes less than 250 µA per axis. It comes in an 8-pin LCC that measure 5 by 5 by 2 mm. The pin configuration of the ADXL 202E accelerometer is shown in Figure 4.8.

[image: image91.png]Pb b

XFILT

YFILT

XOouT

T

ST

T2

CoM

—4— vout

Figure 4.8: PIN Configuration for the ADXL202E

ST: Controls the self-test feature.

T2: Length of the total cycle.

COM: Ground.

YOUT and XOUT: Digital Output.

YFILT and XFILT: Analogue Output.

VDD: Power supply.
The output from the sensor can be digital duty cycle modulated (DCM) signals or analog voltage output. The duty cycle output from the sensor is used instead of the voltage output because it gives better accuracy. These outputs may be measured directly with a microprocessor counter, requiring no A/D converter or glue logic.

4.5.3 PIC Microcontroller (PIC 16F84A)

The PIC16F84A belongs to the mid-range family of the PIC micro microcontroller devices. The program memory contains 1K words, which translates to 1024 instructions, since each 14-bit program memory word is the same width as each device instruction. The data memory (RAM) contains 68 bytes. Data EEPROM is 64 bytes. There are also 13 I/O pins that are user configured on a pin-to-pin basis. Some pins are multiplexed with other device functions. The pin configuration of the PIC16F84 microcontroller is shown in Figure 4.9.
[image: image92.png]—{ ra2 RA1 [HE—
—21RrA3 RAO [HI—
—3-bRA4/TOCLIOSC1/CLK 48—
—=4- MCLROSC2/CLKOUT 12—
—51 oo vop [H4—
—=8 RBO/INT Rre7 (83—
—Z Rr81 RrB6 [H2—
—E&re2 RrB5 [H1—
—3 RB3 RB4 [H0—

Figure 4.9: PIN Configuration of PIC16F84.

OSC1/CLKIN: Oscillator crystal input. External clock source input.

OSC2/CLKOUT: Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode.

MCLR(inv): Master clear (reset) input. Programming voltage input. This pin is an active low reset to the device.

RA0 - RA3: Bi-directional I/O port.

RA4/T0CKI: Bi-directional I/O port. Clock input to the TMR0 timer/counter.

RB0/INT: Bi-directional I/O port. External interrupt pin.

RB1 - RB7: Bi-directional I/O port.

VSS: Ground & VDD: Positive supply (+2.0V to +5.5V).

4.5.3. LCD Display
A liquid crystal display (LCD) is a thin, flat display device made up of any number of color or monochrome pixels arrayed in front of a light source or reflector. It is prized by engineers because it uses very small amounts of electric power, and is therefore suitable for use in battery-powered electronic devices.

The display requires a +5V supply plus 11 I/O lines. For a 4-bit data bus it only requires the supply lines plus seven extra lines. When the LCD display is not enabled, data lines are tristate which means they are in a state of high impedance and this means they do not interfere with the operation of the microcontroller when the display is not being addressed.

The LCD also requires three control lines from the microcontroller:
· Enable (E): This line allows access to the display through R/W and RS lines. When this line is low, the LCD is disabled and ignores signals from R/W and RS. When (E) line is high, the LCD checks the state of the two control lines and responds accordingly.

· Read/Write (R/W): This line determines the direction of data between the LCD and microcontroller. When it is low, data is written to the LCD. When it is high, data is read from the LCD.

· Register select (RS): With the help of this line, the LCD interprets the type of data on data lines. When it is low, an instruction is being written to the LCD. When it is high, a character is being written to the LCD.

4.5.4. The Circuit Diagram
The complete circuit diagram of the PIC microcontroller based accelerometer is shown in Figure 4.10 and the picture of the design is shown in Figure 4.11. The circuit consists of a number of integrated circuits, passive components and push-button switches.

[image: image93.jpg]o
'

WGe'L

YH

ani

LEEEB|MT w_ 9v1vd a0l
Sv1lvaaol ¥v1va ol
0T] B
T 7
3001 9] MY 321
Sy Aol m 0L
O o VY 1NOX Japlwisuel | " (<]
— oh [
aNo NG+
1 40 } WA >wm
aNo
< aNS 9662204y
| Woo 3 1noX r— u__:L. i
5 110
Zl ¢ LNdA |u||._| o
< ¥840910Id
—{1s 8 LN (o = =
[0.- syaol OF 6 /vivaaol
= | sau za
ven Md Q01 T ¥ 9vivaaol
| ——r & Ve
9 dzz, 3an T Sv1vaaol 0-
18Y 1108y —_
3rzoz1Xav i ano m“w_ |ﬁ X1 B 9 pvlvaaol
z) a aN
- I °Te - o
o b LNON10/ZISOHTON | A
gt A ZH, X ; 0
{}— ! g A1/ 0SOND0L PV ¢ o /\wmﬁ CI— |
¥o vy y |
v INOX 0 eV | —o0 o
o Lvd v | N2z .
& aa
zn
0- B - rorall oy
_ aNs \\x NG+
& .)
3202IXaY anNo 1a
< 4np 4ny 0- 0- 0-
. AT W00 2 InOX fe— | -
Y 1 |u||||_| 0= nygQdN aN an
L WA 7 2L 1U3A 4o
H an 90 19 4nzz
— 18 B LUK |7 Ecka
g ELIN) & 1SdS-A3N MS
4
s €0 AG+ sl [- S AL+
in r
ZNOOIMS
004
96LI0N s WV—57
2d N+

¥3IMOd

Figure 4.10: The circuit diagram

· The accelerometer sensor ADXL202E measures the acceleration as a digital electrical signal.
· The measured digital signal is sent to the PIC microcontroller as digital input.
· The microcontroller drives the LCD. RB0-RB3 pins of the microcontroller are used to drive the LCD data lines. RB4-RB6 is used as the LCD control signals.
· The program reads the acceleration and checks G force in two directions (X and Y) and then the data is displayed on LCD displays.
[image: image94.jpg]

Figure 4.11: The picture of design.

4.5.5. Implementing the Flow Chart and Program
The aim of this thesis is to measure the acceleration in two axes (X and Y) and then display the result on a 2-row LCD. The program consists of two parts: calibration, sensing and display.

[image: image95]

[image: image96]

[image: image97]Subroutine Calibration

[image: image98]

[image: image99]
Figure 4.12 shows the actual PIC Basic code developed by the author in accordance with the flow-chart given above.

'======defines==========================

DEFINE LCD_DREG PORTB
 ' Set LCD Data port

DEFINE LCD_DBIT 0 ' Set starting Data bit (0 or 4) if 4-bit bus

DEFINE LCD_RSREG PORTB
 ' Set LCD Register Select port

DEFINE LCD_RSBIT 4
 ' Set LCD Register Select bit

DEFINE LCD_EREG PORTB
 ' Set LCD Enable port

DEFINE LCD_EBIT 6
 ' Set LCD Enable bit

DEFINE LCD_BITS 4
 ' Set LCD bus size (4 or 8 bits)

DEFINE LCD_LINES 2
 ' Set number of lines on LCD

DEFINE LCD_RWREG PORTB
 ' Set LCD Read/Write register

DEFINE LCD_RWBIT 5
 ' Set LCD Read/Write bits

DEFINE OSC 4
 ' Set Oscillator Frequency

'=====variables=========================

xinput VAR WORD 'saves value of x axis pulsein

yinput VAR WORD 'saves value of y axis pulsein

xsmooth VAR WORD 'used in averaging

ysmooth VAR WORD 'used in averaging

xaxis VARWORD 'intermediate variable

yaxis VAR WORD 'intermediate variable

xfinal VAR WORD 'x axis g force x 100

yfinal VAR WORD 'y axis g force x 100

xconst VAR WORD 'zero point of x

yconst VAR WORD 'zero point of y

x1gee VAR WORD 'units per g for x

y1gee VAR WORD 'units per g for y

xavg VAR WORD 'used in averaging

yavg VAR WORD 'used in averaging

x VAR BYTE 'loop counter

xneg VAR BYTE 'flag for negative g

yneg VAR BYTE 'flag for negative g

xchar VAR BYTE 'x axis +/- sign character for LCD

ychar VAR BYTE 'y axis +/- sign character for LCD

final VAR WORD 'value for lcd

signs VAR BYTE 'sign char for lcd

pluscal VAR WORD 'variables used in data calibration

minuscal VAR WORD 'variables used in data calibration

calib VAR WORD 'used in calibration subroutine

'============start of program================

'=========initialization & calibration=======

top:

 xfinal = 0

 yfinal = 0

 Read 0, pluscal.byte0 'read calibration values from flash

 Read 1, pluscal.byte1

 Read 2, minuscal.byte0

 Read 3, minuscal.byte1

 xconst = pluscal + (minuscal-pluscal)/2

 x1gee = (minuscal - pluscal)/2

 Read 4, pluscal.byte0

 Read 5, pluscal.byte1

 Read 6, minuscal.byte0

 Read 7, minuscal.byte1

 yconst = pluscal + (minuscal-pluscal)/2

 y1gee = (minuscal - pluscal)/2

'================splash=====================

LCDOut $fe,1, " Accelaration Meter " 'Clear LCD and print first line

LCDOut $fe,$C0," Jehad Tabash (NEU) " 'Move cursor to next line

Pause 1000

'==============main loop====================

loop:

 IF NOT PORTA.3 Then 'if calibration button pressed (goes low)...

 GoSub cal '...then do calibration subroutine

 GoTo top 'load in new cal factors

 EndIF

 Pause 40 'additional delay between LCD updates

 xsmooth = 0 'variable zeroing

 ysmooth = 0

 For x = 1 TO 4 'measure pulse width of sensor and averaging.

 PulsIn PORTA.0, 1, xinput

 PulsIn PORTA.1, 1, yinput

 xsmooth = xsmooth + xinput

 ysmooth = ysmooth + yinput

 Next x

 xsmooth = xsmooth / 4 'averaging to smooth display

 ysmooth = ysmooth / 4

 IF xsmooth < xconst Then
 'minus g flag for X axis on LCD

 xneg = 1

 xchar = "-"

 Else'plus g flag

 xneg = 0

 xchar = "+"

 EndIF

 IF ysmooth < yconst Then 'minus g flag for Y axis on LCD

 yneg = 1

 ychar = "-"

 Else 'plus g flag

 yneg = 0

 ychar = "+"

 EndIF

 IF xsmooth < xconst Then 'statements to handle minus g values for X and Y axis

 xsmooth = (xconst - xsmooth) + xconst

 EndIF

 IF ysmooth < yconst Then

 ysmooth = (yconst - ysmooth) + yconst

 EndIF

 xaxis = xsmooth-xconst 'gives zero

 yaxis = ysmooth-yconst

 xaxis = xaxis * 100 'multiply to save significant digits

 yaxis = yaxis * 100

 xfinal = xaxis/x1gee 'divide to convert to g force values

 yfinal = yaxis/y1gee

 LCDOut $fe, 1,"X = " 'clear LCD

 final = xfinal 'load variables for X axis...

 signs = xchar

 GoSub paintlcd '...and write to LCD

 'GoSub dots 'add bar graph stars

 LCDOut $fe,$c0, "Y = " 'repeat for Y axis

 final = yfinal

 signs = ychar

 GoSub paintlcd

 'GoSub dots

 GoTo loop ' Do it forever

 End

'============subroutines===========

paintlcd: 'writes directional sign and value to LCD

 LCDOut signs,DEC1 final/100,".", DEC2 final

 Return

cal: 'calibration subroutine

 LCDOut $fe,1,"Calibration"

 Pause 1000

 For x = 0 TO 6 STEP 2 'loop to load flash with cal values

 LCDOut $fe,1, "Press to Cal ", DEC (x/2) + 1

 While PORTA.3 'wait for button press

 Wend

 IF (x/4) Then

 PulsIn PORTA.1,1, calib 'read y sensor pulse

 LCDOut $fe,$c0,"Y sensor: "

 Else

 PulsIn PORTA.0, 1, calib 'read x sensor pulse

 LCDOut $fe,$c0,"X sensor: "

 EndIF

 Write 0 + x, calib.byte0 'write values to flash memory

 Write 1 + x, calib.byte1

 Pause 800

 LCDOut DEC4 calib 'write raw data to LCD

 Pause 1500 'data display pause

 Next x

 Return

Figure 4.12: The BASIC program

At the beginning of the program a set of “DEFINE” commands are used to define the interface between the microcontroller and the LCD. Then, variables used in the program are listed with a comment for each variable. The main program starts with label “top:” Here, the calibration parameters are read from the built-in EEPROM memory. Then the following message is displayed on each row of the 2-row LCD:

Acceleration Meter

Jehad Tabash (NEU)

The program then measures the acceleration and displays on the LCD.

Figure 4.13 shows the PIC Basic code developed by the author to measure the vibration.

'======defines==========================

DEFINE LCD_DREG PORTB
 ' Set LCD Data port

DEFINE LCD_DBIT 0 ' Set starting Data bit (0 or 4) if 4-bit bus

DEFINE LCD_RSREG PORTB
 ' Set LCD Register Select port

DEFINE LCD_RSBIT 4
 ' Set LCD Register Select bit

DEFINE LCD_EREG PORTB
 ' Set LCD Enable port

DEFINE LCD_EBIT 6
 ' Set LCD Enable bit

DEFINE LCD_BITS 4
 ' Set LCD bus size (4 or 8 bits)

DEFINE LCD_LINES 2
 ' Set number of lines on LCD

DEFINE LCD_RWREG PORTB
 ' Set LCD Read/Write register

DEFINE LCD_RWBIT 5
 ' Set LCD Read/Write bits

DEFINE OSC 4
 ' Set Oscillator Frequency

'=====variables=========================

xinput VAR WORD 'saves value of x axis pulsein

yinput VAR WORD 'saves value of y axis pulsein

xsmooth VAR WORD 'used in averaging

ysmooth VAR WORD 'used in averaging

xfinal VAR WORD 'x axis g force x 100

yfinal VAR WORD 'y axis g force x 100

x VAR BYTE 'loop counter

final VAR WORD 'value for lcd

'================splash=====================

LCDOut $fe,1, " G-force Meter " 'Clear LCD and print first line

LCDOut $fe,$C0," Jehad Tabash (NEU) " ' Move cursor to next line

Pause 1000

'==============main loop====================

 loop:
 xsmooth = 0 'variable zeroing

 ysmooth = 0

 For x = 1 TO 4 'measure pulse width of sensor and averaging.

 PulsIn PORTA.0, 1, xinput

 PulsIn PORTA.1, 1, yinput

 xsmooth = xsmooth + xinput

 ysmooth = ysmooth + yinput

 Next x

 xsmooth = xsmooth / 4 'averaging to smooth display

 ysmooth = ysmooth / 4

xfinal = xsmooth

 yfinal = ysmooth
 LCDOut $fe, 1,"X = " 'clear LCD

 final = xfinal 'load variables for X axis

 GoSub paintlcd '...and write to LCD

 'GoSub dots 'add bar graph stars
 LCDOut $fe,$c0, "Y = " 'repeat for Y axis

 final = yfinal

 GoSub paintlcd

 'GoSub dots

 GoTo loop ' Do it forever

 End

'============subroutines===========
paintlcd: 'writes directional sign and value to LCD

 LCDOut signs,DEC1 final/100,".", DEC2 final

 Return

Figure 4.13: The BASIC program

At the beginning of the program a set of “DEFINE” commands are used to define the interface between the microcontroller and the LCD. Then, variables used in the program are listed with a comment for each variable.” Then the following message is displayed on each row of the 2-row LCD:

G-force Meter

Jehad Tabash (NEU)

The program then measures the vibration and displays on the LCD.

4.6. Test Results
The accelerometer design [24] was tested in a car by the author (see Table 4.4), and the results obtained were compared with the results of a commercial accelerometer. The commercial accelerometer was in the form of an evaluation board, developed by Analog Devices Inc. This evaluation board comes preassembled from the sensor company and has all the components built in.
To test the design in a car, a friend of the author drove the car while the author was reading the results from both the commercial accelerometer and the one designed by the author. Although the two readings were very close, the reading from the two systems did not match exactly. The inaccuracies could be as a result of several factors. The main factors are:

- The sensor should be assembled using SMD technology, which was not available here, and soldering it to the board was a very difficult task.

- Special type of capacitors needed to be used with the sensor and these were not readily available to the author.
- The sensor is very small and very sensitive so the connection on the board was very difficult
- The microcontroller was causing a lot of noise and interfering with the sensor, the sensor datasheet suggested using some sort of ferrite beads to decrease this noise.
Table 4.3: Test results.

	Time (s)
	X (g*)
	Y (g*)

	500
	-0.16
	0.22

	505
	-0.06
	-0.18

	510
	0.20
	0.09

	515
	-0.23
	-0.09

	520
	-0.20
	-0.14

	525
	-0.20
	-0.08

	530
	-0.17
	-0.10

	535
	-0.17
	-0.08

	540
	-0.17
	-0.07

	545
	-0.17
	-0.07

*g (also gee, g-force or g-load) is a non-SI unit of acceleration defined as exactly 9.80665 m/s², which is approximately equal to the acceleration due to gravity on the Earth's surface.

Table 4.4: Test results.

	Result of designed circuit
	
	Result of commercial circuit

	Time (s)
	X (g*)
	Y (g*)
	
	Time (s)
	X (g*)
	Y (g*)

	200
	0.11
	0.11
	
	200
	0.13
	0.10

	240
	0.54
	0.19
	
	240
	0.55
	0.15

	280
	0.10
	0.08
	
	280
	0.14
	0.01

	320
	0.18
	0.14
	
	320
	0.25
	0.1

	360
	0.15
	0.12
	
	360
	0.16
	0.12

	400
	0.03
	0.11
	
	400
	0.08
	0.09

	440
	0.12
	0.12
	
	440
	0.15
	0.08

	480
	0.05
	0.02
	
	480
	0.11
	0.0

	520
	0.11
	0.09
	
	520
	0.12
	0.09

	560
	0.35
	0.12
	
	560
	0.39
	0.14

*g (also gee, g-force or g-load) is a non-SI unit of acceleration defined as exactly 9.80665 m/s², which is approximately equal to the acceleration due to gravity on the Earth's surface.

Although the design was not giving very accurate results, it was still able to measure the acceleration to a good degree of accuracy. Looking at the results obtained from the designed circuit (left table), the average acceleration in the X direction was 0.174. The average acceleration reading of the commercial unit (right table) in the X direction was 0.208 which is only 19.5% higher than the designed circuit. Similarly, the average acceleration obtained from the designed circuit in the Y direction was 0.11. The average acceleration reading of the commercial unit in the Y direction was 0.088 which is about 20% less than the designed circuit. It is interesting to notice that the error in both directions was consistent and around 20%.
This design can be easily connected to a PC using a serial cable or a wireless link (RF link). PIC microcontroller can be programmed to send the sensor data to an RF transmitter using ASK (Amplitude shift keying) or FSK (Frequency Shift Keying) modulation. The PC will have a software to read the sensor data (acceleration) and store, process and display it, in any required form (e.g. graphical display of the change of acceleration against time).

The accelerometer design developed in this thesis can be used in many applications. Some possible application areas are:-

- Measure car performance through acceleration.

- Determine the vertical and horizontal orientation of objects like tablet pc monitors.

- Robot tracking.

- Measure the speed and distance traveled by an object.

- Measuring the shock and vibration.

- Automotive engineering, mainly in relation to cornering forces and collision analysis.

4.7. Summary
This chapter has described the design of a simple, low-cost microcontroller based accelerometer device with LCD output. The system designed measures and displays the acceleration of the body where it is attached to.

One of features of this design is that it is based on using a high-level language to program the microcontroller. The total program code is easy to understand, and is less than a page including the reading and processing of the acceleration (without the LCD code). This is important since the code can easily be expanded to provide further processing of the raw data. For example, the acceleration can be integrated twice to give the displacement, or it can be integrated once to give the velocity of the moving body.
The results obtained by the device designed by the author has been compared with the results of commercial accelerometers, and consistent and satisfactory results have been obtained.
CONCLUSION

Acceleration is one of the most important parameters used when describing the dynamical behaviour of moving bodies. Knowing the acceleration of a moving body helps us to determine its velocity after performing a simple integration. Similarly, knowing the velocity of a moving body we can easily determine its position by performing another simple integration.

Accelerometers are used in many commercial and industrial objects where movement is involved. For example, accelerometers are used in planes to determine the horizontal and vertical acceleration of the plane. They are used by car manufacturers to test the performance of their new cars. Accelerometers are also used in vehicles to help determine the position of a vehicle by the methods of dead-reckoning. Another common use of accelerometers is in measuring the tilt of a moving object.
Acceleration of a moving body has traditionally been measured using mechanical devices consisting of springs and masses. The movement of the spring in such a system is dependent on the acceleration of the system and thus by measuring the displacement of the spring we could obtain a value proportional to the acceleration of the moving body.
Recently, new form of semiconductor based accelerometer sensors have been manufactured by several firms. These devices are easy to use, low-cost, reliable, offer digital outputs, and provide accurate measurement of the acceleration.

This thesis investigated the properties of semiconductor accelerometers. It is shown in the thesis that these accelerometers can very easily be interfaced to any type of microcontroller. The only requirement is at least two general purpose digital microcontroller input ports. It is also shown in the thesis that high-level programming languages, such as BASIC can be used to read the output of semiconductor accelerometers. In order to determine the properties, and advantages and disadvantages of these accelerometers, the author has designed a PIC microcontroller based accelerometer system with LCD output. The provision of an LCD has helped the author to read the measured acceleration easily and this is one of the intelligent features of the design. This device has been used to compare the accuracy of a home-made accelerometer with the accuracy obtainable from an expensive, commercially available accelerometer. The results are satisfactory for most general purpose applications and it can be concluded that low-cost semiconductor accelerometer sensor based systems can be designed and used with low-cost microcontrollers.

The accelerometer device designed in this thesis can also be used as a general purpose portable intelligent accelerometer unit with LCD output.
REFERENCES

[1]
“Capacitive sensing”

http://www.stanford.edu/class/me220/lectures/lect04/lect_4.html
[2]
“A Second Order Mechanical System”

http://xenia.media.mit.edu/~verp/projects/smartpen/node16.html
[3]
“Accelerometer”

http://bits.me.berkeley.edu/beam/acc_2.html
[4]
“Sensors”

http://www.cs.sunysb.edu/~tony/392/sensors/sensors.html
[5]
“An Introduction to Sensors and Transducers”

http://www.mfg.mtu.edu/cyberman/machtool/machtool/sensors/intro.html
[6]
“Sensors”

http://www.mathworks.com/access/helpdesk/help/toolbox/daq/c1_intr6.html

[7]
“Design Realization”

http://www.cs.berkeley.edu/~jfc/DR/F03/lectures/lec18
[8]
“Introduction to MEMS”

http://mems.colorado.edu/c1.gen.intro/mems.shtml
[9]
“Advantages of MEMS Manufacturing”

http://www.mems-exchange.org/MEMS/fabrication.html

[10]
“MEMS Inertial Sensing Technology “

http://www.sensorsmag.com/articles
[11]
“Position and Motion Sensors”

http://www. analog.com/UploadedFiles/Associated_Docs

[12]
“Accelerometer Design”

http://www.uaf.edu/asgp/srp4_parts/electrical/accelerometer.htm
[13]
“Functional Block Diagram”

http://www. analog.com
[14]
“Miniature MEMS Accelerometer Adds Motion Sensing To Consumer Products”

http://www.elecdesign.com/Articles/ArticleID/4445/4445.html
[15]
“Interfacing of a Tilt Sensor to Personal Digital Assistant”

http://innovexpo.itee.uq.au/2001/projects/s369518/thesis2.pdf

[16]
John Iovine,” PIC Microcontroller Project Book”, 2000

http://www.amazon.com/exec/obidos/ASIN/0071354794/ref%3Dnosim/robotbooks-20/002-1409841-1684012

[17]
D. Ibrahim, “Microcontroller programming in C for the 8051”, Butterworth-

Heinemann, 2000, London.

[18]
John Crisp, “Introduction to Microprocessors and Microcontrollers”, Second Edition, Elsevier, 1998-2004, London.

[19]
“Introduction to Microcontrollers”

http://www-inst.eecs.berkeley.edu/~ee128/fa04/laps/lap7-intro.pdf
[20]
Hon-Won Huang, “PIC Microcontroller: An introduction to Software & Hardware”, Thomson Delman Learning, 2004.

[21]
“Microchip Data Sheets and Application Notes”

http://www.microchip.com

[22]
Nebojsa Matic,” BASIC for PIC Microcontroller”, 2003-2004

http://www.microelectronika.com.

[23]
“Dot Matrix Liquid Crystal Display Controller/Driver”

http://web.media.mit.edu/~ayah/documents/hd44780u.pdf

[24]
“The evaluation board”

http://www.analog.com/en/prodRes

Yes

No

Loop

Top

Loop 1

No

Yes

X >= 6

Wait

Write values to flash memory

Top

Loop1

No

Read X sensor pulse

ADXL 202E

LCD

display

PIC

16F84A

ADXL 202E

h

s

a

d

h

J

a

T

a

e

b

Acceleration Sensors

To A/D Converter

Low pass Antialising Filters

Calibration

Input energy

(or signal)

X = X+2

Output energy

(or signal)

Transducer

Output Scaling

Yes

No

Yes

Read Y sensor pulse

X Smooth = 0

Y Smooth = 0

Button

Press

X/4

True

Key

Press

X = 0

Display calibration on LCD

Start

Loop

Display Y final on LCD

Set LCD parameters define variables

Start

Calculate

X const, X lgee

Y const, Y lgee

Display X final on LCD

End

Loop

Let X =1

Loop

No

Display Splash massage

Read calibration data for X, Y from EEPROM

X = X+1

Yes

If no reading (stable) reset value to zero

Find the sign for

X, Y values (+, -)

X Smooth = X Smooth /4

Y Smooth = Y Smooth /4

X Smooth = X Smooth /4

X>=4

Y Smooth =Y Smooth + Yinput

X Smooth = X Smooth + Xinput

Read Yinput from sensor

Read Xinput from sensor

Prepare X, Y values to display

PAGE
37

_1177197741.unknown

_1195759853.unknown

_1195760004.unknown

_1195760055.unknown

_1195760203.unknown

_1195760210.unknown

_1195760215.unknown

_1195760059.unknown

_1195760009.unknown

_1195760052.unknown

_1195759955.unknown

_1195759968.unknown

_1195759860.unknown

_1177198927.unknown

_1177199355.unknown

_1177358990.unknown

_1177359856.unknown

_1177360957.unknown

_1177361039.unknown

_1177360449.unknown

_1177359609.unknown

_1177358196.unknown

_1177199278.unknown

_1177199308.unknown

_1177198940.unknown

_1177198202.unknown

_1177198844.unknown

_1177198913.unknown

_1177198533.unknown

_1177198712.unknown

_1177198017.unknown

_1177198159.unknown

_1177197909.unknown

_1177197256.unknown

_1177197501.unknown

_1177197675.unknown

_1177197459.unknown

_1177196954.unknown

_1177197197.unknown

_1177196860.unknown

