
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

MEDICINE STOCK CONTROL MANAGAMENT

Graduation Project
COM-400

Student: Yasin Ayhan

Supervisor: Omit [lhan

N icossia - 2003

ACKNOWLEDGEMENT

First of all I would like to thank Mr. UMIT ILHAN for his endless and untiring

support and help and his persistence, in the course of the preparation of this project.

Under his guidance, I have overcome many difficulties that I faced during the
various stages of the preparation of this project.

Finally, I would like to thank my family, especially my father who name is Mr

NECMETTIN AYHAN and my brother who name is Mr UGUR AYHAN Their love and

guidance saw me through doubtul times. Their never-ending belief in me and their

encouragement has been a crucial and a very strong pillar that has held me together

ABSTRACT

As the information age has effected every aspect of our life, the need for
computerizing many information systems has raised.

Once of the important branches that are effected by information revolution is the
computer programming languages.

This project is concerned about using compueter program in Pharmacy

management system . It is written using Visual Basic 6.0 programming language and

used Microsoft Access Database language for databases. Visual Basic is one of the best
and easy programming languages.

This project is accomlete Pharmacy management program, that covers all

services needed in most Pharmacy, such as computer related information,madicine,

goods and many other Pharmacy management related services.

Before coming to this point, this project has gone through some important steps;

• First one was the requirements definition for which I had to go to

some Pharmacy and study their systems.

• The second steps were designing the system and sofware that rs

intended to serve an integrated Pharmacy management system.

• The final steps was the implementation of the design on the computer
using Visual Basic Language.

TABLE OF CONTENTS

ACKNOWLEDGMENT

ABSTRACT

CONTENTS

INTRODUCTION

CHAPTER!

VISUAL BASIC PROGRAM

1.1 VB advantages

1.2 Very First Visual Basic Program

1.3 The Form Object

1.4 Adding Controls to a Form

1. 5 Setting Properties of Controls

1.6 Naming Controls

1. 7 Adding Code

1.8 Running and Debugging the Program

1.9 Refinning the Sample Program

1.10 Ready, Compile, Run;

CHAPTER2

DATABASE AND ACCESS
2.1 Why is the computer necessary in our life

2.2 How to develop a database application

2.3 Relational database

2.4 The facilities of access

2.5 Visual Basic and Access

2.5.1 DAO (Data Access objects)

2.5.2 ADO (Active X Data Objects)

2.6 The Application Of Access

2.6.1 Tables Design

CHAPTER3

MAIN PROGRAM
3 .1 MAIN MENU

1

11

111

iv

3

3

3

4

5

7

9

11

12

15

17

21

21

21

22

22

23

23

24

25

26

26

3.2 THE PASSWORD SCREEN 29

3.3 UNIT EXPIRE DATE 31

3 .4 UNIT RECORD OF MADI CINE 33

3.5 UNIT RECORDE 35

3.6 UNITE ACCOMPANIMENT 42

3.7 UNIT CALCULATOR 47

3.8 UNIT SALLING 50

3.9 UNIT REPORT 52

3.10 UNIT DATA ENVIRONMENT 53

3 .11 Creating Table 54

3.11.1 Table 54

BALANCES 56

CONCLUSSION 58

REFERANCES 59

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

MEDICINE STOCK CONTROL MANAGAMENT

Graduation Project
COM-400

Student: Yasin Ayhan

Supervisor: Omit [lhan

N icossia - 2003

ACKNOWLEDGEMENT

First of all I would like to thank Mr. UMIT ILHAN for his endless and untiring

support and help and his persistence, in the course of the preparation of this project.

Under his guidance, I have overcome many difficulties that I faced during the
various stages of the preparation of this project.

Finally, I would like to thank my family, especially my father who name is Mr

NECMETTIN AYHAN and my brother who name is Mr UGUR AYHAN Their love and

guidance saw me through doubtul times. Their never-ending belief in me and their

encouragement has been a crucial and a very strong pillar that has held me together

ABSTRACT

As the information age has effected every aspect of our life, the need for
computerizing many information systems has raised.

Once of the important branches that are effected by information revolution is the
computer programming languages.

This project is concerned about using compueter program in Pharmacy

management system . It is written using Visual Basic 6.0 programming language and

used Microsoft Access Database language for databases. Visual Basic is one of the best
and easy programming languages.

This project is accomlete Pharmacy management program, that covers all

services needed in most Pharmacy, such as computer related information,madicine,

goods and many other Pharmacy management related services.

Before coming to this point, this project has gone through some important steps;

• First one was the requirements definition for which I had to go to

some Pharmacy and study their systems.

• The second steps were designing the system and sofware that rs

intended to serve an integrated Pharmacy management system.

• The final steps was the implementation of the design on the computer
using Visual Basic Language.

TABLE OF CONTENTS

ACKNOWLEDGMENT

ABSTRACT

CONTENTS

INTRODUCTION

CHAPTER!

VISUAL BASIC PROGRAM

1.1 VB advantages

1.2 Very First Visual Basic Program

1.3 The Form Object

1.4 Adding Controls to a Form

1. 5 Setting Properties of Controls

1.6 Naming Controls

1. 7 Adding Code

1.8 Running and Debugging the Program

1.9 Refinning the Sample Program

1.10 Ready, Compile, Run;

CHAPTER2

DATABASE AND ACCESS
2.1 Why is the computer necessary in our life

2.2 How to develop a database application

2.3 Relational database

2.4 The facilities of access

2.5 Visual Basic and Access

2.5.1 DAO (Data Access objects)

2.5.2 ADO (Active X Data Objects)

2.6 The Application Of Access

2.6.1 Tables Design

CHAPTER3

MAIN PROGRAM
3 .1 MAIN MENU

1

11

111

iv

3

3

3

4

5

7

9

11

12

15

17

21

21

21

22

22

23

23

24

25

26

26

3.2 THE PASSWORD SCREEN 29

3.3 UNIT EXPIRE DATE 31

3 .4 UNIT RECORD OF MADI CINE 33

3.5 UNIT RECORDE 35

3.6 UNITE ACCOMPANIMENT 42

3.7 UNIT CALCULATOR 47

3.8 UNIT SALLING 50

3.9 UNIT REPORT 52

3.10 UNIT DATA ENVIRONMENT 53

3 .11 Creating Table 54

3.11.1 Table 54

BALANCES 56

CONCLUSSION 58

REFERANCES 59

INTRODUCTION

Visual Basic is a Microsoft Windows programming Language. Visual Basic

programs are created in an Integrated Development Environment (IDE) . The IDE

allows the programmer to create , run and debug Visual Basic programs

conveniently. IDEs allow a programmer to create working programs in a fraction of

the time that it would normally take to code programs without using IDEs. The

process of rapidly creating an application is typically referred to as Rapid

Application Development(RAD). Visual Basic is the world's most widely used
RAD language.

Visual Basic is derived from the BASIC programming language. Visual

Basic is a distinctly different language providing powerfull features such as

graphical user interfaces, even handling, access to the Win32 API, object-oriented
features, error handling, structured programming, and much more.

The Visual Basic IDE allows Windows programs to be created without the
need for the programmer to be a Windows programming export.

Microsoft provides several version of Visual Basic, namely the Learning

Edition , the Professional Edition and the Enterprice Edition. The Learning Edition

provides fundemantal programming capabilities than the Learning Edition and is

the choice of many programmers to write Visual Basic applications. The Enterprice

Edition is used for developing large-scale computing systems that meet the needs
of substandial organizations.

Visual Basic is an interpreted language. However , the professional and
Enterprice Edition allows Visual Basic code to be compiled to native code.

Visual Basic evolved from BASIC(Beginner's All purpose Symbolic

Instruction Code). Basic was developed in the mid 1960' s by Professors John

Kemeny and Thomas Kurtz of Darthmouth College as a language for writing

simple programs. BASIC's primary purpose was to help people learn how to
program.

The widespread use of BASIC with various types of computers (sometimes

called hardware platforms) led to many enhancements to the language. With the

development of the Microsoft windows graphical user interface (GUI) in the late

I

1980s and the early 1990s, the natural evolution of BASIC was Visual Basic, which

was created by Microsoft Corporation in 1991.

Until Visual Basic appeared, develoing Microsoft Windows-based

applications was a diffucult and cumbersome process. Visual Basic greatly

simplifies Windows application development. Since 1991 six versions have been

released, withthe latest-Visual Basic 6-appearing in september 1998.

After a brief explanation about the Visual Basic 6.0 and the developing

layers, I hope that you will find the necessary information that you need all

about the Visual Basic even if you are a text based programmer.

2

CHAPTER!

Visual Basic Program

1.1.VB Advantages

So what makes VB a great programming language? The answer is simply that VB

provides more of the actual code for a programmer than any other non-visual
programming language.

If you've ever programmed in the older BASIC or other command line
programming

language, then you'll remember that the programmer had to write the code for the

entire user interface. Todays windows, buttons, lists, and other application features

such as menus were not built-in to the BASIC programming language. Programmers
had to create the code for these features on their own!

As much as 80% of a programmer's time was spent writing code to create the user

interface to his applications (the visual interface). To eliminate this huge drain on a

programmer's time, Microsoft has provided Visual Basic with the built-in capability

to create the user interface using nothing more than a mouse!

This built-in interface creation capability has had the further benefit of standardizing

on the user interface to Windows applications. Today, users can move from one

Windows program to another and see the same basic interface tools to work with -

allowing them to concentrate solely on the unique capabilities of the application.

The bottom line is that you can create an entire application shell (the user interface)

very quickly and then spend most of your time working on the features which
differentiate you application from its competition.

1.2. Very First Visual Basic Program

Visual Basic lets you build a complete and functional Windows application by

dropping a bunch of controls on a m and writing some code that executes when

something happens to those controls or to the tml itself For instance, you can
write code that executes when a [m loads or unloads or when the user resizes it.

3

Likewise, you can write code that executes when the user clicks on a control or

types while the control has the input focus.

This programming paradigm is also known as event-driven programming because

your application is made up of several event procedures executed in an order that's

dependent on what happens at run time. The order of execution can't, in general, be

foreseen when the program is under construction. This programming model

contrasts with the procedural approach, which was dominant in the old days.

This section offers a quick review of the event-driven model and uses a sample

application as a context for introducing Visual Basie's intrinsic controls, with their

properties, methods, and events. This sample application, a very simple one, queries

the user for the lengths of the two sides of a rectangle, evaluates its perimeter and

area, and displays the results to the user. Like all lengthy code examples and

programs illustrated in this book, this application is included on the companion CD.

1.3. The - Object

After this long introductory description of properties, methods, and events that are

common to most Visual Basic objects, it's time to see the particular features of all of

them individually. The most important visible object is undoubtedly the - object

because you can't display any control without a parent [m. Conversely, you can

write some moderately useful applications using only - that have no controls on

them. In this section, I'll show a number of examples that are centered on forms'

singular features.

You create a new B at design time using the Add [1111 command from the

Project menu or by clicking on the corresponding icon on the standard toolbar. You

can create B from scratch, or you can take advantage of the many B
templates provided by Visual Basic 6. If you don't see the dialog box shown in

Figure 2- 7, invoke the Options command from the Tools menu, click the

Environment tab, and select the topmost check box on the right.

4

Feel free to create new rm templates when you need them. A rm template

doesn't necessarily have to be a complex rm with many controls on it. Even an

empty B with a group of properties carefully set can save you some precious

time. For example, see the Dialog [B template provided by Visual Basic. To

produce your custom • templates, you just have to create a rm, add any
necessary controls and code, and then save it in the \Template\[lftffll directory. (The

complete path of Visual Basie's template directory can be read and modified in the
Environment tab of the Options dialog box.)

t,.. o .. 0 wi:~$n Stft;n . n~ \1ftt~.ti.ey &StkL<l~ in . (:iitior~ om~

1.4.Adding Controls to a [m
We're ready to get practical. Launch the Visual Basic IDE, and select a Standard

EXE project. You should have a blank [m near the center of the work area. More

accurately, you have a ml! designer, which you use to define the appearance of the
main window of your application. YOU can also create other m, if you need
them, and you can create other objects as well, using different designers (the

5

UserControl and UserDocument designers, for example). Other chapters of this

book are devoted to such designers.

One of the greatest strengths of the Visual Basic language is that programmers can

design an application and then test it without leaving the environment. But you

should be aware that designing and testing a program are two completely different

tasks. At design time, you create your [LIii and other visible objects, set their
properties, and write code in their event procedures. Conversely, at run time you

monitor the effects of your programming efforts: What you see on your screen is,

more or less, what your end users will see. At run time, you can't invoke the rm
designer, and you have only a limited ability to modify the code you have written at

design time. For instance, you can modify existing statements and add new ones,

but you can't add new procedures, [lllll, or controls. On the other hand, at run time

you can use some diagnostic tools that aren't available at design time because they

would make no sense in that context (for example, the Locals, the Watches, and the

Call Stack windows). \

To create one or more controls on a form's surface, you select the control type that

you want from the Toolbox window, click on the [m, and drag the mouse cursor

until the control has the size and shape you want. (Not all controls are resizable.

Some, such as the Timer control, will allow you to drag but will return to their

original size and shape when you release the mouse button.) Alternatively, you can

place a control on the form's surface by double-clicking its icon in the Toolbox: this

action creates a control in the center of the [ill. Regardless of the method you

follow, you can then move and resize the control on the Ill using the mouse.

TIP

If you need to create multiple controls of the same type, you can

follow this three-step procedure: First, click on the control's icon

on the Toolbox window while you keep the Ctrl key pressed. Next, draw

multiple controls by clicking the left button on the form's surface and then

dragging the cursor. Finally, when you're finished creating controls, press

6

the Escape key or click the Pointer icon in the upper left corner of the

Toolbox.

To complete our Rectangle sample application, we need four TextBox controls­

two for entering the rectangle's width and height and two for showing the resulting

perimeter and area, as shown in Figure 1-8. Even if they aren't strictly required from

an operational point of view, we also need four Label controls for clarifying the

purpose of each TextBox control. Finally we add a CommandButton control named

Evaluate that starts the computation and shows the results.

Place these controls on the Z!lm, and then move and resize them as depicted in

Figure 1-8. Don't worry too much if the controls aren't perfectly aligned because

you can later move and resize them using the mouse or using the commands in the

Format menu.

~:~:/'.::: :::::::·~:;:i:~~rr:·;~:.o{i:i\:i:;:;.;/ ,:,;.:-:-:ii,:i:i\'.i\-'.iii",:.·.·. ·.·,:.:,:-:-:-:-:-:-:-:-:-:··;~.e:<_:r:-:···· .. ·:, •.

Figure 1-8 The Rectangle Demo [mat design time, soon after the placement

of its controls.

1.5.Setting Properties of Controls

Each control is characterized by a set of properties that define its behavior and

appearance. For instance, Label controls expose a Caption property that corresponds

to the character string displayed on the control itself, and a BorderStyle property

that affects the appearance of a border around the label. The TextBox control's most

7

8

important property is Text, which corresponds to the string of characters that

appears within the control itself and that can be edited by the user.

In all cases, you can modify one or more properties of a control by selecting the

control in the [m designer and then pressing F4 to show the Properties window.

You can scroll through the contents of the Properties window until the property

you're interested in becomes visible. You can then select it and enter a new value.

Using this procedure, you can modify the Caption property of all four Label

controls to &Width, &Height, &Perimeter, and &Area, respectively. You will note

that the ampersand character doesn't appear on the control and that its effect is to

underline the character that follows it. This operation actually creates a hot key and

associates it with the control. When a control is associated with a hot key, the user

can quickly move the focus to the control by pressing an Alt+x key combination, as

you normally do within most Windows applications. Notice that only controls

exposing a Caption property can be associated with a hot key. Such controls include

the Label, Frame, CommandButton, OptionButton, and CheckBox.

A quick way to select all the controls on a [m is to click anywhere
on the [m and press the Ctrl+ A key combination.

After selecting all controls, you can deselect a few of them by clicking on

them while pressing the Shift or Ctrl key. Note that this shortcut doesn't

selectcontrols that are contained in other controls.When you select a group

of controls and then press the F4 key, the Properties windowdisplays only

the properties that are common to all the selected controls. The

onlyproperties that are exposed by any control are Left, Top, Width, and

Height. If youselect a group of controls that display a string of characters,

such as the TextBox,Label, and CommandButton controls in our Rectangle

example, the Font property isalso available and can therefore be selected.

When you double-click on the Font item in the Properties window, a Font

dialog box appears. Let's select a Tahoma font and set its size to 11 points.

9

Figure 1-9. The Rectangle Demo rm at design time, after setting the controls'

properties.

TIP

When a control is created from the Toolbox, its Font property

reflects he font of the parent [Ell. For this reason, you can often
avoid individual font settings by changing the form's Font property

before placing any controls on the ri!m itself.
1.6.Naming Controls

One property that every control has and that's very important to Visual Basic

programmers is the Name property. This is the string of characters that identifies the

control in code. This property can't be an empty string, and you can't have two or

more controls on a Ill with the same name. The special nature of this property is

indirectly confirmed by the fact that it appears as (Name) in the Properties window,

where the initial parenthesis serves to move it to the beginning of the property list.

When you create a control, Visual Basic assigns it a default name. For example, the

first TextBox control that you place on the ri!m is named Textl, the second one is

named Text2, and so forth. Similarly, the first Label control is named Labell, and

the first CommandButton control is named Command]. This default naming scheme

frees you from having to invent a new, unique name each time you create a control.

Notice that the Caption property of Label and CommandButton controls, as well as

the Text property of TextBox controls, initially reflect the control's Name property,

but the two properties are independent of each other. In fact, you have just modified

the Caption and Text properties of the controls in the Rectangle Demo [11111 without
affecting their Name properties.

Because the Name property identifies the control in code, it's a good habit to modify

it so that it conveys the meaning of the control itself This is as important as

selecting meaningful names for your variables. In a sense, most controls on a fm
are special variables whose contents are entered directly by the user.

Microsoft suggests that you always use the same three-letter prefix for all the

controls of a given class. The control classes and their recommended prefixes are

shown in

Table 1-1.Table 1-1. Standard three-letter prefixes for r.mzl and all intrinsic
controls.

I Control Class II Prefix II Control Class II Prefix I

I CommandButton II cmd II Data II dat
I

I TextBox II txt II HScrollBar II hsb
I

I Label 11 lbl II VScrollBar II vsb
I

I PictureBox _JI pie II DriveListBox II drv
I

I OptionButton opt II DirListBox II dir
I

I CheckBox chk II FileListBox II fil
I

I ComboBox I cbo II Line 11 lin
I

I ListBox 111st II Shape II shp
I

I Timer II tmr IIOLE II ole
I

I Frame II fra lltnm IIFrm
I

10

For instance, you should prefix the name of a TextBox control with txt, the name of

a Label control with lbl, and the name of a CommandButton control with cmd.

- should also follow this convention, and the name of a rl1II! should be
prefixed with the frm string. This convention makes a lot of sense because it lets

you deduce both the control's type and meaning from its name. This book sticks to

this naming convention, especially for more complex examples when code
readability is at stake.

In our example, we will rename the Textl through Text4 controls as txtWidth,

txtHeight, txtPerimeter, and txtArea respectively. The Command! control will be

renamed cmdEvaluate, and the four Label 1 through Label4 controls will be renamed

lblWidth, lblHeight, lblPerimeter, and lblArea, respectively. However, please note

that Label controls are seldom referred to in code, so in most cases you can leave
their

1. 7.Adding Code

Up to this point, you have created and refined the user interface of your program

and created an application that in principle can be run. (Press F5 and run it to

convince yourself that it indeed works.) But you don't have a useful application yet.

To turn your pretty but useless program into your first working application, you

need to add some code. More precisely, you have to add some code in the Click

event of the cmdEvaluate control. This event fires when the user clicks on the

Evaluate button or presses its associated hot key (the Alt+E key combination, in this
case).

To write code within the Click event, you just select the cmdEvaluate control and

then press the F7 key, or right-click on it and then invoke the View Code command

from the pop-up menu. Or you simply double-click on the control using the left

mouse button. In all cases, the code editor window appears, with the flashing cursor

located between the following two lines of code:

Private Sub cmdEvaluate_Click()

End Sub

11

Visual Basi-c has prepared the template of the Click event procedure for you, and

you have to add one or more lines of code between the Sub and End Sub statements.

In this simple program, you need to extract the values stored in the txtWidth and

txtHeight controls, use them to compute the rectangle's perimeter and area, and

assign the results to the txtPerimeter and txtArea controls respectively:

Private Sub cmdEvaluate Click()

' Declare two floating point variables.

Dim reWidth As Double, reHeight As Double

' Extract values from input TextBox controls.

reWidth = CDbl(txtWidth.Text)

reHeight = CDbl(txtHeight.Text)

' Evaluate results and assign to output text boxes.

txtPerimeter.Text = CStr((reWidth + reHeight) * 2)

txtArea.Text = CStr(reWidth * reHeight)

End Sub

1.8.Running and Debugging the Program

You're finally ready to run this sample program. You can start its execution m

several ways: By invoking the Start command from the Run menu, by clicking the

corresponding icon on the toolbar, or by pressing the F5 key. In all cases, you'll see

the [m designer disappear and be replaced (but not necessarily in the same

position on the screen) by the real rm. YOU can enter any value in the leftmost

TextBox controls and then click on the Evaluate button (or press the Alt+E key

combination) to see the calculated perimeter and area in the rightmost controls.

When you're finished, end the program by closing its main (and only) Ill.

CAUTION

12

You can also stop any Visual Basic program running in the

environment by invoking the End command from the Run menu, but

in general this isn't a good approach because it prevents a few [illl­
related events-namely the QueryUnload and the Unload events­

from firing. In some cases, these event procedures contain the so­

called clean-up code, for example, statements that close a database or

delete a temporary file. If you abruptly stop the execution of a

program, you're actually preventing the execution of this code. As a

general rule, use the End command only if strictly necessary.This

program is so simple that you hardly need to test and debug it. Of

course, this wouldn't be true for any real-world application. Virtually

all programs need to betested and debugged, which is probably the

most delicate (and often tedious) part of a programmer's job. Visual

Basic can't save you from this nuisance, but at least it offers so many

tools that you can often complete it very quickly. To see some Visual

Basic debugging tools in action, place a breakpoint on the first line

of the Click event procedure while the program is in design mode.

You can set a breakpoint by moving the text cursor to the appropriate

line and then invoking the

Toggle Breakpoint command from the Debug menu or pressing the F9 shortcut key.

You can also set and delete breakpoints by left-clicking on the gray vertical strip

that runs near the left border of the code editor window. In all cases, the line on

which the breakpoint is set will be highlighted in red.

After setting the breakpoint at the beginning of the Click event procedure, press F5

to run the program once again, enter some values in the Width and Height fields,

and then click on the Evaluate button. You'll see the Visual Basic environment enter

break mode, and you are free to perform several actions that let you better

understand what's actually going on:

• Press F8 to execute the program one statement at a time. The Visual Basic

instruction that's going to be executed next-that is, the current statement -

is highlighted in yellow.

13

• Show the value of an expression by highlighting it in the code window and

then pressing F9 (or selecting the Quick Watch command from the Debug

menu). You can also add the selected expression to the list of values

displayed in the Watch window, as you can see in Figure 1-10.

• An alternative way to show the value of a variable or a property is to move

the mouse cursor over it in the code window; after a couple of seconds, a

yellow data tip containing the corresponding value appears.

• Evaluate any expression by clicking on the Immediate window and typing ?

or Print followed by the expression. This is necessary when you need to

evaluate the value of an expression that doesn't appear in the code window.

• You can view the values of all the local variables (but not expressions) by

selecting the Locals command from the View menu. This command is

particularly useful when you need to monitor the value of many local

variables and you don't want to set up a watching expression for each one.

• You can affect the execution flow by placing the text cursor on the statement

that you want to execute next and then selecting the Set Next Statement

command from the Debug menu. Or you can press the Ctrl+F9 key

combination. You need this technique to skip over a piece of code that you

don't want to execute or to reexecute a given block of lines without

restarting the program.

14

1.9.Refining the Sample Program

Figure 1-10. The Rectangle Demo program in break mode, with several debug

tools activated.

Our first Visual Basic project, Rectangle.vbp, is just a sample program, but this is

no excuse not to refine it and turn it into a complete and robust, albeit trivial,

application.

The first type of refinement is very simple. Because the txtPerimeter and txtArea

controls are used to show the results of the computation, it doesn't make sense to

make their contents editable by the user. You can make them read-only fields by

setting their Locked property to True. (A suggestion: select the two controls, press

F4, and modify the property just once.) Some programmers prefer to use Label

controls to display result values on a [lll, but using read-only TextBox controls

has an advantage: The end user can copy their contents to the clipboard and paste

those contents into another application.

A second refinement is geared toward increasing the application's consistency and

usability. Let's suppose that your user uses the Rectangle program to determine the

perimeter and area of a rectangle, takes note of the results, and then enters a new

width or a new height (or both). Unfortunately, an instant before your user clicks on

the Evaluate button the phone rings, engaging the user in a long conversation. When

he or she hangs up, the till shows a plausible, though incorrect, result. How can

you be sure that those values won't be mistaken for good ones? The solution is

simple, indeed: as soon as the user modifies either the txtWidth or the txtHeight

TextBox controls, the result fields must be cleared. In Visual Basic, you can

accomplish this task by trapping each source control's Change event and writing a

couple of statements in the corresponding event procedure. Since Change is the

default event for TextBox controls-just as the Click event is for CommandButtons

controls-you only have to double-click the txtWidth and txtHeight controls on the

[BIi designer to

have Visual Basic create the template for the corresponding event procedures. This

is the code that you have to add to the procedures:

15

Private Sub txtWidth Change()

txtPerimeter.Text

txtArea.Text

End Sub

Private Sub txtHeight Change()

""

txtPerimeter.Text ""
txtArea.Text

End Sub

""

Note that you don't have to retype the statements in the txtHeight's Change event

procedure: just double-click the control to create the Sub ... End Sub template, and

then copy and paste the code from the txtWidth _ Click procedure. When you're

finished, press F5 to run the program to check that it now behaves as expected.

The purpose of the next refinement that I am proposing is to increase the program's

robustness. To see what I mean, run the Rectangle project and press the Evaluate

button without entering width or height values: the program raises a Type Mismatch

error when trying to extract a numeric value from the txtWidth control. If this were

a real-world, compiled application, such an untrapped error would cause the

application to end abruptly, which is, of course, unacceptable. All errors should be

trapped and dealt with in a convenient way. For example, you should show the user

where the problem is and how to fix it. The easiest way to achieve this is by setting

up an error handler in the cmdEvaluate _ Click procedure, as follows. (The lines you

would add are in boldface.)

Private Sub cmdEvaluate_Click()

' Declare two floating point variables.

Dim reWidth As Double, reHeight As Double

On Error GoTo WrongValues

' Extract values from input textbox controls.

reWidth = CDbl(txtWidth.Text)

reHeight = CDbl(txtHeight.Text)

Ensure that they are positive values.

If reWidth <= 0 Or reHeight <= 0 Then GoTo WrongValues

' Evaluate results and assign to output text boxes.

txtPerimeter.Text = CStr((reWidth + reHeight) * 2)

txtArea.Text = CStr(reWidth * reHeight)

16

Exit Sub

WrongValues:

MsgBox "Please enter valid Width and Height values",

vbExclamation

End Sub

Note that we have to add an Exit Sub statement to prevent the MsgBox statement

from being erroneously executed during the normal execution flow. To see how the

On Error statement works, set a breakpoint on the first line of this procedure, run

the application, and press the F8 key to see what happens when either of the

TextBox controls contains an empty or invalid string.

1.10.Ready, Compile, Run!

Visual Basic is a very productive programming language because it allows you to

build and test your applications in a controlled environment, without first producing

a compiled executable program. This is possible because Visual Basic converts your

source code into p-code and then interprets it. P-code is a sort of intermediate

language, which, because it's not executed directly by the CPU, is slower than real

natively compiled code. On the other hand, the conversion from source code to p­

code takes only a fraction of the time needed to deliver a compiled application. This

is a great productivity bonus unknown to many other languages. Another benefit of

p-code is that you can execute it step-by-step while the program is running in the

environment, investigate the values of the variables, and-to some extent-even

modify the code itself This is a capability that many other languages don't have or

have acquired only recently; for example, the latest version of Microsoft Visual

C++ has it. By comparison, Visual Basic has always offered this feature, which

undoubtedly contributed to making it a successful language. At some time during the

program development, you might want to create an executable (EXE) program.

There are several reasons to do this: compiled programs are often (much) faster than

interpreted ones, users don't need to install Visual Basic to run your application, and

you usually don't want to let other people peek at your source code. Visual Basic

makes the compilation process a breeze: when you're sure that your application is

completed, you just have to run the Make projectname command from the File

menu.
~

17

It takes a few seconds to create the Rectangle.exe file. This executable file is

independent of the Visual Basic environment and can be executed in the same way

as any other Windows application-for example, from the Run command of the

Start menu. But this doesn't mean that you can pass this EXE file to another user

and expect that it works. All Visual Basic programs, in fact, depend on a number of

ancillary files-most notably the MSVBVM60.DLL file, a part of the Visual Basic

runtime-and won't execute accurately unless all such files are correctly installed

on the target system.,

Before I conclude this chapter, you should be aware of one more detail. The

compilation process doesn't necessarily mean that you aren't using p-code. In the

Visual Basic jargon, compiling merely means creating an executable file. In fact,

you can compile to p-code, even if this sounds like an oxymoron to a developer

coming from another language. (See Figure 1-11.) In this case, Visual Basic creates

an EXE

For this reason,' you should never assume that a Visual Basic program will execute

on every Windows system because it's working on your computer or on other

computers in your office. (If your business is software development, it's highly

probable that the Visual Basic environment is installed on all the computers around

you.) Instead, prepare a standard installation using the Package and Deployment

Wizard, and try running your application on a clean system. If you develop software

professionally, you should always have such a clean system at hand, if possible with

just the operating system installed. If you're an independent developer, you probably

won't be inclined to buy a complete system just to test your software. I found a very

simple and relatively inexpensive solution to this dilemma: I use one computer with

removable hard disks, so I can easily test my applications under different system

configurations. And since a clean system requires only hundreds of megabytes of

disk space, I can recycle all of my old hard disks that aren't large enough for any

other use.

file that embeds the same p-code that was used inside the development

environment. That's why you can often hear Visual Basic developers talking about

p-code and native-code compilations to better specify which type of compilation

they're referring to.

18

Figure 1-11. You can opt to compile top-code or native code in the Compile tab

of the Project Properties dialog.

In general, such p-code-compiled programs run at the same speed as interpreted

programs within the IDE, so you're missing one of the biggest benefits of the

compilation process. But here are a few reasons why you might decide to create a p­
code executable:

• P-code-compiled executables are often smaller than programs compiled to

native code. This point can be important if you're going to distribute your

application over the Internet or when you're creating ActiveX controls that

are embedded in an HTML page.

• P-code compilation is often faster than native code compilation, so you

might prefer to stick to p-code when you compile the program in the test

phase. (A few types of applications can't be tested within the IDE, most

notably multithreaded components.)

• If your application spends most of its time accessing databases or redrawing

windows, compilation to native code doesn't significantly improve its

performance because the time spent executing Visual Basic code is only a

fraction of the total execution time.

19

We've come to the end of this tour de force in the Visual Basic IDE. In this chapter,

I've illustrated the basics of Visual Basic development, and I hope I've given you a

taste of how productive this language can be. Now you're ready to move to the next

chapters, where you can learn more about ri!ml and controls and about how to
make the best of their properties, methods, and events.

20

CHAPTER2

DATABASE AND ACCESS

2.1.Why is the computer necessary in our life

Computer software has become a driving force; it is a powerful force that set

Decision-making and serves as a basis for modern investigation and problem

solving.Computers have become a key factor that gives products and services that

modern look ,its embedded in systems of all

kinds;medical,industrial,military,entertainment,even office-based products.

A Computer system in a service management record can promise better speed and

efficiency with almost no change of effors.

2.2.How to develop a database application

The steps involved in database application development any relational data base

application there are always the same basic steps to follow.Microsoft Access is a

relational data base management system because all data is stored in an Access data

base in the form of simple tables.Another name for a table is relation.

The steps of Access database design like this

• Database design

• Tables design

• Forms design

• Query design

• Report design

• Macro design

• Modules design

2.3.Relational database
DBMS has established themselves as one of the primary means for data storage for

information based systems ranging from large business applications to simple pc based

programs.However a relational database management system (RDBMS) is the system

used to work with data management operations more than 15 years,and still

improving,providing more sophisticated storage,retriaval systems.Relational database

21

management systems provides organisations with ability to handle huge ammount of

data and changing it into meaningful information.

2.4. The facilities of access

Microsoft Access is relational DBMS(Database Management System) with all the

features necessary to develop and use a data base application. The facilities it offers can

be found on most modern relational DBMSs and all versions of Access.

• Tables are where all the data is stored. They are usually linked by

relationships.

• Queries are the way you extract data from the database

• Forms are the method used for input and display of database data.

• Reports are used to display nicely formatted data on paper.

• Macros are sets of simple commands that execute sequences of database

operations.

• Modules are used to stare general-purpose VB database program code.

2.5. Visual basic and Access

Microsoft Acess is the DBMS(Database Management System) VB and Access in

developing data base applications is that for non-trivial database applications, VB offers

more flexibility to the developper then the VB comes with Access.Access database

using VB program code and setting properties.

First method of linking VB forms to Access databases called the data control. The

data control is a simple VB control that you drag on to a VB form to link it to your

choosen database.The data can be displayed and updated using tiedtext boxes,list

boxes,combo boxes,and grids.

22

2.5.1.DAO(Data Access objects)

The DAO approach to database programming often requires more code ,but like SQL

compared to the Qury Design View,offers greater control to the database programmer

over what's going on his/her application.

Data Access Objects are things like databases,recordsets,table and query definitions,

and fields,Rather than tying a recor set to a data control when we use DAO we shall

allow our programs to create and manipulate recordsets.

2.5.2.ADO(Active X Data Objects)

The ADO programming is in principle very similar to DAO programming but

cointains . some new commands.ADO is Microsoft's new approach to database

programming which aims to give the programmer a more consistent way of connecting

to a broad range of different types of data source.

23

2.6. The application of Access

MS Access is begin used as the development tool,and the application is going to be a

single user application,which means its going to be installed on one machine,this

application however may be used by more than one user on many computers sharing the

same tables by using simple advancements.

For a new database,after having specified the database name and path as above,you will

be confronted with the following window.

Figurel.1. The window of database

This window shows that there are notables in database yet.Click new button.

24

Figure 1.2. The window is type of table design

sellect the Design View by clicking on the listbox and then the OK button.Design View

gives us more control over the design of our database than either the Table Wizard or

the Datasheet view.Import Table is used to bring in data from an existing database and

Link Table is database to an external table.

2.-6.1. Tables Design
In my project's table designing with primary key. Guide Lines for making a

database project.
The database consists of one tables;

Tablel
Please pay attention on the naming conventions of objects, you are required to use

appropriate names using these conventions for your objects. '

TheTable one have got eleven fields one is its unique name

~•labfol: lablo ·I>• >A~hAifi> < ·•·<<? V••••••••N~ffj',jrij) q > }\•······ •. ···············
• Mel:n mtr.arn~r

.................... ·.· 111:t:. ··············· •.•.• 1::::~;l~~~:.·.····
:Metln •. · · ·: ~ieti, · · · · · · · · · · · · · · · iti;:;e r<,a&ie · ·

· · · haiihi~it · · · ·
frtitii : · · · · · · · · f-~eii ·· . $fl~fJ'l0 ...

ptice
f.Jel
Lmime
b=®te

·:~1iti1·
.}\iitin
: T:~fih,IS'.i~t .
••M~th ..

Figure 1.3 The Tablel

25

CHAPTER3

MAiN PROGRAM

3.1. MAIN MENU

This is the main menu of the program. There is also some sub menus on the top

of the main menu. From the main menu we can go sub programs by using this sub

menus. There are also some buttons. They are used to go to the sub programs. They are

providing facilities for users of the program. We can see all sub programs on the main

menu.

Record button is used to go record part of the program. In the part we enter

madicine rrecord information.

Information button is used to go to Iformation part. Here we make rapor of stock

and son in the stock .

Seel button is used to show information such as number of madicine and piece

of madicine and code of madicine

Esdeger button is used to keep information about the madicine and their

accompaniment .

The form and codes of the main menu is following down.

Figure 3.1. Main Menu

Private Sub Command 1 _ Click()

25

Lo.ad Form2

Form2.Show

End Sub

Private Sub Command2 _ Click()

Load Form4

Form4.Show

Forml.Visible = False

End Sub

Private Sub Command3 _ Click()

Load Form3

Form3.Show

End Sub

Private Sub Command4 _ Click()

DataReport 1. Show

Forml.Visible = True

End Sub

Private Sub Commandfi , Click(Index As Integer)

End

End Sub

Private Sub Command6 _ Click()

Load Forms

Forms.Show

Forml.Visible = False

End Sub

Private Sub Form _Initialize()

Formx.Show

Form9.Visible = True
Forml.Visible = False

Load Forms

FormS.Show

End Sub

Private Sub Form _Load()

Picture 1. Align = center

End Sub

26

Private Sub Label 1 _ Click()

Labell.Caption = Now()

End Sub

Private Sub Timerl_Timer()

Forml.Caption = Right(Forml.Caption, (Len(Forml.Caption)

Left(F orm 1. Caption, 1)

Label 1. Caption = Now()

End Sub

27

1)) +

I built In this secreen Who can enter the program. The progaram user have a psword and

user

name. With pasword and user name the user can use the program. The pasword secreen

is on

active when the program start to run.

3.2. THE PASSWORD SECREEN

Figure 3.2 Pasword Writing

Private Sub Command 1 _ Click()

Form9.Visible = False
Forml.Visible = True

End Sub

Private Sub Command2 _ Click()

End

End Sub

Private Sub Textl_Change()
IfTextl.Text <> 1111 And Textl.Text = "yasin" And Text2.Text <> 1111 Then

Command I .Enabled = True

28

.~~~~~-------------------------------nl111

Command 1. SetFocus

End If

End Sub

Private Sub Text2_Change()

If Textl.Text <> 1111 And Text2.Text <> 1111 And Textl.Text = 1199126711 Then

Commandl.Enabled = True
Commandl.SetFocus

End If

End Sub

Private Sub Timerl_Timer()

Label3. Caption = Now()
Form9.Caption = Right(Form9.Caption, (Len(Form9.Caption)

Left(Form9.Caption, 1)

End Sub

29

1)) +

3.3. UNIT EXPIRE DATE
The secreen About Product which is expire date. When main program run expire date

secreen

will be on active
directly. Al the information about madicine are provided with this form and there are 90

day
for exipire date which are shown product.

Figure 3.2. Product Selection

Private Sub Form_ Initialize()

Dim db As Database

Dim tb As Recordset

Set db= OpenDatabase("C:\WINDOWS\Desktop\vtl.mdb")

30

Set tb = db.OpenRecordset("tablol 11)

While Not tb.EOF

x = tb.Fieldsr'Ldate'')

ml = Val(Month(x))

m2 = Val(Month(Date))

Yl = Val(Year(x))

Y2 = Val(Y ear(Date))

IfYl = Y2 And ml>= m2 Then

m = (ml - m2) * 31
Ifm < 90 Then

Listl.Addltem Str(tb.Fields("l_date11)) + 11

List2.Addltem rbFieldstvpiece") + 11

End If

End If

tb.MoveNext

Wend

End Sub

Private Sub ta_ Click()

End Sub

Private Sub Timerl_Timer()

F orm8. Caption = Right(F orm8. Caption, (Len(F orm8. Caption)

Left(F orm8. Caption, 1)

11 + tb.Fieldst'tnamc")
11 + tb.Fields(11shelf_no11)

ta.Caption= Right(ta.Caption, (Len(ta.Caption) - 1)) + Left(ta.Caption, 1)

End Sub

31

1)) +

3.4. UNIT RECORD OF MADICINE

Section of showing the type of record. You can select to type of record with using record

of

madicine secreen :the type of record are searching, deleting, adding, finding, editining

and

also you can see the report of stock with this screen.

Figure 3.4. Record Of Madicine

Private Sub Commandl_Click(lndex As Integer)

Load Form6

Form6.Show

Form2.Visible = False

End Sub

Private Sub Command2 _ Click()

32

Load Form6

Form6.Show

Form2.Visible = False

End Sub

Private Sub Command3 _ Click()

Load Form6

Form6.Show

Form2.Visible = False

End Sub

Private Sub Command4 _ Click()

Load Form6

Form6.Show

Form2.Visible = False
End Sub

Private Sub Commands_ Click()

DataReportl. Show

End Sub

Private Sub Command6 _ Click()

Form2.Visible = False
Forml.Visible = True

Forml.Show

End Sub

Private Sub Form_Load()

Forml.Visible = False
End Sub

Private Sub RE_ Click()

End Sub

Private Sub Timerl_Timer()

Form2.Caption = Right(Form2.Caption, (Len(Form2.Caption)

Left(Form2.Caption, 1)

End Sub

33

1)) +

3.5. UNITE RECORDE
The recording will accour with code. If oyu want to write data to database You must

enter the
code of product. May be you forget to enter product code the software will situmulate to

user
with message box. Also when you record some data to database some of the recording

name
is vary important. Forexample code and expire date this are vary important object of the

program. Because of searching accoure with code and expire date. Also the name of

accompaniment is vary important because of if the product there is not on the stock the

accompaniment will came to screen. That is the reson you must enter the

accompaniment of

product.

34

Figure 3.5. Record

Private Sub Command 1 _ Click()

Dim db As Database

Dim tb As Recordset
Set db= OpenDatabase("C:\WINDOWS\Desktop\vtl.mdb")

Set tb = db. OpenRecordset("tablo 1 ")

yasm:
MsgBox "YOU MUST ENTER ALL COMPONENT"
a = MsgBox("DO YOU WANT TO RECORD", vbYesNoCancel, "READ

CREFULLY")

If a= 6 Then Go To kayit

If a= 7 Then Go To fin

If a= 2 Then Go To fin2

kayit:

tb.AddNew

If Text5.Text =""Then GoTo yasin

35

tb.Fields(11no11) = Textl.Text

tb.Fields(11explanation11) = Text2.Text

tb.Fieldsr'Ipieoe") = Text3. Text

tb.Fields(11a_item11) = Text4.Text

tb.Fields(11l_date11) = Text5.Text

tb.Fields(11shelf_no11) = Text6.Text

tb.Fields(11p_explenation11) = Textl 1.Text

tb.Fields(11name11) = Text12.Text

tb.Fields(11f_tel11) = Text8.Text

tb.Fields(11f_name11) = Text9.Text

tb.Fields(11b_date11) = TextlO.Text

tb.Fields(11price11) = Text7.Text

Move Last

IfTextl.Text = 1111 Then GoTo yasin
th.Update

th.Close

db.Close

fin:

GoToson

fin2:

Textl.Text = 1111

Text2.Text = 1111

Text3.Text = 1111

Text4.Text = 1111

Text5.Text = 1111

Text6.Text = 1111

Text7.Text = 1111

Text8.Text = 1111

Text9.Text = 1111

TextlO.Text = 1111

Textl I.Text= 1111

Textl2.Text = 1111

son:

End Sub

36

Private Sub Command2 _ Click()

Dim db As Database

Dim tb As Recordset

Dim s As String

Dim c As Integer

Set db= OpenDatabase("C:\WINDOWS\Desktop\vtl.mdb")

Set tb = db. OpenRecordset("tablo l ")

s = Textl.Text

tb.Index= "primarykey"

tb.Seek "=", s

While Not tb.EOF

Ifs= tb.Fields("no") Then

a= MsgBoxCdo you want to delate", vbYesNo, "delate screen")

If a= vbYes Then GoTo sil

If a= vbNo Then Go To atla

sil:

tb.Delete

Textl.Text = ""

Text2.Text = ""

Text3.Text = ""

Text4.Text = ""

Texts.Text=""

Text6.Text = ""

Text7.Text = ""

Text8.Text = ""

Text9.Text = ""

TextlO.Text = ""

Textl I.Text= 1111

Textl2.Text = ""

c=c+l

atla:

End If

tb.MoveNext

Wend

37

If c <> 0 Then

MsgBox 111s deleted by you"

End If

End Sub

Private Sub Command3 _ Click()

Form6.Visible = False

Form2.Visible = True

Form2.Show

End Sub

Private Sub Command4_Click()

Textl.Text = 1111

Text2.Text = ""

Text3.Text = 1111

Text4.Text = 1111

Text5.Text = 1111

Text6.Text = 1111

Text7.Text = 1111

Text8.Text = 1111

Text9.Text = 1111

TextlO.Text = 1111

Textl 1.Text = 1111

Textl2.Text = 1111

End Sub

Private Sub Commands_ Click()

Dim db As Database

Dim tb As Recordset

Dim s As String

Dim c As Integer

Set db= OpenDatabase(11C:\WINDOWS\Desktop\vtl.mdb11)

Set tb = db. OpenRecordset("tablo l ")

s = Textl.Text

tb.Index = "prirnarykey"

tb.Seek 11=11, s

While Not tb.EOF

38

Ifs= tb.Fields("no") Then

a= MsgBox("1s rt this record", vbYesNo, "search screen")

If a= vb Yes Then GoTo sil

If a= vbNo Then Go To atla

sil:

Textl.Text = tb.Fields("no")

Text2.Text = tb.Fields("explanation")

Text3 .Text= tb.Fields("piece")

Text4.Text = tb.Fields("a_item")

Text5.Text = tb.Fields("l_ date")

Text6.Text = tb Fields("shelf_no")

Textl l.Text= tb.Fields("p _ explenation")

Textl2.Text = tb.Fields("name")

Text8.Text = tb.Fields("f _tel")

Text9.Text = tb.Fields("f _name")

Text10.Text = tb.Fields("b _ date")

Text7.Text = tb.Fields("price")

c=c+l

atla:

End If

tb.MoveNext
Wend

If c <> 0 Then
MsgBox 111s found by searcher"

End If

End Sub

Private Sub Command6 _ Click()

Dim db As Database

Dim tb As Recordset

Dim s As String

Dim c As Integer
Set db= OpenDatabase("C:\WINDOWS\Desktop\vtl .mdb")

Set tb = db.OpenRecordset("tablol ")

s = Textl.Text

39

tb.Index= "primarykey"

th.Seek"=", s

While Not tb.EOF

Ifs= tb.Fields("no") Then

a= MsgBox("do you want to change", vbYesNo, "changmg screen")

If a= vb Yes Then Go To sil

If a= vbNo Then Go To atla

sil:

th.Edit

tb.Fields("no") = Textl.Text

tb.Fields("explanation") = Text2.Text

tb.Fields("piece") = Text3.Text

tb.Fields("a_item") = Text4.Text

tb.Fields("l_date") = Text5.Text

tb.Fields("shelf_no") = Text6.Text

tb.Fields("p_explenation") = Textl I.Text

tb.Fields("name") = Textl2.Text

tb.Fields("f_tel") = Text8.Text

tb.Fields("f _name")= Text9.Text

tb.Fields("b _ date") = Textl 0. Text

tb.Fields("price") = Text7.Text

tb.Update

c=c+l

atla:

End If

tb .MoveN ext

Wend

If c <> 0 Then
MsgBox 111s changed by you"

End If

End Sub

Private Sub Form_Load()

End Sub

40

3.6. UNITE ACCOMPANIMENT
In this screen you can learn any madicine that you want thay are name, shelf no,

accompaniment, how many piece so on . If your madicine is there the software will

stimulateto you like there is your searching madicine in the database with messagebox.

if there is notany pruduct that you want also the soft ware will stimulate to you like,

there is not any item

like aspirin please buy on the list. Also the madicine on the list are the same madicine

that you

41

want but just the company name is different. if you interest the chamical line the

pruduct are the same product on list and you want.

Figure 3.6. Esdegeri

Private Sub Command l _ Click()

Form3 .Visible= False

Forml.Visible = True

Forml.Show

End Sub
Private Sub Command2 _ Click()

Dim db As Database

Dim tb As Recordset
Dims, sd, al, a2, a3, a4, a5 As String

Dim all, a21, a31, a41, a51 As String

Dim c As Integer
Set db= OpenDatabase("C:\WINDOWS\Desktop\vtl .mdb")

Set tb = db.OpenRecordset("Tablo l ")

s = Textl.Text

While Not tb.EOF

Ifs= tb.Fields("name") Then

a5 = tb.Fields("no")

a3 = tb.Fields("piece")

42

a4 = tb.Fields("a_item")

al = tb.Fields("name")

a2 = tb.Fields("price")

take= a4

Listl .Addltem tb.Fields("name") + " II+ II II+ a2 +

II

II+ a3 + II II+ a4 + II II+ a5

c=c+l

End If

tb.MoveNext

Wend

If Val(a3) > 0 Then GoTo atla

List 1. Clear

MsgBox "THERE IS NOT " + s

tb.MoveFirst

While Not tb.EOF

If take= tb.Fields("a_item") Then

Ifs= tb.Fields("name") Then Go To unwrite

a51 = tb.Fields("no")

a31 = tb.Fields("piece")

a41 = tb.Fields("a_item")

al 1 = tb.Fields("name")

a21 = tb.Fields("price")

Listl.Addltem tb.Fields("name") +" "+ a21 +" 11 + a31 +" 11 + a41 + 11 11 + a51

unwrite:

End If

tb.MoveNext

Wend

atla:

If c = 0 Then MsgBox "aaaaaaa''

End Sub

Private Sub Command3 _ Click()

Listl.Clear

43

End Sub

Private Sub Form_Load()

Forml.Visible = False

End Sub

Private Sub Command l _ Click()

Form3.Visible = False

Forml.Visible = True

Forml.Show

End Sub

Private Sub Command2 _ Click()

Dim db As Database

Dim tb As Recordset

Dims, sd, al, a2, a3, a4, a5 As String

Dim all, a21, a31, a41, a51 As String

Dim c As Integer
Set db= OpenDatabase("C:\WINDOWS\Desktop\vtl.mdb")

Set tb = db. OpenRecordset("Tablo l ")

s = Textl.Text

While Not tb.EOF

Ifs= tb.Fields("name") Then

a5 = tb.Fields("no")

a3 = tb.Fields("piece")

a4 = tb.Fields("a_item")

al = tb.Fields("name")

a2 = tb.Fields("price")

take= a4

Listl.Addltem tb.Fields("name") +
11

Textl .SetFocus

Textl.Text = 1111

Text2.Text = 1111

II+ a3 + II II+ a4 + II

c=c+l

Errd If

II+" II+ a2 +

II+ as

44

tb.MoveNext

Wend

IfVal(a3) > 0 Then GoTo atla

Listl.Clear

MsgBox "THERE IS NOT"+ s

tb.MoveFirst

While Not tb.EOF

If take= tb.Fields("a_item") Then

Ifs= tb.Fields("name") Then Go To unwrite

a5 l = tb.Fields("no")

a3 l = tb.Fields("piece")

a41 = tb.Fields("a_item")

al 1 = tb.Fields("name")

a21 = tb.Fields("price")

Listl.Addltem tb.Fields("name") +" "+ a21 +" "+ a31 +" "+ a41 +" "+ a51

unwrite:

End If

tb.MoveNext

Wend

atla:

If c = 0 Then MsgBox "aaaaaaa"

End Sub

Private Sub Command3 _ ClickQ

Listl.Clear

Textl.SetFocus

Textl.Text = 1111

Text2.Text = ""

End Sub

Private Sub Form_ LoadQ

Forml.Visible = False

End Sub

45

3.7. UNIT CALCULATOR
In this screen there is clasic calculator and sciectific calculator. I made a map for

scientific

46

calculator to windows.

Figure 3. 7. Calculator

Dim a As Integer

Dim c As Integer
Private Sub Command 1 _ Click()

c=l
a= Val(Textl.Text)

Textl.Text = 1111

Textl.SetFocus

End Sub
Private Sub Command2 _ Click()

c=2

a= Val(Textl .Text)

Textl.Text = 1111

Textl.SetFocus

End Sub
Private Sub Command3 _ Click()

b = Val(Textl .Text)

47

If c = 1 Then
Textl.Text = Str(a + b)
End If

If c = 2 Then

Textl.Text = Str(a - b)

End If

If c = 3 Then

Textl.Text = Str(a * b)
End If

If c = 4 Then

Textl.Text = Str(a I b)

End If

End Sub

Private Sub Command4 _ Click()

c=4

a= Val(Textl.Text)

Textl.Text = 1111

Textl.SetFocus

End Sub

Private Sub Command5 _ Click()

c=3

a= Val(Textl.Text)

Textl.Text = 1111

Textl.SetFocus

End Sub

Private Sub Command7 _ Click()

Load Forml

Forml.Show

Form5.Visible = False

End Sub

Private Sub Form_Load()

Forml.Visible = False

Textl.Text = 1111

End Sub

48

Private Sub Timerl _ Timer()
Forms.Caption = Right(FormS.Caption, (Len(Form5.Caption)

Left(F orm5. Caption, 1)

End Sub

1)) +

49

3.8. UNIT SALLING
I think this screen is so important screen because of you sale your madicine from your

stock.

Esy to use this scren. After salling the madicine the madicine will dicrease from the

stock.

Figure 3.8. Salling

50

Private Sub Command l _ Click()

Form4.Visible = False

Forml.Visible = True

Forml.Show

End Sub

Private Sub Command2 _ Click()

Dim db As Database

Dim tb As Recordset

Dim s As String

Dim c As Integer

Set db= OpenDatabase("C:\WINDOWS\Desktop\vtl.mdb")

Set tb = db. OpenRecordset("tablo l ")

s = Textl .Text

tb.Index = "primarykey"

tb.Seek "=", s

If Val(tb.Fields("piece")) = 0 Or Val(tb.Fields("piece")) < Val(Text2.Text) Then GoTo

atla

While Not tb.EOF

Ifs= tb.Fields("no") Then

k = Int(tb.Fields("piece")) - Int(Text2.Text)

a= MsgBox("did you sell", vbYesNo, "changing screen")

If a= vb Yes Then Go To sil

If a= vbNo Then Go To atla

sil:

th.Edit

tb.Fields("piece") = Str$(k)

th.Update

c=c+l

End If

tb.MoveNext

Wend

If c <> 0 Then

MsgBox "It is sailed "

Else

atla:

MsgBox "DEMAND IS GRATER THEN STOCK "

MsgBox "THERE ARE"+""+ tb.Fields("piece")

Text3.Text = tb.Fields("shelf _no")

End If

End Sub

Private Sub Command3 _ Click()

Textl.Text = ""

Text2.Text = ""

Text3.Text = 1111

End Sub

Private Sub Form_Load()

Forml.Visible = False

End Sub

51

Private Sub Timerl_Timer()

Form4. Caption = Right(F orm4. Caption,

Left(F orm4. Caption, 1)

End Sub

(Len(F orm4. Caption) 1)) +

3.9. UNIT REPORT

The report of all stock in the firm. We can get any extra information obout madicine

INFOR.M'ATLON OF sroo« ·. +: ············11······· 1 r J

Figure 3.8. Information of Stock

52

3.10. UNIT DATA ENVIRONMENT

Also we use data environment for creating the report

r~ i{~'';[;7:~;!f;;;f1
· · w.n c,~,f:Con,,,,.,-,<l1

«·CJ f<''1Fo,<

· ·· CJ ex,:,l'i<n<>tk>n
:: .. ·W pie,:,e,
'· Ci ~_ite,n

•• ;{l ;h'!:t"'"
p,ke
i_td
i ... name:c
t!__.,J;~.<;l
o,. "-><i-'w,eti,m

Figure 3.9. Data environment

53

3.11.Creating Tables

For a new database, after having specified the database name and path as above, you

will be confronted with the following window.

3.11.1.Tables
The table of contents in our data base is on table if you look at the table you will see the

primary key the searching will accrue with primary key. Also another fields of table is

name of the contents.

·.. \Nlfodipin . ..\ f~iiJili ... hBart \ 15 Nifedipil) ······ ;
t Nidic~rd : lw~tt .. :jQ ········· fr'1ifedit)in :ii.ce:;ijfr;j !

'1 ~lJ ...•• Qtnf:pri:il...•••• $iqt)'!~C:~ ·.·. •....• it) ·.· :·::: :·::··· {Qi·oepr;zol • } ..• ·.·.· ·_· 02.92.:1JQ4U
'19':14 • Prnsek ·• stom,:,ch • 50 •• Om~1:ir~zol • 02.D2.::-'l{)04 l
,1995 •• Ert:olln . st()n-,,:,ch 2s .: 6i:o~;;if;izo1 ·· ·•·..... . :'3:ci5.iiii i
·· ·················· · U(;ilii-lt1 H~ad~i::k········ ······eo .ic;1:;i.siii{x;;;: 21:rr:i1011

s.;\;br;;ti'.l• H~adf{:k 40 ··················· TAc\?.1:iis;iidt ,;;? 02,0"l .~YJOS !

..... ·]}!;~~~= •.••••.•... ·i~::i:~[·· J~2 ...•••••.•.•.••••... · I~~f 1:~:1~11::E .•. :t~~I
• P,,inad<t! 'Hi.:!adqd{ • 45 •• P$tacqt~mol 25J)52007 ! . • Hi;aci..i(:t{.......... . . 46 . .. r~racet~rr·iof w.1JS.ioc:11 1

H~acl..ii:i 5€! . • P$nlCJfitart~;ol .: 01 JxUOCt3: !
• Vo!tei;;;n \/he.um~tiZtY\. 62 Dic!ofert~C sod/ :w.1:riioc:14 I '~!,~:: .• l~t=~~:::!: ;~ ••.. ·· ;g::::~:: ::f ~::;::
Oif~;,\;;; . V\w.um;tiltY\ .. j5 . bi~l~t~;ac ;odi 02J.l8 2004 I
\);Bgrsl Ti:~~art .. . 'iz t11d~~ofll 02:xn 20011

... - .

tv1ini)S$t
Paro!

Figure 3.10. Database

54

•••.••••
0

•• , •.••.•• -0.u-.·.···•····•••'•••n ..• ,..·•.....• · ·· ·····•····

F'' :t¥24!t~ XJ:tillifi*6Hm~!i9~l~
28.C.6.2C(H, n I ····2roE.2001;······················ ··

··············>·······
·:i 1 rn~ 20Jt n

B7
BB "············

B~
B0
810
en

. ~J::!

·>.•.••.•.•.•.•.·.·.··.·.····.•.•.•.•.·.•.•.·.·.•.•.··.

l1542o84.1 E,4? !<ys.,~ ..
• 18GJUOCIOU • 0€i4'.,.,>fJ.::i65Gl.:.f:, • 8~'?'~t •.. , .w·· :~~ ...• \~tt!I:t jg~;::;L L ~t~\;i . . .•..•..
25000D0H0 . 0642253}524 • Otrmprnl . . . • .. . }D.D7 J(fJ\ n

\W~ .. ·. • l~t1lf41 t~f L ti~~\;.·.
s.~s::rJ. DS.\'::'2\;)t.St,2\ . t,.8s~ 10 ns.1.crri 't

.. 1i.{iii:iOt1 i:1~>i:~i.;~4j~1) \eiiyi;;r • .·.·.· 6Fs{i:t.iii:jf'f .•.••..•...................
.• 1:UJOODD 0532C654255 • Parac£ltamol 20.082001 y
2QYJOom ·· aiooitiJ0s.1s 'i:iaiac~tariiof c.ff.i:ii-2001:,· ····· ···· ·

····•························ ····· •........ •.·.··.·······.·.·.··.····.······.· ··•··•.•.•.•.·.•.•.•.·.••.•.•.•·.····.·.•.•.••.•.•.••.•.•.·.·········.·. •.•.•.·.••.•.•.••.•.•.•.•.•.·.·.···.·.·.··.·.' } .
·\&"'OOODD lJ3BB7214515 A<ts:a .. . • OUD2002 y ·friiiiiiiff ·· ··· 98?24ti~:.1j1j5 · f!~ylir.· ·.··············· ··· . 61 :i/X'.2(lii\n .. · .. · .. ·.·.·.· .. ·.············
%100000 OB'.':24S12145 • Didofon 01.05.2001\ n · ;:r1?;99··.· ??41filf§j$ \i?ii>··.········ I ····?11?·3~3\ri··· ············· ········
d .• ;~1J, .. D0 lb4.:'tSb.Yl4t'J • f;idot~n J1 12.201..2 o
iti~:ri66bE P~?5f:§4.5J1 l \ti),s< .. 01 16.jlij,? ri .

Figure 3.10.1 Database

55

BALANCES

In this part I prepared code balances accompaniment balances and expire date

balance. In the balances there are three section.

First section is search criteria. Here we can search code and madicine that we

want to find it We search madicine by use the mad , no ,m _ name , balance, and balance

type. We search madicine by use the code, accompaniment, and expire date

Second section is sort

accompaniment, and balance.

criteria section .we sort madicine by code,

In the final section there is a table which we can see all balance information

about tb.e machcine.

56

Figure 3 .11. Data Balance

57

CONCLUSSION

Visual Basic is an easy program to grasp. This cause is why we have had

decided to use this program.
Visual Basic is a Microsoft Windows programming Language. Visual Basic is a

distinctly different language providing powerful! features such as graphical user

interfaces, even handling, access to the Win32 API, object-oriented features, error

handling, structured programming, and much more.
In this project we have built madicine database program. It is easy to use and It

can be use most kind of drugstore. We have used Visual Basic for write this program

and I used Microsoft Access database for keep all my databases.

In this study our main aim to put accross is that this program can be operated

by some one who has never used it before
In this program there is also menus to make your writting much simpler, It

containing windows menus and also afacility to prepare reports.

58

REFERANCES

1-) Ihsan Karagulle ; Zeydin Pala(1999). Microsoft Visual Basic 6.0. Istanbul.

Turkmen press.

2-) Prof Dr. Mithat Uysal (1999). Development Of The Software with Visual

Basic 6.0. Istanbul. Beta Press.

3-) Ihsan Karagulle ; Zeydin Pala (1999). Microsoft Visual Basic

6.0 Pro. Istanbul. Turkmen Press.

4-) Hila! Drugstore, Gime

5-) Macit Pharmacy, Lefkosa

59

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1
	Image 2

	Page 2
	Titles
	ACKNOWLEDGEMENT

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1
	Image 2

	Page 4
	Titles
	TABLE OF CONTENTS
	ABSTRACT
	CONTENTS
	INTRODUCTION
	CHAPTER!
	VISUAL BASIC PROGRAM
	CHAPTER2
	DATABASE AND ACCESS
	MAIN PROGRAM
	iv

	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering

	Images
	Image 1
	Image 2

	Page 2
	Titles
	ACKNOWLEDGEMENT

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1
	Image 2

	Page 4
	Titles
	TABLE OF CONTENTS
	ABSTRACT
	CONTENTS
	INTRODUCTION
	CHAPTER!
	VISUAL BASIC PROGRAM
	CHAPTER2
	DATABASE AND ACCESS
	MAIN PROGRAM
	iv

	Images
	Image 1

	Page 5
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 6
	Titles
	INTRODUCTION

	Images
	Image 1

	Page 7
	Page 8
	Titles
	CHAPTER!
	Visual Basic Program
	1.1.VB Advantages
	1.2. Very First Visual Basic Program

	Images
	Image 1

	Page 9
	Titles
	1.3. The - Object

	Images
	Image 1

	Page 10
	Titles
	1.4.Adding Controls to a [m
	0 ..
	o ..
	t,..

	Images
	Image 1
	Image 2
	Image 3

	Page 11
	Images
	Image 1
	Image 2

	Page 12
	Titles
	1.5.Setting Properties of Controls
	7

	Images
	Image 1
	Image 2
	Image 3

	Page 13
	Images
	Image 1

	Page 14
	Titles
	1.6.Naming Controls

	Images
	Image 1
	Image 2

	Page 15
	Images
	Image 1

	Tables
	Table 1

	Page 16
	Titles
	1. 7.Adding Code

	Images
	Image 1
	Image 2

	Page 17
	Titles
	1.8.Running and Debugging the Program

	Images
	Image 1
	Image 2

	Page 18
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 19
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 20
	Titles
	1.9.Refining the Sample Program

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 21
	Images
	Image 1
	Image 2
	Image 3

	Page 22
	Images
	Image 1
	Image 2
	Image 3

	Page 23
	Images
	Image 1
	Image 2
	Image 3

	Page 24
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 25
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 26
	Titles
	CHAPTER2
	2.1.Why is the computer necessary in our life
	2.2.How to develop a database application
	2.3.Relational database

	Images
	Image 1

	Tables
	Table 1

	Page 27
	Titles
	2.4. The facilities of access
	2.5. Visual basic and Access

	Images
	Image 1

	Page 28
	Page 29
	Titles
	2.6. The application of Access

	Images
	Image 1

	Page 30
	Titles
	2.-6.1. Tables Design
	database project.
	TheTable one have got eleven fields one is its unique name
	·:~1iti1·
 ·.· 111:t:. ··············· Ł.Ł.Ł 1::::~;l~~~:.·.····
	frtitii :
	· · · · · · · · f-~eii ·· .

	Images
	Image 1
	Image 2
	Image 3

	Page 31
	Titles
	CHAPTER3
	3.1. MAIN MENU

	Images
	Image 1
	Image 2

	Page 32
	Images
	Image 1

	Page 33
	Page 34
	Titles
	3.2. THE PASSWORD SECREEN
	.~~~~~-------------------------------nl111

	Images
	Image 1
	Image 2

	Page 35
	Titles
	Command 1. SetFocus
	End Sub
	Private Sub Text2_Change()
	If Textl.Text <> 1111 And Text2.Text <> 1111 And Textl.Text = 1199126711 Then
	Commandl.Enabled = True
	Commandl.SetFocus
	End If
	End Sub
	Private Sub Timerl_Timer()
	Form9.Caption = Right(Form9.Caption, (Len(Form9.Caption)
	Left(Form9.Caption, 1)
	End Sub
	29
	1)) +

	Page 36
	Titles
	3.3. UNIT EXPIRE DATE

	Images
	Image 1

	Page 37
	Page 38
	Titles
	3.4. UNIT RECORD OF MADICINE

	Images
	Image 1
	Image 2

	Page 39
	Page 40
	Titles
	3.5. UNITE RECORDE

	Page 41
	Images
	Image 1

	Page 42
	Images
	Image 1

	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Titles
	3.6. UNITE ACCOMPANIMENT

	Page 48
	Images
	Image 1

	Page 49
	Images
	Image 1

	Page 50
	Images
	Image 1

	Page 51
	Images
	Image 1
	Image 2

	Page 52
	Titles
	3.7. UNIT CALCULATOR

	Images
	Image 1
	Image 2

	Page 53
	Images
	Image 1
	Image 2

	Page 54
	Images
	Image 1
	Image 2

	Page 55
	Page 56
	Titles
	3.8. UNIT SALLING

	Images
	Image 1
	Image 2

	Page 57
	Images
	Image 1

	Page 58
	Titles
	3.9. UNIT REPORT
	INFOR.M'ATLON OF sroo«
	·. +: ············11······· 1 r J
	Figure 3.8. Information of Stock

	Images
	Image 1
	Image 2

	Page 59
	Titles
	3.10. UNIT DATA ENVIRONMENT
	r~ i{~'';[;7:~;!f;;;f1
	ŁŁ ;{l ;h'!:t"'"

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 60
	Titles
	3.11.Creating Tables
	3.11.1.Tables
	'1 ~lJ ...ŁŁ Qtnf:pri:il...ŁŁŁŁ $iqt)'!~C:~ ·.·. Ł....Ł it) ·.· :·::: :·::··· {Qi·oepr;zol Ł } ..Ł ·.·.· ·_· 02.92.:1JQ4U
	'19':14 Ł Prnsek ·Ł stom,:,ch Ł 50 ŁŁ Om~1:ir~zol Ł 02.D2.::-'l{)04 l
	,1995 ŁŁ Ert:olln . st()n-,,:,ch 2s .: 6i:o~;;if;izo1 ·· ·Ł·..... . :'3:ci5.iiii i
	·· ·················· · U(;ilii-lt1 H~ad~i::k········ ······eo .ic;1:;i.siii{x;;;: 21:rr:i1011
	s.;\;br;;ti'.lŁ H~adf{:k 40 ··················· TAc\?.1:iis;iidt ,;;? 02,0"l .~YJOS !
 ·]}!;~~~= Ł.ŁŁŁŁ.Ł... ·i~::i:~[·· J~2 ...ŁŁŁŁŁ.Ł.Ł.ŁŁŁŁ... · I~~f 1:~:1~11::E .Ł. :t~~I
	. Ł Hi;aci..i(:t{.......... . . 46 . .. r~racet~rr·iof w.1JS.ioc:11 1
	H~acl..ii:i 5•! . Ł P$nlCJfitart~;ol .: 01 JxUOCt3: !
	'~!,~:: .Ł l~t=~~:::!: ;~ ŁŁ.. ·· ;g::::~:: ::f ~::;::
	\);Bgrsl Ti:~~art .. . 'iz t11d~~ofll 02:xn 20011

	Images
	Image 1
	Image 2

	Page 61
	Titles
	·:i 1 rn~ 20Jt n
	····2roE.2001;······················ ··
	F'' :t¥24!t~ XJ:tillifi*6Hm~!i9~l~
	28.C.6.2C(H, n I
	Ł 18GJUOCIOU Ł 0•i4'.,.,>fJ.::i65Gl.:.f:, Ł 8~'?'~t Ł.. , .w··
	:~~ ...Ł \~tt!I:t jg~;::;L L ~t~\;i . . .Ł..Ł..
	25000D0H0 . 0642253}524 Ł Otrmprnl . . . Ł .. . }D.D7 J(fJ\ n
	\W~ .. ·. Ł l~t1lf41 t~f L ti~~\;.·.
	s.~s::rJ. DS.\'::'2\;)t.St,2\ . t,.8s~ 10 ns.1.crri 't
	.. 1i.{iii:iOt1 i:1~>i:~i.;~4j~1) \eiiyi;;r Ł .·.·.· 6Fs{i:t.iii:jf'f .Ł.ŁŁ..Ł...................
	.Ł 1:UJOODD 0532C654255 Ł Parac£ltamol 20.082001 y
	2QYJOom ·· aiooitiJ0s.1s 'i:iaiac~tariiof c.ff.i:ii-2001:,· ····· ···· ·
	·friiiiiiiff ·· ··· 98?24ti~:.1j1j5 · f!~ylir.· ·.··············· ··· . 61 :i/X'.2(lii\n .. · .. · .. ·.·.·.· .. ·.············
	%100000 OB'.':24S12145 Ł Didofon 01.05.2001\ n
	iti~:ri66bE P~?5f:§4.5J1 l \ti),s< .. 01 16.jlij,? ri .
	B7
	B~
	. ~J::!
	Figure 3.10.1 Database
	55

	Images
	Image 1
	Image 2

	Page 62
	Titles
	BALANCES

	Page 63
	Images
	Image 1

	Page 64
	Titles
	CONCLUSSION

	Page 65
	Titles
	REFERANCES

