
,'
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

TIME TABLE DESIGN:

DELPHI APPLICATION

Graduation Project
COM-400

Student: Mamun Ali Khamis (20010702)

Supervisor: Ass.Prof.Dr. Adil Amirjanov

Nicosia- 2005

)

ACKNOWLEDG:MENT

"First, I would like to and foremost to thank Allah whom its accomplishment
would not have been possible

Second, I would like to deeply thank my supervisor Ass. Prof Dr ADEL
AMIRCANOV for his invaluable advice and belief in my work and my self over

the course of this graduation project

Third I am deeply indebted to my parents, brothers, and sisters for their love
and their support. They have always encouraged me to pursue my interests and

ambition throughout life.

Last but in no way least, I would also like to thank all of my friends especially
Emad Dahdoh and Rami Aljundi they were always available for my assistance
throughout this project."

;/
/"

/'

ABSTRACT

The purpose of this project is design of faculty's time table, the main structure and

elements of database for this design are clarified, the operation principles of each

blocks of the design are modeled in Delphi Programming language.

The design allows us to make easily addition, updating, and searching for

employees (instructors and assistants), courses, rooms, and days. All of these will

explain in chapter three.

This project has been designed in a way that it works speedier than the normal

record design to decrease the time.

ii

TABLE OF CONTENTS

ACKNOWLEDGJ.\llE.NT i

ABSTRACT ii

TABLE OF CONTENTS iii

INTRODUCTION v

CHAPTER 1 1
INTEGRATED DEVELOPJ.\llE.NT ENVIRONJ.\llE.NT (IDE) 1

1.1 INTODUCTION 1
1.2 The Delphi IDE l
1.3 A Quick Look at the Delphi IDE 2
1.4 The Delphi Workspace 3
1.5 The Delphi Main Menu and Toolbar 3
1.6 Using the Component Palette 5
1.7 Placing Multiple Copies of a Component.. 5
1.8 About Delphi Forms 6

1.8.1 Main Window Forms 6
1.8.2 Creating the Main Window Form 6
1.8.3 Dialog Box Forms 8
1.8.4 Creating a Dialog Form 9

1.9 A Multiple-Form Application 9
1.9.lAdding Units 10
1.9.2 Some Key Properties for Forms 10

1.10 The Object Inspector 11
1.10.1 The Component Selector.. 11
1.10.2The Properties Page 12
1.10.3 The Events Page 13

1.11 Code Templates 13
1.12. Writing Code for the Window Menu .14

CHAPTER 2 - •.. 15
(DAT ABASE ACCESS) 15

2.1. Microsoft Access Description 15
2.2. Starting Microsoft Access 16
2.3. Creating New, and Opening Existing Databases .•...•..•.•..•....••..•..••••.••......••...••• 17
2.4. Create a database using the Database Wizard ••...•.••.•.•.....•......•.••••...•.......••...•.•. 18
2.5. Create a database without using the Database Wizard ..•.••••.•••.•...••••.....•....•.•..• 18
2.6. Tables 19
2.7. Create a Table from scratch in Design view 20

iii

2.8. Primary Key ••••••.••.••••.•.••.••••••...•....•.•.••.••.•.••.•.•.........••.••.•.•......••.•••.•••••........•..••. 22
2.9. Switching Views •••..•••.••••••......•••.•.•••....•...•...•....•..•.••..•.•..•.•....•••....••••...••...•••..•.. 22
2.10. Entering Data ··················!···23
2.11. Manipulating Data .••••••••••••.••.•••..•••...•.••.••...••••••••••••.....••••.•..•••.••••••••••••.•...•...•• 23
2.12. Advanced Table Features w/Microsoft Access ...•....•••....••..•......•................••.. 24

2.12.1. Assigning a field a specific set of characters 24
2.12.2. Formatting a field to look a specific way (HINT) 24

2 .13. Relationships .••••..•.••.......•••••••..•.•.•.....•......•....••.......•..•.•.•.•.............••••.••..•...•••.. 25

CH.APTER 3 ••••••••••.•••...•.••••••........••...••.....•.•••••.........••...•...••..••..•.•••••...••....••............••• 28
TIJ.\,IE TABLE DESIGN .•.•.••••.••..•.••...••••.•.......••.....•...••••••......•.•......••••...•......•.••.......• 28

3.1. Structure of Time Table Design: .•••••.•••••.•.••.••••••••••••••.•••..••••••••••....••••.••.••••••••••• 28
3.2. Define Relationships Between Forms:•............................•.............. 28
3.3. Define Relationships Between Tables:•..•......................... 29
3 .4. Delphi database components: .•••.••••........•.•......•...•.....••..••••..•.•.•.•......•••.•..•..•..... 30
3 .5. Layout of the Application: ..••.....••••.•••...••••..•.••••.•.•..•.••..•.•••......•••••.••••.•......••..... 30

3 .5 .1. Main menu screen:•••••••••...••..•.......••.••.••..••........•..•.................•••...•...••••• 30
3 .5 .2. Add New Employee Screen: ••••.......•.•..•.••••••••.••......•.•.•..••.••••....•..••.••••••••..• 31
3.5.3. Update Employee Record Screen: .•••..•.•••••.•.•••.••••••....•.••.••••.••••.••..•...••.•••.. 33
3 .5 .4. Add New Course Screen: .•.•..••...•....•••..•..•.•..........•...••••.••..••••••.•••••.•.••••••...• 34
3 .5 .5. Update Courses Screen: .•••..••••.•••••••.•.•.••••• ;•.•.•••••••.•...•.•••••.••.••..•.••....•••.• 34
3.5.6. Add New Room Screen: .••.••••••.•..•.••.......•...•••.•••..••••••••.•••.••.••.••..•........•.•.•• 35
3.5.7. Time Table Screen: .••••.•.•..•...•..•••.•••.••.••..•.•...•••••.••••.........•••.•.••.•.........••..... 37

CONCLUSION ! ••• 40

RE FE REN CES .•.......•.. 41
APPEND IX 4 2

iv

INTRODUCTION

The aim of the project is the design of faculty's time table using Delphi

programming. The intended audience for this project includes the following:

1. Explanation of Delphi's IDE.

2. Explanation of Access Database.

3. Screens and its consistence and some of codes.

In this project I used one of the programming languages that we are learned in our

university-Delphi Programming language. In this language there are many things that

we can use to create any kind of project. But in this project I used some standard

components to create my project, also I used access database to create tables, we will

see this later, regarding this program which basically divided into tow sections,

Addition and Updating for all fields which consist of employees, courses, rooms , and

time which are confirm the time table. My project allows to the users to know which

time, room, and day that have a lecture for any instructor or assistant. These are the

main ideas about my project.

V

Integrated Development Environment

CHAPTER!

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

1.1 INTODUCTION

One of the most difficult aspects of learning how to use a new programming

environment is finding your way around: getting to know the basic menu structure, what

all the options do, and how the environment works as a whole. ·

1.2 The Delphi IDE

Definition: Integrated Development Environment. This is the user interface (GUI)

where you can design, compile and debug your Delphi projects.

So, without further ado, take a look at Figure 1.1 and let's get on with it. if you have used

Delphi before, you might find this chapter elementary.

Figure 1.1 The Delphi-IDE

1. The Delphi IDE consists of these main parts:
2. The main menu and toolbars 1
3. The Component palette 1
4. The Form Designer 1
5. The Code Editor 1

1

Integrated Development Environment

6. The Object Inspector 1
7. The Code Explorer 1
8. The Project Manage

1.3 A Quick Look at the Delphi IDE

This section contains a quick look at the Delphi integrated development environment

(IDE). Because you are tackling Windows programming, I'll assume you are advanced

enough to have figured out how to start Delphi. When you first start the program, you are

presented with both a blank form and the IDE, as shown in Figure 1.2.[1]

Figure 1.2 The Delphi IDE and the initial blank form

The Delphi IDE is divided into three parts. The top window can be considered the

main window. It contains the toolbars and the Component palette. The Delphi toolbars

give you one-click access to tasks such as opening, saving, and compiling projects.

The Component palette contains a wide array of components that you can drop onto

your forms. (Components are text labels, edit controls, list boxes, buttons, and the like.)

For convenience, the components are divided into groups. Go ahead and click on the tabs

to explore the different components available to you. To place a component on your

form, you simply click the component's button in the Component palette and then click

2

Integrated Development Environment

on your form where you want the component to appear. When you are done exploring,

click on the tab labeled Standard, because you'll need it in a moment.

1.4 The Delphi Workspace

The main part of the Delphi IDE is the workspace. The workspace initially displays

the Form Designer. It should come as no surprise that the Form Designer enables you to

create forms. In Delphi, a form represents a window in your program. The form might be

the program's main window, a dialog box, or any other type of window. You use the

Form Designer to place, move, and size components as part of the form creation process.

Hiding behind the Form Designer is the Code Editor. The Code Editor is where you

type code when writing your programs. The Object Inspector, Form Designer, Code

Editor, and Component palette work interactively as you build applications.

1.5 The Delphi Main Menu and Toolbar.
The Delphi main menu has all the choices necessary to make Delphi work. Because

programming in Delphi is a highly visual operation, you might not use the main menu as

much as you might with other programming environments. Still, just about anything you

need is available from the main menu if you prefer to work that way. The Delphi toolbars

provide a convenient way of accomplishing often-repeated tasks. A button is easier to

locate than a menu item, not to mention that it requires less mouse movement. The

Delphi main window toolbars are illustrated in Figure 1.3.

Figure 1.3 The Delphi main window

3

Integrated Development Environment

Delphi enables you to add buttons to the toolbar, remove buttons, and rearrange

buttons however you see fit. To configure a toolbar, right-click on the toolbar to display

the context menu. Choose Customize from the context menu. When you choose this

menu item, the Customize dialog box is displayed.

The Customize dialog box contains three tabs:

The first tab, Toolbars, shows you the toolbars available with a check mark next to

tool bars that are currently visible. You can add or remove existing toolbars or reset the

toolbars to their original default settings.[1]

The second tab, labeled Commands, shows all the available toolbar buttons. To add a

button to the toolbar, just locate its description in the Commands list box and drag it to

the place you want it to occupy on any toolbar. To remove a button from a toolbar, grab it

and drag it off the toolbar. It's as simple as that. Figure 1.4 shows the act of adding a

button to a toolbar. If you really make a mess of things, simply go back to the Toolbars

page and click the Reset button. The toolbar will revert to its default settings.

Figure 1.4 customizing the toolbar

The third tab, Options, contains options such as whether the tooltips are displayed and

how they are displayed.

4

Integrated Development Environment

1.6 Using the Component Palette
The Delphi Component palette is used to select a component or other control (such as

an ActiveX control) in order to place that control on a form. The Component palette is a

multipage window. Tabs are provided to enable you to navigate between pages.
Placing a component on a form is a two-step process. First, go to the Component

palette and select the button representing the component you want to use.

Then click on the form to place the component on the form. The component appears

with its upper-left corner placed where you clicked with the mouse.

1.7 Placing Multiple Copies of a Component

So far you have placed only one component at a time on a form. You can easily place

(multiple components of the same type without selecting the component from the

Component palette each time. To place multiple components on a form, press and hold

the Shift key as you select the component from the Component palette. After you select

the component, you can release the Shift key.

The component's button on the Component palette will appear pressed and will be

highlighted with a blue border. Click on the form to place the first component. Notice

that the button stays pressed on the Component palette. a new component will be placed

each time you click the form. To stop placing components, click the selector button on

the Component palette (the arrow button). The component button pops up to indicate that

you are done placing components. Seeing is believing, so follow these steps:

1. Create a new project.
2. Press and hold the Shift key on the keyboard and click the Label component button

in the Component palette.
3. Click three times on the form, moving the cursor each time to indicate where you

want the new component placed. A new Label is placed on the form each time you click.

4. Click the arrow button on the Component palette to end the process and return to

form design mode.

5

Integrated Development Environment

1.8 About Delphi Forms

Before I continue with the discussion about the Delphi IDE, I need to spend some

time explaining forms. You have seen several forms in action as you have worked

through this chapter. You need some more background information on forms.

1.8.1 Main Window Forms

Forms are the main building block of a Delphi application. Every GUI application has

at least one form that serves as the main window. The main window form might be just a

blank window, it might have controls on it, or it might have a bitmap displayed on it. In a

typical Windows program, your main window would have a menu. It might also have

decorations such as a toolbar or a status bar. Just about anything goes when creating the

main window of your application. Each application is unique, and each has different

requirements.

1.8.2 Creating the Main Window Form

First you'll create the main window form. The main window for an :MDI application

must have the FormStyle property set to fs:MDIForm. You also need to add a menu to the

application, as well as File Open and File Save dialog boxes. Follow these steps:

1. Start Delphi and choose File I New Application from the main menu.

2. For the main form, change the Name property to MainForm.

3. Change the Caption property to Picture Viewer.

4. Change the Height to 450 and the Width to 575 (or other suitable values)

5. Change the FormStyle to fs:MDIForm.

Now you've got the main part of the form done. Next you'll add a menu to the form,

you will take the easy route to creating a menu. To do that, you can take advantage of a

Delphi feature that enables you to import a predefined menu, as follows:

6

Integrated Development Environment

1. Click the Standard tab of the Component palette and click the MainMenu button.

2. Click on the form to place a MainMenu component on the form. It doesn't matter

where you place the component because the icon representing the menu is just a

placeholder and won't show on the form at runtime. This is how nonvisual com-ponents

appear on a form.

3. Change the Name property to MainMenu.

4. Double-click the MainMenu component. The Menu Designer is displayed.

5. Place your cursor over the Menu Designer and click your right mouse button. Choose

Insert from Template from the context menu. The Insert Template dialog box appears.

6. Choose MDI Frame Menu and click OK. The menu is displayed in the Menu Designer.

7. Click the system close box on the Menu Designer to close it.

Now you should be back to the main form. You can click on the top-level items to see
the full menu. Don't click on any menu subitems at this point--you'll do that in a minute.

Now you need to prepare the File Open and File Save dialog boxes:

1. Click the Dialogs tab on the Component palette. Choose an Open Picture Dialog

component and place it on the form.

The Open Picture Dialog component's icon can be placed anywhere on the form.

2. Change the Name property of the Open dialog box to Open Picture Dialog.

3. Change the Title property to open a Picture for Viewing.

4. Add a Save Picture Dialog component.

5. Change the Name property of the component to Save Picture Dialog and the Title

property to Save a Picture.

Your form should now look like the one shown in Figure 1.5.

7

Integrated Development Environment

Figure 1.5 Form designed

1.8.3 Dialog Box Forms

Forms are also used for dialog boxes. In fact, to the user there is no difference

between a Delphi form acting as a dialog box and a true dialog box.Dialog boxes usually

have several traits that distinguish them from ordinary windows:

• Dialog boxes are not usually sizable. They usually perform a specific function,

and sizing of the dialog box is neither useful nor desirable.

• Dialog boxes almost always have an OK button. Some dialog boxes have a button

labeled Close that performs the same task. A simple dialog box such as an About

dialog box typically has only the OK button. Dialog boxes can also have a Cancel

button and a Help button.

• Dialog boxes typically have only the system close button on the title bar. They do

not usually have minimize and maximize buttons.

8

Integrated Development Environment

Creating a Dialog Form

t you'll add a button to the form that displays the about dialog box:

Bring the main form into view. Choose the Button component from the Component

a\ette ancl clrop a bun.on on fue form.

2. Arrange the two buttons that are now on the form to balance the look of the form.

3. Change the Name property of the new button to About Button and the Caption

property to about.

4. Double-click the About Button you just created on the form. The Code Editor is

displayed with the cursor placed in the event-handler function. Add this line of code at

the cursor:

About Box Show Modal, You haven't actually created the About box yet, but when

you do you'll name it About Box, so you know enough to type the code that will display

the About box.

1.9 A Multiple-Form Application

To illustrate how Delphi uses units, you can create an application with multiple forms.

You'll create a simple application that displays a second form when you click a button:

1. Create a new project by choosing File \ New Application from the main menu.

2. Change the Name property to MainForm and the Caption property to Multiple Forms

~e~\ \l"tCl'?;t'o.TI\.

3. Save the project. Save the unit as Main and the project as Multiple.

4. Now place a button on the form. Make the button's Name property ShowForm2 and the

Caption property Show Form 2.

5. Choose File I New Form from the main menu to create a new form. At this point, the

new form has a name of Forml and is placed exactly over the main form. You want the

new form to be smaller than the main form and more or less centered on the main form.

6. Size and position the new form so that it is about 50 percent of the 'size of the main

form and centered on the main form. Use the title bar to move the new form. Size the

form by dragging the lower-right corner.

9

Integrated Development Environment

7. Change the new form's Name property to SecondForm and the form's Caption property

to A Second Form.

8. Choose File I Save from the main menu.

9. Choose a Label component and drop it on the new form.

1.9.lAdding Units

Rather than having Delphi prompts you to add a unit to your uses list, you can add

units yourself. You can manually type the unit name in the uses list for the form, or you

can choose File I Use Unit from the main menu. When you choose the latter method, the

Use Unit dialog box is displayed, as shown in Figure 1.6. The Use Unit dialog box shows

a list of available units. Choose the unit you want to add and click OK. Delphi will add

the unit to the current forms uses list.

Figure 1.6 The Use Unit dialog box

1.9.2 Some Key Properties for Forms

The TForm class has a lot of properties. Some of these properties are obscure and

rarely used others are widely used. I'll touch on the some widely used properties here.

• Font The Font property specifies the font that the form uses. The important issue to

understand here is that the form's font is inherited by any components placed on the

form. This also means that you can change the font used by all components at one

time by changing just the form's font.

10

Integrated Development Environment

• FormStyle This property is usually set to fsNormal. If you want a form to always

be on top, use the fsStayOnTop style. MDI forms should use the fsMDIForm style

and MDI child forms should use the fsMDIChild style.

1.10 The Object Inspector
An integral part of the Delphi IDE is the Object Inspector. This window works with

the Form Designer to aid in the creation of components.

The Object Inspector is where you set the design-time properties that affect how the

component acts at runtime. The Object Inspector has three main areas:

• The Component Selector .

• The Properties page

• The Events page

1.10.1 The Component Selector

Normally, you select a component by clicking the component on a form. The

Component Selector provides an alternative way of selecting a component to view or

modify. The Component Selector is a drop-down combo box that is located at the top of

the Object Inspector window.

The Component Selector displays the name of the component and the class from

which it is derived. For example, a memo component named Memo would appear in the

Component Selector as

Memo: TMemo

The class name does not show up in the drop-down list of components, it only

appears in the top portion of the Component Selector. To select a component, click the

drop-down button to reveal the list of components and then click the one you want to

select.

11

Integrated Development Environment

After you select a component in the Component Selector, the component is selected

on the form as well. The Properties and Events tabs change to display the properties and

events for the selected component. Figure 1.7 shows the Object Inspector with the

Component Selector list displayed.

Figure 1.7 the component selector list

1.10.2The Properties Page

The Properties page of the Object Inspector displays all the design-time properties for

the currently selected control. The Properties page has two columns: The Property

column is on the left side of the Properties page and shows the property name, the Value

column is on the right side of the Properties page and is where you type or select the

value for the property.

12

Integrated Development Environment

Properties can be integer values, enumerations, sets, other objects, strings, and other

types.

The Object Inspector deals with each type of property according to the data type of

the property. Delphi has several built-in property editors to handle data input for the

property. For example, the Top property accepts an Integer value. Because the Integer

type is a basic data type, no special handling is required, so the property editor is fairly

basic. The property editor for this type of property enables you to type a value directly in

the Value column for integer properties such as Top, Left, Width, and Height.

1.10.3 The Events Page

The Events page lists all the events that the component is designed to handle. Using

the Events page is pretty basic. Delphi creates an event-handling function for you with

all the parameters needed to handle that event. The Code Editor is displayed and the

cursor is placed in the event handler. All you have to do is start typing code. The name of

the function is generated based on the Name property of the component and the event

being handled. If, for example, you have a button named OKBtn and are handling the

OnClick event, the function name generated would be OKBtnClick.

You can let Delphi generate the name of the event-handling function for you or you

can provide the function name for Delphi to use. The Code Editor is displayed, and so is

the event-handling function, complete with the name you supplied. After you create an

event-handling function for a component, you can use that event handler for any

component that handles the same event. Sometimes it's convenient to have several

buttons use the same OnClick event.

1.11 Code Templates

This feature lets you insert one of the predefined code templates, such as a complex

statement with an inner begin ... end block. Code templates must be activated manually, by

pressing Ctrl+J to show a list of all of the templates. You can add custom code templates,

so that you can build your own shortcuts for commonly used blocks of code.

13

Integrated Development Environment

For example, if you use the MessageDlg function often, you might want to add a

plate for it. To modify templates, go to the Source Options page of the Editor Options

og box, select Pascal from the Source File Type list, and click the Edit Code

emplates button. Doing so opens the new Delphi Code Templates dialog box. At this

int, click the Add button, type in a new template name (for example, mess), type a

· ption, and then add the following text to the template body in the Code memo

trol:

MessageDlg Cl', mtlnformation, [mbOK], 0);

.,ow, every time you need to create a message dialog box, you simply type mess and then

s Ctrl+J, and you get the full text.

1.12. Writing Code for the Window Menu

Now you can add code to the Window menu. This part is simple:

1. Switch back to the form by pressing Fl2. Choose Window I Tile from the form's

menu.
2. You need to enter only a single line of code for the event handler. The finished

event handler will look like this:
Procedure TMainForm.TilelClick (Sender: TObject);

Begin

Tile;

end;
3. Switch back to the form and repeat the process for Window I Cascade. The finished

function looks like this:

Procedure TMainForm.CascadelClick (Sender: TObject);

Begin

Cascade;

end;
4. Repeat the steps for the Window I Arrange All menu item. The single line of code

to add for the function body is the following:

Arrange Icons.

14

Database Access

CHAPTER2

(DATABASE ACCESS)

. Microsoft Access Description
Microsoft Access is a powerful program to create and manage your databases. It

many built in features to assist you in constructing and viewing your information.

ess is much more involved and is a more genuine database application than other

grams such as Microsoft Works.

First of all you need to understand how Microsoft Access breaks down a database.

vne keywords involved in this process are: Database File, Table, Record, Field, and

·l)'pe. Here is the Hierarchy that Microsoft Access uses in breaking down a

.. Database File

Data type

Value - Figure 2.1. Microsoft Access uses in breaking down a database

15

Database Access

• Database File: This is your main file that encompasses the entire database

and that is saved to your hard-drive or floppy disk.

Example) StudentDatabase.mdb

• Table: A table is a collection of data about a specific topic. There can be

multiple tables in a database.

Example #1) Students

Example #2) Teachers

• Field: Fields are the different categories within a Table. Tables usually

contain multiple fields.

Example #1) Student Last Name

Example #2) Student First Name

• Data types: Data types are the properties of each field. A field only has 1

data type.

Field Name) Student Last Name

Data type) Text

This tutorial will help you get started with Microsoft Access and may solve

some of your problems, but it is a very good idea to use the Help Files that come

with Microsoft Access (or any program you use for that matter).

2.2. Starting Microsoft Access

• Two Ways

1. Double click on the Microsoft Access icon on the desktop.

Microsoft
Access

2. Click on Start--> Programs--> Microsoft Access

16

Database Access

Figure 2.2 starting Microsoft access

2.3. Creating New, and Opening Existing Databases

Figure 2.3 Creating New, and Opening Existing Databases

17

Database Access

e above picture gives you the option to:

• Create a New Database from scratch.

• Use the wizard to create a New Database.

• Open an existing database

The white box gives you the most recent databases you have used. If you do not

see the one you had created, choose the More Files option and hit OK. Otherwise

oose the database you had previously used and click OK.

.4. Create a database using the Database Wizard

1. When Microsoft Access first starts up, a dialog box is automatically displayed

with options to create a new database or open an existing one. If this dialog

box is displayed, click Access Database Wizards, pages, and projects and then

click ok
if you have already opened a database or closed the dialog box that displays

when Microsoft Access starts up, click New Database on the toolbar.

2. On the Databases tab, double-click the icon for the kind of database you want

to create.
3. Specify a name and location for the database.

4. Click Create to start defining your new database

2.5. Create a database without using the Database Wizard

1. When Microsoft Access first starts up, a dialog box is automatically displayed

with options to create a new database or open an existing one. If this dialog

box is displayed, click Blank Access Database, and then click OK.

If you have already opened a database or closed the dialog box that displays

when Microsoft Access starts up, click New Database on the toolbar, and then

double-click the Blank Database icon on the General tab.

2. Specify a name and location for the database and click Create. (Below is the

screen that shows up following this step).

18

Database Access

Create table by entering data

Figure 2.4 Create a database without using the Database Wizard

2.6. Tables

A table is a collection of data about a specific topic, such as students or contacts.

Using a separate table for each topic means that you store that data only once, which

makes your database more efficient, and reduces data-entry errors.

Tables organize data into columns (called.fields) and rows (called records).

Each field in th;; Student Records table contains the sam,1 rypi. of
f;i17mn~tfo,,for .,..,my ;fud£nt, stich ,,s :m t d~n! 's Socio! Secunry j\tmber
(Soc Si:c #) This is an ~xamrl.: oia COLUMN

Each r,cord in a !/tu.dt:nt Records ta>J/$ contain-, aU o.,fthe 111,f'ormaticn
about one stud~rd, sud, as their First Nam», Las: Name, Birthday, .
. 4.ddrt$S. ond ON. et.;. . Thu: is mi ~.tc?m?Jt41. or· a ROW

19

Database Access

2.7. Create a Table from scratch in Design view

1. If you haven't already done so, switch to the Database Window You can press

Fl 1 to switch to the Database window from any other window.

Createtable by entering data

Figure 2.5 Create table in Design view

2. Double-Click on "Create table in Design view".
(DESIGN VIEW)

20

Database Access

3. Define each of the fields in your table.

o Under the Field Name column, enter the categories of your table.

o Under Data Type column, enter the type you want for you categories.

The attribute of a variable or field that determines what kind of data it can hold.

For example, in a Microsoft Access database, the Text and Memo field data types

allow the field to store either text or numbers, but the Number data type will allow the

field to store numbers only. Number data type fields store numerical data that will be

used in mathematical calculations. Use the Currency data type to display or calculate

currency values. Other data types are Date/Time, Yes/No, Auto Number, and OLE

object (Picture).

o Under the Description column, enter the text that describes what you

field is. (This field is optional).

21

Database Access

tutorial enter the following items:

~ - .••. \ Text -----·- :_ Social SecurityJ,Jumber~UrJ.i.gueJy identifies _a student
- Name ---------·- : Text·---·-··-···-- : Student's First Name _
Name ·-·---·-···- , Text_______ \Studen>) Last Name·--····---·--------··------·-···--·--

\ •.• "' iDat~--- .. __ _ _ :_l:?.~~LTir:!l~L _ _ _ 8~':!.cl~ri~·~-~~!b.9ii.t..~ --·····-
- · ess \ 1 ext . \ Students Mdress

.... iT~x.L...... . .. · ... i C:ity S~lJcJ~n~r~sicl~~-ifl .
: Text : State student resides in

_______ _,\--'-Text l ZJQ Code· student resid~s in ---------
- . ·-· ·- : Text \ Student's h.9m~~-.9_r:i_e numb,.::e:.:..r _

2.8. Primary Key

• One or more fields (columns) whose value or values uniquely' identify' each

record in a table. A primary key does not allow Null values and must always

have a unique value. A primary key is used to relate a table to foreign keys in

other tables.

You do not have to define a primary key, but it's usually a good idea. If you

don't define a primary key, Microsoft Access asks you if you would like to create

one when you save the table.

• For our tutorial, make the Soc Sec # field the primary key, meaning that every

student has a social security number and no 2 are the same.

o To do this, simply select the Soc Sec# field and select the primary key

button

o After you do this, Save the table

2.9. Switching Views·

• To switch views form the datasheet (spreadsheet view) and the design view,

simply click the button in the top-left hand comer of the Access program.

22

Database Access

Datasheet View
Design View

Displays the view, which allows you to enter raw data into your database table

Displays the view, which allows you to enter fields, data-types, and descriptions

into your database table.

2.10. Entering Data

• Click on the Datasheet View and simply start "chugging" away by entering the

data into each field, Before starting a new record, the Soc Sec # field must

have something in it, because it is the Primary Key. If you did not set a

Primary Key then it is OK.

Figure 2.6 Entering Data

2.11. Manipulating Data

• Adding a new row
o Simply drop down to a new line and enter the information

23

Database Access

• Updating a record
o Simply select the record and field you want to update, and change its

data with what you want

• Deleting a record
o Simply select the entire row and hit the Delete Key on the keyboard

2.12. Advanced Table Features w/Microsoft Access

2.12.1. Assigning a field a specific set of characters

o Example) Making a Social Security Number only allows 9 characters.

1. Switch to Design View.

2. Select the field you want to alter.

3. At the bottom select the General Tab.

'1

Figure 2.7 Assigning a field a specific set of characters.

4. Select Field Size

5. Enter the number of characters you want this field to have

2.12.2. Formatting a field to look a specific way (HINT)

You do not need to assign a field a specific set of characters if you do this)

o Example) Formatting Phone Number w/ Area Code (xxx) xxx-xxxx

1. Switch to Design View

2. Select the field you want to format

3. At the bottom select the General Tab

24

Database Access

4. Select Input Mask Box and click on the .•• button at the right.

5. Click on Next

6. Leave! (999) 000-0000 the way it is. This is a default.

7. Click Next

8. Select which option you want it to look like

9. Click Next

10. Click Finish

7. Select in the datasheet view and you should see the change when you go to the
city field.

Au bum
Bay City
Frint
Midland
Sagiriaw ·

2.13. Relationships

After you've set up multiple tables in your Microsoft Access database, you need a

way of telling Access how to bring that information back together again. The first step

in this process is to define relationships between your tables. After you've done that,

you can create queries, forms, and reports to display information from several tables

At once.

25

Database Access

relationship works by matching data in key fields - usually a field with the same

e in both tables. In most cases, these matching fields are the primary key from

table, which provides a unique identifier for each record, and a foreign key in the

er table. For example, teachers can be associated with the students they're

ponsible for by creating a relationship between the teacher's table and the student's

le using the Teacher ID fields.

Having met the criteria above, follow these steps for creating relationships between

les.

1. In the database window view, at the top, click on Tools ---> Relationships

2. Select the Tables you want to link together, by clicking on them and selecting

the Add Button

Drag the primary key of the Parent table (Teacher in this case), and drop it into the

same field in the Child table (Student in this case.)

Select Enforce Referential Integrity.

Figure 2.8 Edit Relationships

26

Database Access

o When the Cascade Update Related Fields check box is set, changing a

primary key value in the primary table automatically updates the

matching value in all related records.

o When the Cascade Delete Related Records check box is set, deleting a

record in the primary table deletes any related records iri the related

table

3. Click Create and Save the Relationship.

27

Time Table Design

CHAPTER3

TIME TABLE DESIGN

.1. Structure of Time Table Design:

First thing as we know Delphi's support for database applications is one of the

ey feathers of the programming environment. Many programmers spend most of

eir time writing data-access code, which needs to be the most robust portion of a

database application. You can create very complex database applications, starting

from a blank form or one generated by Delphi's database from wizard. On computer,

permanent data including database data is always stored in files. There are several

echniques you can use to accomplish this storage. Delphi can use both approaches, or

more precisely, you always refer to a database with its name, which is a sort of a

nickname of a database but this reference can be to a database file or to a directory

containing files with tables.

3.2. Define Relationships Between Forms:
As shown bellow in figure 3.1 we can see and understand the relationships and the

procedures between forms, each form is related with the other forms through the

database which is confirm a time table form at the end, later on we will see all the

explanations of each form and its consistence.

28

Time Table Design

Add new
employee

Update
existing Exit

Add new
course File Employee

Database Courses

Update courses
Room

Time table

Add new room

Figure 3.1 Relationships Between forms.

3.3. Define Relationships Between Tables:

When we create a relationship, the related fields don't have the same names.

However, related field must have the same data type unless the primary key filed is an

AutoNumber field. We can match an AutoNmber field with a number field only if the

fieldsize property of both of the matching fields is the same. Here we can see the

relationships between the tables of this project as shown bellow:

29

Time Table Design

Figure 3.2 Relationships Between Tables.

3.4. Delphi database components:
As we have seen in chapter one Delphi includes a number of components related

o database. The data access page pf the component palette contains components used

to interact to database. To access database in Delphi you generally need a data source,

identified by data source component. The data source component, however, does not

indicate the data directly, it refers to a data set component this can be tables (as in this

project) or some other custom data set. As soon as you have placed a table component

on the form, you can use the data sets property of the data source component to refer

to it. for this property, the object inspector lists available data set of the current form

or of other forms connected with the current one(using the file »used form

command).[2]

3.5. Layout of the Application:

3.5.1. Main menu screen:
It consists of six buttons. Each button has a specific mission, and these missions

will be explaining as follow:
1. File Button: we can use this button to exit from the program.

30

Time Table Design

2. Employee Button: this button has two sub buttons these are Add new

employee, and Update employee record. We can use it to do whatever we

want about employee's informations.

3. Courses Button: also it has two sub buttons, one for adding new course and the

other for update the course's information.

4. Rooms Button: this button has one sub button used to add new room.

5. Timetable Button: this button allows us to get all the information about

timetable.

6. Help button: it gives you information about me.

Figure 3.3 Main Menu Screen.

3.5.2. Add New Employee Screen:
This screen allows us to enter information about employees such as code,

name, surname, department, job title, and degree. As we see in the figure3.4

bellow there are three DBEdit buttons and the other are DBComboBox to select

the data. Also in this screen we have three BitBtn and their functions are shown

as:

1. NEW Button: it's used to enter a new data.

2. SAVE Button: it's used to keep and save the information of employee to a

file. When we click the save button without fill all the fields we will get an

error message telling us that "please fill all fields", also if we insert a code

which have been saved before we will get another error message telling us

that" record can not be saved" We can create this procedure as follows :

31

Time Table Design

Procedure TAddEmpForm.BitBtnlClick.(Sender: TObject);
Begin
If (DBEditl.Text=") or (DBComboBoxl.Text=") or
(DBComboBox2.Text=") or (DBComboBox3.Text=") or (DBEditl.Text=")
then
Begin
MessageDlg (' Please Fill All Fields!', mtError,[mbOK],O);
End
Else
Begin
Try
ADODataSetl .Post;
Except on Error: Exception do
Begin
MessageDlg ('Record Can not be saved!'+#l3+Error.Message,

mtError,[mbOK],O);
ADODataSetl .Delete;
BitBtn3Click (Sender);
End;
End;
BitBtn3Click (sender);
End;
End;
End.

3. CLOSE Button: it's used to exit from the screen.

Figure 3.4 Add New Employee Screen.

32

Time Table Design

3.5.3. Update Employee Record Screen:
This form has three sections (search, update, and time table) and their functions

as follow:
1. Searching Part: it has two Edit buttons which allow us to search by code or

name of employee so we can call all the informations by these two buttons.

2. Updating part: this part allows us to adjust all the informations about

employees which we entered it before such as code, name, department, and

degree and save it again.
3. Time Table Part: since we insert the code or the name of employee we

directly got the time table of that employee as shown bellow in figure 3.5.

Figure 3.5 Update Employee Record.

33

Time Table Design

.4. Add New Course Screen:

This screen allows us to enter information about courses such as code, name,

department, and level. As we see in the figure3.6 bellow there are two DBEdit

buttons and the other are DBComboBox to select the data. Also in this screen we

have three BitBtn to create a new application and save the data in a file and close

to exit from the screen.

Figure 3.6 Add New Course Screen.

3.5.S. Update Courses Screen:

Here we follow the same procedure of update employee screen but here there is

some different information, this screen used to correct or adjust some of courses

information which saved before by using search button and save it again in a file.

34

Time Table Design

Figure 3.7 Update Courses Screen.

3.5.6. Add New Room Screen:
Its design to add a new room and it's building by using two DBEdit buttons

one for room and the second for building, in this screen we have three BitBtn and

their functions are shown as:
1. NEW Button: it's used to enter a new data but to add it we have to fill the

room field and building field other wise we will get an error message. We can

see this procedure as:

Procedure TADDROOM.BitBtnlClick (Sender: TObject);
Begin
ADODataSetl .Open;
ADODataSetl .Insert;
DBEditl.SetFocus;
End;

Procedure T ADDROOM.BitBtn2Click (Sender: TObject);
Begin
if (DBEditl.Text=") OR (DBEdit2.Text=") then
Begin
MessageDlg (' Please Fill All Fields!',mtError,[mbOK],O);
End
Else
Begin
Try

35

Time Table Design

ADODataSetl .Post;
Except on Error: Exception do
Begin
MessageDlg ('Record Can not be saved!'+#l3+Error.Message,

mtError,[mbOk],O);
ADODataSetl .Delete;
BitBtnlClick (Sender);

End;
End;
BitBtnlClick (sender);

End;
End;

Procedure T ADDROOM.BitBtn3Click (Sender: TObject);
Begin
CLOSE;
End;,

Procedure T ADDROOM.FormShow (Sender: TObject);
Begin
BitBtnlClick (SENDER);
End;
End.

2. SA VE Button: it's used to keep and save the information of room to a file.

3. CLOSE Button: it's used to exit from the screen.

Figure 3.8 Add New Room Screen.

36

Time Table Design

.7. Time Table Screen:
We can say that this screen is our aim because it gives us the whole informations

rhich are related with each other as we have seen it before between tables and also

rith screens. This screen has two parts:

1. Searching part: it consists of five ComboBox for Course, Instructor, Assistant,

room, and day. By choose one of them or more we cart get the time table of that

searching which have been choosed. For example if we select instructor and we

click search button we will get all the courses which are giving by instructor and

it's name, semester, assistant, day, start time and end time because all the fields

are related with each other. We can write this procedure as:

Procedure TTimeTableForm.BitBtnlClick (Sender: TObject);
Begin
ADODataSet2.Close;
ADODataSet2.CornrnandText:='SELECT * FROM TIME_TABLE WHERE
COURSE_CODE<>"" ';

If ComboBoxl.Text<>" then
ADODataSet2.CornrnandText:=ADODataSet2.CornrnandText+' AND
COURSE_CODE="'+ComboBoxl.Text+"";
If ComboBox2.Text<>" then
Begin
ADODataSetl .Close;
ADODataSetl.CornrnandText:='SELECT * FROM EMPLOYEES ORDER BY
NAMEASC';
ADODataSetl.Open;
ADO DataSet 1.RecN o: =ComboB ox2 .Itemlndex + 1;
ADODataSet2.CornrnandText:=AD0DataSet2.CornrnandText+' AND
INSTRUCTOR_CODE ="'+ADODataSetl.FieldByName
('CODE').ASSTRING+'"';
End;
If ComboBox3.Text<>" then
Begin
ADODataSetl .Close;
ADODataSetl.CornrnandText:='SELECT * FROM EMPLOYEES ORDER BY
NAMEASC';
ADODataSetl.Open;
ADODataSetl.RecNo:=ComboBox3.Itemlndex+l;
ADODataSet2.CornrnandText:=AD0DataSet2.CornrnandText+' AND
ASSISTANT _CODE ="'+ADODataSetl .FieldB yNarne ('CODE').ASSTRING+"";
End;
If ComboBox4.Text<>" then
ADODataSet2.CornrnandText:=AD0DataSet2.CornrnandText+' AND
ROOM_NO="'+ComboBox4.Text+"";
If ComboBox5.Text<>" then

37

Time Table Design

Begin
ADODataSetl .Close;
ADODataSetl.CommandText:='SELECT * FROM WEEK_DA YS ORDER BY
ID ASC';
ADODataSetl.Open;
ADODataSetl .RecN o:=ComboBoxS .Itemlndex + 1;
ADODataSet2.CommandText:=AD0DataSet2.CommandText+' AND DAY
='+ADODataSetl.FieldByName ('ID').ASSTRING;
End;
ADODataSet2.0pen;
End;

Procedure TTimeTableForm.BitBtn2Click (Sender: TObject);
Begin
Try
ADODataSet2.Edit;
ADODataSet2.Post;
MessageDlg (Time Table has been saved successfuly.' mtlnformation, [mbOKJ,
O);
II ResetForm ();
Except on Error: Exception do
Begin
MessageD\g \'°Reccm\ Can no\ 'De sa'vea.\' ~\~_,-'i.3.,nm.Me"&"&age, m.\£n<vi., _m.'D<Yf, .. "\,
O);
End;
End;
End;

Procedure TTimeTableForm.BitBtn4Click (Sender: TObject);
Begin
ComboBoxl .Text:=";
ComboBox2.Text:=";
ComboBox3.Text:=";
ComboBox4.Text:=";
ComboBox5.Text:=";
ADODataSet2.Close;
End;
End.

2. Updating part: since we get all the informations about any section of searching

this screen allows us to correct or adjust some of informations as we want .This

part have nine of DBGrid buttons(course code, course name, semester, assistant,

day, room, start time, and end time) which confirm a time table.

38

Time Table Design

Also this screen has three BitBtn and their functions are shown as:

1. RESET Button: it's used to reset and clear the data which appear

2. SA VE Button: it's used to keep and save the informations to a file.

3. CLOSE Button: it's used to exit from the screen.

Figure 3.9 Time Table Screen.

39

CONCLUSION

In the graduation project the description of tables and screens are given, the

tructure of the time table design (instructors, assistants, rooms, semesters, days, start

time, and end time) is presented.
In this project I learned a lot of things that in the first time and even through not

all of things I wanted to do in this project but this is mainly because of the lack of

time and knowledge in programming with Delphi programming. But we can say the

access database support is very extensive and complete. I have very high hopes on

expanding the capability of this program in near future and from there I will take off

in mastering Delphi to design any project. I will try to take a lot of experience which

is very important tool that I will need to take any obstacles being faced in the future.

40

REFERENCES

Books

[1]- Borland Delphi in 21 days

[2]- Jeff Duntemann, Jim Mischel, and Don Taylor," Delphi Programming Explorer"

the coriolis grope Inc 1995.

[3]- MarcoCantu," Mastering Delphi", SYBEX, second edition.

Websites
www.sybex.com

www .marcocantu.com

www .kdtool.net

41

Appendix

APPENDIX

I.Main menu
unit MainUnit;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Menus, CornCtrls, DB, ADODB, ExtCtrls;

type
TMainForm = class(TForm)
MainMenul: TMainMenu;
Filel: TMenultem;
Exitl: TMenultem;
Employee 1: TMenultem;
Addl: TMenultem;
Updatel: TMenultem;
Courses 1: TMenultern;
AddNewCourse 1: TMenultem;
Update2: TMenultem;
Rooms 1: TMenultem;
AddNewRooml: TMenultem;
imeTablel: TMenultem;
Help 1: TMenultem;
Aboutl: TMenultem;
StatusBarl: TStatusBar;
Connectionl: T ADOConnection;
Irnagel: Tlmage; ·
procedure ExitlClick(Sender: TObject);
procedure AddlClick(Sender: TObject);
procedure UpdatelClick(Sender: TObject);
procedure AddNewCourselClick(Sender: TObject);
procedure Update2Click(Sender: TObject);
procedure imeTablelClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure AddNewRoomlClick(Sender: TObject);
private

{ Private declarations }
public

{ Public declarations }
end;

var
MainForm: TMainForm;

implementation

42

Appendix

uses AddEmpUnit, UpdateEmpUnit, AddCourseUnit, UpdateCoursesUnit,
TimeTableUnit, ADDROOMUnit;

{$R *.dfm}

procedure TMainForm.ExitlClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.AddlClick(Sender: TObject);
begin
Application.CreateForm(TAddEmpForm, AddEmpForm);

end;

procedure TMainForm.UpdatelClick(Sep.der: TObject);
begin
Application.CreateForm(TU pdateEmpForm, U pdateEmpForm);

end;

procedure TMainForm.AddNewCoursel Click(Sender: TObject);
begin
Application.CreateForm(TAddCourseForm, AddCourseForm);

end;

procedure TMainForm. U pdate2Click(Sender: TO bj ect);
begin
Application.CreateForm(TUpdateCoursesForm, UpdateCoursesForm);

end;

procedure TMainForm.imeTablel Click(Sender: TObject);
begin
Application.CreateForm(TTimeTableForm, TimeTableForm);

end;

procedure TMainForm.FormCreate(Sender: TObject);
var
TxtF: TextFile;
S : String;

begin
AssignFile(TxtF ,ExtractFilePath(Application.ExeN ame)+'DatabaseP~th. tx t');
Reset(TxtF);
ReadLn(TxtF,S);
Connection 1. Connections tring: ='Provider=Microsoft.J et. 0 LED B .4. 0 ;Data

Source='+S+';Persist Security Infoeef'alse';
Connectionl .Open;
CloseFile(TxtF);

end;

43

Appendix

procedure TMainForm.AddNewRooml Click(Sender: TObject);
begin
Application.CreateForm(T ADDROOM, ADDROOM);
ADDROOM.Show;
end;

end.

2.ADD NEW El\fPLOYEE

unit AddEmpUnit;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, ExtCtrls, DBCtrls, Mask, DB, ADODB;

type
T AddEmpForm = class(TForm)
Panell: TPanel;
Panel2: TPanel;
Panel3: TPanel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBComboBoxl: TDBComboBox;
DBComboBox2: TDBComboBox;
DBComboBox3: TDBComboBox;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
ADODataSetl: T ADODataSet;
BitBtn3: TBitBtn;
ADODataSetlCODE: TWideStringField;
ADODataSetlNAME: TWideStringField;
ADODataSetl SUREN AME: TWideStringField;
ADODataSetlDEP ARTMENT: TWideStringField;
ADODataSetlJOB_TITLE: TWideStringField;
ADODataSetlDEGREE: TWideStringField;
DataSourcel: TDataSource;
procedure BitBtn2Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormShow(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);

44

Appendix

procedure BitBtnlClick(Sender: TObject);
procedure Panel2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Add.EmpForm: TAddEmpForm;

implementation

uses MainUnit;

{$R *.dfm}

procedure TAddEmpForm.BitBtn2Click(Sender: TObject);
begin
Close;

end;

procedure TAddEmpForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action.ecafree;

end;

procedure T AddEmpForm.FormShow(Sender: TObject);
begin
width:=450;
Height:=350;
B itB tn3 Click(sender);

end;

procedure TAddEmpForm.BitBtn3Click(Sender: TObject);
begin
DataSource l .AutoEdit:=true;
ADODataSetl .Insert;
DBEditl.SetFocus;

end;

procedure TAddEmpForm.BitBtnlClick(Sender: TObject);
begin
if (DBEditl.Text=") or (DBComboBoxl.Text=") or (DBComboBox2.Text=") or

(DBComboBox3.Text=") or (DBEditl.Text=") then
begin
MessageDlg(' Please Fill All Fields !',mtError,[mbOK],O);

end
else
begin

45

Appendix

try
ADODataSetl .Post;
except on Error:Exception do
begin
MessageDlg('Record Can not be saved

.'+#13+Error.Message,mtError,[mbOk],O);
ADODataSetl .Delete;
BitBtn3Click(Sender);
end;
end;
BitBtn3Click(sender);
end;
end;

procedure T AddEmpForm.Panel2Click(Sender: TObject);
begin

end;

end.

3.ADDROOM

unit ADDROOMUnit;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, Mask, DBCtrls, ExtCtrls, DB, ADODB;

type
T ADDROOM = class(TForm)
Panell: TPanel;
Panel2: TPanel;
Panel3: TPanel;
Labell: TLabel;
Label2: TLabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
ADODataSetl: T ADODataSet;
DataSourcel: TDataSource;
ADODataSetlROOM_NO: TWideStringField;
ADODataSetlBUILDING: TWideStringField;
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);

46

procedure BitBtn3Click(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure Panel2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
ADDROOM: TADDROOM;

implementation

uses MainUnit;

{$R *.dfm}

procedure TADDROOM.BitBtnlClick(Sender: TObject);
begin
ADODataSetl.Open;
ADODataSetl .Insert;
DBEditl.SetFocus;

end;

procedure T ADDROOM.BitBtn2Click(Sender: TObject);
begin
if (DBEditl.Text=") OR (DBEdit2.Text=") then
begin
MessageDlg(' Please Fill All Fields !',mtError,[mbOK],0);

end
else
begin
try
ADODataSetl .Post;

except on Error:Exception do
begin
MessageDlg('Record Can not be saved

! '+# 13 +Error.Mess age,mtError, [mbO k], 0);
ADODataSetl .Delete;
BitBtnl Click(Sender);

end;
end;
BitBtnlClick(sender);

end;
end;

procedure T ADDROOM.BitBtn3Click(Sender: TObject);
begin
CLOSE;

47

Appendix

Appendix

end;

procedure T ADDROOM.FormShow(Sender: TObject);
begin
BitBtnlClick(SENDER);
end;

procedure T ADDROOM.Panel2Click(Sender: TObject);
begin

end;

end.

4.Tll\.1E TABLE UNIT

unit TimeTableUnit;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, StdCtrls, Buttons, DB, ADODB, Grids, DBGrids;

type
TTimeTableForm = class(TForm)
Panell: TPanel;
Panel2: TPanel;
Panel3: TPanel;
Panel4: TPanel;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
ComboBoxl: TComboBox;
ComboBox2: TComboBox;
ComboBox3: TComboBox;
ComboBox4: TComboBox;
ComboBox5: TComboBox;
BitBtnl: TBitBtn;
ADODataSetl: T ADODataSet;
BitBtn4: TBitBtn;
DBGridl: TDBGrid;
DataSourcel: TDataSource;
ADODataSet2: T ADODataSet;

48

ADODataSet3: T ADODataSet;
ADODataSet4: TADODataSet;
ADODataSet6: T ADODataSet;
ADODataSet2COURSE_ CODE: TWideStringField;
ADODataSet2SEMESTER: TWideStringField;
AD0DataSet2INSTRUCTOR_CODE: TWideStringField;
ADODataSet2ASSISTANT _CODE: TWideStringField;
ADODataSet2ROOM_NO: TWideStringField;
ADODataSet2DAY: TintegerField;
ADODataSet3CODE: TWideStringField;

\ ADODataSet3NAME: TWideStringField;
ADODataSet3LEVEL: TintegerField;
ADODataSet3DEP AR TMENT: TWideStringField;
ADODataSet4CODE: TWideStringField;
ADODataSet4NAME: TWideStringField;
ADODataSet4SURENAME: TWideStringField;
ADODataSet4DEP ARTMENT: TWideStringField;
ADODataSet4JOB_TITLE: TWideStringField;
ADODataSet4DEGREE: TWideStringField;
ADODataSet6ID: T AutoincField;
ADODataSet6NAME: TWideStringField;
ADODataSet2INSTNAME: TStringField;
ADODataSet2ASSNAME: TStringField;
ADODataSet2DA YSTR: TStringField;
ADODataSet2COURSENAME: TStringField;
ADODataSet2CCODE: TStringField;
ADODataSet5: TADODataSet;
ADODataSet2ROOMNO: TStringField;
ADODataSet2ST ART_ TIME: TWideStringField;
ADODataSet2END _ TIME: TWideStringField;
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormShow(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
private

{ Private declarations }
public

{ Public declarations }
end;

var
TimeTableForm: TTimeTableForm;

implementation

uses MainUnit;

{$R *.dfm}

49

Appendix

Appendix

procedure TTimeTableForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action.ecafree;

end;

procedure TTimeTableForm.FormShow(Sender: TObject);
begin
ADODataSetl .Close;
ADODataSetl.CommandText:='SELECT CODE FROM COURSES';
ADODataSetl.Open;
ADODataSetl .First;
While not ADODataSetl.Eof do
begin
ComboBoxl.Items.Add(ADODataSetl.FieldByName('CODE').AsString);
ADODataSetl .Next;

end;

ADODataSetl. Close;
ADODataSetl .CommandText:='SELECT NAME FROM EMPLOYEES ORDER

BY NAME ASC';
ADODataSetl.Open;
ADODataSetl .First;
While not ADODataSetl.Eof do
begin
ComboBox2.Items.Add(ADODataSetl .FieldB yN ame('NAME').AsString);
ADODataSetl .Next;

end;

ADODataSetl .Close;
ADODataSetl .CommandText:='SELECT NAME FROM EMPLOYEES ORDER

BY NAME ASC';
ADODataSetl.Open;
ADODataSetl .First;
While not ADODataSetl .Eof do
begin
ComboBox3 .ltems.Add(ADODataSetl .FieldB y N ame('NAME').AsString);
ADODataSetl.Next;

end;

ADODataSetl .Close;
ADODataSetl.CommandText:='SELECT ROOM_NO FROM ROOMS';
ADODataSetl .Open;
ADODataSetl .First;
While not ADODataSetl .Eof do
begin
ComboBox4.ltems.Add(ADODataSetl.FieldByName('ROOM_NO').AsString);
ADODataSetl .Next;

end;

50

Appendix

ADODataSetl .Close;
ADODataSetl.CommandText:='SELECT NAME FROM WEEK_DA YS ORDER

BY ID A.SC';
ADODataSetl.Open;
ADODataSetl .First;
While not ADODataSetl.Eof do
begin
ComboBox5.Items.Add(ADODataSetl.FieldByName('NAME').AsString);
ADODataSetl.Next;
" end;

end;

procedure TTimeTableForm.BitBtn3Click(Sender: TObject);
begin
Close;

end;

procedure TTimeTableForm.BitBtnlClick(Sender: TObject);
begin
ADODataSet2.Close;
ADODataSet2.CommandText:='SELECT * FROM TIME_ TABLE WHERE

COURSE_CODE<>"" ';

If ComboBoxl.Text<>" then
ADODataSet2.CommandText:=AD0DataSet2.CommandText+' AND

COURSE_CODE="'+ComboBoxl.Text+"";
If ComboBox2.Text<>" then
Begin
ADODataSetl .Close;
ADODataSetl.CommandText:='SELECT * FROM EMPLOYEES ORDER BY

NAMEASC';
ADODataSetl .Open;
ADODataSetl .RecNo:=ComboBox2.Itemlndex+ 1;
ADODataSet2.CommandText:=AD0DataSet2.CommandText+' AND

INSTRUCTOR_CODE ="'+ADODataSetl.FieldByName('CODE').ASSTRING+"";
end;
If ComboBox3.Text<>" then
Begin
ADODataSetl .Close;
ADODataSetl.CommandText:='SELECT * FROM EMPLOYEES ORDER BY

NAMEASC';
ADODataSetl .Open;
ADODataSetl .RecNo:=CornboBox3 .Itemlndex + 1;
ADODataSet2.CommandText:=AD0DataSet2.CommandText+' AND

ASSIST ANT _CODE ='"+ADODataSetl .FieldB yName('CODE').ASSTRING+"";
end;
If ComboBox4.Text<>" then
ADODataSet2.CommandText:=AD0DataSet2.CommandText+' AND

ROOM_NO="'+CornboBox4.Text+"";

51

Appendix

If ComboBox5.Text<>" then
Begin
ADODataSetl .Close;
ADODataSetl .CommandText:='SELECT * FROM WEEK_DA YS ORDER BY ID

ASC';
ADODataSetl.Open;
ADODataSetl .RecNo:=ComboBox5 .Itemlndex + 1;
AD0DataSet2.CommandText:=AD0DataSet2.CommandText+' AND DAY

='+ADODataSetl.FieldByName('ID').ASSTRING;
end;
ADODataSet2.0pen;
end;

procedure TTimeTableForm.BitBtn2Click(Sender: TObject);
begin

try
ADODataSet2.Edit;
ADODataSet2.Post;
MessageDlg('Time Table has been saved successfuly.',mtlnformation,[mbOk],O);

II ResetForm();
except on Error:Exception do
begin
MessageDlg('Record Can not be saved .

!'+#13+Error.Message,mtError,[mbOk],0);
end;
end;

end;

procedure TTimeTableForm.BitBtn4Click(Sender: TObject);
begin
ComboBoxl .Text:=";
ComboBox2.Text:=";
ComboBox3. Text:=";
ComboBox4.Text:=";
ComboBox5.Text:=";
ADODataSet2.Close;
end;

end.

5.UPDATE COURSE

unit UpdateCoursesUnit;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, ADODB, Grids, DBGrids, StdCtrls, DBCtrls, Mask, Buttons,
ExtCtrls;

52

type
TUpdateCoursesForm = class(TForm)
Panell: TPanel;
Label 1: TLabel;
Label2: TLabel;
Editl: TEdit;
Edit2: TEdit;
BitBtnl: TBitBtn;
Panel2: TPanel;
Panel3: TPanel;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
Panel4: TPanel;
DBGridl: TDBGrid;
ADODataSetl: TADODataSet;
ADODataSet2: T ADODataSet;
DataSourcel: TDataSource;
DataSource2: TDataSource;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
Label3: TLabel;
Label4: TLabel;
DBComboBox2: TDBComboBox;
Label5: TLabel;
Label6: TLabel;
DBLookupComboBoxl: TDBLookupComboBox;
ADODataSet3: TADODataSet;
DataSource3: TDataSource;
ADODataSet2COURSE_CODE: TWideStringField;
ADODataSet2SEMESTER: TWideStringField;
ADODataSet2INSTRUCTOR_CODE: TWideStringField;
ADODataSet2ASSIST ANT_ CODE: TWideStringField;
ADODataSet2ROOM_NO: TWideStringField;
ADODataSet2DAY: TintegerField;
ADODataSet2ST ART_ TIME: TWideStringField;
ADODataSet2END _ TIME: TWideStringField;
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure BitBtn2Click(Sender: TObject);
procedure ResetForm();
private

{ Private declarations }
public

{ Public declarations }
end;

var
UpdateCoursesForm: TUpdateCoursesForm;

53

Appendix

Appendix

implementation

uses MainUnit;

{$R *.dfm}

procedure TUpdateCoursesForm.BitBtnlClick(Sender: TObject);
begin
if (Edit l.Text-c>") and (Edit2.Text<>") then
begin
ADODataSetl. Close;
ADODataSetl.CommandText:='SELECT * FROM COURSES WHERE

CODE="'+Editl.Text+"' AND NAME='"+Edit2.Text+"";
ADODataSetl.Open;
ADODataSetl .Edit;
ADODataSet2.Close;
ADODataSet2.CommandText:='SELECT * FROM TIME_ TABLE WHERE

COURSE_CODE='"+Editl.Text+"";
ADODataSet2.0pen;

end
else
if (Editl.Text<>") then
begin
ADODataSetl .Close;
ADODataSetl.CommandText:='SELECT * FROM COURSES WHERE

CODE="'+Editl .Text+"";
ADODataSetl.Open;
ADODataSetl .Edit;
ADODataSet2.Close;
ADODataSet2.CommandText:='SELECT * FROM TIME_TABLE WHERE

COURSE"-CODE="'+Editl.Text+"";
AD0DataSet2.0pen;

end
else
if (Edit2.Text<>") then
begin
ADODataSetl .Close;
ADODataSetl .CommandTt)xt:='SELECT * FROM COURSES WHERE

NAME="'+Edit2.Text+"";
ADODataSetl .Open;
ADODataSetl .Edit;
Editl.Text:=ADODataSetl.FieldByName('CODE').AsString;
ADODataSet2.Close;
ADODataSet2.CommandText:='SELECT * FROM TIME_ TABLE WHERE

COURSE_CODE="'+Editl.Text+"";
ADODataSet2.0pen;

end;
end;

54

Appendix

procedure TUpdateCoursesForm.BitBtn3Click(Sender: TObject);
begin
Close;
end;

procedure TUpdateCoursesForm.FormClose(Sender: TObject;
var Action: TCloseAction);
begin
Actiorr=cafree;
end;

procedure TUpdateCoursesForm.BitBtn2Click(Sender: TObject);
begin

try
ADODataSetl .Post;
ResetForm();
except on Error:Exception do
begin
MessageDlg('Record Can not be saved

!'+#13+Error.Message,mtError,[mbOk],O);
end;
end;

end;

procedure TUpdateCoursesForm.ResetForm();
begin
Editl.Text:=";
Edit2.Text:=";
ADODataSetl.Close;
ADODataSet2.Close;
Edit l.SetFocus;
end;

end.

6.UPDATE EMPLOYEE RECORD

unit UpdateEmpUnit;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, StdCtrls, Buttons, DBCtrls, Mask, Grids, DBGrids, DB,
ADO DB;

type
TUpdateEmpForm = class(TForm)
Panell: TPanel;
Panel2: TPanel;

55

Panel3: TPanel;
Editl: TEdit;
Label 1: TLabel;
Edit2: TEdit;
Label2: TLabel;
BitBtnl: TBitBtn;
Label6: TLabel;
Label5: TLabel;
Label4: TLabel;
Label3: TLabel;
Label7: TLabel;
Label8: TLabel;
DBEdit3: TDBEdit;
DBEdit2: TDBEdit;
DBEditl: TDBEdit;
DBComboBox3: TDBComboBox;
DBComboBox2: TDBComboBox;
DBComboBoxl: TDBComboBox;
Panel4: TPanel;
DBGridl: TDBGrid;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
ADODataSetl: TADODataSet;
ADODataSet2: TADODataSet;
DataSourcel: TDataSource;
DataSource2: TDataSource;
procedure BitBtn3Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure Bitfitnl.Clickt'Sender: TObject); ·
procedure BitBtn2Click(Sender: TObject);
procedure ResetForm();

private
{ Private declarations }

public
{ Public declarations }

end;

v~
UpdateEmpForm: TUpdateEmpForm;

implementation

uses MainUnit;

{$R *.dfm}

procedure TUpdateEmpForm.BitBtn3Click(Sender: TObject);
begin
Close;

end;

56

Appendix

Appendix

procedure TUpdateEmpForm.FormClose(Sender: TObject;
var Action: TCloseAction);
begin
Action.ecafree;
end;

procedure TUpdateEmpForm.BitBtnlClick(Sender: TObject);
begin
if (Editl.Text<>") and (Edit2.Text<>") then
begin
ADODataSetl .Close;
ADODataSetl .CommandText:='SELECT * FROM EMPLOYEES WHERE

CODE="'+Editl.Text+"' AND NAME="'+Edit2.Text+"";
ADODataSetl .Open;
ADODataSetl .Edit;
ADODataSet2.Close;
ADODataSet2.CommandText:='SELECT * FROM TIME_ TABLE WHERE

INSTRUCTOR_CODE="'+Editl.Text+"' OR ASSISTANT_CODE='"+Editl.Text+""; .
ADODataSet2.0pen;
end
else
if (Editl.Text<>") then
begin
ADODataSetl. Close;
ADODataSetl .CommandText:='SELECT * FROM EMPLOYEES WHERE

CODE="'+Editl.Text+"";
ADODataSetl .Open;
ADODataSet l .Edit;
ADODataSet2.Close;
ADODataSet2.CommandText:='SELECT * FROM TIME_ TABLE WHERE

INSTRUCTOR_CODE="'+Editl.Text+"' OR ASSISTANT_CODE="'+Editl.Text+"";
ADODataSet2.0pen;
end
else
if (Edit2.Text<>") then
begin

, ADODataSetl.Close;
ADODataSetl .CommandText:='SELECT * FROM EMPLOYEES WHERE

NAME="'+Edit2.Text+"";
ADODataSetl .Open;
ADODataSetl .Edit;
Editl. Text:=ADODataSetl .FieldB yN ame('CODE').AsString;
ADODataSet2.Close;
ADODataSet2.CommandText:='SELECT * FROM TIME_TABLE WHERE

INSTRUCTOR_CODE="'+Editl.Text+"' OR ASSISTANT_CODE='"+Editl.Text+"";
ADODataSet2.0pen;
end;
end;

57

Appendix

procedure TUpdateEmpForm.BitBtn2Click(Sender: TObject);
begin

try
ADODataSetl .Post;
ResetForm();

except on Error:Exception do
begin
MessageDlgrRecord Can not be saved

!'+#13+Error.Message,mtError,[mbOk],O);
end;
end;

end;

procedure TUpdateEmpForm.ResetForm();
begin
Editl.Text:=";
Edit2.Text:=";
ADODataSetl .Close;
ADODataSet2.Close;
Editl .SetFocus;

end;

end.

7.ADD COURSE UNIT

unit AddCourseUnit;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DB, ADODB, StdCtrls, Buttons, DBCtrls, Mask, ExtCtrls;

type
T AddCourseForm = class(TForm)
Panell: TPanel;
Panel2: TPanel;
Labell: TLabel;
Label2: TLabel;
Label4: TLabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
Panel3: TPanel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
ADODataSetl: T ADODataSet;
DataSource 1: TDataSource;

58

ADODataSetl CODE: TWideStringField;
ADODataSetlNAME: TWideStringField;
ADODataSetlLEVEL: TlntegerField;
Label3: TLabel;
ADODataSetlDEP ARTMENT: TWideStringField;
DBLookupComboBox 1: TDBLookupComboBox;
ADODataSet2: T ADODataSet;
DataSource2: TDataSource;
DBComboBox2: TDBComboBox;
procedure BitBtn2Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure Panel2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
AddCourseForm: T AddCourseForm;

implementation

uses MainUnit;

{$R *.dfm}

procedure TAddCourseForm.BitBtn2Click(Sender: TObject);
begin
Close;

end;

procedure T AddCourseForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action:=cafree;

end;

procedure TAddCourseForm.BitBtn3Click(Sender: TObject);
begin
DataSource l .AutoEdit:=TR UE;
ADODataSetl .Cancel;
ADODataSetl .Insert;
DBEditl .SetFocus;
end;

procedure TAddCourseForm.BitBtnlClick(Sender: TObject);

59

Appendix

begin
if (DBEditl.Text=") or (DBEdit2.Text=") or (DBComboBox2.Text=") or

(DBLookupComboBoxl.Text=") then
begin
MessageDlg(' Please Fill All Fields !',mtError,[mbOK],O);

end
else
begin
try
ADODataSetl .Post;

except on Error:Exception do
begin
MessageDlg('Record Can not be saved

!'+#13+Error.Messag~,mtError,[mbOk],O);
ADODataSetl .Delete;
BitBtn3Click(Sender);

end;
end;
BitBtn3Click(sender);

end;
end;

procedure TAddCourseForm.FormShow(Sender: TObject);
begin

. .BitBtn3Click(Sender);
end;

procedure TAddCourseForm.Panel2Click(Sender: TObject);
begin

end;

end.

Appendix

	Page 1
	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDG:MENT

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENTS

	Page 5
	Titles
	RE FE REN CES .�.......�.. 41
	APPEND IX 4 2

	Page 6
	Titles
	INTRODUCTION

	Page 7
	Titles
	CHAPTER!
	INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)
	1.1 INTODUCTION
	1.2 The Delphi IDE

	Images
	Image 1
	Image 2

	Page 8
	Titles
	1.3 A Quick Look at the Delphi IDE
	2

	Images
	Image 1
	Image 2

	Page 9
	Titles
	1.4 The Delphi Workspace
	1.5 The Delphi Main Menu and Toolbar.

	Images
	Image 1
	Image 2

	Page 10
	Images
	Image 1
	Image 2

	Page 11
	Titles
	1.6 Using the Component Palette
	1.7 Placing Multiple Copies of a Component

	Images
	Image 1

	Page 12
	Titles
	1.8 About Delphi Forms
	1.8.1 Main Window Forms
	1.8.2 Creating the Main Window Form

	Images
	Image 1

	Page 13
	Images
	Image 1

	Page 14
	Titles
	1.8.3 Dialog Box Forms

	Images
	Image 1
	Image 2

	Page 15
	Titles
	Creating a Dialog Form
	1.9 A Multiple-Form Application

	Images
	Image 1
	Image 2
	Image 3

	Page 16
	Titles
	1.9.lAdding Units
	1.9.2 Some Key Properties for Forms

	Images
	Image 1
	Image 2

	Page 17
	Titles
	1.10 The Object Inspector
	1.10.1 The Component Selector

	Images
	Image 1

	Page 18
	Titles
	1.10.2The Properties Page

	Images
	Image 1
	Image 2

	Page 19
	Titles
	1.10.3 The Events Page
	1.11 Code Templates

	Images
	Image 1

	Page 20
	Titles
	1.12. Writing Code for the Window Menu

	Images
	Image 1

	Page 21
	Titles
	CHAPTER2
	(DATABASE ACCESS)
	. Microsoft Access Description
	.. Database File
	Data type
	-

	Images
	Image 1
	Image 2
	Image 3

	Page 22
	Titles
	2.2. Starting Microsoft Access

	Images
	Image 1

	Page 23
	Titles
	2.3. Creating New, and Opening Existing Databases

	Images
	Image 1
	Image 2
	Image 3

	Page 24
	Titles
	.4. Create a database using the Database Wizard
	2.5. Create a database without using the Database Wizard

	Images
	Image 1

	Page 25
	Titles
	2.6. Tables

	Images
	Image 1
	Image 2
	Image 3

	Page 26
	Titles
	2.7. Create a Table from scratch in Design view

	Images
	Image 1
	Image 2

	Page 27
	Images
	Image 1
	Image 2

	Page 28
	Titles
	2.8. Primary Key
	2.9. Switching Views·

	Images
	Image 1

	Page 29
	Titles
	2.10. Entering Data
	2.11. Manipulating Data

	Images
	Image 1
	Image 2

	Page 30
	Titles
	2.12. Advanced Table Features w/Microsoft Access
	2.12.2. Formatting a field to look a specific way (HINT)

	Images
	Image 1
	Image 2

	Page 31
	Titles
	2.13. Relationships

	Images
	Image 1
	Image 2
	Image 3

	Page 32
	Images
	Image 1
	Image 2
	Image 3

	Page 33
	Images
	Image 1

	Page 34
	Titles
	CHAPTER3
	TIME TABLE DESIGN

	Images
	Image 1

	Page 35
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 36
	Images
	Image 1
	Image 2

	Page 37
	Images
	Image 1
	Image 2

	Page 38
	Images
	Image 1
	Image 2

	Page 39
	Images
	Image 1
	Image 2

	Page 40
	Images
	Image 1
	Image 2

	Page 41
	Images
	Image 1
	Image 2

	Page 42
	Images
	Image 1
	Image 2

	Page 43
	Images
	Image 1

	Page 44
	Images
	Image 1

	Page 45
	Images
	Image 1
	Image 2

	Page 46
	Titles
	CONCLUSION

	Images
	Image 1

	Page 47
	Titles
	REFERENCES

	Images
	Image 1

	Page 48
	Titles
	APPENDIX

	Images
	Image 1
	Image 2

	Page 49
	Images
	Image 1

	Page 50
	Images
	Image 1

	Page 51
	Images
	Image 1

	Page 52
	Images
	Image 1

	Page 53
	Titles
	47

	Images
	Image 1

	Page 54
	Images
	Image 1

	Page 55
	Images
	Image 1

	Page 56
	Images
	Image 1

	Page 57
	Images
	Image 1

	Page 58
	Images
	Image 1

	Page 59
	Images
	Image 1

	Page 60
	Images
	Image 1

	Page 61
	Images
	Image 1

	Page 62
	Images
	Image 1

	Page 63
	Images
	Image 1

	Page 64
	Images
	Image 1

	Page 65
	Images
	Image 1

	Page 66
	Images
	Image 1
	Image 2

