
NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Stock Property by Using Delphi

Graduation Project

COM 400

Student: Seda ONHAN (20032905)

Supervisor: Assist. Prof. Dr. lmanov ELBRUS

Nicosia - 2008

,1m1\~~II!
NEU

--- ---

ACKNOWLEDGEMENT

First of all, I would like give my special thanks to my supervisor Assist. Prof Dr.

Imanov ELBRUS. He helped and supported me to complete my project by any means of

necessary. In addition to this he never doubted about me, he always believed in me that

I will fulfill and succeed on my project. I am glad to that I did not disappoint him.

Furthermore, I want to give my special thanks and best regards to my parents.

They were always kind and patient to me. I wouldn't be here without their endless

support.

Finally, I want to give my special thanks to my friends whose are Cemal

Kavalctoglu, Selman Ogurhan ESER. They are supported and helped me to complete

my project. I am very happy to have such friends.

ABSTRACT

The aim of this Project is to record the stock device for any Properties

Company.The program was prepared by using Delphi 7 programming and usmg

Paradox7. Delphi is a programming language that can be used with Paradox7.

This project consists of many different pages but most of them depended each

other Initially, SIGN IN form comes to screen. Afterwards the Main menu of Properties

Company comes to screen.After Main Menu you are going to see the main form that

contains 15 main menus.

11

TABLE OF CONTENTS

ACKNOWLEDGEMENT I
ABSTRACT II
TABLE OF CONTENTS III
INTRODUCTION 1

CHAPTER ONE : BASIC CONCEPT OF DELPHI

1.1 Introduction to Delphi 2
1.2 What is Delphi? 2
1.2.1 Delphi Compliers 2
1.2.2 What kind of programming can you do with Delphi? 3
1.2.3 History of Delphi 4
1.2.4 Advantages & Disadvantages Delphi 6

1.3 Delphi 6 Editions 7
1.3.1 Delphi 6 Architect 7
1.3.2 Installation Delphi 6 8

1.4 A Tour of the Environment '. 10
1.4.1 Running Delphi for the First Time 10
1.4.2 The Delphi IDE 11
1.4.3 The Menus & Toolbar 12
1.4.4 The Component Palette 12
1.4.5 The Code Editor 13
1.4.6 The Object Inspector 14
1.4.7 The Object Tree View 15
1.4.8 Class Completion 16
1.4.9 Debugging applications 17
1.4.10 Exploring Databases 18
1.4.11 Templates and the Object Repository 19

1.5 Programming with Delphi 20
1.5.1 Starting a New Application 20
1.5.2 Setting Property Values 21
1.5.3 Adding objects to the form 22
1.5.4 Add a Table and a StatusBar to the Form 22
1.5.5 Connecting to a Database 24

CHAPTER TWO : THE RA VE REPORTING

2.1 Project Tree 28
2.2 Design Tools 29
2.3 Reuse and Maintenance Tools 32
2.4 Standard Components 34
2.5 Drawing Components 35
2.6 Reporting Components 35
2.7 Barcode Components 39
2.8 Anchors 39

lll

2.9 Code Based Reports 40
2.9.1 Simple Code Base Report 40
2.9.2 Tabular Code Based Report.. 41
2.9.3 Graphical Code Based Report 43

2.10 Visually Designed Reports 45
2.10.1 The Visual Designer 45
2.10.2 Interacting with the Project. 48

2.11 Data Aware Reports 55
2.11.1 The Database Connection 55
2.11.2 The Driver Data View 55
2.11.3 Regions and Bands 58
2.11.4 Adding Fields 60
2.11.5 Adding the Report to Your Project 60

CHAPTER THREE : STOCK PROPERTY BY USING DELPHI

3 .1 Database Connection Screen 61
3.2 Main Menu 63
3.3 House to Let Menu 64
3.3.1 House to Let Organize Form 64
3.3.2 House to Let Search Form 65
3.3.3 House to Let Report Form 68

3 .4 House for Sale Menu 69
3 .4.1 House for Sale Organize Form 69
3 .4.2 House for Sale Search Form 70
3.4.3 Hose for Sale Report Form 73

3.5 Shop to Let Menu 74
3.5.1 Shop to Let Organize Form 74
3.5.2 Shop to Let Search Form 75
3.5.3 Shop to Let Report Form 78

3.6 Shop for Sale Menu 79
3 .6.1 Shop for Sale Organize Form 79
3.6.2 Shop for Sale Search Form 80
3 .6.3 Shop for Sale Report Form 83

3. 7 Plot to Let Menu 84
3. 7 .1 Plot to Let Organize Form 84
3.7.2 Plot to Let Search Form 85
3.7.3 Plot to Let Report Form 88

3.8 Garden for Sale Menu 89
3.8.1 Garden for Sale Organize Form 89
3.8.2 Garden for Sale Search Form 90
3.8.3 Garden for Sale Report Form 93

3.9 Building for Sale Menu 94
3.9.1 Building for Sale Organize Form 94
3.9.2 Buildig for Sale Search Form 95
3.9.3 Building for Sale Report Form 98

3.10 Farm for Sale Menu 99
3.10.1 Farm for Sale Organize Form 99

IV

3.10.2 Farm for Sale Search Form 100
3 .10.3 Farm for Sale Report Form 103

3.11 Villa for Sale Menu 104
3.11.1 Villa for Sale Organize Form 104
3.11.2 Villa for Sale Search Form 105
3.11.3 Villa for Sale Report Form 108

3.12 Field for Sale Menu 109
3.12.1 Field for Sale Organize Form 109
3.12.2 Filed for Sale Search Form 110
3.12.3 Field for Sale Report Form 113

3.13 Flier Print Menu 114
3.13.1 Flier Print Organize Form 114
3 .13 .2 House to Let Advertisements Form 115
3.13.3 Villa for Sale Advertisements Form 116
3 .13 .4 Shop to Let Advertisements Form 117
3.13.5 Plot for Sale Advertisements Form 118
3 .13 .6 House for Sale Advertisements Form 119
3.13.7 Field for Sale Advertisements Form 120
3.13.8 Shop for Sale Advertisements Form 121
3.13.9 Garden for Sale Advertisements Form 122
3.13.10 Building for Sale Advertisements Form 123
3.13.11 Farm for Sale Advertisements Form 124

3.14 User Register Menu 125
3.15 About Menu 126
3 .16 Informations Menu 127
3.17 ExitMenu 128

CONCLUSION 129
RE FE REN CES 130
APPENDIX 140

V

INTRODUCTION

Delphi is a Rapid Application Development (RAD) environment. It allows you

to drag and drop components on to a blank canvas to create a program. Delphi will also

allow you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object

orientated derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to

make the program easily readable and to help the compiler sort the code. Although

Delphi code is not case sensitive there is a generally accepted way of writing Delphi

code. The main reason for this is so that any programmer can read your code and easily

understand what you are doing, because they write their code like you write yours.

The project consists of the introduction, three chapters, and conclusion.

• Chapter one describes Basic Concept of Delphi.

• Chapter two describes the database that uses Delphi programmmg

language.

• Chapter three explains Stock Property by Using Delphi.

1

CHAPTER ONE

1 BASIC CONCEPT OF DELPHI

1.1 Introduction to Delphi

Although I am not the most experienced or knowledgeable person on the forums I

thought it was time to write a good introductory article for Delphi

1.2 What is Delphi?

Delphi is a Rapid Application Development (RAD) environment. It allows you to

drag and drop components on to a blank canvas to create a program. Delphi will also

allow you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object

orientated derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to

make the program easily readable and to help the compiler sort the code. Although

Delphi code is not case sensitive there is a generally accepted way of writing Delphi

code. The main reason for this is so that any programmer can read your code and easily

understand what you are doing, because they write their code like you write yours.

For the purposes of this series I will be using Delphi 6. Delphi 6 provides all the

tools you need to develop test and deploy Windows applications, including a large

number of so-called reusable components.

Borland Delphi provides a cross platform solution when used with Borland Kylix

- Borland's RAD tool for the Linux platform.

1.2.1 Delphi Compliers

There are two types complier for Delphi

• Turbo Delphi: Free industrial strength Delphi RAD (Rapid Application

Development) environment and compiler for Windows. It comes with 200+

components and its own Visual Component Framework.

2

• Turbo Delphi for .NET: Free industrial strength Delphi application development

environment and compiler for the Microsoft .NET platform.

1.2.2 What kind of programming can you do with Delphi?

The simple answer is "more or less anything". Because the code is compiled, it

runs quickly, and is therefore suitable for writing more or less any program that you

would consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing

machines, toasters or fuel injection systems, but for more or less anything else, it can be

used (and the chances are that probably someone somewhere has!)

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

• Graphics Applications

• Multimedia Applications

• Image processing/Image recognition

• Data analysis

• System tools

• Communications tools using the Internet, Telephone or LAN

• Web based applications

This is not intended to be an exhaustive list, more an indication of the depth and

breadth of Delphi's applicability. Because it is possible to access any and all of the

Windows API, and because if all else fails, Delphi will allow you to drop a few lines of

assembler code directly into your ordinary Pascal instructions, it is possible to do more

or less anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs)

and can call out to DLLs written in other programming languages without difficulty.

3

Because Delphi is based on the concept of self contained Components (elements of code

that can be dropped directly on to a form in your application, and exist in object form,

performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

1.2.3 History of Delphi

Delphi was one of the first of what came to be known as "RAD" tools, for

Rapid Application Development, when released in 1995 for the 16-bit Windows 3.1.

Delphi 2, released a year later, supported 32-bit Windows environments, and a C++

variant, C++ Builder, followed a few years after.

The chief architect behind Delphi, and its predecessor Turbo Pascal , was

Anders Hejlsberg until he was headhunted in 1996 by Microsoft , where he worked on

Visual J++ and subsequently became the chief designer of C Sharp programming

language C# and a key participant in the creation of the Microsoft .NET Framework.

In 2001 a Linux version known as Kylix programming tool Kylix became

available. However, due to low quality and subsequent lack of interest, Kylix was

abandoned after version 3.

Support for Linux and Windows cross platform development (through Kylix and

the CLX component library) was added in 2002 with the release of Delphi 6.

Delphi 8, released December 2003, was a .NET -only release that allowed

developers to compile Delphi Object Pascal code into .NET Microsoft Intermediate

Language MSIL. It was also significant in that it changed its IDE for the first time, from

the multiple-floating-window-on-desktop style IDE to a look and feel similar to

Microsoft's Visual Studio.NET.

4

Although Borland fulfilled one of the biggest requests from developers (.NET

support), it was criticized both for making it available too late, when a lot of former

Delphi developers had already moved to C#, and for focusing so much on backward

compatibility that it was not very easy to write new code in Delphi. Delphi 8 also lacked

significant high-level features of the c sharp, C# language, as well as many of the more

appealing features of Microsoft's Visual Studio IDE. (There were also concerns about

the future of Delphi Win32 development. Because Delphi 8 did not support Win32,

Delphi 7.1 was included in the Delphi 8 package.)

The next version, Delphi 2005 (Delphi 9), included the Win32 and .NET

development in a single IDE, reiterating Borland's commitment to Win32 developers.

Delphi 2005 includes design-time manipulation of live data from a database. It also

includes an improved IDE and added a "for ... in" statement (like C#'s for each) to the

language. However, it was criticized by some for its bugs; both Delphi 8 and Delphi

2005 had stability problems when shipped, which were only partially resolved in service

packs.

In late 2005, Delphi 2006 was released and federated development of C# and

Delphi.NET, Delphi Win32 and C++ into a single IDE. It was much more stable than

Delphi 8 or Delphi 2005 when shipped, and improved even more after the service packs

and several hot fixes.

On February 8, 2006, Borland announced that it was looking for a buyer for its

IDE and database line of products, which include Delphi, to concentrate on its

Application Lifecycle Management ALM line. The news met with voluble optimism

from the remaining Delphi users.

On September 6, 2006, The Developer Tools Group (the working name of the

not yet spun off company) of Borland Software Corporation released single language

versions of Borland Developer Studio, bringing back the popular "Turbo" moniker.

The Turbo product set includes Turbo Delphi for Win32, Turbo Delphi for .NET, Turbo

C++, and Turbo C#. Each version is available in two editions: "Explorer'' a free

downloadable version and "Professional" a relatively cheap (US$399) version which

5

opens access to thousands of third-party components. Unlike earlier "Personal"

editions of Delphi, new ''Explorer'' editions can be used for commercial development.

On November 14, 2006, Borland announced the cancellation of the sale of its

Development tools; instead of that it would spin them off into an independent company

named "CodeGear"

1.2.4 Advantages & Disadvantages Delphi

Delphi exhibits the following advantages:

• Rapid Application Development (RAD)

• Based on a well-designed language - high-level and strongly typed, with low

level escapes for experts

• A large community on Usenet and the World Wide Web (e.g.

news://newsgroups.borland.com and Borland's web access to Delphi)

• Can compile to a single executable, simplifying distribution and reducing DLL

versioning issues

• Many VCL and third-party components (usually available with full source code)

and tools (documentation, debug tools, etc.)

• Quick optimizing compiler and ability to use assembler code

• Multiple platform native code from the same source code

• High level of source compatibility between versions

• Cross Kylix - a third-party toolkit which allows you to compile native

Kylix/Linux applications from inside the Windows Delphi IDE, hence easily

enabling dual-platform development and deployment

• Cross FBC - a sister project to Cross Kylix, which enables you to cross-compile

your Windows Delphi applications to multi-platform targets - supported by the

Free Pascal compiler - without ever leaving the Delphi IDE

• Class helpers to bridge functionality available natively in the Delphi RTL, but

not available in a new platform supported by Delphi

• The language's object orientation features only class- and interface-based

Polymorphism in object-oriented programming polymorphism

6

Disadvantages:

• Limited cross-platform capability for Delphi itself. Compatibles provide more

architecture/OS combinations

• Access to platform and third party libraries require header files to be translated

to Pascal. This creates delays and introduces the possibilities of errors in

translation.

• There are fewer published books on Delphi than on other popular programming

languages such as C++ and C#

• A reluctance to break any code has lead to some convoluted language design

choices, and orthogonally and predictability have suffered

1.3 Delphi 6 Editions

There are 3 editions in Delphi 6:

• Delphi Personal - makes learning to develop non-commercial Windows

applications fast and fun. Delphi 6 Personal makes learning Windows

development easy with drag-and-drop visual programming.

• Delphi Professional - adds the tools necessary to create applications with the

latest Windows® ME/2000 look-and-feel. Dramatically enhance functionality

with minimal code using the power and flexibility of SOAP and XML to easily

integrate Web Services into client-side applications.

• Delphi Enterprise - includes additional tools, extensive options for Internet.

Delphi 6 makes next-generation e-business development with Web Services a

snap.

This Program will concentrate on the Enterprise edition.

1.3.1 Delphi 6 Architect

Delphi 6 Architect is designed for professional enterprise developers who need

to adapt quickly to changing business rules and manage sophisticated applications that

synchronize with multiple database schemas. Delphi 2006 Architect includes an

advanced ECO III framework that allows developers to rapidly deploy scalable external

facing Web applications with executable state diagrams, object-relational mapping, and

transparent persistence.

7

Delphi 6 Architect includes all of the capabilities of the Enterprise edition, and

includes the complete ECO III framework, including new support for ECO State

Machines powered by State Chart visual diagrams, and simultaneous persistence to

multiple and mixed database servers.

• State Chart Diagrams

• Executable ECO State Machines

• Multi- and Mixed- ECO database support

1.3.2 Installation Delphi 6

To install Delphi 6 Enterprise, run INSTALL.EXE (default location C:\Program

Files\Borland Delphi) and follow the installation instructions.

We are prompted to select a product to install; you only have one choice "Delphi 6":

Figure 1.1 The Select Page For Start Installation

While the setup runs, you'll need to enter your serial number and the authorization key

(the two you got from inside a CdRom driver).

8

Figure 1.2 Serial Number And Authorization Screen

Later, the License Agreement screen wills popup:

Figure 1.3 License Agreement Screen

After that, you have to pick the Setup Type, choose Typical. This way Delphi 6

Enterprise will be installed with the most common options. The next screen prompts

you to choose the Destination folder.

~)'l))i<'<c?~ _, __ ;;/~.:;,) f -,"«-"'-"' !t~,-S>-..:,ro-lf>A>-,~-- ...-c-
"""' i

Figure 1.4 SetUp Type and Destination Folder Screen

At the end of the installation process, the set-up program will create a sub menu

m the Programs section of the Start menu, leading to the main Delphi 6 Enterprise

program plus some additional tools.

9

Ci Borland Delphi 6 •. C,: Help •. I

Figure 1.5 Start Menu

1.4 A Tour of the Environment

This chapter explains how to start Delphi and gives you a quick tour of the main

parts and tools of the Integrated Development Environment (IDE)

1.4.1 Running Delphi for the First Time

You can start Delphi in a similar way to most other Windows applications:

• Choose Programs I Borland Delphi 6 I Delphi 6 from the Windows Start menu

• Choose Run from the Windows Start menu and type Delphi32

• Double-click Delphi32.exe in the $(DELPHI)\Bin folder. Where $(DELPHI) is a

folder where Delphi was installed. The default is C:\Program

Files\Borland\Delphi6.

• Double-click the Delphi icon on the Desktop (if you've created a shortcut)

a, Borland Delphi 6 RliJ Ei
,...-.- .---- -- >~

it)hew g Ci F _gvorites H elp

Borland Delphi 6
t: [tr:~';>

Help Delphi 6 Image Editor Register Now

Figure 1.6 Borland Delphi 6 Folder

10

1.4.2 The Delphi IDE

As explained before, one of the ways to start Delphi is to choose Programs

Borland Delphi 6 I Delphi 6 from the Windows Start menu.

When Delphi starts (it could even take one full minute to start - depending on

your hardware performance) you are presented with the IDE: the user interface where

you can design, compile and debug your Delphi projects.

Figure 1.7 IDE

Like most other development tools (and unlike other Windows applications),

Delphi IDE comprises a number of separate windows.

Some of the facilities that are included in the "Integrated Development

Environment" (IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimizing compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

11

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools

1.4.3 The Menus & Toolbar

The main window, positioned on the top of the screen, contains the main menu,

toolbar and Component palette.

speed bar component palette

Figure 1.8 Menu, Title, Speed Bar & Component Palette

The title bar of the main window contains the name of the current project (you'll

see in some of the future chapters what exactly is a Delphi project). The menu bar

includes a dozen drop-down menus - we'll explain many of the options in these menus

later through this course. The toolbar provides a number of shortcuts to most frequently

used operations and commands - such as running a project, or adding a new form to a

project. To find out what particular button does, point your mouse "over" the button and

wait for the tool tip. As you can see from the tool tip (for example, point to [Toggle

Form/Unit]), many tool buttons have keyboard shortcuts ([F12]).

The menus and toolbars are freely customizable. I suggest you to leave the

default arrangement while working through the chapters of this course.

1.4.4 The Component Palette

You are probably familiar with the fact that any window in a standard Windows

application contains a number of different (visible or not to the end user) objects, like:

buttons, text boxes, radio buttons, check boxes etc. In Delphi programming terminology

such objects are called controls (or components). Components are the building blocks of

every Delphi application. To place a component on a window you drag it from the

component palette. Each component has specific attributes that enable you to control

your application at design and run time.

12

click to see Win32 controls

click the arrow to see more controls on a page

Figure 1.9 Component Palates

Depending on the version of Delphi (assumed Delphi 6 Personal through this

course), you start with more than 85 components at your disposal - you can even add

more components later (those that you create or from a third party component vendor).

The components on the Component Palette are grouped according to the

function they perform. Each page tab in the Component palette displays a group of

icons representing the components you can use to design your application interface. For

example, the Standard and Additional pages include controls such as an edit box, a

button or a scroll box.

To see all components on a particular page (for example on the Win32 page) you

simply click the tab name on the top of the palette. If a component palette lists more

components that can be displayed on a page an arrow will appear on a far right side of

the page allowing you to click it to scroll right. If a component palette has more tabs

(pages) that can be displayed, more tabs can be displayed by clicking on the arrow

buttons on the right-hand side.

1.4.5 The Code Editor

Each time you start Delphi, a new project is created that consists of one *empty*

window. A typical Delphi application, in most cases, will contain more than one

window - those windows are referred to as forms.

In our case this form has a name, it is called Forml. This form can be renamed,

resized and moved, it has a caption and the three standard buttons which are minimize,

maximize and close. As you can see a Delphi form is a regular Windows window

13

1Jini:l.:JV$ ~ J!ii·fe.itlt}tt§°!' Syifij"t} i s , \tfl.X: t ~).fl't-W.~ CJ (i;.t<:.H~,,1~ Ct

l>:P)J..!)l;;f,:

"~' t.-::r-n-,l; rrc.c.Til:

Figure 1.10 Code Editor Window

If the Forml is the active window and you press [F12], the Code Editor window

will be placed on top. As you design user interface of your application, Delphi

automatically generates the underlying Object Pascal code. More lines will be added to

this window as you add your own code that drives your application. This window

displays code for the current form (Forml); the text is stored in a (so-called) unit -

Unitl. You can open multiple files in the Code Editor. Each file opens on a new page of

the Code editor, and each page is represented by a tab at the top of the window.

1.4.6 The Object Inspector

Each component and each form has a set of properties - such as color, size,

position, caption - that can be modified in the Delphi IDE or in your code, and a

collection of events - such as a mouse click, keypress, or component activation - for

which you can specify some additional behavior. The Object Inspector displays the

properties and events (note the two tabs) for the selected component and allows you to

change the property value or select the response to some event.

14

Figure 1.11 Object Inspector

For example, each form has a Caption (the text that appears on it's title bar). To

change the captions of Forml first activate the form by clicking on it. In the Object

Inspector find the property Caption (in the left column), note that it has the 'Forml'

value (in the right column). To change the captions of the form simply type the new text

value, like 'My Form' (without the single quotes). When you press [Enter] the caption

of the form will change to My Form.

Note that some properties can be changed more simply, the position of the form

on the screen can be set by entering the value for the Left and Top properties - or the

form can be simply dragged to the desired location.

1.4.7 The Object TreeView

Above the Object Inspector you should see the Object TreeView window. For

the moment its display is pretty simple. As you add components to the form, you'll see

that it displays a component's parent-child relationships in a tree diagram. One of the

great features of the Object TreeView is the ability to drag and drop components in

order to change a component container without losing connections with other

components.

15

• ··fl'Jl DataSource1
[£,,,~ Default {Session}

• ,,,[;1 Edit1
···li'.J E dit2

• .. fi1 Edit3
... 122:J Image 1
···r;J lmage3
~ lmage4
·r;J lmage5
···'4 lmagelist1

· ··llfl lmagelist2
·r;J Label1
r;J Label2
~ Label3

.. r".:'I I ~holA
V

Figure 1.12 Object Tree View

The Object Tree View, Object Inspector and the Form Designer (the Forml window)

work cooperatively. If you have an object on a form (we have not placed any yet) and

click it, its properties and events are displayed in the Object Inspector and the

component becomes focused in the Object TreeView.

1.4.8 Class Completion

Class Completion generates skeleton code for classes. Place the cursor anywhere

within a class declaration; then press Ctrl+Shift+C, or right-click and select Complete

Class at Cursor. Delphi automatically adds private read and write specifies to the

declarations for any properties that require them, and then creates skeleton code for all

the class's methods. You can also use Class Completion to fill in class declarations for

methods you've already implemented.

To configure Class Completion, choose Tools I Environment Options and click

the Explorer tab.

16

Type Librar.v
Preferences j

j Environment Variables I Delphi Direct I
Designer j Object Inspector I Palette j Librery

Internet
Explorer

Explorer options"'·-··--···-···"·········-·-· .. ··,

P ~utomaticall.v.show.Explorer;

P Highlight jncomplete class items

Show _geclaration syntax

Explorer ca!egories:

~ J Protected
!;?] l Public
[v' l Published
L;;?J l Field
:~: 1 Properties
[i2] i Methods

Classes
0;;?] l Interfaces
[ii' l Procedures
G2] l Types
'.¥'' l Variables/Constants
,.;;,. l Uses

'i Virtuals
'1 Statics

.,, i Inherited
'.i Introduced

Explorer sorting
(. Alpha!;ietical

Class completion option

P finish incomplete properties

r- Initial browser view
: r. Classes r Units
I - -

r globals

Browser scope · ·· · ··
r. Eroject symbols onl.v

r Ajl symbols

I OK I Cancel j Help

Fig.1.13 Class Completion

1.4.9 Debugging applications

The IDE includes an integrated debugger that helps you locate and fix errors in

your code. The debugger lets you control program execution, watch variables, and

modify data values while your application is running. You can step through your code

line by line, examining the state of the program at each breakpoint.

17

· r;;/ Step Over

5 Trace Into
~± Trace to Next Source Line
[I± Run to Cursor

[ml Evaluate/Modify. , ,

~ Add Watch ...

Add Breakpoint

i"

F9 f
r

FS

F7

Shift+F7

F4

Ctrl+F7

Ctrl+F5

Figurel.14 Run

To use the debugger, you must compile your program with debug information.

Choose Project I Options, select the Compiler page, and check Debug Information. Then

you can begin a debugging session by running the program from the IDE. To set

debugger options, choose Tools I Debugger Options.

Many debugging windows are available, including Breakpoints, Call Stack,

Watches, Local Variables, Threads, Modules, CPU, and Event Log. Display them by

choosing View I Debug Windows. To learn how to combine debugging windows for

more convenient use, see "Docking tool windows".

1.4.10 Exploring Databases

The SQL Explorer (or Database Explorer in some editions of Delphi) lets you

work directly with a remote database server during application development. For

example, you can create, delete, or restructure tables, and you can import constraints

while you are developing a database application.

18

Object Dictionary Edit 1/iew Options Help

;< &I
· Ali·o"~i'~;~·Ab;~·· :··D:irl~i~ d·~okta:db·
Dat~es j Dictiona.ty j Defrition ! LI~,;;, •.•••••.• 1 ,I
!.1 'BLoc. ~ ·---;:-·111s,,..,, Js •. rnm Jc~,i
: e MS Access Database • 4
''.:senha
,;: ·!al Tables

ff ·rn!I ARIZA.d:i
i ·affl arizaduumu.DB
;t- mt! ONS.dJ
f ml! GIAIS.dJ
+ rml lLCE.cb
'.f.· ml! kasa.DB
:f: ·!ml kasal.DB
): ·mff kasacikis_DB
(t r!in KULLANJLAN.DB
~: [El KUA.db
J rn!I MARKA.dJ
(f.· mt! MODELdb
-i ·mff PAACAGIAIS.DB
:t." mn Pasword.db
';f rnn per.db
f ·rffll SERVIS.db

:A·;te~~
<:

Figure 1.15 SQL Explorer

1.4.11 Templates and the Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards,

DLLs, sample applications, and other items that can simplify development. Choose File

I New to display the New Items dialog when you begin a project. Check the Repository

to see if it contains an object that resembles one you want to create.

• ii E6 @ ~ -
~ Batch F~e CLX Component Console

Appficetion Application

~ w D ~ ~
Data Module DLL Wizard Form Frame Package

re!' 00 U@J ~ §
Resowce DLL Service Service Te><t Thlead Object

Wizard Application

~ L
XML Data
Binding

Projects l Data Modules

~--···~-

Control Panel Control Panel
Application Module

Project Group Hepot

Unit Web Serve,
Application

OK !:!elp

Figure 1.16 New Item

19

You can add your own objects to the Repository to facilitate reusing them and

sharing them with other developers. Reusing objects lets you build families of

applications with common user interfaces and functionality; building on an existing

foundation also reduces development time and improves quality. The Object Repository

provides a central location for tools that members of a development team can access

over a network.

1.5 Programming with Delphi

The following section provides an overview of software development with Delphi.

1.5.1 Starting a New Application

Before beginning a new application, create a folder to hold the source files.

1. Create a folder in the Projects directory off the main Delphi directory.

2. Open a new project.

Each application is represented by a project. When you start Delphi, it opens a blank

project by default. If another project is already open, choose File I New Application
to create a new project. When you open a new project, Delphi automatically creates

the following files.

• Project I .DPR : a source-code file associated with the project. This is

called a project file.

• Unitl .PAS : a source-code file associated with the main project form.

This is called a unit file.

• Unitl .DFM : a resource file that stores information about the mam

project form. This is called a form file.

3. Choose File I Save All to save your files to disk. When the Save dialog appears,

navigate to your folder and save each file using its default name.

Later on, you can save your work at any time by choosing File I Save All.

20

When you save your project, Delphi creates additional files in your project

directory. You don't need to worry about them but don't delete them.

When you open a new project, Delphi displays the project's main form, named

Forml by default. You'll create the user interface and other parts of your application by

placing components on this form.

Figure 1.17 Form Screen

The default form has maximize, rmmrmze buttons and a close button, and a

control menu

Next to the form, you'll see the Object Inspector, which you can use to set

property values for the form and components you place on it.

The drop-down list at the top of the Object Inspector shows the current selected

object. When an object is selected the Object Inspector shows its properties.

1.5.2 Setting Property Values

When you use the Object Inspector to set properties, Delphi maintains your

source code for you. The values you set in the Object Inspector are called design-time

settings.

For Example; set the background color of Forml to Aqua.

21

Find the form's Color property in the Object Inspector and click the drop-down

list displayed to the right of the property. Choose clAqua from the list.

1.5.3 Adding objects to the form

The Component palette represents components by icons grouped onto tabbed

pages. Add a component to a form by selecting the component on the palette, then

clicking on the form where you want to place it. You can also double-click a component

to place it in the middle of the form.

D~·r.l 1J'.'.Sl Q6r;J ~
jl ail ;::f ri / · o ;, 1~· [5l if t A r.hY •~ •:§J IX Ii ~ ·~ = - -=

Components

Component palette tabs

Figure 1.18 Standard Bar

1.5.4 Add a Table and a StatusBar to the Form

Drop a Table component onto the form. Click the BDE tab on the Component

palette. To find the Table component, point at an icon on the palette for a moment;

Delphi displays a Help hint showing the name of the component.

EJle £.dit '2_earch 'yJew e_roject B_un ~omponent Q_atabase jcols Window t!elp

D ~ • riii;J ~ '.'.:S' ~ i;;;; @ Slandard I Addilional J \liin32 I Svstern Data Access Dalo Conlrols I dbExoress I DaiaSnao
... r-, -[?] a-.-J'~8 •.. i[]~~'-e / ... c3 o· hS ~ -sO.L SQL[J lli.iJII :J-1i """'trnJ \QL ~ m1.,

Figure 1.19 BDE Component palette

22

When you find the Table component, click it once to select it, and then click on

the form to place the component. The Table component is non visual, so it doesn't

matter where you put it. Delphi names the object Tablel by default. (When you point to

the component on the form, Delphi displays its name-Tablel-and the type of object it

is-Table.)

.... -.M.:
Table!: TT able I: -

Figure 1.20 Table in the Form

Each Delphi component is a class; placing a component on a form creates an

instance of that class. Once the component is on the form, Delphi generates the code

necessary to construct an instance object when your application is running.

Set the DatabaseName property of Tablel to DBDEMOS. (DBDEMOS is an

alias to the sample database that you're going to use.)

Select Tablel on the form, and then choose the DatabaseName property in the

Object Inspector. Select DBDEMOS from the drop-down list.

23

Form1
:Ei'~ Default {Session}

r--:: ~~ DBDEMOS {Alias}
f:F ? ..\ < ?> {Table 1 }

Table1

ii Properties I Events I
' AutoR efr~sh T F al;e

CachedU pdete False
. c~·n;tr~i~ts I [f Che?kConstr aints
DatabaseName' DBDEMOS ,..
Defaultlndex JdBASE Files

~ma Exclusive
FieldDefs
Filter
Filtered

1±1 FilterOptions MS Access Database
lndexDefs seniha
I ndexFieldN a1mrs_in_e_m _J

lndexFiles
lndexName
M asterFields
Master Source
Name T able1

(TI ndexFiles l

Figure 1.21 Select DatabaseName

Double-click the StatusBar component on the Win32 page of the Component

palette. This adds a status bar to the bottom of the application.

Set the AutoHint property of the status bar to True. The easiest way to do this is

to double-click on False next to AutoHint in the Object Inspector. (Setting AutoHint to

True allows Help hints to appear in the status bar at runtime.)

1.5.5 Connecting to a Database

The next step is to add database controls and a DataSource to your form.

24

1. From the Data Access page of the Component palette, drop a DataSource

component onto the form. The DataSource component is non visual, so it

doesn't matter where you put it on the form. Set its DataSet property to Table I.

2. From the Data Controls page, choose the DBGrid component and drop it onto

your form. Position it in the lower left comer of the form above the status bar,

and then expand it by dragging its upper right comer.

If necessary, you can enlarge the form by dragging its lower right comer. Your form

should now resemble the following figure:

The Data Control page on Component palette holds components that let you view

database tables.

->
,l.':.o

Figure 1.22 DBGrid in the Form

25

3. Set DBGrid properties to align the grid with the form. Double-click Anchors in

the Object Inspector to display akLeft, akTop, akRight, and akBottom; set them

all to true.

4. Set the DataSource property of DBGrid to DataSourcel (the default name of the

DataSource component you just added to the form).

Now you can finish setting up the Tablel object you placed on the form earlier.

5. Select the Tablel object on the form, and then set its TableName property to

BIOLIFE.DB. (Name is still Tablel .) Next, set the Active property to True.

When you set Active to True, the grid fills with data from the BIOLIFE.DB

database table. If the grid doesn't display data, make sure you've correctly set the

properties of all the objects on the form, as explained in the instructions above. (Also

verify that you copied the sample database files into your ... \Borland Shared\Data

directory when you installed Delphi.)

·~·
-~,

Species No Cat~gCJrt. Common=N ame A

~ 90020 T riggerfish Clown T riggerfish
90030 Snapper Red Emperor
90050 wrasse Giant Maori Wrasse
90070 Angelfish Blue Angelfish
90080 Cod Lunartail R ockcod
90090 Scorpionfish Firefish
901 IJO Butterflylish 0 rnate B utlerflylish

80110 Shark Swell Shark
v

< .;,

.....
.

.

Figure 1.23 Show Table

26

The DBGrid control displays data at design time, while you are working in the IDE.

This allows you to verify that you've connected to the database correctly. You cannot,

however, edit the data at design time; to edit the data in the table, you'll have to run the

application.

6. Press F9 to compile and run the project. (You can also run the project by

clicking the Run button on the Debug toolbar, or by choosing Run from the Run

menu.)

7. In connecting our application to a database, we've used three components and

several levels of indirection. A data-aware control (in this case, a DBGrid)

points to a DataSource object, which in tum points to a dataset object (in this

case, a Table). Finally, the dataset (Tablel) points to an actual database table

(BIOLIFE), which is accessed through the BDE alias DBDEMOS. (BDE aliases

are configured through the BDE Administrator.)

data-aware control dataset
(Grid) ~ DataSource ~ (Table) ~ BDE ~ database

This architecture may seem complicated at first, but in the long run it simplifies

development and maintenance. For more information, see "Developing database

applications" in the Developer's Guide or online Help.

27

CHAPTER TWO

2 THE RA VE REPORTING

2.1 Project Tree

The Project Tree provides an efficient way to visually manage all of the reports in

your project. It quickly tells you the structure of your reporting project and the types of

components contained on each page with icons that are the same as the component

buttons. The Project Tree also visually shows parent-child relationships, the print order

of component as well as the current selection (green check marks). You can select

components by clicking on the component on the Page in the Visual Designer or on the

Project Tree. Non-visual components appear only in the Project Tree in order not to

clutter up your report design.

R aveProject
:.:::.1 <?' Report Library

r::::, [Um Reportl
liliJ Pagel

~ Global Page Catalog
(:=I • Data View D ictionsry

"ffl Databasel

Figure 2.1 Project Tree

There are three main sections in the Project Tree:

• The Report Library

• The Global Page Catalog

• The Data View Dictionary
Reports themselves can contain any number of page definitions. Global Pages are

used to hold items that you want accessible to multiple reports. Data Views contain your

field definitions and provide a link to the data in your application.

28

2.2 Design Tools

Rave is all about easy management. Besides making reporting easy and organized,

Rave likes to keep itself organized and all according to what you want.

Figure 2.2 Toolbars

Since Rave is designed to be of ease to you there are three easy three ways for you to

manage the many toolbars within Rave, which are:

• Tab-docking

• Normal docking

• Free-floating

Rave's many toolbars make it easy to design even the most complicated report. The

toolbars include: Project, Designer, Zoom, Alignment, Color, Line, Font, Standard,

Drawing, Report and Barcode component toolbars. Since it is possible to create and

install new components, you may have other component toolbar buttons in your

designer.

Project t3

Figure 2.3 Project Toolbar

The Project toolbar provides quick access to project level functions such as New

Project, Project Open, Project Save, New Report, New Global Page, New Data View,

New Report Page or Execute Report.

29

Figure 2.4 Designer Toolbar

The Designer toolbar allows you to change the characteristics of the Page in the

Visual Designer. Characteristics such as whether the grid is being shown, snap to grid,

draw grid on top, show band headers, show rulers, and show the waste area of the page.

The last button brings up Rave' s extensive Preferences dialog, which is described later.

Zoom f3
10 • I

Figure 2.5 Zoom Toolbar

When you are working on a report with a complex design, you will find it much

easier if you become familiar with the Zoom toolbar, which gives you quick access to

Rave's extensive zooming capabilities. Select the zoom percent from a drop down list,

type it in or use the Zoom Tool, Zoom In, Zoom Out, Zoom Selected, Zoom Page

Width or Zoom Whole Page buttons.

Alignment t:i

Figure 2.6 Alignment Toolbar

To help keep your report looking professional, Raves Alignment toolbar

provides access to a whole host of options to micro-manage the components on your

page. The Left/fop, Center, Right/Bottom, Center In Parent, Space Equally, Equate

Widths/Heights options offer the traditional alignment options. The Move Forward,

Move Behind, Bring to Front and Send to Back order movement buttons allow you to

change the print order of components and are visually backed up by the listing of the

components in the Project Tree. Lastly, the buttons Tap Left, Tap Right, Tap Up and

30

Tap Down allow you to micro-adjust the position of components to the exact position

you need.

Figure 2.7 Colors Toolbar

The Color toolbar allows you to quickly select the primary and secondary colors

of your components. There are 8 color spots that you can use to store any custom colors

that you will be reusing throughout the project. If the colors available aren't enough,

you can double click on the custom color palettes and create a different color using

Rave's Color Editor (shown at right). With the Color Editor, you can select from a

wider variety or colors or create your own combination of Red, Green and Blue and

even select a percent saturation for the current color.

Color Editor El I
QK Current Color - Yellow (25%)

~ancel

olor Value------------------,--~

Green -3mW %

!2ss :zj !2ss :zj jo :zj !2s :zj t!_ew Color

Figure 2.8 Colors Editor

The Line toolbar is a useful tool for changing the line/border thickness and style

for components such as Line and Circle. Sizes are listed in points instead of pixels so

that your lines will always be the same thickness on your reports no matter the

resolution of the printer that you are using.

I I -1 •.. _::-_--...;..- -- -H-air-lir-1e---------- -.;..;.3...,••----, j 3
lines t3

Figure 2.9 Line Toolbar

31

The Font toolbar provides quick access to a text component's font and alignment

properties. It can also be useful for quickly viewing the font options for the currently

selected text component(s).

Figure 2.10 Fonts Toolbar

2.3 Reuse and Maintenance Tools

Reports often take a large part of the development time for an application. Many

times, there are many similarities between the design of separate reports.

This is where Rave's Mirroring technology comes in. When a component is set to

mirror another, it assumes the appearance and properties of the component it is

mirroring. The two components can be on the same page, across pages within the same

report or on a global page. This is the primary purpose of a global page. You can almost

think of it like an Object Repository, a central location for you to store reporting items

that you want accessible to more than one report. If the component is a container control

like TraveSection (similar to Delphi's Tpanel), all child components are mirrored as

well. When the original component changes, all mirroring components will also change.

While the mirrored component cannot change it properties, you can add additional

components if it is a container control.

Here are just a few examples of where Mirroring would be useful:

Your customer wants a standard page header and footer on ever~ page of their

50 reports. Now imagine you have all the reports done and your customer wants to

change the layout of the headers and footers.

The Old Way - You would need to open up all 50 report definitions and change

them one at a time.

32

The Rave Way - You would mirror the standard header and footer on each

report you create and then any changes would only have to be done in one location.

Also, if the standard header included a large bitmap, your reporting project would only

contain a single copy rather than the many copies that a traditional report designer

would require. You have to replicate a pre-printed form. The problem is there are 6

different variations of this form with only minor differences between each.

The Old Way - Assuming a traditional report designer could even handle this

type of report, you would create the first form, cut and paste it into the second, make the

minor modifications, then repeat for the other 4 forms, ending up with 6 reports that

would be hard to maintain and take up a lot more memory.

The Rave Way - You would first create the common items of the form on a

separate page, then mirror those on each form and add the unique parts for each as

needed. If anything ever needed to be changed in the common section of the form, you

would only need to change it in one place and since you're sharing most of the form's

content, the report definitions take up much less room.

Rave Reports 4 0 - D \tpp10\Rave4\0emos\Rave\RaveDemo ,av ll@Ef

J~ ·.e/:=~=ary

l lot<e><lUct<>nReport
Mas1erOetailReport
GioupingReport
MirrorReport
DataMlrrorReport

1:::;
t"' USSection
r,= lnterSection

.....J Rectangle2
./,/' SectioflS

m¥: DatoText2
T'T;~1
TText2
,- Addf1 OolySection
~- Add/'1 Addt2Sect00
,;~ aoo esssecnoo

I MuJIOageReport

MSJIM. ergeReport
rwooeteas
W2TaxForm

I::; ~ Olob; ~::;;stalag
~ Globa!Poge1
[lj Globa1Page2

1 - • Data View Dictionary
f!!I CustomerDV
0 o-ce.sov
t! Bioli!eDV
if!etiertsDV
@nemsOV

G ~ .• ~.-r."r.."-~"'

iComp.any
~Add<1
\c";ty +·;,·.··s1:i1e-.. r •. - •.. z,p
~Country · 0

JComp~nv
rAddr1

Figure 2.11 Mirror Report Example

33

Every text component has a FontMirror property which you can assign to a

FontMaster component. This will allow you to change the fonts of many text controls

from a single location. Imagine having Header, Body and Footer FontMaster

components on a global page and changing the appearance of all of your reports with

just a few mouse clicks.

Another important aspect of maintaining any large project is documentation. The

Project and every Report, Page, Data View and Data Field component has a multi-line

Description Property that can be used to comment the intended usage or other

information. This can be useful if you are coming back to a project that you last worked

on 6 months ago or especially if another programmer or your end user will be

modifying reports that you created.

2.4 Standard Components

Standard £j

Figure 2.12 Standard Tool Bar

Text - This component is used to display fixed text on your report for items such

as column headers or report titles.

Memo - This component is used to display fixed text in a word wrapped fashion

on your report. Using the MailMergeltems property and the Mail Merge Editor shown

below, you can create a mail merge type of report where Rave will replace tokens in the

memo text with a replacement string. Note that this replacement string can be edited

with the Edit button, which will display the Data Text Editor for quite a bit of extra

functionality.

Section - This component is a terrific component manager. It acts as a container

for other components, in other words it help you to group components together. By

34

properly using section components and mirroring, you can create reusable and

maintainable reports in no time flat.

Bitmap - This component is used to display a bitmap (*.bmp). Through the

FileLink property you can reference a file on the hard disk.

Metafile - This component is used to display a metafile (* .wmf). Through the

FileLink property you can reference a file on the hard disk.

FontMaster - This component is used to control the font characteristics of any text

control through their FontMirror properties. See Reuse and Maintenance for more

information.

2.5 Drawing Components

Line - Draws a diagonal line. (This may not seem like a unique feature but did

you know that most Delphi reporting tools cannot create a diagonal line visually.)

Drawing tJ

Figure 2.13 Drawing Tool Bar

Hline - Draws a horizontal line.

Vline - Draws a vertical line.

Rectangle - Draws a rectangle.

Square - Draws a square.

Ellipse - Draws an ellipse.

Circle - Draws a circle.

2.6 Reporting Components

Region - This component acts as a container for Band and DataBand components.

To create a composite or sub-report, simply drop more than one region on a page and

add the appropriate bands to each.

35

Figure 2.14 Report Tool Bar

Band - This component is primarily used to create header and footer bands in a

banded style report. A Band component can only be created within a region and it's

purpose is controlled through the Band Style Editor shown below. The Band Style

Editor displays a virtual layout of all of your bands for the given print locations of each

band or data band. Note that you can create as many Bands as you like and a Band may

print in multiple locations if the report design requires it. So for example, if you want a

solid horizontal line to appear above and below a detail body, you could create a single

band and set it to print on both the Body Header and Body Footer. You can also control

the Print Occurrence for a Band, having it continue on a new page or column or any

combination of occurrence settings. You can set a Band to group on specific fields and

can create as many different types of group headers or footers as your report requires.

Basically, with Rave's Band and DataBand components, you'll be able to create just

about any banded style layout that you can imagine.

Band Display for Region1 DataBi

, Demo TextBand (8)
, Band1 (R) + Data8and1 (Master)

, 8and2(8)
, Band3(8) + D,rt,,Band? (Detain + D,ltaBand? (Detain
+ DataBand? (Detail}
.l Band4 (b)

, Band1 (R) + Data8and1 (Master)
, Band2 (8)
, 8and3(8) + DataBaml2 (Detail) + DataBand2 (Detail) + DataB,md2 (Detain
.l Band4 (b)

, 8and1 (R)

+ Data8and1 (Master)
, Band2(8)
, 8and3(8) + Dat.lBaml2 (Detail) + DataBand2 (Det.lil) + DataBand? (Detail>
.l 8and4 (b)

QK

~ancel

Prir,t t,,_ocation

[J !;l_ody Header (B)
[J Q.roup Header (G)

[J B_ow Header (R)
G'.J Q.etail (D)

[J ROY\'.: Footer (r)

[J Grou12. Footer (g)

[J Bodt. Footer (b)

Print occurrence

G'.] E_irst (1)
[J (iew Page (P)
[J N~w Column (C)

Figure 2.15 Band Style Editor

36

DataBand - The DataBand component is fairly similar to a band component

except that it is tied to a particular DataView and iterates across the rows in the

Data View. You can link DataBands together for Master-Detail to unlimited levels or

multiple details on the same level. Some advanced features that are supported by a

DataBand include KeepBodyTogether, KeepRowTogther, StartNewPage, MaxRows

and Orphan/Widow control.

DataText - The DataText component is the primary means to output fields from

your database. You can quickly select a specific Data View and DataField with Property

Panel or use the Data Text Editor shown below to create any combination of string

constants, data fields, report variables or project parameters. The & concatenation

operator is the same as the + operator, except that it also inserts a space. Report

Variables are items such as total pages or current date and time in a variety of formats.

Project Parameters are custom variables that you create and initialize from your Delphi

application. Project Parameters can be used for items such as user defined report titles,

printing the current user name or other custom information.

Data Fields
Data Vie-,v Data Field

CustNo

(~) Selected Insert Eield V

Report Variables
v I insert E_eport Var J

s A•------·.- ==·-A
, T otalPages

v I' Insert E'_arameter J

Post lnrtialize Variables

v [Insert Pl '{ar

Data Text

'Page' & Report .CurrentPage & 'of' & Report TotalPages

QK I i ~ancel

Figure 2.16 Data Text Editor

37

DataMemo - This component is very similar to the Memo component except

that it retrieves data from a DataField. DataMemo component's print text data out in a

word wrapped fashion and the DataField can be any text type, not just memo fields. It

also has RTF and mail merge support.

CalcText - This component is used to perform simple operations such as Sum,

Average, Count, Min and Max on a data field. You can set the value as a running total

and place it in any type of band or anywhere on the page) you need it.

DataMirrorSection - The data mirror section component is similar to Raves

section component (found in the Standard Toolbar) with one major difference, it will

dynamically mirror another section depending upon the value of a DataField. You

configure the data mirror section using the Data Mirror Editor (shown below). This

component is very useful for printing out data that has different formats depending upon

the type of data. One example is an address field that could print a US format if the

country field is "US" and an international format otherwise (using the Default option in

the Data Mirror Editor). You could also print Boolean field values with your own

custom bitmaps.

Data Mirrors
• Default ' (Page2 lnterSection)

Q_elete

Data Minor Settings

Field Value

us

0Default

Mirrored Section

Page2 .USSectiori v

Figure 2.17 Data Mirror Editor

38

2. 7 Barcode Components

Figure 2.18 Barcode Toolbar

PostNetBarCode - Prints a US PostNet bar code.

12of5BarCode - Prints Interleaved 2 of 5 barcodes.

Code39BarCode - Prints standard and extended Code 39 barcodes.

Code128BarCode - Prints A, B and C Code 128 barcodes.

UPCBarCode - Prints UPC-12 barcodes.

EANBarCode -Prints EAN-13 barcodes.

2.8 Anchors

Anchors are a powerful way to create a report that dynamically adjusts to

changing sizes. This allows you to create reports that can print well whether the user

selects landscape or portrait, 8.5" by 11" or A4. There are 6 different anchor values for

both the horizontal and vertical dimensions to allow you to control each component in

exactly the manner that it needs. The Anchor Editor (shown at right) even shows you a

helpful bitmap of how each anchor setting works.

Horizontal Anchor

()Iop C1hett
:)!:light
Q>C!2_nter
()Stretc!l
()Resil_e
()Spreag

()~ottom
()~enter
()~retch
(f.)Res[ze
()Sgread

Verfo:::c1l Sample Horizontal Semple

i111Elfilj • ·11111JJr•

QK J I (;_ancel

Figure 2.19 Anchor Editor

39

2.9 Code Based Reports

Lately Delphi has decided to include Rave Reports as the default reporting

solution, replacing Quick Reports. Since they work in very different paradigms, many

people were confused by the new environment. This is intended as an introduction for

people who haven't worked with Rave yet, and would like to start.

Nowadays Delphi ships with Rave Reports 5.0.8. If you haven't already,

download the update from the registered users page, since it fixes some important

problems.

You can develop reports with Rave using two different ways: Code Based or with

the Visual Designer.

With Code Based, you write reports using plain Delphi code. That provides a very

flexible way displaying any kind of data, allowing any kind of complex layouts.

To write a code based report, just drop a TrvSystem component on the form and

write the report on the OnPrint event handler. Sender is the report you are creating, and

can be typecasted to TbaseReport. It contains all the methods you need to output

information to that particular report.

2.9.1 Simple Code Base Report

Here's a simple report using the code based mechanism:

procedure TformMain.RvSystemPrint(Sender: Tobject);

begin

with Sender as TbaseReport do

begin

SetFont('Arial', 15);

GotoXY(l,1);

Print('Welcome to Code Based Reporting in Rave');

end;

end;

40

To execute this report, call RvSystem.Execute method.

So, what does that simple code do? First, it calls SetFont to select the font and

size of the text that will be printed from that point on. Then it positions the cursor on the

coordinates (1,1). These coordinates are expressed using the units set in the

SystemPrinter.Units property of the RvSystem object, and it defaults to Inches. You can

set it to unUser and set a number relative to Inches in the SysternPrinter.UnitsFactor

property. For example, if UnitsFactor was set to 0.5 then 1 unit would correspond to

half an inch. Finally, the code calls the Print method to output the text. Here's the

output:

ofl '~ ~ @l ~ Zoom

Welcome to Code Based Reporiing in Rave

.V

Figure 2.20 Report Preview

2.9.2 Tabular Code Based Report

Here's another example. It displays a list of the folders in the root of the current

drive, along with a recursive count of number of files and folder, and total size of the

files included in each folder.

Procedure TformMain.PrintTabularReport(Report: TbaseReport);

var

FolderList : TstringList;

I : Integer;

NumFiles : Cardinal;

41

NumFolders : Cardinal;

SizeFiles : Cardinal;

Root : string;

begin

with Report do

begin

SetFont('Arial', 15);

New Line;

PrintCenter('List of Folders in the Drive Root', 4);

New Line;

New Line;

ClearTabs;

SetTab(0.2, pjLeft, 1. 7, 0, 0, O);

SetTab(l.7, pjRight, 3.1, 0, 0, 0);

SetTab(3.l, pjRight, 3.5, 0, 0, O);

SetTab(3.5, pjRight, 4.5, 0, 0, O);

SetFont('Arial', 10);

Bold := True;

PrintTab('Folder Name');

PrintTab('Number of Files');

PrintTab('Number of Folders');

PrintTab('Size of Files');

Bold := False;

New Line;

FolderList := TstringList.Create;

try

Root := IncludeTrailingPathDelimiter(ExtractFileDrive(ParamStr(O)));

EnumFolders(FolderList, Root);

for I := 0 to FolderList.Count - 1 do

begin

PrintTab(FolderList[I]);

GetFolderlnfo(IncludeTrailingPathDelimiter(Root+FolderList[I]),

NumFiles, NumFolders, SizeFiles);

42

PrintTab(Format(' %u' ,[NumFiles]));

PrintTab(Format('%u' ,[NumFolders]));

PrintTab(Format('o/ou bytes' ,[SizeFiles]));

New Line;

end;

finally

FolderList.Free;

end;

end;

end;

Notice that a different approach has been taken: instead of specifying the

coordinates of each text output, the printing was done using Lines and Columns as

references. The line heigh depends on the size of the current font: each unit represents

l/72nds of an inch, so each line printed with a size 10 font will have, ppropriate y, a

height of 0.138 inches. Lines are advanced after calls to PrintLn or NewLine. Colums

are defined using calls to the SetTabs method, and the PrintTab method will print the

text in the current column and advance to the next one. Here's the output:

List of Folders in the Drive Root

Fol<le1 Naine
Arquivos de programas
Documents and Settings
WINDO\IVS

Number of Files
984
899

5205

N11mhe1 of Folders
1571
1359
6407

Size of Files
289576931 bytes
431507112 bytes
1544102897 bytes

Figure 2.21 Report Preview

2.9.3 Graphical Code Based Report

You can include shapes and images in your code based report, along with the

text. The following example demonstrates that:

procedure TformMain.PrintGraphicsReport(Report: TbaseReport);

var

43

Bitmap : Tbitmap;

begin

with Report do

begin

Canvas.Brush.Color := clGray;

Rectangle(0.3, 0.3, 4.7, 3.3);

SetFont('Arial', 15);

FontColor := clRed;

PrintXY(0.5,0.5, 'Just look at all the graphics!');

Bitmap := Tbitmap.Create;

try

Bitmap.LoadFromFile('delphi.bmp');

PrintBitmap(3.5,0.3,1,1, Bitmap);

PrintBitmap(l,2,3,3, Bitmap);

Canvas.Pen.Color := clBlue;

Canvas.Brush.Bitmap := Bitmap;

Ellipse(5,0.3 ,6,3 .3);

Ellipse(2,1,4,l .9);

finally

Bitmap.Free;

end;

Canvas.Pen.Color := clBlack;

Canvas.Brush.Style := bsSolid;

Canvas.Brush.Color := clYellow;

Pie(0.7 ,0.7, 1.7, 1.7, 1,1,1,2);

Canvas.Brush.Color := clGreen;

Pie(0.7,0.7,1.7,1.7,1,2,1,1);

end;

end;

In this example the methods Rectangle, Ellipse and Pie have been used draw

shapes with different fills. Bitmaps were outputted using PrintBitmap and as the brush

of the ellipses. Here's the output:

44

Graphics Report Example

Figure 2.22 Report Preview

2.10 Visually Designed Reports

2.10.1 The Visual Designer

If you are used to work with Quick Reports, the default reporting engme

included in the previous versions of Delphi, you created your reports using Delphi's

own form designer, and they were save in the DFM, included as resources in your

executable. Rave works a bit differently in this aspect: it has it's own report designer,

and saves the report using it's own file format. This has some advantages, including the

fact that your reports can be made "standalone", and be used or updated independently

of your application, or even made available in a Intranet or in the Internet, using

Nevrona's Rave Report Server. Of course, you can still have it saved in a form's DFM.

To get started with the Rave Visual Designer, drop a TrvProject in a form. This

will be the link from your application to the reports you are developing. If you want,

you can add a TrvSystem and link your RvProject to it, through it's Engine property.

The RvSystem is the object responsible for the general configuration of the reports: the

printer that is going to be used, the margins, the number of pages, and so on. To start a

new project, double click the RvProject you added to the form, or select "Rave Visual

Designer" from its context menu.

45

This is the interface that you will be working on:

Figure 2.23 Rave Visual Designer

The interface is simple, and you might be familiar with some parts of it from

Delphi's IDE. On the top there's the menu, the toolbar, and the component pallete that

contain the components that will be used in the reports. In the left there's the Object

Inpector, which will be used to adjust the properties of the components of the report. In

the middle there's the Page Designer or the Event Editor, and in the left there's the very

usefull Project Treeview. For a quick overview of the components in the pallete, you

can go to Nevrona's Visual Designer page.

A Rave Project File can have one or more reports. That way you can keep

common items between them in a single location, called Global Pages. If you expand

the Report Library node of the Project Treeview, you can see that right now you are

working on Reportl. Clicking on it, its properties will show on the Inspector. Let's

change it's name and call it SimpleReport. Next, go to the Standard tab on the

Component Pallete, and pick a Text component and add it to the page. Change its text

property, and adjust its size and position. Here's how it looks like:

46

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Stock Property by Using Delphi

Graduation Project

COM 400

Student: Seda ONHAN (20032905)

Supervisor: Assist. Prof. Dr. lmanov ELBRUS

Nicosia - 2008

,1m1\~~II!
NEU

--- ---

ACKNOWLEDGEMENT

First of all, I would like give my special thanks to my supervisor Assist. Prof Dr.

Imanov ELBRUS. He helped and supported me to complete my project by any means of

necessary. In addition to this he never doubted about me, he always believed in me that

I will fulfill and succeed on my project. I am glad to that I did not disappoint him.

Furthermore, I want to give my special thanks and best regards to my parents.

They were always kind and patient to me. I wouldn't be here without their endless

support.

Finally, I want to give my special thanks to my friends whose are Cemal

Kavalctoglu, Selman Ogurhan ESER. They are supported and helped me to complete

my project. I am very happy to have such friends.

ABSTRACT

The aim of this Project is to record the stock device for any Properties

Company.The program was prepared by using Delphi 7 programming and usmg

Paradox7. Delphi is a programming language that can be used with Paradox7.

This project consists of many different pages but most of them depended each

other Initially, SIGN IN form comes to screen. Afterwards the Main menu of Properties

Company comes to screen.After Main Menu you are going to see the main form that

contains 15 main menus.

11

TABLE OF CONTENTS

ACKNOWLEDGEMENT I
ABSTRACT II
TABLE OF CONTENTS III
INTRODUCTION 1

CHAPTER ONE : BASIC CONCEPT OF DELPHI

1.1 Introduction to Delphi 2
1.2 What is Delphi? 2
1.2.1 Delphi Compliers 2
1.2.2 What kind of programming can you do with Delphi? 3
1.2.3 History of Delphi 4
1.2.4 Advantages & Disadvantages Delphi 6

1.3 Delphi 6 Editions 7
1.3.1 Delphi 6 Architect 7
1.3.2 Installation Delphi 6 8

1.4 A Tour of the Environment '. 10
1.4.1 Running Delphi for the First Time 10
1.4.2 The Delphi IDE 11
1.4.3 The Menus & Toolbar 12
1.4.4 The Component Palette 12
1.4.5 The Code Editor 13
1.4.6 The Object Inspector 14
1.4.7 The Object Tree View 15
1.4.8 Class Completion 16
1.4.9 Debugging applications 17
1.4.10 Exploring Databases 18
1.4.11 Templates and the Object Repository 19

1.5 Programming with Delphi 20
1.5.1 Starting a New Application 20
1.5.2 Setting Property Values 21
1.5.3 Adding objects to the form 22
1.5.4 Add a Table and a StatusBar to the Form 22
1.5.5 Connecting to a Database 24

CHAPTER TWO : THE RA VE REPORTING

2.1 Project Tree 28
2.2 Design Tools 29
2.3 Reuse and Maintenance Tools 32
2.4 Standard Components 34
2.5 Drawing Components 35
2.6 Reporting Components 35
2.7 Barcode Components 39
2.8 Anchors 39

lll

2.9 Code Based Reports 40
2.9.1 Simple Code Base Report 40
2.9.2 Tabular Code Based Report.. 41
2.9.3 Graphical Code Based Report 43

2.10 Visually Designed Reports 45
2.10.1 The Visual Designer 45
2.10.2 Interacting with the Project. 48

2.11 Data Aware Reports 55
2.11.1 The Database Connection 55
2.11.2 The Driver Data View 55
2.11.3 Regions and Bands 58
2.11.4 Adding Fields 60
2.11.5 Adding the Report to Your Project 60

CHAPTER THREE : STOCK PROPERTY BY USING DELPHI

3 .1 Database Connection Screen 61
3.2 Main Menu 63
3.3 House to Let Menu 64
3.3.1 House to Let Organize Form 64
3.3.2 House to Let Search Form 65
3.3.3 House to Let Report Form 68

3 .4 House for Sale Menu 69
3 .4.1 House for Sale Organize Form 69
3 .4.2 House for Sale Search Form 70
3.4.3 Hose for Sale Report Form 73

3.5 Shop to Let Menu 74
3.5.1 Shop to Let Organize Form 74
3.5.2 Shop to Let Search Form 75
3.5.3 Shop to Let Report Form 78

3.6 Shop for Sale Menu 79
3 .6.1 Shop for Sale Organize Form 79
3.6.2 Shop for Sale Search Form 80
3 .6.3 Shop for Sale Report Form 83

3. 7 Plot to Let Menu 84
3. 7 .1 Plot to Let Organize Form 84
3.7.2 Plot to Let Search Form 85
3.7.3 Plot to Let Report Form 88

3.8 Garden for Sale Menu 89
3.8.1 Garden for Sale Organize Form 89
3.8.2 Garden for Sale Search Form 90
3.8.3 Garden for Sale Report Form 93

3.9 Building for Sale Menu 94
3.9.1 Building for Sale Organize Form 94
3.9.2 Buildig for Sale Search Form 95
3.9.3 Building for Sale Report Form 98

3.10 Farm for Sale Menu 99
3.10.1 Farm for Sale Organize Form 99

IV

3.10.2 Farm for Sale Search Form 100
3 .10.3 Farm for Sale Report Form 103

3.11 Villa for Sale Menu 104
3.11.1 Villa for Sale Organize Form 104
3.11.2 Villa for Sale Search Form 105
3.11.3 Villa for Sale Report Form 108

3.12 Field for Sale Menu 109
3.12.1 Field for Sale Organize Form 109
3.12.2 Filed for Sale Search Form 110
3.12.3 Field for Sale Report Form 113

3.13 Flier Print Menu 114
3.13.1 Flier Print Organize Form 114
3 .13 .2 House to Let Advertisements Form 115
3.13.3 Villa for Sale Advertisements Form 116
3 .13 .4 Shop to Let Advertisements Form 117
3.13.5 Plot for Sale Advertisements Form 118
3 .13 .6 House for Sale Advertisements Form 119
3.13.7 Field for Sale Advertisements Form 120
3.13.8 Shop for Sale Advertisements Form 121
3.13.9 Garden for Sale Advertisements Form 122
3.13.10 Building for Sale Advertisements Form 123
3.13.11 Farm for Sale Advertisements Form 124

3.14 User Register Menu 125
3.15 About Menu 126
3 .16 Informations Menu 127
3.17 ExitMenu 128

CONCLUSION 129
RE FE REN CES 130
APPENDIX 140

V

INTRODUCTION

Delphi is a Rapid Application Development (RAD) environment. It allows you

to drag and drop components on to a blank canvas to create a program. Delphi will also

allow you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object

orientated derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to

make the program easily readable and to help the compiler sort the code. Although

Delphi code is not case sensitive there is a generally accepted way of writing Delphi

code. The main reason for this is so that any programmer can read your code and easily

understand what you are doing, because they write their code like you write yours.

The project consists of the introduction, three chapters, and conclusion.

• Chapter one describes Basic Concept of Delphi.

• Chapter two describes the database that uses Delphi programmmg

language.

• Chapter three explains Stock Property by Using Delphi.

1

CHAPTER ONE

1 BASIC CONCEPT OF DELPHI

1.1 Introduction to Delphi

Although I am not the most experienced or knowledgeable person on the forums I

thought it was time to write a good introductory article for Delphi

1.2 What is Delphi?

Delphi is a Rapid Application Development (RAD) environment. It allows you to

drag and drop components on to a blank canvas to create a program. Delphi will also

allow you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object

orientated derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to

make the program easily readable and to help the compiler sort the code. Although

Delphi code is not case sensitive there is a generally accepted way of writing Delphi

code. The main reason for this is so that any programmer can read your code and easily

understand what you are doing, because they write their code like you write yours.

For the purposes of this series I will be using Delphi 6. Delphi 6 provides all the

tools you need to develop test and deploy Windows applications, including a large

number of so-called reusable components.

Borland Delphi provides a cross platform solution when used with Borland Kylix

- Borland's RAD tool for the Linux platform.

1.2.1 Delphi Compliers

There are two types complier for Delphi

• Turbo Delphi: Free industrial strength Delphi RAD (Rapid Application

Development) environment and compiler for Windows. It comes with 200+

components and its own Visual Component Framework.

2

• Turbo Delphi for .NET: Free industrial strength Delphi application development

environment and compiler for the Microsoft .NET platform.

1.2.2 What kind of programming can you do with Delphi?

The simple answer is "more or less anything". Because the code is compiled, it

runs quickly, and is therefore suitable for writing more or less any program that you

would consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing

machines, toasters or fuel injection systems, but for more or less anything else, it can be

used (and the chances are that probably someone somewhere has!)

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

• Graphics Applications

• Multimedia Applications

• Image processing/Image recognition

• Data analysis

• System tools

• Communications tools using the Internet, Telephone or LAN

• Web based applications

This is not intended to be an exhaustive list, more an indication of the depth and

breadth of Delphi's applicability. Because it is possible to access any and all of the

Windows API, and because if all else fails, Delphi will allow you to drop a few lines of

assembler code directly into your ordinary Pascal instructions, it is possible to do more

or less anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs)

and can call out to DLLs written in other programming languages without difficulty.

3

Because Delphi is based on the concept of self contained Components (elements of code

that can be dropped directly on to a form in your application, and exist in object form,

performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

1.2.3 History of Delphi

Delphi was one of the first of what came to be known as "RAD" tools, for

Rapid Application Development, when released in 1995 for the 16-bit Windows 3.1.

Delphi 2, released a year later, supported 32-bit Windows environments, and a C++

variant, C++ Builder, followed a few years after.

The chief architect behind Delphi, and its predecessor Turbo Pascal , was

Anders Hejlsberg until he was headhunted in 1996 by Microsoft , where he worked on

Visual J++ and subsequently became the chief designer of C Sharp programming

language C# and a key participant in the creation of the Microsoft .NET Framework.

In 2001 a Linux version known as Kylix programming tool Kylix became

available. However, due to low quality and subsequent lack of interest, Kylix was

abandoned after version 3.

Support for Linux and Windows cross platform development (through Kylix and

the CLX component library) was added in 2002 with the release of Delphi 6.

Delphi 8, released December 2003, was a .NET -only release that allowed

developers to compile Delphi Object Pascal code into .NET Microsoft Intermediate

Language MSIL. It was also significant in that it changed its IDE for the first time, from

the multiple-floating-window-on-desktop style IDE to a look and feel similar to

Microsoft's Visual Studio.NET.

4

Although Borland fulfilled one of the biggest requests from developers (.NET

support), it was criticized both for making it available too late, when a lot of former

Delphi developers had already moved to C#, and for focusing so much on backward

compatibility that it was not very easy to write new code in Delphi. Delphi 8 also lacked

significant high-level features of the c sharp, C# language, as well as many of the more

appealing features of Microsoft's Visual Studio IDE. (There were also concerns about

the future of Delphi Win32 development. Because Delphi 8 did not support Win32,

Delphi 7.1 was included in the Delphi 8 package.)

The next version, Delphi 2005 (Delphi 9), included the Win32 and .NET

development in a single IDE, reiterating Borland's commitment to Win32 developers.

Delphi 2005 includes design-time manipulation of live data from a database. It also

includes an improved IDE and added a "for ... in" statement (like C#'s for each) to the

language. However, it was criticized by some for its bugs; both Delphi 8 and Delphi

2005 had stability problems when shipped, which were only partially resolved in service

packs.

In late 2005, Delphi 2006 was released and federated development of C# and

Delphi.NET, Delphi Win32 and C++ into a single IDE. It was much more stable than

Delphi 8 or Delphi 2005 when shipped, and improved even more after the service packs

and several hot fixes.

On February 8, 2006, Borland announced that it was looking for a buyer for its

IDE and database line of products, which include Delphi, to concentrate on its

Application Lifecycle Management ALM line. The news met with voluble optimism

from the remaining Delphi users.

On September 6, 2006, The Developer Tools Group (the working name of the

not yet spun off company) of Borland Software Corporation released single language

versions of Borland Developer Studio, bringing back the popular "Turbo" moniker.

The Turbo product set includes Turbo Delphi for Win32, Turbo Delphi for .NET, Turbo

C++, and Turbo C#. Each version is available in two editions: "Explorer'' a free

downloadable version and "Professional" a relatively cheap (US$399) version which

5

opens access to thousands of third-party components. Unlike earlier "Personal"

editions of Delphi, new ''Explorer'' editions can be used for commercial development.

On November 14, 2006, Borland announced the cancellation of the sale of its

Development tools; instead of that it would spin them off into an independent company

named "CodeGear"

1.2.4 Advantages & Disadvantages Delphi

Delphi exhibits the following advantages:

• Rapid Application Development (RAD)

• Based on a well-designed language - high-level and strongly typed, with low

level escapes for experts

• A large community on Usenet and the World Wide Web (e.g.

news://newsgroups.borland.com and Borland's web access to Delphi)

• Can compile to a single executable, simplifying distribution and reducing DLL

versioning issues

• Many VCL and third-party components (usually available with full source code)

and tools (documentation, debug tools, etc.)

• Quick optimizing compiler and ability to use assembler code

• Multiple platform native code from the same source code

• High level of source compatibility between versions

• Cross Kylix - a third-party toolkit which allows you to compile native

Kylix/Linux applications from inside the Windows Delphi IDE, hence easily

enabling dual-platform development and deployment

• Cross FBC - a sister project to Cross Kylix, which enables you to cross-compile

your Windows Delphi applications to multi-platform targets - supported by the

Free Pascal compiler - without ever leaving the Delphi IDE

• Class helpers to bridge functionality available natively in the Delphi RTL, but

not available in a new platform supported by Delphi

• The language's object orientation features only class- and interface-based

Polymorphism in object-oriented programming polymorphism

6

Disadvantages:

• Limited cross-platform capability for Delphi itself. Compatibles provide more

architecture/OS combinations

• Access to platform and third party libraries require header files to be translated

to Pascal. This creates delays and introduces the possibilities of errors in

translation.

• There are fewer published books on Delphi than on other popular programming

languages such as C++ and C#

• A reluctance to break any code has lead to some convoluted language design

choices, and orthogonally and predictability have suffered

1.3 Delphi 6 Editions

There are 3 editions in Delphi 6:

• Delphi Personal - makes learning to develop non-commercial Windows

applications fast and fun. Delphi 6 Personal makes learning Windows

development easy with drag-and-drop visual programming.

• Delphi Professional - adds the tools necessary to create applications with the

latest Windows® ME/2000 look-and-feel. Dramatically enhance functionality

with minimal code using the power and flexibility of SOAP and XML to easily

integrate Web Services into client-side applications.

• Delphi Enterprise - includes additional tools, extensive options for Internet.

Delphi 6 makes next-generation e-business development with Web Services a

snap.

This Program will concentrate on the Enterprise edition.

1.3.1 Delphi 6 Architect

Delphi 6 Architect is designed for professional enterprise developers who need

to adapt quickly to changing business rules and manage sophisticated applications that

synchronize with multiple database schemas. Delphi 2006 Architect includes an

advanced ECO III framework that allows developers to rapidly deploy scalable external

facing Web applications with executable state diagrams, object-relational mapping, and

transparent persistence.

7

Delphi 6 Architect includes all of the capabilities of the Enterprise edition, and

includes the complete ECO III framework, including new support for ECO State

Machines powered by State Chart visual diagrams, and simultaneous persistence to

multiple and mixed database servers.

• State Chart Diagrams

• Executable ECO State Machines

• Multi- and Mixed- ECO database support

1.3.2 Installation Delphi 6

To install Delphi 6 Enterprise, run INSTALL.EXE (default location C:\Program

Files\Borland Delphi) and follow the installation instructions.

We are prompted to select a product to install; you only have one choice "Delphi 6":

Figure 1.1 The Select Page For Start Installation

While the setup runs, you'll need to enter your serial number and the authorization key

(the two you got from inside a CdRom driver).

8

Figure 1.2 Serial Number And Authorization Screen

Later, the License Agreement screen wills popup:

Figure 1.3 License Agreement Screen

After that, you have to pick the Setup Type, choose Typical. This way Delphi 6

Enterprise will be installed with the most common options. The next screen prompts

you to choose the Destination folder.

~)'l))i<'<c?~ _, __ ;;/~.:;,) f -,"«-"'-"' !t~,-S>-..:,ro-lf>A>-,~-- ...-c-
"""' i

Figure 1.4 SetUp Type and Destination Folder Screen

At the end of the installation process, the set-up program will create a sub menu

m the Programs section of the Start menu, leading to the main Delphi 6 Enterprise

program plus some additional tools.

9

Ci Borland Delphi 6 •. C,: Help •. I

Figure 1.5 Start Menu

1.4 A Tour of the Environment

This chapter explains how to start Delphi and gives you a quick tour of the main

parts and tools of the Integrated Development Environment (IDE)

1.4.1 Running Delphi for the First Time

You can start Delphi in a similar way to most other Windows applications:

• Choose Programs I Borland Delphi 6 I Delphi 6 from the Windows Start menu

• Choose Run from the Windows Start menu and type Delphi32

• Double-click Delphi32.exe in the $(DELPHI)\Bin folder. Where $(DELPHI) is a

folder where Delphi was installed. The default is C:\Program

Files\Borland\Delphi6.

• Double-click the Delphi icon on the Desktop (if you've created a shortcut)

a, Borland Delphi 6 RliJ Ei
,...-.- .---- -- >~

it)hew g Ci F _gvorites H elp

Borland Delphi 6
t: [tr:~';>

Help Delphi 6 Image Editor Register Now

Figure 1.6 Borland Delphi 6 Folder

10

1.4.2 The Delphi IDE

As explained before, one of the ways to start Delphi is to choose Programs

Borland Delphi 6 I Delphi 6 from the Windows Start menu.

When Delphi starts (it could even take one full minute to start - depending on

your hardware performance) you are presented with the IDE: the user interface where

you can design, compile and debug your Delphi projects.

Figure 1.7 IDE

Like most other development tools (and unlike other Windows applications),

Delphi IDE comprises a number of separate windows.

Some of the facilities that are included in the "Integrated Development

Environment" (IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimizing compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

11

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools

1.4.3 The Menus & Toolbar

The main window, positioned on the top of the screen, contains the main menu,

toolbar and Component palette.

speed bar component palette

Figure 1.8 Menu, Title, Speed Bar & Component Palette

The title bar of the main window contains the name of the current project (you'll

see in some of the future chapters what exactly is a Delphi project). The menu bar

includes a dozen drop-down menus - we'll explain many of the options in these menus

later through this course. The toolbar provides a number of shortcuts to most frequently

used operations and commands - such as running a project, or adding a new form to a

project. To find out what particular button does, point your mouse "over" the button and

wait for the tool tip. As you can see from the tool tip (for example, point to [Toggle

Form/Unit]), many tool buttons have keyboard shortcuts ([F12]).

The menus and toolbars are freely customizable. I suggest you to leave the

default arrangement while working through the chapters of this course.

1.4.4 The Component Palette

You are probably familiar with the fact that any window in a standard Windows

application contains a number of different (visible or not to the end user) objects, like:

buttons, text boxes, radio buttons, check boxes etc. In Delphi programming terminology

such objects are called controls (or components). Components are the building blocks of

every Delphi application. To place a component on a window you drag it from the

component palette. Each component has specific attributes that enable you to control

your application at design and run time.

12

click to see Win32 controls

click the arrow to see more controls on a page

Figure 1.9 Component Palates

Depending on the version of Delphi (assumed Delphi 6 Personal through this

course), you start with more than 85 components at your disposal - you can even add

more components later (those that you create or from a third party component vendor).

The components on the Component Palette are grouped according to the

function they perform. Each page tab in the Component palette displays a group of

icons representing the components you can use to design your application interface. For

example, the Standard and Additional pages include controls such as an edit box, a

button or a scroll box.

To see all components on a particular page (for example on the Win32 page) you

simply click the tab name on the top of the palette. If a component palette lists more

components that can be displayed on a page an arrow will appear on a far right side of

the page allowing you to click it to scroll right. If a component palette has more tabs

(pages) that can be displayed, more tabs can be displayed by clicking on the arrow

buttons on the right-hand side.

1.4.5 The Code Editor

Each time you start Delphi, a new project is created that consists of one *empty*

window. A typical Delphi application, in most cases, will contain more than one

window - those windows are referred to as forms.

In our case this form has a name, it is called Forml. This form can be renamed,

resized and moved, it has a caption and the three standard buttons which are minimize,

maximize and close. As you can see a Delphi form is a regular Windows window

13

1Jini:l.:JV$ ~ J!ii·fe.itlt}tt§°!' Syifij"t} i s , \tfl.X: t ~).fl't-W.~ CJ (i;.t<:.H~,,1~ Ct

l>:P)J..!)l;;f,:

"~' t.-::r-n-,l; rrc.c.Til:

Figure 1.10 Code Editor Window

If the Forml is the active window and you press [F12], the Code Editor window

will be placed on top. As you design user interface of your application, Delphi

automatically generates the underlying Object Pascal code. More lines will be added to

this window as you add your own code that drives your application. This window

displays code for the current form (Forml); the text is stored in a (so-called) unit -

Unitl. You can open multiple files in the Code Editor. Each file opens on a new page of

the Code editor, and each page is represented by a tab at the top of the window.

1.4.6 The Object Inspector

Each component and each form has a set of properties - such as color, size,

position, caption - that can be modified in the Delphi IDE or in your code, and a

collection of events - such as a mouse click, keypress, or component activation - for

which you can specify some additional behavior. The Object Inspector displays the

properties and events (note the two tabs) for the selected component and allows you to

change the property value or select the response to some event.

14

Figure 1.11 Object Inspector

For example, each form has a Caption (the text that appears on it's title bar). To

change the captions of Forml first activate the form by clicking on it. In the Object

Inspector find the property Caption (in the left column), note that it has the 'Forml'

value (in the right column). To change the captions of the form simply type the new text

value, like 'My Form' (without the single quotes). When you press [Enter] the caption

of the form will change to My Form.

Note that some properties can be changed more simply, the position of the form

on the screen can be set by entering the value for the Left and Top properties - or the

form can be simply dragged to the desired location.

1.4.7 The Object TreeView

Above the Object Inspector you should see the Object TreeView window. For

the moment its display is pretty simple. As you add components to the form, you'll see

that it displays a component's parent-child relationships in a tree diagram. One of the

great features of the Object TreeView is the ability to drag and drop components in

order to change a component container without losing connections with other

components.

15

• ··fl'Jl DataSource1
[£,,,~ Default {Session}

• ,,,[;1 Edit1
···li'.J E dit2

• .. fi1 Edit3
... 122:J Image 1
···r;J lmage3
~ lmage4
·r;J lmage5
···'4 lmagelist1

· ··llfl lmagelist2
·r;J Label1
r;J Label2
~ Label3

.. r".:'I I ~holA
V

Figure 1.12 Object Tree View

The Object Tree View, Object Inspector and the Form Designer (the Forml window)

work cooperatively. If you have an object on a form (we have not placed any yet) and

click it, its properties and events are displayed in the Object Inspector and the

component becomes focused in the Object TreeView.

1.4.8 Class Completion

Class Completion generates skeleton code for classes. Place the cursor anywhere

within a class declaration; then press Ctrl+Shift+C, or right-click and select Complete

Class at Cursor. Delphi automatically adds private read and write specifies to the

declarations for any properties that require them, and then creates skeleton code for all

the class's methods. You can also use Class Completion to fill in class declarations for

methods you've already implemented.

To configure Class Completion, choose Tools I Environment Options and click

the Explorer tab.

16

Type Librar.v
Preferences j

j Environment Variables I Delphi Direct I
Designer j Object Inspector I Palette j Librery

Internet
Explorer

Explorer options"'·-··--···-···"·········-·-· .. ··,

P ~utomaticall.v.show.Explorer;

P Highlight jncomplete class items

Show _geclaration syntax

Explorer ca!egories:

~ J Protected
!;?] l Public
[v' l Published
L;;?J l Field
:~: 1 Properties
[i2] i Methods

Classes
0;;?] l Interfaces
[ii' l Procedures
G2] l Types
'.¥'' l Variables/Constants
,.;;,. l Uses

'i Virtuals
'1 Statics

.,, i Inherited
'.i Introduced

Explorer sorting
(. Alpha!;ietical

Class completion option

P finish incomplete properties

r- Initial browser view
: r. Classes r Units
I - -

r globals

Browser scope · ·· · ··
r. Eroject symbols onl.v

r Ajl symbols

I OK I Cancel j Help

Fig.1.13 Class Completion

1.4.9 Debugging applications

The IDE includes an integrated debugger that helps you locate and fix errors in

your code. The debugger lets you control program execution, watch variables, and

modify data values while your application is running. You can step through your code

line by line, examining the state of the program at each breakpoint.

17

· r;;/ Step Over

5 Trace Into
~± Trace to Next Source Line
[I± Run to Cursor

[ml Evaluate/Modify. , ,

~ Add Watch ...

Add Breakpoint

i"

F9 f
r

FS

F7

Shift+F7

F4

Ctrl+F7

Ctrl+F5

Figurel.14 Run

To use the debugger, you must compile your program with debug information.

Choose Project I Options, select the Compiler page, and check Debug Information. Then

you can begin a debugging session by running the program from the IDE. To set

debugger options, choose Tools I Debugger Options.

Many debugging windows are available, including Breakpoints, Call Stack,

Watches, Local Variables, Threads, Modules, CPU, and Event Log. Display them by

choosing View I Debug Windows. To learn how to combine debugging windows for

more convenient use, see "Docking tool windows".

1.4.10 Exploring Databases

The SQL Explorer (or Database Explorer in some editions of Delphi) lets you

work directly with a remote database server during application development. For

example, you can create, delete, or restructure tables, and you can import constraints

while you are developing a database application.

18

Object Dictionary Edit 1/iew Options Help

;< &I
· Ali·o"~i'~;~·Ab;~·· :··D:irl~i~ d·~okta:db·
Dat~es j Dictiona.ty j Defrition ! LI~,;;, •.•••••.• 1 ,I
!.1 'BLoc. ~ ·---;:-·111s,,..,, Js •. rnm Jc~,i
: e MS Access Database • 4
''.:senha
,;: ·!al Tables

ff ·rn!I ARIZA.d:i
i ·affl arizaduumu.DB
;t- mt! ONS.dJ
f ml! GIAIS.dJ
+ rml lLCE.cb
'.f.· ml! kasa.DB
:f: ·!ml kasal.DB
): ·mff kasacikis_DB
(t r!in KULLANJLAN.DB
~: [El KUA.db
J rn!I MARKA.dJ
(f.· mt! MODELdb
-i ·mff PAACAGIAIS.DB
:t." mn Pasword.db
';f rnn per.db
f ·rffll SERVIS.db

:A·;te~~
<:

Figure 1.15 SQL Explorer

1.4.11 Templates and the Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards,

DLLs, sample applications, and other items that can simplify development. Choose File

I New to display the New Items dialog when you begin a project. Check the Repository

to see if it contains an object that resembles one you want to create.

• ii E6 @ ~ -
~ Batch F~e CLX Component Console

Appficetion Application

~ w D ~ ~
Data Module DLL Wizard Form Frame Package

re!' 00 U@J ~ §
Resowce DLL Service Service Te><t Thlead Object

Wizard Application

~ L
XML Data
Binding

Projects l Data Modules

~--···~-

Control Panel Control Panel
Application Module

Project Group Hepot

Unit Web Serve,
Application

OK !:!elp

Figure 1.16 New Item

19

You can add your own objects to the Repository to facilitate reusing them and

sharing them with other developers. Reusing objects lets you build families of

applications with common user interfaces and functionality; building on an existing

foundation also reduces development time and improves quality. The Object Repository

provides a central location for tools that members of a development team can access

over a network.

1.5 Programming with Delphi

The following section provides an overview of software development with Delphi.

1.5.1 Starting a New Application

Before beginning a new application, create a folder to hold the source files.

1. Create a folder in the Projects directory off the main Delphi directory.

2. Open a new project.

Each application is represented by a project. When you start Delphi, it opens a blank

project by default. If another project is already open, choose File I New Application
to create a new project. When you open a new project, Delphi automatically creates

the following files.

• Project I .DPR : a source-code file associated with the project. This is

called a project file.

• Unitl .PAS : a source-code file associated with the main project form.

This is called a unit file.

• Unitl .DFM : a resource file that stores information about the mam

project form. This is called a form file.

3. Choose File I Save All to save your files to disk. When the Save dialog appears,

navigate to your folder and save each file using its default name.

Later on, you can save your work at any time by choosing File I Save All.

20

When you save your project, Delphi creates additional files in your project

directory. You don't need to worry about them but don't delete them.

When you open a new project, Delphi displays the project's main form, named

Forml by default. You'll create the user interface and other parts of your application by

placing components on this form.

Figure 1.17 Form Screen

The default form has maximize, rmmrmze buttons and a close button, and a

control menu

Next to the form, you'll see the Object Inspector, which you can use to set

property values for the form and components you place on it.

The drop-down list at the top of the Object Inspector shows the current selected

object. When an object is selected the Object Inspector shows its properties.

1.5.2 Setting Property Values

When you use the Object Inspector to set properties, Delphi maintains your

source code for you. The values you set in the Object Inspector are called design-time

settings.

For Example; set the background color of Forml to Aqua.

21

Find the form's Color property in the Object Inspector and click the drop-down

list displayed to the right of the property. Choose clAqua from the list.

1.5.3 Adding objects to the form

The Component palette represents components by icons grouped onto tabbed

pages. Add a component to a form by selecting the component on the palette, then

clicking on the form where you want to place it. You can also double-click a component

to place it in the middle of the form.

D~·r.l 1J'.'.Sl Q6r;J ~
jl ail ;::f ri / · o ;, 1~· [5l if t A r.hY •~ •:§J IX Ii ~ ·~ = - -=

Components

Component palette tabs

Figure 1.18 Standard Bar

1.5.4 Add a Table and a StatusBar to the Form

Drop a Table component onto the form. Click the BDE tab on the Component

palette. To find the Table component, point at an icon on the palette for a moment;

Delphi displays a Help hint showing the name of the component.

EJle £.dit '2_earch 'yJew e_roject B_un ~omponent Q_atabase jcols Window t!elp

D ~ • riii;J ~ '.'.:S' ~ i;;;; @ Slandard I Addilional J \liin32 I Svstern Data Access Dalo Conlrols I dbExoress I DaiaSnao
... r-, -[?] a-.-J'~8 •.. i[]~~'-e / ... c3 o· hS ~ -sO.L SQL[J lli.iJII :J-1i """'trnJ \QL ~ m1.,

Figure 1.19 BDE Component palette

22

When you find the Table component, click it once to select it, and then click on

the form to place the component. The Table component is non visual, so it doesn't

matter where you put it. Delphi names the object Tablel by default. (When you point to

the component on the form, Delphi displays its name-Tablel-and the type of object it

is-Table.)

.... -.M.:
Table!: TT able I: -

Figure 1.20 Table in the Form

Each Delphi component is a class; placing a component on a form creates an

instance of that class. Once the component is on the form, Delphi generates the code

necessary to construct an instance object when your application is running.

Set the DatabaseName property of Tablel to DBDEMOS. (DBDEMOS is an

alias to the sample database that you're going to use.)

Select Tablel on the form, and then choose the DatabaseName property in the

Object Inspector. Select DBDEMOS from the drop-down list.

23

Form1
:Ei'~ Default {Session}

r--:: ~~ DBDEMOS {Alias}
f:F ? ..\ < ?> {Table 1 }

Table1

ii Properties I Events I
' AutoR efr~sh T F al;e

CachedU pdete False
. c~·n;tr~i~ts I [f Che?kConstr aints
DatabaseName' DBDEMOS ,..
Defaultlndex JdBASE Files

~ma Exclusive
FieldDefs
Filter
Filtered

1±1 FilterOptions MS Access Database
lndexDefs seniha
I ndexFieldN a1mrs_in_e_m _J

lndexFiles
lndexName
M asterFields
Master Source
Name T able1

(TI ndexFiles l

Figure 1.21 Select DatabaseName

Double-click the StatusBar component on the Win32 page of the Component

palette. This adds a status bar to the bottom of the application.

Set the AutoHint property of the status bar to True. The easiest way to do this is

to double-click on False next to AutoHint in the Object Inspector. (Setting AutoHint to

True allows Help hints to appear in the status bar at runtime.)

1.5.5 Connecting to a Database

The next step is to add database controls and a DataSource to your form.

24

1. From the Data Access page of the Component palette, drop a DataSource

component onto the form. The DataSource component is non visual, so it

doesn't matter where you put it on the form. Set its DataSet property to Table I.

2. From the Data Controls page, choose the DBGrid component and drop it onto

your form. Position it in the lower left comer of the form above the status bar,

and then expand it by dragging its upper right comer.

If necessary, you can enlarge the form by dragging its lower right comer. Your form

should now resemble the following figure:

The Data Control page on Component palette holds components that let you view

database tables.

->
,l.':.o

Figure 1.22 DBGrid in the Form

25

3. Set DBGrid properties to align the grid with the form. Double-click Anchors in

the Object Inspector to display akLeft, akTop, akRight, and akBottom; set them

all to true.

4. Set the DataSource property of DBGrid to DataSourcel (the default name of the

DataSource component you just added to the form).

Now you can finish setting up the Tablel object you placed on the form earlier.

5. Select the Tablel object on the form, and then set its TableName property to

BIOLIFE.DB. (Name is still Tablel .) Next, set the Active property to True.

When you set Active to True, the grid fills with data from the BIOLIFE.DB

database table. If the grid doesn't display data, make sure you've correctly set the

properties of all the objects on the form, as explained in the instructions above. (Also

verify that you copied the sample database files into your ... \Borland Shared\Data

directory when you installed Delphi.)

·~·
-~,

Species No Cat~gCJrt. Common=N ame A

~ 90020 T riggerfish Clown T riggerfish
90030 Snapper Red Emperor
90050 wrasse Giant Maori Wrasse
90070 Angelfish Blue Angelfish
90080 Cod Lunartail R ockcod
90090 Scorpionfish Firefish
901 IJO Butterflylish 0 rnate B utlerflylish

80110 Shark Swell Shark
v

< .;,

.....
.

.

Figure 1.23 Show Table

26

The DBGrid control displays data at design time, while you are working in the IDE.

This allows you to verify that you've connected to the database correctly. You cannot,

however, edit the data at design time; to edit the data in the table, you'll have to run the

application.

6. Press F9 to compile and run the project. (You can also run the project by

clicking the Run button on the Debug toolbar, or by choosing Run from the Run

menu.)

7. In connecting our application to a database, we've used three components and

several levels of indirection. A data-aware control (in this case, a DBGrid)

points to a DataSource object, which in tum points to a dataset object (in this

case, a Table). Finally, the dataset (Tablel) points to an actual database table

(BIOLIFE), which is accessed through the BDE alias DBDEMOS. (BDE aliases

are configured through the BDE Administrator.)

data-aware control dataset
(Grid) ~ DataSource ~ (Table) ~ BDE ~ database

This architecture may seem complicated at first, but in the long run it simplifies

development and maintenance. For more information, see "Developing database

applications" in the Developer's Guide or online Help.

27

CHAPTER TWO

2 THE RA VE REPORTING

2.1 Project Tree

The Project Tree provides an efficient way to visually manage all of the reports in

your project. It quickly tells you the structure of your reporting project and the types of

components contained on each page with icons that are the same as the component

buttons. The Project Tree also visually shows parent-child relationships, the print order

of component as well as the current selection (green check marks). You can select

components by clicking on the component on the Page in the Visual Designer or on the

Project Tree. Non-visual components appear only in the Project Tree in order not to

clutter up your report design.

R aveProject
:.:::.1 <?' Report Library

r::::, [Um Reportl
liliJ Pagel

~ Global Page Catalog
(:=I • Data View D ictionsry

"ffl Databasel

Figure 2.1 Project Tree

There are three main sections in the Project Tree:

• The Report Library

• The Global Page Catalog

• The Data View Dictionary
Reports themselves can contain any number of page definitions. Global Pages are

used to hold items that you want accessible to multiple reports. Data Views contain your

field definitions and provide a link to the data in your application.

28

2.2 Design Tools

Rave is all about easy management. Besides making reporting easy and organized,

Rave likes to keep itself organized and all according to what you want.

Figure 2.2 Toolbars

Since Rave is designed to be of ease to you there are three easy three ways for you to

manage the many toolbars within Rave, which are:

• Tab-docking

• Normal docking

• Free-floating

Rave's many toolbars make it easy to design even the most complicated report. The

toolbars include: Project, Designer, Zoom, Alignment, Color, Line, Font, Standard,

Drawing, Report and Barcode component toolbars. Since it is possible to create and

install new components, you may have other component toolbar buttons in your

designer.

Project t3

Figure 2.3 Project Toolbar

The Project toolbar provides quick access to project level functions such as New

Project, Project Open, Project Save, New Report, New Global Page, New Data View,

New Report Page or Execute Report.

29

Figure 2.4 Designer Toolbar

The Designer toolbar allows you to change the characteristics of the Page in the

Visual Designer. Characteristics such as whether the grid is being shown, snap to grid,

draw grid on top, show band headers, show rulers, and show the waste area of the page.

The last button brings up Rave' s extensive Preferences dialog, which is described later.

Zoom f3
10 • I

Figure 2.5 Zoom Toolbar

When you are working on a report with a complex design, you will find it much

easier if you become familiar with the Zoom toolbar, which gives you quick access to

Rave's extensive zooming capabilities. Select the zoom percent from a drop down list,

type it in or use the Zoom Tool, Zoom In, Zoom Out, Zoom Selected, Zoom Page

Width or Zoom Whole Page buttons.

Alignment t:i

Figure 2.6 Alignment Toolbar

To help keep your report looking professional, Raves Alignment toolbar

provides access to a whole host of options to micro-manage the components on your

page. The Left/fop, Center, Right/Bottom, Center In Parent, Space Equally, Equate

Widths/Heights options offer the traditional alignment options. The Move Forward,

Move Behind, Bring to Front and Send to Back order movement buttons allow you to

change the print order of components and are visually backed up by the listing of the

components in the Project Tree. Lastly, the buttons Tap Left, Tap Right, Tap Up and

30

Tap Down allow you to micro-adjust the position of components to the exact position

you need.

Figure 2.7 Colors Toolbar

The Color toolbar allows you to quickly select the primary and secondary colors

of your components. There are 8 color spots that you can use to store any custom colors

that you will be reusing throughout the project. If the colors available aren't enough,

you can double click on the custom color palettes and create a different color using

Rave's Color Editor (shown at right). With the Color Editor, you can select from a

wider variety or colors or create your own combination of Red, Green and Blue and

even select a percent saturation for the current color.

Color Editor El I
QK Current Color - Yellow (25%)

~ancel

olor Value------------------,--~

Green -3mW %

!2ss :zj !2ss :zj jo :zj !2s :zj t!_ew Color

Figure 2.8 Colors Editor

The Line toolbar is a useful tool for changing the line/border thickness and style

for components such as Line and Circle. Sizes are listed in points instead of pixels so

that your lines will always be the same thickness on your reports no matter the

resolution of the printer that you are using.

I I -1 •.. _::-_--...;..- -- -H-air-lir-1e---------- -.;..;.3...,••----, j 3
lines t3

Figure 2.9 Line Toolbar

31

The Font toolbar provides quick access to a text component's font and alignment

properties. It can also be useful for quickly viewing the font options for the currently

selected text component(s).

Figure 2.10 Fonts Toolbar

2.3 Reuse and Maintenance Tools

Reports often take a large part of the development time for an application. Many

times, there are many similarities between the design of separate reports.

This is where Rave's Mirroring technology comes in. When a component is set to

mirror another, it assumes the appearance and properties of the component it is

mirroring. The two components can be on the same page, across pages within the same

report or on a global page. This is the primary purpose of a global page. You can almost

think of it like an Object Repository, a central location for you to store reporting items

that you want accessible to more than one report. If the component is a container control

like TraveSection (similar to Delphi's Tpanel), all child components are mirrored as

well. When the original component changes, all mirroring components will also change.

While the mirrored component cannot change it properties, you can add additional

components if it is a container control.

Here are just a few examples of where Mirroring would be useful:

Your customer wants a standard page header and footer on ever~ page of their

50 reports. Now imagine you have all the reports done and your customer wants to

change the layout of the headers and footers.

The Old Way - You would need to open up all 50 report definitions and change

them one at a time.

32

The Rave Way - You would mirror the standard header and footer on each

report you create and then any changes would only have to be done in one location.

Also, if the standard header included a large bitmap, your reporting project would only

contain a single copy rather than the many copies that a traditional report designer

would require. You have to replicate a pre-printed form. The problem is there are 6

different variations of this form with only minor differences between each.

The Old Way - Assuming a traditional report designer could even handle this

type of report, you would create the first form, cut and paste it into the second, make the

minor modifications, then repeat for the other 4 forms, ending up with 6 reports that

would be hard to maintain and take up a lot more memory.

The Rave Way - You would first create the common items of the form on a

separate page, then mirror those on each form and add the unique parts for each as

needed. If anything ever needed to be changed in the common section of the form, you

would only need to change it in one place and since you're sharing most of the form's

content, the report definitions take up much less room.

Rave Reports 4 0 - D \tpp10\Rave4\0emos\Rave\RaveDemo ,av ll@Ef

J~ ·.e/:=~=ary

l lot<e><lUct<>nReport
Mas1erOetailReport
GioupingReport
MirrorReport
DataMlrrorReport

1:::;
t"' USSection
r,= lnterSection

.....J Rectangle2
./,/' SectioflS

m¥: DatoText2
T'T;~1
TText2
,- Addf1 OolySection
~- Add/'1 Addt2Sect00
,;~ aoo esssecnoo

I MuJIOageReport

MSJIM. ergeReport
rwooeteas
W2TaxForm

I::; ~ Olob; ~::;;stalag
~ Globa!Poge1
[lj Globa1Page2

1 - • Data View Dictionary
f!!I CustomerDV
0 o-ce.sov
t! Bioli!eDV
if!etiertsDV
@nemsOV

G ~ .• ~.-r."r.."-~"'

iComp.any
~Add<1
\c";ty +·;,·.··s1:i1e-.. r •. - •.. z,p
~Country · 0

JComp~nv
rAddr1

Figure 2.11 Mirror Report Example

33

Every text component has a FontMirror property which you can assign to a

FontMaster component. This will allow you to change the fonts of many text controls

from a single location. Imagine having Header, Body and Footer FontMaster

components on a global page and changing the appearance of all of your reports with

just a few mouse clicks.

Another important aspect of maintaining any large project is documentation. The

Project and every Report, Page, Data View and Data Field component has a multi-line

Description Property that can be used to comment the intended usage or other

information. This can be useful if you are coming back to a project that you last worked

on 6 months ago or especially if another programmer or your end user will be

modifying reports that you created.

2.4 Standard Components

Standard £j

Figure 2.12 Standard Tool Bar

Text - This component is used to display fixed text on your report for items such

as column headers or report titles.

Memo - This component is used to display fixed text in a word wrapped fashion

on your report. Using the MailMergeltems property and the Mail Merge Editor shown

below, you can create a mail merge type of report where Rave will replace tokens in the

memo text with a replacement string. Note that this replacement string can be edited

with the Edit button, which will display the Data Text Editor for quite a bit of extra

functionality.

Section - This component is a terrific component manager. It acts as a container

for other components, in other words it help you to group components together. By

34

properly using section components and mirroring, you can create reusable and

maintainable reports in no time flat.

Bitmap - This component is used to display a bitmap (*.bmp). Through the

FileLink property you can reference a file on the hard disk.

Metafile - This component is used to display a metafile (* .wmf). Through the

FileLink property you can reference a file on the hard disk.

FontMaster - This component is used to control the font characteristics of any text

control through their FontMirror properties. See Reuse and Maintenance for more

information.

2.5 Drawing Components

Line - Draws a diagonal line. (This may not seem like a unique feature but did

you know that most Delphi reporting tools cannot create a diagonal line visually.)

Drawing tJ

Figure 2.13 Drawing Tool Bar

Hline - Draws a horizontal line.

Vline - Draws a vertical line.

Rectangle - Draws a rectangle.

Square - Draws a square.

Ellipse - Draws an ellipse.

Circle - Draws a circle.

2.6 Reporting Components

Region - This component acts as a container for Band and DataBand components.

To create a composite or sub-report, simply drop more than one region on a page and

add the appropriate bands to each.

35

Figure 2.14 Report Tool Bar

Band - This component is primarily used to create header and footer bands in a

banded style report. A Band component can only be created within a region and it's

purpose is controlled through the Band Style Editor shown below. The Band Style

Editor displays a virtual layout of all of your bands for the given print locations of each

band or data band. Note that you can create as many Bands as you like and a Band may

print in multiple locations if the report design requires it. So for example, if you want a

solid horizontal line to appear above and below a detail body, you could create a single

band and set it to print on both the Body Header and Body Footer. You can also control

the Print Occurrence for a Band, having it continue on a new page or column or any

combination of occurrence settings. You can set a Band to group on specific fields and

can create as many different types of group headers or footers as your report requires.

Basically, with Rave's Band and DataBand components, you'll be able to create just

about any banded style layout that you can imagine.

Band Display for Region1 DataBi

, Demo TextBand (8)
, Band1 (R) + Data8and1 (Master)

, 8and2(8)
, Band3(8) + D,rt,,Band? (Detain + D,ltaBand? (Detain
+ DataBand? (Detail}
.l Band4 (b)

, Band1 (R) + Data8and1 (Master)
, Band2 (8)
, 8and3(8) + DataBaml2 (Detail) + DataBand2 (Detail) + DataB,md2 (Detain
.l Band4 (b)

, 8and1 (R)

+ Data8and1 (Master)
, Band2(8)
, 8and3(8) + Dat.lBaml2 (Detail) + DataBand2 (Det.lil) + DataBand? (Detail>
.l 8and4 (b)

QK

~ancel

Prir,t t,,_ocation

[J !;l_ody Header (B)
[J Q.roup Header (G)

[J B_ow Header (R)
G'.J Q.etail (D)

[J ROY\'.: Footer (r)

[J Grou12. Footer (g)

[J Bodt. Footer (b)

Print occurrence

G'.] E_irst (1)
[J (iew Page (P)
[J N~w Column (C)

Figure 2.15 Band Style Editor

36

DataBand - The DataBand component is fairly similar to a band component

except that it is tied to a particular DataView and iterates across the rows in the

Data View. You can link DataBands together for Master-Detail to unlimited levels or

multiple details on the same level. Some advanced features that are supported by a

DataBand include KeepBodyTogether, KeepRowTogther, StartNewPage, MaxRows

and Orphan/Widow control.

DataText - The DataText component is the primary means to output fields from

your database. You can quickly select a specific Data View and DataField with Property

Panel or use the Data Text Editor shown below to create any combination of string

constants, data fields, report variables or project parameters. The & concatenation

operator is the same as the + operator, except that it also inserts a space. Report

Variables are items such as total pages or current date and time in a variety of formats.

Project Parameters are custom variables that you create and initialize from your Delphi

application. Project Parameters can be used for items such as user defined report titles,

printing the current user name or other custom information.

Data Fields
Data Vie-,v Data Field

CustNo

(~) Selected Insert Eield V

Report Variables
v I insert E_eport Var J

s A•------·.- ==·-A
, T otalPages

v I' Insert E'_arameter J

Post lnrtialize Variables

v [Insert Pl '{ar

Data Text

'Page' & Report .CurrentPage & 'of' & Report TotalPages

QK I i ~ancel

Figure 2.16 Data Text Editor

37

DataMemo - This component is very similar to the Memo component except

that it retrieves data from a DataField. DataMemo component's print text data out in a

word wrapped fashion and the DataField can be any text type, not just memo fields. It

also has RTF and mail merge support.

CalcText - This component is used to perform simple operations such as Sum,

Average, Count, Min and Max on a data field. You can set the value as a running total

and place it in any type of band or anywhere on the page) you need it.

DataMirrorSection - The data mirror section component is similar to Raves

section component (found in the Standard Toolbar) with one major difference, it will

dynamically mirror another section depending upon the value of a DataField. You

configure the data mirror section using the Data Mirror Editor (shown below). This

component is very useful for printing out data that has different formats depending upon

the type of data. One example is an address field that could print a US format if the

country field is "US" and an international format otherwise (using the Default option in

the Data Mirror Editor). You could also print Boolean field values with your own

custom bitmaps.

Data Mirrors
• Default ' (Page2 lnterSection)

Q_elete

Data Minor Settings

Field Value

us

0Default

Mirrored Section

Page2 .USSectiori v

Figure 2.17 Data Mirror Editor

38

2. 7 Barcode Components

Figure 2.18 Barcode Toolbar

PostNetBarCode - Prints a US PostNet bar code.

12of5BarCode - Prints Interleaved 2 of 5 barcodes.

Code39BarCode - Prints standard and extended Code 39 barcodes.

Code128BarCode - Prints A, B and C Code 128 barcodes.

UPCBarCode - Prints UPC-12 barcodes.

EANBarCode -Prints EAN-13 barcodes.

2.8 Anchors

Anchors are a powerful way to create a report that dynamically adjusts to

changing sizes. This allows you to create reports that can print well whether the user

selects landscape or portrait, 8.5" by 11" or A4. There are 6 different anchor values for

both the horizontal and vertical dimensions to allow you to control each component in

exactly the manner that it needs. The Anchor Editor (shown at right) even shows you a

helpful bitmap of how each anchor setting works.

Horizontal Anchor

()Iop C1hett
:)!:light
Q>C!2_nter
()Stretc!l
()Resil_e
()Spreag

()~ottom
()~enter
()~retch
(f.)Res[ze
()Sgread

Verfo:::c1l Sample Horizontal Semple

i111Elfilj • ·11111JJr•

QK J I (;_ancel

Figure 2.19 Anchor Editor

39

2.9 Code Based Reports

Lately Delphi has decided to include Rave Reports as the default reporting

solution, replacing Quick Reports. Since they work in very different paradigms, many

people were confused by the new environment. This is intended as an introduction for

people who haven't worked with Rave yet, and would like to start.

Nowadays Delphi ships with Rave Reports 5.0.8. If you haven't already,

download the update from the registered users page, since it fixes some important

problems.

You can develop reports with Rave using two different ways: Code Based or with

the Visual Designer.

With Code Based, you write reports using plain Delphi code. That provides a very

flexible way displaying any kind of data, allowing any kind of complex layouts.

To write a code based report, just drop a TrvSystem component on the form and

write the report on the OnPrint event handler. Sender is the report you are creating, and

can be typecasted to TbaseReport. It contains all the methods you need to output

information to that particular report.

2.9.1 Simple Code Base Report

Here's a simple report using the code based mechanism:

procedure TformMain.RvSystemPrint(Sender: Tobject);

begin

with Sender as TbaseReport do

begin

SetFont('Arial', 15);

GotoXY(l,1);

Print('Welcome to Code Based Reporting in Rave');

end;

end;

40

To execute this report, call RvSystem.Execute method.

So, what does that simple code do? First, it calls SetFont to select the font and

size of the text that will be printed from that point on. Then it positions the cursor on the

coordinates (1,1). These coordinates are expressed using the units set in the

SystemPrinter.Units property of the RvSystem object, and it defaults to Inches. You can

set it to unUser and set a number relative to Inches in the SysternPrinter.UnitsFactor

property. For example, if UnitsFactor was set to 0.5 then 1 unit would correspond to

half an inch. Finally, the code calls the Print method to output the text. Here's the

output:

ofl '~ ~ @l ~ Zoom

Welcome to Code Based Reporiing in Rave

.V

Figure 2.20 Report Preview

2.9.2 Tabular Code Based Report

Here's another example. It displays a list of the folders in the root of the current

drive, along with a recursive count of number of files and folder, and total size of the

files included in each folder.

Procedure TformMain.PrintTabularReport(Report: TbaseReport);

var

FolderList : TstringList;

I : Integer;

NumFiles : Cardinal;

41

NumFolders : Cardinal;

SizeFiles : Cardinal;

Root : string;

begin

with Report do

begin

SetFont('Arial', 15);

New Line;

PrintCenter('List of Folders in the Drive Root', 4);

New Line;

New Line;

ClearTabs;

SetTab(0.2, pjLeft, 1. 7, 0, 0, O);

SetTab(l.7, pjRight, 3.1, 0, 0, 0);

SetTab(3.l, pjRight, 3.5, 0, 0, O);

SetTab(3.5, pjRight, 4.5, 0, 0, O);

SetFont('Arial', 10);

Bold := True;

PrintTab('Folder Name');

PrintTab('Number of Files');

PrintTab('Number of Folders');

PrintTab('Size of Files');

Bold := False;

New Line;

FolderList := TstringList.Create;

try

Root := IncludeTrailingPathDelimiter(ExtractFileDrive(ParamStr(O)));

EnumFolders(FolderList, Root);

for I := 0 to FolderList.Count - 1 do

begin

PrintTab(FolderList[I]);

GetFolderlnfo(IncludeTrailingPathDelimiter(Root+FolderList[I]),

NumFiles, NumFolders, SizeFiles);

42

PrintTab(Format(' %u' ,[NumFiles]));

PrintTab(Format('%u' ,[NumFolders]));

PrintTab(Format('o/ou bytes' ,[SizeFiles]));

New Line;

end;

finally

FolderList.Free;

end;

end;

end;

Notice that a different approach has been taken: instead of specifying the

coordinates of each text output, the printing was done using Lines and Columns as

references. The line heigh depends on the size of the current font: each unit represents

l/72nds of an inch, so each line printed with a size 10 font will have, ppropriate y, a

height of 0.138 inches. Lines are advanced after calls to PrintLn or NewLine. Colums

are defined using calls to the SetTabs method, and the PrintTab method will print the

text in the current column and advance to the next one. Here's the output:

List of Folders in the Drive Root

Fol<le1 Naine
Arquivos de programas
Documents and Settings
WINDO\IVS

Number of Files
984
899

5205

N11mhe1 of Folders
1571
1359
6407

Size of Files
289576931 bytes
431507112 bytes
1544102897 bytes

Figure 2.21 Report Preview

2.9.3 Graphical Code Based Report

You can include shapes and images in your code based report, along with the

text. The following example demonstrates that:

procedure TformMain.PrintGraphicsReport(Report: TbaseReport);

var

43

Bitmap : Tbitmap;

begin

with Report do

begin

Canvas.Brush.Color := clGray;

Rectangle(0.3, 0.3, 4.7, 3.3);

SetFont('Arial', 15);

FontColor := clRed;

PrintXY(0.5,0.5, 'Just look at all the graphics!');

Bitmap := Tbitmap.Create;

try

Bitmap.LoadFromFile('delphi.bmp');

PrintBitmap(3.5,0.3,1,1, Bitmap);

PrintBitmap(l,2,3,3, Bitmap);

Canvas.Pen.Color := clBlue;

Canvas.Brush.Bitmap := Bitmap;

Ellipse(5,0.3 ,6,3 .3);

Ellipse(2,1,4,l .9);

finally

Bitmap.Free;

end;

Canvas.Pen.Color := clBlack;

Canvas.Brush.Style := bsSolid;

Canvas.Brush.Color := clYellow;

Pie(0.7 ,0.7, 1.7, 1.7, 1,1,1,2);

Canvas.Brush.Color := clGreen;

Pie(0.7,0.7,1.7,1.7,1,2,1,1);

end;

end;

In this example the methods Rectangle, Ellipse and Pie have been used draw

shapes with different fills. Bitmaps were outputted using PrintBitmap and as the brush

of the ellipses. Here's the output:

44

Graphics Report Example

Figure 2.22 Report Preview

2.10 Visually Designed Reports

2.10.1 The Visual Designer

If you are used to work with Quick Reports, the default reporting engme

included in the previous versions of Delphi, you created your reports using Delphi's

own form designer, and they were save in the DFM, included as resources in your

executable. Rave works a bit differently in this aspect: it has it's own report designer,

and saves the report using it's own file format. This has some advantages, including the

fact that your reports can be made "standalone", and be used or updated independently

of your application, or even made available in a Intranet or in the Internet, using

Nevrona's Rave Report Server. Of course, you can still have it saved in a form's DFM.

To get started with the Rave Visual Designer, drop a TrvProject in a form. This

will be the link from your application to the reports you are developing. If you want,

you can add a TrvSystem and link your RvProject to it, through it's Engine property.

The RvSystem is the object responsible for the general configuration of the reports: the

printer that is going to be used, the margins, the number of pages, and so on. To start a

new project, double click the RvProject you added to the form, or select "Rave Visual

Designer" from its context menu.

45

This is the interface that you will be working on:

Figure 2.23 Rave Visual Designer

The interface is simple, and you might be familiar with some parts of it from

Delphi's IDE. On the top there's the menu, the toolbar, and the component pallete that

contain the components that will be used in the reports. In the left there's the Object

Inpector, which will be used to adjust the properties of the components of the report. In

the middle there's the Page Designer or the Event Editor, and in the left there's the very

usefull Project Treeview. For a quick overview of the components in the pallete, you

can go to Nevrona's Visual Designer page.

A Rave Project File can have one or more reports. That way you can keep

common items between them in a single location, called Global Pages. If you expand

the Report Library node of the Project Treeview, you can see that right now you are

working on Reportl. Clicking on it, its properties will show on the Inspector. Let's

change it's name and call it SimpleReport. Next, go to the Standard tab on the

Component Pallete, and pick a Text component and add it to the page. Change its text

property, and adjust its size and position. Here's how it looks like:

46

Figure 2.24 Component Palette: Standard Tab

As you can see, the properties that were changed from the default values are

shown in bold. In this case, I changed the Font, Text and Truncate properties. By default

it does not highlight Name, Pos and Size changes. If you'd like to see them, right click

the Inspector and uncheck "Exclude Name, Size and Pos changes" in the context menu.

You might have also noticed that Rave does not have an auto size property. You

can use the Truncate property to have that effect: if truncate is false, the design time size

will have no effect. -

You can see the result of this simple report right on the designer: Press F9 or use

File/Execute Report to run it. Now let's do it in our application. Save your project and

return to Delphi. Change to ProjectFile property of RvProject to point to the file you

just saved. To run the report, add a call to the Execute method of the RvProject object in

a button click, for example.

RvProject.Execute will only work for now because we only have one report in

this project. If we had multiple reports, we'd have to call SelectReport to choose one

before calling Execute, or calling ExecuteReport directly.

47

Here's the output:

Welcorne to Rave Reports Visual Designer

<

Figure 2.25 Report Preview

Tip: If you Close and Open your project before executing, you won't need to to

recompile your application or restart it to see the changes you just made in the designer.

2.10.2 Interacting with the Project

If you worked with Quick Reports, you might be used to manipulating the

objects in runtime, changing their Position, Text and Visibility. After all, they were just

Tobjects ! While this is possible with Rave, and I' 11 cover it in a later article, it's a little

harder than it was with QR. But don't worry, Rave provides a different answer to this

kind of problems.

Parameters

If you can use parameters in your reports. They can be defined using the

parameters property of either the Project, a Report or a Page. Parameters can be defined

in either of these places, they are just in multiple places for easier access.

You can only select the Project and a Report through the Project Treeview. A

page, however, can be selected using the Project Treeview or clicking on it's title above

the page designer.

48

Among other uses, you can print parameters. So, for instance, if the title of your

report can be user-defined, you could pass it from your application into the report as a

parameter.

Let's add a new report to this project to see how parameters work. To do that,

click the fourth button on the toolbar or choose File/New Report. Call it

ParametrizedReport, changing its name through the object inspector. This report is

going to be very similar to the first one, except the text is going to be user-defined.

Now we need to define the parameter that is going to be printed. To do that, still

having the report as the selected object, open the property editor the the parameters

property. There should be listed all parameters of this report, each on a separate line.

Add a parameter called Name, like this:

QK I ~ancel J
Figure 2.26 Strings Editor

Parameters can be printed using a DataText component, available in the Report

tab of the component pallete. Add a DataText to the page, and open the property editor

of the DataField property. There you can choose which field is going to be printed,

when working with DataAware reports. You can also choose Project Variables,

Parameters and Post-Initialize Variables from there.

49

So choose the parameter added previous! y from the Parameters drop-down

combo and press the Insert Parameter button. The data text expression is now

Param.Name. Press OK and try to execute the report, as before. Nothing is printed,

since the parameter has not been set.

We need to set this parameter before printing. Don't forget to save your changes,

and return to Delphi, adding a call to SelectReport before Execute, so we can see the

right report. Before executing, though, we need to set the parameter we added. That is

made using RvProject's SetParam method. This is how my code looks like right now:

procedure TformMain.btnExecuteClick(Sender: Tobject);

begin

RvProject.Open;

RvProject.SelectReport('ParametrizedReport' ,False);

RvProject.SetParam('Name' ,'Leonel');

R vProject.Execute;

RvProject.Close;

end;

Now, when we execute the report, we are going to see the string we set as a parameter

printed.

Tip: You can use RvProject.GetReportList to get a list of avaible projects, and add them

to a ComboBox, or a RadioGroup, for example. That makes selecting the report easier.

But this is too simple. Let's change the expression that is going to be printed. Return to

Rave Designer and open the property editor for the Data Text we added. You can add

any text you want, combining text, fields, parameters and variables. I changed it to this:

-Deta Text

'Hello, ' + Param .Name+ ', nice to meet you '

s

Figure 2.27 Data Text Sample

50

Here's the result:

Hello, Leonel, nice to meet you.

Figure 2.28 Report Preview

Post-Initialize Variables

Post-Initialize Variables, or simply PI Vars, are variables whose value is only

known after the report has already been printed. It may sound strange, at first, but think

about the number of pages of a report, for example. We can only know it's value after

the report is ready. Actually TotalPages is a report variable that acts like a PI var, and

can easily be printed using DataTexts as we did with Parameters.

Global Pages

When you have parts of reports that are common to two or more reports, you can

put these in a global page. Let's ppropr we have a header with our company name, the

date and time that report is being printed, the current page and the number of pages of

that report. We want that header to be in every report. How can we do it?

First, add a global page to the project, using File/New Global Page, or the

Toolbar shortcut. In that page, add a section component, available in the standard tab of

the component palette.

Sections are logical groupings of components. They can be used to group

component so they can be easily moved around the report or as containers for Mirrors,

as we are doing right now.

51

Inside that section we add what we want to be printed. In this case, a few DataTexts.

My header looks like this:

Introduction to Rave Reports
(Report.DateShort + '' + Report.TimeShort) ['Page'+ Report.C'urrentPage +'of'+ Report.TotalPages+ '.!] '

Figure 2.29 Header Sample

Hint: Instead of changing the font property of several components to the same

font, link them to a FontMaster component, available in the standard tab, and set the

font on it. That way is easier to change the font in the future, in case it's needed.

Now add another section to the Pagel of SimpleReport. Set its Mirror property

to GlobalPagel .Sectionl. You will see a copy of the header you created in the global

page. Do the same thing to ParametrizedReport. Now both reports share the same

header. Here how it looks like:

0' : Cl 'lo, •

Introduction to Rave Reports
31JDS/200316:42 Page 1 of 1.

Hello, Leonel, nice to meet you.

<J

Figure 2.30 Report Preview

Conditional Printing

Sometimes we need to print certain parts of a reporting depending of some

conditions. Rave has a very powerful way of dealing with this. We can conditionally

mirror sections depending on field values or parameters. Let's create a new Report,

calling it a Conditiona!Report.

52

Let's pretend that this new report is a trick one. The user can choose the header

that is going to be printed, from two different kinds of headers. He can also choose for

the report to be printed without a header. We are going to use a parameter to tell the

report what kind of header is going to be printed, and a DataMirrorSection to select the

proper header at runtime.

First, add a parameter to this new report called Header Kind. Let's assume that it

will have the values HO (for no header), Hl (for the first header), H2 (for the second

kind of header). Now add a new section to the global page (you can reach it through the

Project Treeview), with the second kind of header layout. I created a header similar to

the first one, changing the font title and adding a border around the values. It looks like

this:

introduction to Rave Reports
[Report.Date Short + '' + Report.TimeShort J ['Page'+ Report.CurrentPage +'of'+ Report.TotalPages +'.']I'.

Figure 2.31 Header Sample

Now return to the Pagel of ConditionalReport, and add a DataMirrorSection,

available at the Report tab of the component pallete. Go to its DataField property editor,

and set Param.HeaderKind as the expression. Now go to the DataMirrors property

editor, and add two Data Mirrors: if the value is Hl, it should point to the first header,

H2, to the second. Since HO does not match any mirrors, nothing will be printed. It

should look like this:

53

0Def.ault

OK. . J l C~ncel

Figure 2.32 Data Mirror Editor

Notice that I gave more meaningful names to each of the sections earlier.

Hint: You can use the OnMirrorValue event of the DataMirrorSection to work

on ranges of values.

Now return to Delphi and add the code to set the parameter according to the

user's choice. I added a ComboBox with the options and my code looks like this:

Procedure TformMain.btnExecuteClick(Sender: Tobject);

Begin

RvProject.Open;

RvProject.SelectReport (cmbReports.Text, False);

case cmbReports.Itemlndex of

1: RvProject.SetParam('Name' ,edName.Text);

2: RvProject.SetParam('HeaderKind' ,Format('Ho/od' ,[cmbHeaderKind.Itemlndex]));

end;

RvProject.Execute;

RvProject.Close;

end;

Now the proper header will be printed according to the user's choice.

Embedding the Project in the Executable

54

When you deploy your application, you must include you project file. You can

have it as a separated file, so you can update it in a easier way, only shipping a new one,

without recompiling your application, or include it in your executable. It's easy to do

that: open the property editor for the StoreRA V property of RvProject. There you can

press Load to include the file in the DFM, Save to extract a previously saved file, and

Clear to remove an embedded file. When there's a file loaded in this property, you don't

need to ship the project file separately.

2.11 Data Aware Reports

2.11.1 The Database Connection

There are two ways to access data from inside a report: you can share the same

connection established by your application, fetching records from Datasets that exists in

your Forms or Datamodules, or you can configure a new connection on the report,

allowing it to be independent of a particular application. For the first method you would

use a Direct Data View and a Driver Data View for the second. Data View is the analog

of a DataSource/DataSet combination inside the report.

If you intend to deploy your application using Nevrona's Rave Report Server, you

should use Driver Data Views.

2.11.2 The Driver Data View

Let's create a simple database report using a Driver Data View. Start the Rave Visual

Designer, and start a new project. We need to define the database connection. To do

this, choose File/New Database Object, or press the sixth button in the toolbar (the

purple cube). The Data Connections window will appear:

55

Data Object Type

I Data Lookup Security Controller

fj Database Connection

I!! Direct Data View
Ill Driver Data View
t\i Simple Securlty Controller

:;,,-\ L. ~a~~:'
Figure 2.33 Data Connection Window

Choose Database Connection, and you will be asked which Data Link you are

going to be using. There is a folder called DataLinks where Rave has been installed,

containing some files with the .rvd extensions, responsible from the connection

mechanism. By default, you can choose between BDE, DbExpress and ADO. I'll be

using BDE for this example. Choose BDE; press Finish, and the Database Connection

Parameters window will show up. Every Data Link has a different set of connection

parameters available, similar to those available in the Delphi IDE. For now, just set

Alias to DbDemos and press OK. Notice that a Database object has been added to the

Project Treeview, under Data View Dictionary:

R aveProject
::::! ~ Report Library

E [{ffij Reportl
[ill) Pagel

~ Global Page Catalog
i.=J •• Data View Dictionary

~(!l:lt Databasel

Figure 2.34 Project Tree View

Notice that the settings you configured in the Database Connection Parameters,

after the wizard, including usemame and password, if applicable, were saved in the

AuthDesign property of the Database component. In the AuthRun property you can use

different settings to be used at runtime, when your report has been deployed.

56

We are going to create now the Driver Data View. Click on New Data Object,

and then choose Driver Data View. You should now choose the Database Connection

that is going to be used by this Data View: choose the Database created in the previous

step. A Query Advanced Designer will show up. Drag and Drop the table customer.db

from the table list to the Layout window. It should look like this:

Tables
-~"'"'""-"""»-'"""'w&m:re & m<ow-,re-~,.,.;;,

animals. dbf
biolife.db
clients.dbf
country.db
custolv.db
customer.db
employee. db
events.db I holdings dbf

, industry. dbf
~iWm~lijfr0"·"

F.ll.'><
TaxRate
Contact
I -. ~J •....• i ~,;-:,.;.".'.".'.".:'f). :-:,~.-.

master.dbf
nextcust.db
nextitem. db

i nextord.db I orders.do
·1 parts db
reservat. db
vendors.db

I venues.db

Editor OK J [Cancel

Figure 2.35 Query Advanced Designer Window

If you have more than one table, you should drag and drop fields that should be

joined between tables. If you press the Editor Button you can check the generated SQL,

or type-in a more complex query. Let's keep the simple Customer Listing for now.

Press OK and a Driver Data View will be added to the Project Treeview, below the

Database components, having the selected fields as subitems:

57

i,;:1 • Data View Dictionary
· fD DbDemo:s

'.::I 9 DvCustomer
i!i DvCustomerCusNo
Q'.it DvCustometCompany
Qlt DvCustomerAddr1
5 DvCustomerAddr2
Q'.it DvCustomerCity
·FJ! D vCustomerS tate
Fm D vCustomerZip
Q'.it D vCustomerCountry
·fi D vCustomerPhone e DvCustomerFPX
ti DvCustomerT axRate
Q'.it DvCustomerContact
f:~ D vCustomerla:stl nvoiceD ate

Figure 2.36 Project Tree View

Notice that I renamed the Database Connection and the Data Viewto more

appropriate names. It's in the Treeview where properties of the fields should be set, like

the Display Label (FullName property), and the DisplayFormat.

2.11.3 Regions and Bands

Report components that should be printed in a fixed position in every page, like

fixed headers and footers can be put directly in page. Components, whose position will

be dependent of previously printed items, should be put in bands. DataBands will be

printed once for every record in the linked Data View, while regular Bands will only be

printed once, regardless of how many records have been selected. Both can contain

Data-Aware components (like DataText), or regular components (like Text).

Bands should be put inside Regions. Regions delimitate the width of the bands,

and the maximum height that bands can use before starting a new page. One page can

have many Regions, and one Region can contain many Bands.

Add a Region to the Page covering its whole area. Inside the region add a Band,

to be used as the report header, a DataBand, to print the customer information, and

another Band, the report footer.

58

If you wish to change the ordering of existing bands in a report, use the Move

Forward and Move Behind buttons in the Aligment Toolbar.

Rename the bands to more meaningful names (I used Header, CustomerData and

Footer). Set the Data View property of CustomerData to DvCustomer, and set

CustomerData as the Controller Band of the Header and Footer bands. You should also

run the Band Style Editor, from the Object Inspector, and set the Print Location of those

two bands to Body Header and Body Footer, respectively. You can have an idea on how

the report is going to be printed observing the Band Display as you change the settings.

It shows iterating bands repeated three times, and other bands only once:

T Header (B) + CustornerData (Master)
+ CustornerData (Master) + CustornerData (Master)
i Footer fl>}

Figure 2.37 Band Display

We also want the Header to be printed in other pages in case the listing spans

more than one page: check the New Page option in the Print Occurrence groupbox, in

that same dialog.

The Footer band will only print when DvCustomers has reached its end. If you

want it printed in every page, regardless of that, just put the components directly on the

page, below the region, and not in a Band.

In the editor, you can quickly identify the relationship between bands, their

styles and their print occurrences:

I.~ Region1 : .custo~eri::.aia Master ·1 P

I i Region1 : F oater .---~·····-······-··· .. -·

Figure 2.38 Editor Sample

59

2.11.4 Adding Fields

It's not hard to add fields to a report. You can Ctrl+Drag the fields from the

DataView, in the Project Treeview, to add DataText components to the report, and

Alt+Drag them to add Text components containing the Fullname property. This allows

you to quickly create the layout of the report. Now add some fields to CustomerData

and their title to the Header. I added CustNo, Company, Phone, TaxRate and

LastlnvoiceDate.

Don't forget that you can use the tools on the Alignment Toolbar to align the

components, even if they are in different bands.

I added a title to the Header band and a simple text to the Footer band, indicating

that the listing has ended. Later on the series we are going to see how to use the CalcOp

and CalcTotal components to be able to add totals, averages and other calculated values

to the Footer.

2.11.5 Adding the Report to Your Project

To add this report to your project you should use use the same approach as seen

in Part II: just use a RvProject in a Form or DataModule, link it to the report file, and

call its Execute method. But there is one gotcha when using Driver Data Views: your

application must load the ppropriate driver. To do that, just add the unit RvDLBDE to

your uses clause, if using BDE, RvDLDBX if using DbExpress, or RvDLADO if using

ADO.

60

CHAPTER THREE

3 STOCK PROPERTY BY USING DELPHI

3.1 Database Connection Screen

When user executes program, first database connection screen appears.In this

screen user enters user name and password to use the program.so user must have a valid

user name and password.Also user must have appropriate privileges on database; such

as view, add, update, delete.

Figure 3.1 Database Connection Screen

61

If user name or passwords are not entered correctly a screen appears with a

message as"please insert true UserName and Password".

0 please insert true UserName and Password

I OK I
Figure 3.2 Warning Message

62

3.2 Main Menu

When the user name and password are entered correctly user meets the Main

Menu screen.As you can see in this figure there are 15 sections; house to let, house for

sale, shop to let, shop for sale, plot for sale, garden for sale, building for sale, farm for

sale, villa for sale, field for sale, flier print, about, informations, user register and exit

are the names of the sections.

Figure 3.3 Main Menu

63

3.3 House to Let Menu
In house to let menu user can organize,search and print of house to let.

3.3.1 House to let Organize Form
House to let organize form have 8 sections.The sections will be explain below.

New; create new application. Previous; you can call the previous application using this

button. Next; you can call the next application using this button. Clear; with this button

you can cancel the application. Cancel; with this button you can clear the application.

Save; with this button you can save the application. Search; with this button you can

search the application.Print; with this button you can print the application.

If already rented checkbox signed it means this house already rented otherwise if

it is not signed it means it is available for let. Houseowner informations show the

information of owner.Buyer informations show the information of customer. House to

let informations show the information of house.

Figure 3.4 House to Let Organize Form

64

3.3.2 House to Let Search Form

House to let search form show to user detailed information and same time you

can search the houses available for customer. Using preview button you can go to initial

form.

21/04/2006
125 GONYELi
260 ORTAK.OY 3+1

70.000,00 TL True
90.000,00 TL False

Figure 3.5 House to Let Search Form

65

At house to let search part you can search available houses for letting according

to their features.If the condition of house is false it means the house is empty you can let

the house.If the condition is true it means you can not let the house because the house is

already was letted.

V

Figure 3.6 House to Let Search Form in Edit Mode

66

If you press previous section you can go to the current page of available house.

Figure 3.7 House to Let Organize Form in Edit Mode

67

3.3.3 House to Let Report Form

Using house to let report form you can print the informations about that house.

ESER PROPERTY
HOUSE TO LET

2
M 260

TYPE 3+1

bl STRICT ORTAKOY

PRICE 90. 000. 00 TL

TELEPMONE 0000 000 00 00 9999 999 99 99
V

0% :Page I of I

Figure 3.8 House to Let Report Form

68

3.4 House for Sale Menu
In house for sale menu user can organize,search and print of house for sale.

3.4.1 House for Sale Organize Form
House for sale organize form have 8 sections.The sections will be explain below.

New; create new application. Previous; you can call the previous application using this

button. Next; you can call the next application using this button. Clear; with this button

you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application. Search; with this button

you can search the application.Print; with this button you can print the application.

If already sold checkbox signed it means this house already sold otherwise if it is

not signed it means it is available for sale.Houseowner informations show the

information of owner.Buyer informations show the information of customer.House for

sale informations show the information of house.

Figure 3.9 House for Sale Organize Form

69

3.4.2 House for Sale Search Form

House for sale search form show to user detailed information and same time you

can search the houses available for customer.Using preview button you can go to initial

form.

15/11/1999
225 T AS Kl N KOY
145 HAMiTKOY

2+1
3+1

85.000,00 TL True
66.000,00 TL False

Figure 3.10 House for Sale Search Form

70

At house for sale search part you can search available houses for selling

according to their features.If the condition of house is false it means the house is empty

you can sale the house.If the condition is true it means you can not sale the house

because the house is already was sold.

Figure 3.11 House for Sale Search in Edit Mode

71

If you press previous section you can go to the current page of available house.

Figure 3.12 House for Sale Organize Form in Edit Mode

72

3.4.3 House for Sale Report Form

Using house to let report form you can print the informations about that house.

ESER PROPERTY
HO USE FOR SALE

2
M

TYPE

DISTRICT

PRICE

TELEPHONE

145

3+1

HAMiTKOY

66.000, 00 TL

0532 345 21 34 0542 843 77 59

0% !page i of 1

Figure 3.13 House for Sale Report

73

3.5 Shop to Let Menu
In shop to let menu user can organize,search and print of shop to let.

3.5.1 Shop to Let Organize Form
Shop to let organize form have 8 sections.The sections will be explain below.

New; create new application. Previous; you can call the previous application using this

button.Next; you can call the next application using this button.Clear; with this button

you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application. Search; with this button

you can search the application.Print; with this button you can print the application.

If already rented checkbox signed it means this shop already rented otherwise if

it is not signed it means it is available for let.Owner of a shop informations show the

information of owner.Buyer informations show the information of customer.Shop to let

informations show the information of shop.

Figure 3.14 Shop to Let Organize Form

74

3.5.2 Shop to Let Search Form

Shop to let search form show to user detailed information and same time you can

search the shops available for customer.Using preview button you can go to initial form.

R egistr ationdate
~ 03/11/2003
30/01/1989

55 DEREBOYU
85 YENiKENT GALERi

45.000.00 TL True
45.000.00 TL False

Figure 3.15 Shop to Let Search Form

75

At shop to let search part you can search available shops for letting according to

their features.If the condition of shop is false it means the shop is empty you can let the

shop.If the condition is true it means you can not sale the shop because the shop is

already was letted.

V

>

Figure 3.16 Shop to Let Search Form in Edit Mode

76

If you press previous section you can go to the current page of available shop.

Figure 3.17 Shop to Let Organize Form in Edit Mode

77

3.5.3 Shop to Let Report Form

Using shop to let report form you can print the informations about that shops.

ESER PROPERTY

SHOP TO LET

2
M

TYPE

DISTRICT

PRICE

TELEPHONE

85

GALER!

YENIKENT

45.000, 00 TL

0532 345 21 34 0542 843 rr 59

0% Page 1 of 1

Figure 3.18 Shop to Let Report

78

3.6.2 Shop for Sale Search Form

Shop for sale search form show to user detailed information and same time you

can search the shops available for customer.Using preview button you can go to initial

form.

23/12/1996

55 GiRNEKAPI
75 KUl;:UKKAYMAKL ZEMiN

38.000,00 TL True
65.000,00 TL False

V

Figure 3.20 Shop for Sale Search Form

80

At shop for sale search part you can search available shops for selling according

to their features.If the condition of shop is false it means the shop is empty you can sale

the shop.If the condition is true it means you can not sale the shop because the shop is

already was sold.

V

Figure 3.21 Shop for Sale Search Form in Edit Mode

81

3.6 Shop for Sale Menu
In shop for sale menu user can organize, search and print of shop for sale.

3.6.1 Shop for Sale Organize Form
Shop for sale organizes form have 8 sections.The sections will be explain below.

New; create new application.Previous; you can call the previous application using this

button.Next; you can call the next application using this button.Clear; with this button

you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application.Search; with this button

you can search the application.Print; with this button you can print the application.

If already sold checkbox signed it means this shop already sold otherwise if it is

not signed it means it is available for sale.Owner of a shop informations show the

information of owner.Buyer informations show the information of customer.Shop for

sale informations show the information of shop.

Figure 3.19 Shop for Sale Organize Form

79

If you press previous section you can go to the current page of available shop.

Figure 3.22 Shop for Sale Organize Form in Edit Mode

82

3.6.3 Shop for Sale Report Form

Using shop for sale report form you can print the informations about that shops.

ESER PROPERTY

SHOP FOR SALE

2
M 75

TYPE ZEMiN

DISTRICT

PRICE 65.000, 00 TL

TELEPHONE 0532 345 21 34 0542 843 77 59

0% Page 1 of 1

Figure 3.23 Shop for Sale Report Form

83

3. 7 Plot for Sale Menu
In plot for sale menu user can organize, search and print of plot for sale.

3.7.1 Plot for Sale Organize Form
Plot for sale organizes form have 8 sections.The sections will be explain below.

New; create new application.Previous; you can call the previous application using this

button.Next; you can call the next application using this button.Clear; with this button

you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application.Search; with this button

you can search the application.Print; with this button you can print the application.

If already sold checkbox signed it means this plot already sold otherwise if it is

not signed it means it is available for sale.Owner of a plot informations show the

information of owner.Buyer informations show the information of customer.Plot for

sale informations show the information of plot.

Figure 3.24 Plot for Sale Organize Form

84

3.7.2 Plot for Sale Search Form

Plot for sale search form show to user detailed information and same time you

can search the plots available for customer.Using preview button you can go to initial

form.

,, 1 5/02/2000
320 S EF AKOY
400 LEMAR PARKYANI 95.000,00 TL False

Figure 3.25 Plot for Sale Search Form

85

At plot for sale search part you can search available plots for selling according to

their features.If the condition of plot is false it means the plot is empty you can sale the

plot.If the condition is true it means you can not sale the plot because the plot is already

was sold.

Figure 3.26 Plot for Sale Search Form in Edit Mode

86

If you press previous section you can go to the current page of available plot.

Figure 3.27 Plot for Sale Organize Form in Edit Mode

87

3.7.3 Plot for Sale Report Form

Using plot for sale report form you can print the informations about that plots.

ESER PROPERTY

PLOT FOR SALE

2
M

TYPE

DISTRICT

PRICE

TELEPHONE

320

YOL0ST0

SEFAKOY

85.000, 00 TL

0532 345 21 34 0542 843 77 59

0% ,Page 1 of 1

Figure 3.28 Plot for Sale Report Form

88

3.8 Garden for Sale Menu
In garden for sale menu user can organize, search and print of garden for sale.

3.8.1 Garden for Sale Organize Form
Garden for sale organize form have 8 sections.The sections will be explain

below.New; create new application. Previous; you can call the previous application

using this button.Next; you can call the next application using this button.Clear;with

this button you can cancel the application.Cancel; with this button you can clear the
V

application.Save; with this button you can save the application. Search; with this button

you can search the application. Print; with this button you can print the application.

If already sold checkbox signed it means this garden already sold otherwise if it

is not signed it means it is available for sale.Owner of a garden informations show the

information of owner.Buyer informations show the information of customer.Garden for

sale informations show the information of garden.

Figure 3.29 Garden for Sale Organize Form

89

3.8.2 Garden for Sale Search Form

Garden for sale search form show to user detailed information and same time

you can search the gardens available for customer.Using preview button you can go to

initial form.

350 KAYALI 410 KAYISI 88.000,00 TL False

Figure 3.30 Garden for Sale Search Form

90

At garden for sale search part you can search available gardens for selling

according to their features.If the condition of garden is false it means the garden is

empty you can sale the garden.If the condition is true it means you can not sale the

garden because the garden is already was sold.

Figure 3.31 Garden for Sale Search Form in Edit Mode

91

If you press previous section you can go to the current page of available garden.

Figure 3.32 Garden for Sale Organize Form in Edit Mode

92

3.8.3 Garden for Sale Report Form

Using garden for sale report form you can print the informations about that gardens.

ESER PROPERTY
GARDEN FOR SALE

2
M

TYPE

DISTRICT

PRICE

TELEPHONE

350

410 KAYISI

KAY ALI

88.000, 00 TL

0532 345 21 34 0542 843 77 59

0% 'Page 1 of 1

Figure 3.33 Garden for Sale Report Form

93

3.9 Building For Sale Menu
In building for sale menu user can organize, search and print of building for sale.

3.9.1 Building for Sale Organize Form
Building for sale organize form have 8 sections. The sections will be explain

below.New; create new application. Previous; you can call the previous application

using this button.Next; you can call the next application using this button. Clear; with

this button you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application.Search; with this button

you can search the application. Print; with this button you can print the application.

If already sold checkbox signed it means this building already sold otherwise if

it is not signed it means it is available for sale.Owner of a building informations show

the information of owner. Buyer informations show the information of

customer.Building for sale informations show the information of building.

Figure 3.34 Building for Sale Organize Form

94

3.9.2 Building for Sale Search Form

Building for sale search form show to user detailed information and same time

you can search the buildings available for customer.Using preview button you can go to

initial form.

01/01/1993
320 METROPOL 4+ 1
185 BAHCELiEVLI 3+ 1 98. 765,00 TL False

V

Figure 3.35 Building for Sale Search Form

95

At building for sale search part you can search available buildings for selling

according to their features.If the condition of building is false it means the building is

empty you can sale the building.If the condition is true it means you can not sale the

building because the building is already was sold.

V

Figure 3.36 Building for Sale Search Form in Edit Mode

96

If you press previous section you can go to the current page of available building.

Figure 3.37 Buildiing for Sale Organize Form in Edit Mode

97

3.9.3 Building for Sale Report Form

Using building for sale report form you can print the informations about that buildings.

ESER PROPERTY
BUILDING FOR SA LE

2
M 320

TYPE 4+1

DISTRICT METROPOL

PRICE 75.000, 00 TL

TELEPHONE 0532 345 21 34 0542 843 77 59

0% IPage 1 of 1

Figure 3.38 Building for Sale Report Form

98

3.10 Farm for Sale Menu
In farm for sale menu user can organize, search and print of farm for sale.

3.10.1 Farm for Sale Organize Form
Farm for sale organize form have 8 sections.The sections will be explain below.

New; create new application. Previous; you can call the previous application using this

button.Next; you can call the next application using this button. Clear; with this button

you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application. Search; with this button

you can search the application. Print; with this button you can print the application.

If already sold checkbox signed it means this farm already sold otherwise if it is

not signed it means it is available for sale.Owner of a farm informations show the

information of owner.Buyer informations show the information of customer.Farm for

sale informations show the information of farm.

Figure 3.39 Farm for Sale Organize Form

99

3.10.2 Farm for Sale Search Form

Farm for sale search form show to user detailed information and same time you

can search the farms available for customer.Using preview button you can go to initial

form.

29/03/1983
3200 HAMiTKOY
4000 DEMiRHAN TAVUK

87.000,00 TL True
65.000,00 TL False

Figure 3.40 Farm for Sale Search Form

100

At farm for sale search part you can search available farms for selling according

to their features.If the condition of farm is false it means the farm is empty you can sale

the farm.If the condition is true it means you can not sale the farm because the farm is

already was sold.

V

Figure 3.41 Farm for Sale Search Form in Edit Mode

101

If you press previous section you can go to the current page of available farm.

Figure 3.42 Farm for Sale Organize Form in Edit Mode

102

3.10.3 Farm for Sale Report Form

Using farm for sale report form you can print the informations about that farms.

ESER PROPERTY

FARM FOR SALE

2
M

TYPE

DISTRICT

PRICE

TELEPHONE

4000

TAVUK

DEMiRHAN

65.000, 00 TL

0532 345 21 34 0542 843 77 59

0% Paqe 1 of 1

Figure 3.43 Farm for Sale Report Form

103

3.11 Villa for Sale Menu
In villa for sale menu user can organize, search and print of villa for sale.

3.11.1 Villa for Sale Organize Form
Villa for sale organize form have 8 sections.The sections will be explain below.

New; create new application. Previous; you can call the previous application using this

button.Next; you can call the next application using this button. Clear; with this button

you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application. Search; with this button

you can search the application. Print; with this button you can print the application.

If already sold checkbox signed it means this villa already sold otherwise if it is

not signed it means it is available for sale. Owner of a villa informations show the

information of owner.Buyer informations show the information of customer.Villa for

sale informations show the information of villa.

Figure 3.44 Villa for Sale Organize Form

104

3.11.2 Villa for Sale Search Form

Villa for sale search form show to user detailed information and same time you

can search the villas available for customer. Using preview button you can go to initial

form.

R eqistr ationdate
320 0 RT AKOY
225 ERYAMAN DUB LEX

92.000,00 TL True
99.000,00 TL False

1 ~ I 01 10911990
fl 1 7 /0.(/2001

Figure 3.45 Villa for Sale Search Form

105

At villa for sale search part you can search available villas for selling according

to their features. If the condition of villa is false it means the villa is empty you can sale

the villa.If the condition is true it means you can not sale the villa because the villa is

already was sold.

V

Figure 3.46 Villa for Sale Search Form in Edit Mode

106

If you press previous section you can go to the current page of available villa.

Figure 3.47 Villa for Sale Organize Form in Edit Mode

107

3.11.3 Villa for Sale Report Form

Using villa for sale report form you can print the informations about that villas.

ESER PROPERTY

VILLA FOR SALE

2
M

TYPE

DISTRICT

PRICE

TELEPHONE

320

DUBLEX

ORTAKOY

92.000, 00 TL

0532 345 21 34 0542 843 77 59

0% iPage 1 of 1

108

3.12 Field for Sale Menu
In field for sale menu user can organize, search and print of field for sale.

3.12.1 Field for Sale Organize Form
Field for sale organize form have 8 sections.The sections will be explain below.

New; create new application.Previous; you can call the previous application using this

button.Next; you can call the next application using this button.Clear; with this button

you can cancel the application. Cancel; with this button you can clear the application.

Save; with this button you can save the application. Search; with this button you can

search the application. Print; with this button you can print the application.

If already sold checkbox signed it means this field already sold otherwise if it is

not signed it means it is available for sale.Owner of a field informations show the

information of owner.Buyer informations show the information of customer.Field for

sale informations show the information of field.

Figure 3.48 Field for Sale Organize Form

109

3.12.2 Field for Sale Search Form

Field for sale search form show to user detailed information and same time you

can search the fields available for customer.Using preview button you can go to initial

form.

21/06/1990
21/05/1989
05/1112004

4600 TASLIKOY KUYUSUZ 75.000,00 TL False
78-000,00 TL False
75.000,00 TL False

4600 T AS LI KOY 105 KAYISI
2500 DEGiRMELiK KUYULU

V

>

Figure 3.49 Field for Sale Search Form

110

At field for sale search part you can search available fields for selling according

to their features.If the condition of field is false it means the field is empty you can sale

the field.If the condition is true it means you can not sale the field because the field is

already was sold.

2500 DEGiRMENLiK KUYULU

Figure 3.50 Field for Sale Search Form in Edit Mode

111

If you press previous section you can go to the current page of available field.

Figure 3.51 Field for Sale Organize Form in Edit Mode

112

3.12.3 Field for Sale Report Form

Using field for sale report form you can print the informations about that fields.

ESER PROPERTY

FIELD FOR SALE

2
M 2500

TYPE KUYULU

DISTRICT DEGIRMENLiK

PRICE 75. 000, 00 TL

TELEPHONE 053 2 345 21 34 0542 843 77 59

0% Page 1 of 1

Figure 3.52 Field for Sale Report Form

113

3.13 Flier Print Menu

In flier print menu user can print all advertisements.

3.13.1 Flier Print Organize Form

In flier print organize form user can print all advertisements related to each type

houses, shops, villas, plots, fields.jgardens, buildings and farms.

Using preview button you can go to main menu.

Figure 3.53 Flier Print Form

114

3.13.2 House to Let Advertisements Form

Using this form you can print the advertisements about that house to let.

ESER PROPERTY

HOUSES TO LET

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE METER DISTRICT J>RICE TYPE

125 GONYEU

ORT.A.KOY 00.COJ,OJ TL

SnJDYO EV 70.COJ,OO TL

3+1 260

iPage 1 of 1

Figure 3.54 House to Let Advertisements Form

115

3.13.3 Villa for Sale Advertisements Form

Using this form you can print the advertisements about that villa for sale.

ESER PROPERTY
VILLAS FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE lv\ETER DISTRICT TYPE PRICE

ORTAKOY DUBLEX Q20)J,00 ll..

ERYAMAN DUBL.EX 9d.COJ,OO ll..

C

:Page 1 of 1

Figure 3.55 Villa for Sale Advertisements Form

116

3.13.4 Shop to Let Advertisements Form

Using this form you can print the advertisements about that shop to let.

ESER PROPERTY

SHOPS TO LET

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE METER PRICE t>ISTl<ICT TYPE

55 PA.3.AJ 45COJ,OJ TL DEREBOYU

85 YENiKENT GAL£Ri 45.COJ,OJ TL

Page 1 of 1

Figure 3.56 Shop to Let Advertisements Form

117

3.13.5 Plot for Sale Advertisements Form

Using this form you can print the advertisements about that plot for sale.

ESER PROPERTY
PLOTS FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE METER t>ISTRICT TYPE PRICE

SEFAKOY

LEM.A.R

YDLUSlU

PARKY AN I

85 0::0.00 TL

95 0::0,00 TL

Page 1 of 1

Figure 3.57 Plot for Sale Advertisements Form

118

3.13.6 House for Sale Advertisements Form

Using this form you can print the advertisements about that house for sale.

ESER PROPERTY
HOVSES FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE METER DISTRICT TYPE PRICE

225 TA;KINKOY

HMI.ITKdY

2+1

3+1

85.000,00 TL

66.000,00 TL 145

V
Page 1 of 1

Figure 3.58 House for Sale Advertisements Form

119

3.13.7 Field for Sale Advertisements Form

Using this form you can print the advertisements about that field for sale.

ESER PROPERTY
FIELDS FOR SALE

TELEPHONE . 0000 000 00 00 9999 999 99 99 .
SQUARE METER DISTRICT T'~E f>RICE

3<00 KANUDERE 217 ELMA OOCOJDO TL

-eoo TA~UKOY l<JJYUSUZ: 75COJDO TL

-eoo TA~UKOY 105 KAYISI 78.COJDO TL

2500 DEGiRMELiK l<JJYUW 75.COJDO TL

V

;Page I of I

Figure 3.59 Field for Sale Advertisements Form

120

3.13.8 Shop for Sale Advertisements Form

Using this form you can print the advertisements about that shop for sale.

ESER PROPERTY
SHOPS FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE METER bl.STRICT TYPE PRICE

55

75

GiRI\EKAPI

KLJ(LJKKAY 111.AKLI

38.000,00 TL

65.000,00 TL

ZEMiN

ZEll\iN

'Page 1 of 1

Figure 3.60 Shop for Sale Advertisements Form

121

3.13.9 Garden for Sale Advertisements Form

Using this form you can print the advertisements about that garden for sale.

ESER PROPERTY
GARDENS FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE HETER t>ISTRICT PRICE

GOfNELi lll.000,00 TL

83.000,00 TL KAYALJ

f Page 1 of 1

Figure 3.61 Garden for Sale Advertisements Form

122

3.13.10 Building for Sale Advertisements Form

Using this form you can print the advertisements about that building for sale.

ESER PROPERTY
BUILDINGS FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE METER DISTRICT PRICE

32J

185

MElROPOL

BAHi.ELiEVLER

4+-1

s!-1

75.0::0 .00 1L

93.765.00 1L

Page 1 of 1

Figure 3.62 Building for Sale Advertisements Form

123

3.13.11 Farm for Sale Advertisements Form

Using this form you can print the advertisements about that farm for sale.

ESER PROPERTY
FARMS FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE IAETER TWE PRICE DISTRICT

320)

4XO

HA.Min<OY

DEMiRHA.N

BUYUKBA~

TAVUK

87.0:0,00 TL

650:0,00 TL

hge 1 of 1

Figure 3.63 Farm for Sale Advertisements Form

124

3.14 User Register Menu

When you press the user register button you are going to open new form here who

will use this program can be registered and they can use the program and same time you

can exchange your password.If you press new button new admin can be added to user

list.If you press edit button you can change your informations.If you press save button

you can save your informations.If you press delete button you can deleted.User

information from system.If you press refresh button you can clean the page.If you press

cancel button you can leave this form and you can go to main menu.

Figure 3.64 User Register From

125

3.15 About Menu

This form gives informations about the current program and owner of this

program.

Figure 3.65 About Form

126

3.16 Informations Menu

Using informations menu you can get all informations about the property.

Figure 3.66 Informations Form

127

3.17 Exit Menu

When you click the exit menu (yes I no) you can decide to continue search or

exit the program.

Do you want to exit program?

Yes sl No -· --··-··-·-· ·-··-··
Figure 3.67 Exit Form

128

CONCLUSION

In this Graduation Project stock program for any property using Delphi was

examined.

This program can be used easily for each user that can record customer

information.

The operation structures of this program could be explained briefly; as follows

when user executes program, first database connection screen appears. In this screen

user enters user name and password to use the program. so user must have a valid user

name and password. Also user must have appropriate privileges on database; such as

view, add, update, delete.

When the user name and password are entered correctly user meets the Main

Menu screen.As you can see in this figure there are 15 sections; house to let, house for

sale, shop to let, shop for sale, plot for sale, garden for sale, building for sale, farm for

sale, villa for sale, field for sale, flier print, about, informations, user register and exit

are the names of the sections.

For future implementations the current program can be developed using different

program languages.

129

REFERENCES

http://www.codegear.com

http://www.scalabium.com/faq/dc_tips.htm

http://www.nevrona.com/

Delphi Programming Explorer, Jeff Dontemann-Jim Mischel ISBN 1-883-57725-X

Database Application Developers Book for Delphi (e Book)

Borland Delphi 6 for Windows (e Book)

Mastering Delphi 6 - Marco Cantu

130

APPENDIX

Program Codes

unit Unitl;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, jpeg, ExtCtrls, lmglist, Comctrls, ToolWin;

type
TForml = class(TForm)
lmagel: Tlmage;
Labell: Tlabel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
BitBtnS: TBitBtn;
BitBtn6: TBitBtn;
BitBtn7: TBitBtn;
BitBtn8: TBitBtn;
BitBtn9: TBitBtn;
BitBtnlO: TBitBtn;
BitBtnll: TBitBtn;
BitBtn12: TBitBtn;
BitBtn13: TBi~Btn;
Bevell: TBevel;
Bevel2: TBevel;
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
Bevel6: TBevel;
Bevell: TBevel;
Bevel8: TBevel;
Bevel9: TBevel;
BevellO: TBevel;
Bevelll: TBevel;
Bevel12: TBevel;
Timerl: Dimer;
lmagelistl: Tlmagelist;
lmagelist2: Tlmagelist;
Label2: TLabel;
BitBtn14: TBitBtn;
Bevel13: TBevel;
Bevel14: TBevel;
procedure BitBtnlClick(Sender: TObject);

131

procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure BitBtnSClick(Sender: TObject);
procedure BitBtn6Click(Sender: TObject);
procedure BitBtn9Click(Sender: TObject);
procedure BitBtn7Click(Sender: TObject);
procedure BitBtn8Click(Sender: TObject);
procedure BitBtnlOClick(Sender: TObject);
procedure BitBtnllClick(Sender: TObject);
procedure BitBtn12Click(Sender: TObject);
procedure BitBtn13Click(Sender: TObject);
procedure TimerlTimer(Sender: TObject);
procedure Label2Db1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure BitBtn14Click(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
Forml: TForml;

implementation

uses unit2, units, unit8, unitlO, unit6, unit3, unit4,unit9, unit7,
unitll, unit22, unit23, unit44, unit45, unit47;

{$R * .dfm}

procedure TForml.BitBtnlClick(Sender: TObject);
begin
housetolet.ShowModal;
end;

procedure TForml.BitBtn2Click(Sender: TObject);
begin
shoptolet.ShowModal;
end;

procedure TForml.BitBtn3Click(Sender: TObject);
begin
plot.ShowModal;
end;

procedure TForml.BitBtn4Click(Sender: TObject);
begin
building.ShowModal;

132

end;

procedure TForml.BitBtnSClick(Sender: TObject);
begin
villa.ShowModal;
end;

procedure TForml.BitBtn6Click(Sender: TObject);
begin
flierprint.ShowModal;
end;

procedure TForml.BitBtn9Click(Sender: TObject);
begin
garden.ShowModal;
end;

procedure TForml.BitBtn7Click(Sender: TObject);
begin
houseforsale.ShowModal;
end;

procedure TForml.BitBtn8Click(Sender: TObject);
begin
shopforsale.ShowModal;
end;

procedure TForml.BitBtnlOClick(Sender: TObject);
begin
farm.ShowModal;
end;

procedure TForml.BitBtnllClick(Sender: TObject);
begin
field.ShowModal;
end;

procedure TForml.BitBtn12Click(Sender: TObject);
begin
about.ShowModal;
end;

procedure TForml.BitBtn13Click(Sender: TObject);
begin
if(Application.MessageBox('Do you want to exit program?','ESER
PROPERTY',MB_ YESNO)=IDYES)then
halt;
end;

procedure TForml.TimerlTimer(Sender: TObject);
begin

133

forml.caption:='ESER PROPERTY
end;

'+DateTOStr(now)+' '+ TIMETostr(now)+' '· I

procedure TForml.Label2DblClick(Sender: TObject);
begin
informations.Show;
end;

procedure TForml.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu);
Forml.ClientHeight:=599;
Forml.ClientWidth:=1072;
end;

procedure TForml.BitBtn14Click(Sender: TObject);
begin
form47.ShowModal;
end;

end.

unit Unit2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, DBCtrls, ExtCtrls, Buttons, lmglist, ComCtrls, ToolWin,
Mask;

type
Thousetolet = class(TForm)
GroupBoxl:TGroupBo~
GroupBox2: TGroupBox;
GroupBox3: TGroupBox;
ToolBarl: noolBar;
ToolButtonl: noolButton;
Too1Button2: noolButton;
Too1Button3: noolButton;
Too1Button4: noolButton;
ToolButtonS: noolButton;
Too1Button6: noolButton;
Too1Button7: noolButton;
Too1Button8: noolButton;
Too1Button9: noolButton;
ToolButtonlO: noolButton;
ToolButtonll: noolButton;
lmagelistl: Tlmagelist;

134

BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
Bevell: TBevel;
Bevel2: TBevel;
DBCheckBoxl:TDBCheckBo~
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Labels: TLabel;
Label6: TLabel;
Label7: Tlabel;
Label8: Tlabel;
Label9: TLabel;
LabellO: Tlabel;
Labelll: TLabel;
Label12: TLabel;
Label13: Tlabel;
Label14: TLabel;
LabellS: Tlabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
DBEdit13: TDBEdit;
DBEdit14: TDBEdit;
DBEditlS: TDBEdit;
procedure ToolButtonlClick{Sender: TObject);
procedure Too1Button3Click{Sender: TObject);
procedure ToolButtonSClick{Sender: TObject);
procedure Too1Button7Click{Sender: TObject);
procedure BitBtnlClick{Sender: TObject);
procedure BitBtn2Click{Sender: TObject);
procedure DBCheckBoxlClick{Sender: TObject);
procedure ToolButtonllClick{Sender: TObject);
procedure DBEditlEnter{Sender: TObject);
procedure DBEditlExit{Sender: TObject);
procedure Too1Button9Click{Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);

135

private
{ Private declarations}

public
{ Public declarations }

end;

var
housetolet: Thousetolet;

implementation

uses unit45, unit12, unit24;

{$R *.dfm}

procedure Thousetolet.ToolButtonlClick(Sender: TObject);
begin
dm.tkhouse.lnsert;
end;

procedure Thousetolet.Too1Button3Click(Sender: TObject);
begin
dm.tkhouse.Prior;
end;

procedure Thousetolet.Too1Button5Click(Sender: TObject);
begin
dm.tkhouse.Next;
end;

procedure Thousetolet.Too1Button7Click(Sender: TObject);
begin
dm.tkhouse.Cancel;
end;

procedure Thousetolet.BitBtnlClick(Sender: TObject);
begin
housetoletsearch.ShowModal;
end;

procedure Thousetolet.BitBtn2Click(Sender: TObject);
begin
housetoletreport.QuickRepl.Preview;
end;

procedure Thousetolet.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;
DBCheckBoxl.Caption:='Already rented';

136

end;
if DBCheckboxl.Checked=false then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='this house give to let';
end;
end;

procedure Thousetolet.Too1Button11Click(Sender: TObject);
begin
dm.tkhouse.Edit;
dm.tkhouse.Post;
ShowMessage('Record is registered');
end;

procedure Thousetolet.D8Edit1Enter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

procedure Thousetolet.D8Edit1Exit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;
end;

procedure Thousetolet.Too1Button9Click(Sender: TObject);
begin
try
if(Application.MessageBox('Record will be delete are you
sure?','Confirmation',MB_ YESNO)=IDYES) then
dm.tkhouse.Delete;
except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Thousetolet.FormKeyPress(Sender: TObject; var Key: Char);
begin
If (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Thousetolet.FormCreate(Sender: TObject);
begin
housetolet.ClientHeight:=606;
housetolet.ClientWidth:=695;
end;

137

end.

unit Unit3;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, lmglist, ComCtrls, ToolWin, StdCtrls, Mask, DBCtrls, Buttons,
ExtCtrls;

type
Tshopforsale = class(TForm)
ToolBarl: noolBar;
ToolButtonl: TioolButton;
Too1Button2: TioolButton;
Too1Button3: noolButton;
Too1Button4: TioolButton;
ToolButtonS: TioolButton;
Too1Button6: TioolButton;
Too1Button7: noolButton;
Too1Button8: TioolButton;
Too1Button9: TioolButton;
ToolButtonlO: TioolButton;
ToolButtonll: TioolButton;
lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
Bevel3: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
Bevel4: TBevel;
Bevels: TBevel;
DBCheckBoxl:TDBCheckBo~
GroupBoxl: TGroupBox;
GroupBox2: TGroupBox;
GroupBox3: TGroupBox;
Label 1: Tlabel;
Label2: Tlabel;
Label3: Tlabel;
Label4: Tlabel;
Labels: Tlabel;
Label6: Tlabel;
Label7: Tlabel;
Label8: Tlabel;
Label9: Tlabel;
LabellO: Tlabel;
Labelll: Tlabel;
Label12: Tlabel;

138

Label13: TLabel;
Label14: Tlabel;
LabellS: Tlabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
DBEdit13: TDBEdit;
DBEdit14: TDBEdit;
DBEditlS: TDBEdit;
procedure DBCheckBoxlClick(Sender: TObject);
procedure ToolButtonllClick(Sender: TObject);
procedure ToolButtonlClick(Sender: TObject);
procedure Too1Button3Click(Sender: TObject);
procedure ToolButtonSClick(Sender: TObject);
procedure Too1Button7Click(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure DBEditlEnter(Sender: TObject);
procedure DBEditlExit(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure Too1Button9Click(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
shopforsale: Tshopforsale;

implementation

uses unit45, unitlS, unit27;

{$R * .dfm}

procedure Tshopforsale.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;

139

DBCheckBoxl.Caption:='Already sold';
end;
if DBCheckboxl.Checked=false then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='Sell shop';
end;
end;

procedure Tshopforsale.ToolButtonllClick(Sender: TObject);
begin
dm.tsshop.Edit;
dm.tsshop.Post;
ShowMessage('Record is registered');
end;

procedure Tshopforsale.ToolButtonlClick(Sender: TObject);
begin
dm.tsshop.lnsert;
end;

procedure Tshopforsale.Too1Button3Click(Sender: TObject);
begin
dm.tsshop.Prior;
end;

procedure Tshopforsale.ToolButtonSClick(Sender: TObject);
begin
dm.tsshop.Next;
end;

procedure Tshopforsale.Too1Button7Click(Sender: TObject);
begin
dm.tsshop.Cancel;
end;

procedure Tshopforsale.BitBtnlClick(Sender: TObject);
begin
shopforsalesearch.ShowModal;
end;

procedure Tshopforsale.BitBtn2Click(Sender: TObject);
begin
shopfo rsa lereport.QuickRep 1. Preview;
end;

procedure Tshopforsale.DBEditlEnter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

140

procedure Tshopforsale.DBEditlExit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;

end;

procedure Tshopforsale.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tshopforsale.Too1Button9Click(Sender: TObject);
begin
try
if (Application.MessageBox('Record will be deleted are you
sure?','Confirmation',MB_ YESNO)=IDYES) then
dm.tsshop.Delete;
except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Tshopforsale.FormCreate(Sender: TObject);
begin
shopforsale.ClientHeight:=608;
shopforsale.ClientWidth:=695;
end;

end.

unit Unit4;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, Buttons, ExtCtrls, lmglist, ComCtrls,
ToolWin;

type
Thouseforsale = class(TForm)
ToolBarl: TioolBar;
ToolButtonl: TioolButton;

141

Too1Button2: TioolButton;
Too1Button3: TioolButton;
Too1Button4: TioolButton;
ToolButtonS: TioolButton;
Too1Button6: TioolButton;
Too1Button7: TioolButton;
Too1Button8: TioolButton;
Too1Button9: TioolButton;
ToolButtonlO: TioolButton;
ToolButtonll: TioolButton;
lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
DBCheckBoxl:TDBCheckBo~
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
GroupBoxl:TGroupBo~
GroupBox2: TGroupBox;
GroupBox3: TGroupBox;
Labell: TLabel;
Label2: Tlabel;
Label3: Tlabel;
Label4: Tlabel;
Labels: TLabel;
Label6: Tlabel;
Label7: Tlabel;
Label8: Tlabel;
Label9: Tlabel;
LabellO: Tlabel;
Labelll: Tlabel;
Label12: Tlabel;
Label13: TLabel;
Label14: Tlabel;
LabellS: Tlabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
DBEdit13: TDBEdit;
DBEdit14: TDBEdit;

142

DBEditlS: TDBEdit;
procedure ToolButtonlClick(Sender: TObject);
procedure Too1Button3Click(Sender: TObject);
procedure ToolButtonSClick(Sender: TObject);
procedure Too1Button7Click(Sender: TObject);
procedure ToolButtonllClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure DBCheckBoxlClick(Sender: TObject);
procedure DBEditlEnter(Sender: TObject);
procedure DBEditlExit(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure Too1Button9Click(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
houseforsale: Thouseforsale;

implementation

uses unit45, unit14, unit26;

{$R *.dfm}

procedure Thouseforsale.ToolButtonlClick(Sender: TObject);
begin
dm.tshouse.lnsert;
end;

procedure Thouseforsale.Too1Button3Click(Sender: TObject);
begin
dm.tshouse.Prior;
end;

procedure Thouseforsale.ToolButtonSClick(Sender: TObject);
begin
dm.tshouse.Next;
end;

procedure Thouseforsale.Too1Button7Click(Sender: TObject);
begin
dm.tshouse.Cancel;
end;

procedure Thouseforsale.ToolButtonllClick(Sender: TObject);
begin

143

dm.tshouse.Edit;
dm.tshouse.Post;
ShowMessage('Record is registered');
end;

procedure Thouseforsale.BitBtnlClick(Sender: TObject);
begin
houseforsalesearch.ShowModal;
end;

procedure Thouseforsale.BitBtn2Click(Sender: TObject);
begin
houseforsa lereport.QuickRepl. Preview;
end;

procedure Thouseforsale.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;
DBCheckBoxl.Caption:='Already sold';
end;
if DBCheckboxl.Checked=false then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='Sell house';
end;
end;

procedure Thouseforsale.DBEditlEnter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

procedure Thouseforsale.DBEditlExit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;
end;

procedure Thouseforsale.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Thouseforsale.Too1Button9Click(Sender: TObject);
begin

144

try
if {Application.MessageBox('Record wii be deleted are you
sure?','Confirmation',MB_ YESNO)=IDYES) then
dm.tshouse.Delete;
except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Thouseforsale.FormCreate{Sender: TObject);
begin
houseforsale.ClientHeight:=609;
houseforsa le .Clie ntWidth :=695;
end;

end.

unit UnitS;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, Buttons, ExtCtrls, lmglist, ComCtrls,
ToolWin;

type
Tshoptolet = class(TForm)
ToolBarl: TioolBar;
ToolButtonl: TioolButton;
Too1Button2: TioolButton;
Too1Button3: TioolButton;
Too1Button4: TioolButton;
ToolButtonS: TioolButton;
Too1Button6: TioolButton;
Too1Button7: TioolButton;
Too1Button8: TioolButton;
Too1Button9: TioolButton;
ToolButtonlO: Dool Button;
ToolButtonll: noolButton;
lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
DBCheckBoxl:TDBCheckBo~
Bevel3: TBevel;

145

Bevel4: TBevel;
Bevels: TBevel;
GroupBoxl:TGroupBo~
GroupBox2:TGroupBo~
GroupBox3: TGroupBox;
Labell: TLabel;
Label2: Tlabel;
Label3: TLabel;
Label4: Tlabel;
Labels: TLabel;
Label6: Tlabel;
Label7: Tlabel;
Label8: Tlabel;
Label9: Tlabel;
LabellO: TLabel;
Labelll: Tlabel;
Label12: Tlabel;
Label13: Tlabel;
Label14: TLabel;
LabellS: Tlabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
DBEdit13: TDBEdit;
DBEdit14: TDBEdit;
DBEditlS: TDBEdit;
procedure ToolButtonlClick(Sender: TObject);
procedure Too1Button3Click(Sender: TObject);
procedure ToolButtonSClick(Sender: TObject);
procedure Too1Button7Click(Sender: TObject);
procedure Too1Button9Click(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure Too1Button11Click(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure DBEditlEnter(Sender: TObject);
procedure DBEditlExit(Sender: TObject);
procedure DBCheckBoxlClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public

146

{ Public declarations}
end;

var
shoptolet: Tshoptolet;

implementation

uses unit45, unitl3, unit25;

{$R *.dfm}

procedure Tshoptolet.ToolButtonlClick(Sender: TObject);
begin
dm.tkshop.lnsert;
end;

procedure Tshoptolet.Too1Button3Click(Sender: TObject);
begin
dm.tkshop.Prior;
end;

procedure Tshoptolet.ToolButtonSClick(Sender: TObject);
begin
dm.tkshop.Next;
end;

procedure Tshoptolet.Too1Button7Click(Sender: TObject);
begin
dm.tkshop.Cancel;
end;

procedure Tshoptolet.Too1Button9Click(Sender: TObject);
begin
try

if(Application.MessageBox('Record will be deleted are you
sure?', 'Confirmation',M B _ YES NO)=I DYES) then
dm.tkshop.Delete;

except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Tshoptolet.BitBtnlClick(Sender: TObject);
begin
shoptoletsearch.ShowModal;
end;

procedure Tshoptolet.BitBtn2Click(Sender: TObject);

147

begin
shoptoletreport.QuickRepl. Preview;
end;

procedure Tshoptolet.ToolButtonllClick(Sender: TObject);
begin
dm.tkshop.Edit;
dm.tkshop.Post;
ShowMessage('Record is registered');
end;

procedure Tshoptolet.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tshoptolet.DBEditlEnter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

procedure Tshoptolet.DBEditlExit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;
end;

procedure Tshoptolet.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;
DBCheckBoxl.Caption:='Already rented';
end;
if DBCheckboxl.Checked=fa lse then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='This shop give to let';
end;
end;

procedure Tshoptolet.FormCreate(Sender: TObject);
begin
shoptolet.ClientHeight:=614;
shoptolet.ClientWidth :=695;
end;

end.

148

unit Unit6;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, Buttons, ExtCtrls, lmglist, ComCtrls,
ToolWin;

type
Tplot = class{TForm)
ToolBarl: TioolBar;
ToolButtonl: TioolButton;
Too1Button2: TioolButton;
Too1Button3: TioolButton;
Too1Button4: TioolButton;
ToolButtonS: TioolButton;
Too1Button6: TioolButton;
Too1Button7: TioolButton;
Too1Button8: noolButton;
Too1Button9: TioolButton;
ToolButtonlO: TioolButton;
ToolButtonll: TioolButton;
lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
DBCheckBoxl: TDBCheckBox;
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
GroupBoxl:TGroupBo~
GroupBox2: TGroupBox;
Labell: Tlabel;
Label2: Tlabel;
Label3: Tlabel;
Label4: Tlabel;
Labels: TLabel;
Label6: TLabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
GroupBox3: TGroupBox;
Label7: Tlabel;

149

Label8: Tlabel;
Label9: Tlabel;
LabellO: TLabel;
Labelll: TLabel;
Label12: TLabel;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
procedure ToolButtonlClick{Sender: TObject);
procedure Too1Button3Click{Sender: TObject);
procedure ToolButtonSClick{Sender: TObject);
procedure Too1Button7Click{Sender: TObject);
procedure ToolButtonllClick{Sender: TObject);
procedure DBCheckBoxlClick{Sender: TObject);
procedure BitBtnlClick{Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure FormKeyPress{Sender: TObject; var Key: Char);
procedure Too1Button9Click{Sender: TObject);
procedure DBEditlEnter(Sender: TObject);
procedure DBEditlExit{Sender: TObject);
procedure FormCreate{Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
plot: Tplot;

implementation

uses unit45, unit16, unit28;

{$R * .dfm}

procedure Tplot.ToolButtonlClick{Sender: TObject);
begin
dm.tsplot.lnsert;
end;

procedure Tplot.Too1Button3Click{Sender: TObject);
begin
dm.tsplot.Prior;
end;

procedure Tplot.ToolButtonSClick{Sender: TObject);
begin

150

NEAR EAST UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

Stock Property by Using Delphi

Graduation Project

COM 400

Student: Seda ONHAN (20032905)

Supervisor: Assist. Prof. Dr. lmanov ELBRUS

Nicosia - 2008

,1m1\~~II!
NEU

--- ---

ACKNOWLEDGEMENT

First of all, I would like give my special thanks to my supervisor Assist. Prof Dr.

Imanov ELBRUS. He helped and supported me to complete my project by any means of

necessary. In addition to this he never doubted about me, he always believed in me that

I will fulfill and succeed on my project. I am glad to that I did not disappoint him.

Furthermore, I want to give my special thanks and best regards to my parents.

They were always kind and patient to me. I wouldn't be here without their endless

support.

Finally, I want to give my special thanks to my friends whose are Cemal

Kavalctoglu, Selman Ogurhan ESER. They are supported and helped me to complete

my project. I am very happy to have such friends.

ABSTRACT

The aim of this Project is to record the stock device for any Properties

Company.The program was prepared by using Delphi 7 programming and usmg

Paradox7. Delphi is a programming language that can be used with Paradox7.

This project consists of many different pages but most of them depended each

other Initially, SIGN IN form comes to screen. Afterwards the Main menu of Properties

Company comes to screen.After Main Menu you are going to see the main form that

contains 15 main menus.

11

TABLE OF CONTENTS

ACKNOWLEDGEMENT I
ABSTRACT II
TABLE OF CONTENTS III
INTRODUCTION 1

CHAPTER ONE : BASIC CONCEPT OF DELPHI

1.1 Introduction to Delphi 2
1.2 What is Delphi? 2
1.2.1 Delphi Compliers 2
1.2.2 What kind of programming can you do with Delphi? 3
1.2.3 History of Delphi 4
1.2.4 Advantages & Disadvantages Delphi 6

1.3 Delphi 6 Editions 7
1.3.1 Delphi 6 Architect 7
1.3.2 Installation Delphi 6 8

1.4 A Tour of the Environment '. 10
1.4.1 Running Delphi for the First Time 10
1.4.2 The Delphi IDE 11
1.4.3 The Menus & Toolbar 12
1.4.4 The Component Palette 12
1.4.5 The Code Editor 13
1.4.6 The Object Inspector 14
1.4.7 The Object Tree View 15
1.4.8 Class Completion 16
1.4.9 Debugging applications 17
1.4.10 Exploring Databases 18
1.4.11 Templates and the Object Repository 19

1.5 Programming with Delphi 20
1.5.1 Starting a New Application 20
1.5.2 Setting Property Values 21
1.5.3 Adding objects to the form 22
1.5.4 Add a Table and a StatusBar to the Form 22
1.5.5 Connecting to a Database 24

CHAPTER TWO : THE RA VE REPORTING

2.1 Project Tree 28
2.2 Design Tools 29
2.3 Reuse and Maintenance Tools 32
2.4 Standard Components 34
2.5 Drawing Components 35
2.6 Reporting Components 35
2.7 Barcode Components 39
2.8 Anchors 39

lll

2.9 Code Based Reports 40
2.9.1 Simple Code Base Report 40
2.9.2 Tabular Code Based Report.. 41
2.9.3 Graphical Code Based Report 43

2.10 Visually Designed Reports 45
2.10.1 The Visual Designer 45
2.10.2 Interacting with the Project. 48

2.11 Data Aware Reports 55
2.11.1 The Database Connection 55
2.11.2 The Driver Data View 55
2.11.3 Regions and Bands 58
2.11.4 Adding Fields 60
2.11.5 Adding the Report to Your Project 60

CHAPTER THREE : STOCK PROPERTY BY USING DELPHI

3 .1 Database Connection Screen 61
3.2 Main Menu 63
3.3 House to Let Menu 64
3.3.1 House to Let Organize Form 64
3.3.2 House to Let Search Form 65
3.3.3 House to Let Report Form 68

3 .4 House for Sale Menu 69
3 .4.1 House for Sale Organize Form 69
3 .4.2 House for Sale Search Form 70
3.4.3 Hose for Sale Report Form 73

3.5 Shop to Let Menu 74
3.5.1 Shop to Let Organize Form 74
3.5.2 Shop to Let Search Form 75
3.5.3 Shop to Let Report Form 78

3.6 Shop for Sale Menu 79
3 .6.1 Shop for Sale Organize Form 79
3.6.2 Shop for Sale Search Form 80
3 .6.3 Shop for Sale Report Form 83

3. 7 Plot to Let Menu 84
3. 7 .1 Plot to Let Organize Form 84
3.7.2 Plot to Let Search Form 85
3.7.3 Plot to Let Report Form 88

3.8 Garden for Sale Menu 89
3.8.1 Garden for Sale Organize Form 89
3.8.2 Garden for Sale Search Form 90
3.8.3 Garden for Sale Report Form 93

3.9 Building for Sale Menu 94
3.9.1 Building for Sale Organize Form 94
3.9.2 Buildig for Sale Search Form 95
3.9.3 Building for Sale Report Form 98

3.10 Farm for Sale Menu 99
3.10.1 Farm for Sale Organize Form 99

IV

3.10.2 Farm for Sale Search Form 100
3 .10.3 Farm for Sale Report Form 103

3.11 Villa for Sale Menu 104
3.11.1 Villa for Sale Organize Form 104
3.11.2 Villa for Sale Search Form 105
3.11.3 Villa for Sale Report Form 108

3.12 Field for Sale Menu 109
3.12.1 Field for Sale Organize Form 109
3.12.2 Filed for Sale Search Form 110
3.12.3 Field for Sale Report Form 113

3.13 Flier Print Menu 114
3.13.1 Flier Print Organize Form 114
3 .13 .2 House to Let Advertisements Form 115
3.13.3 Villa for Sale Advertisements Form 116
3 .13 .4 Shop to Let Advertisements Form 117
3.13.5 Plot for Sale Advertisements Form 118
3 .13 .6 House for Sale Advertisements Form 119
3.13.7 Field for Sale Advertisements Form 120
3.13.8 Shop for Sale Advertisements Form 121
3.13.9 Garden for Sale Advertisements Form 122
3.13.10 Building for Sale Advertisements Form 123
3.13.11 Farm for Sale Advertisements Form 124

3.14 User Register Menu 125
3.15 About Menu 126
3 .16 Informations Menu 127
3.17 ExitMenu 128

CONCLUSION 129
RE FE REN CES 130
APPENDIX 140

V

INTRODUCTION

Delphi is a Rapid Application Development (RAD) environment. It allows you

to drag and drop components on to a blank canvas to create a program. Delphi will also

allow you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object

orientated derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to

make the program easily readable and to help the compiler sort the code. Although

Delphi code is not case sensitive there is a generally accepted way of writing Delphi

code. The main reason for this is so that any programmer can read your code and easily

understand what you are doing, because they write their code like you write yours.

The project consists of the introduction, three chapters, and conclusion.

• Chapter one describes Basic Concept of Delphi.

• Chapter two describes the database that uses Delphi programmmg

language.

• Chapter three explains Stock Property by Using Delphi.

1

CHAPTER ONE

1 BASIC CONCEPT OF DELPHI

1.1 Introduction to Delphi

Although I am not the most experienced or knowledgeable person on the forums I

thought it was time to write a good introductory article for Delphi

1.2 What is Delphi?

Delphi is a Rapid Application Development (RAD) environment. It allows you to

drag and drop components on to a blank canvas to create a program. Delphi will also

allow you to use write console based DOS like programs.

Delphi is based around the Pascal language but is more developed object

orientated derivative. Unlike Visual Basic, Delphi uses punctuation in its basic syntax to

make the program easily readable and to help the compiler sort the code. Although

Delphi code is not case sensitive there is a generally accepted way of writing Delphi

code. The main reason for this is so that any programmer can read your code and easily

understand what you are doing, because they write their code like you write yours.

For the purposes of this series I will be using Delphi 6. Delphi 6 provides all the

tools you need to develop test and deploy Windows applications, including a large

number of so-called reusable components.

Borland Delphi provides a cross platform solution when used with Borland Kylix

- Borland's RAD tool for the Linux platform.

1.2.1 Delphi Compliers

There are two types complier for Delphi

• Turbo Delphi: Free industrial strength Delphi RAD (Rapid Application

Development) environment and compiler for Windows. It comes with 200+

components and its own Visual Component Framework.

2

• Turbo Delphi for .NET: Free industrial strength Delphi application development

environment and compiler for the Microsoft .NET platform.

1.2.2 What kind of programming can you do with Delphi?

The simple answer is "more or less anything". Because the code is compiled, it

runs quickly, and is therefore suitable for writing more or less any program that you

would consider a candidate for the Windows operating system.

You probably won't be using it to write embedded systems for washing

machines, toasters or fuel injection systems, but for more or less anything else, it can be

used (and the chances are that probably someone somewhere has!)

Some projects to which Delphi is suited:

• Simple, single user database applications

• Intermediate multi-user database applications

• Large scale multi-tier, multi-user database applications

• Internet applications

• Graphics Applications

• Multimedia Applications

• Image processing/Image recognition

• Data analysis

• System tools

• Communications tools using the Internet, Telephone or LAN

• Web based applications

This is not intended to be an exhaustive list, more an indication of the depth and

breadth of Delphi's applicability. Because it is possible to access any and all of the

Windows API, and because if all else fails, Delphi will allow you to drop a few lines of

assembler code directly into your ordinary Pascal instructions, it is possible to do more

or less anything. Delphi can also be used to write Dynamically Linked Libraries (DLLs)

and can call out to DLLs written in other programming languages without difficulty.

3

Because Delphi is based on the concept of self contained Components (elements of code

that can be dropped directly on to a form in your application, and exist in object form,

performing their function until they are no longer required), it is possible to build

applications very rapidly. Because Delphi has been available for quite some time, the

number of pre-written components has been increasing to the point that now there is a

component to do more or less anything you can imagine. The job of the programmer has

become one of gluing together appropriate components with code that operates them as

required.

1.2.3 History of Delphi

Delphi was one of the first of what came to be known as "RAD" tools, for

Rapid Application Development, when released in 1995 for the 16-bit Windows 3.1.

Delphi 2, released a year later, supported 32-bit Windows environments, and a C++

variant, C++ Builder, followed a few years after.

The chief architect behind Delphi, and its predecessor Turbo Pascal , was

Anders Hejlsberg until he was headhunted in 1996 by Microsoft , where he worked on

Visual J++ and subsequently became the chief designer of C Sharp programming

language C# and a key participant in the creation of the Microsoft .NET Framework.

In 2001 a Linux version known as Kylix programming tool Kylix became

available. However, due to low quality and subsequent lack of interest, Kylix was

abandoned after version 3.

Support for Linux and Windows cross platform development (through Kylix and

the CLX component library) was added in 2002 with the release of Delphi 6.

Delphi 8, released December 2003, was a .NET -only release that allowed

developers to compile Delphi Object Pascal code into .NET Microsoft Intermediate

Language MSIL. It was also significant in that it changed its IDE for the first time, from

the multiple-floating-window-on-desktop style IDE to a look and feel similar to

Microsoft's Visual Studio.NET.

4

Although Borland fulfilled one of the biggest requests from developers (.NET

support), it was criticized both for making it available too late, when a lot of former

Delphi developers had already moved to C#, and for focusing so much on backward

compatibility that it was not very easy to write new code in Delphi. Delphi 8 also lacked

significant high-level features of the c sharp, C# language, as well as many of the more

appealing features of Microsoft's Visual Studio IDE. (There were also concerns about

the future of Delphi Win32 development. Because Delphi 8 did not support Win32,

Delphi 7.1 was included in the Delphi 8 package.)

The next version, Delphi 2005 (Delphi 9), included the Win32 and .NET

development in a single IDE, reiterating Borland's commitment to Win32 developers.

Delphi 2005 includes design-time manipulation of live data from a database. It also

includes an improved IDE and added a "for ... in" statement (like C#'s for each) to the

language. However, it was criticized by some for its bugs; both Delphi 8 and Delphi

2005 had stability problems when shipped, which were only partially resolved in service

packs.

In late 2005, Delphi 2006 was released and federated development of C# and

Delphi.NET, Delphi Win32 and C++ into a single IDE. It was much more stable than

Delphi 8 or Delphi 2005 when shipped, and improved even more after the service packs

and several hot fixes.

On February 8, 2006, Borland announced that it was looking for a buyer for its

IDE and database line of products, which include Delphi, to concentrate on its

Application Lifecycle Management ALM line. The news met with voluble optimism

from the remaining Delphi users.

On September 6, 2006, The Developer Tools Group (the working name of the

not yet spun off company) of Borland Software Corporation released single language

versions of Borland Developer Studio, bringing back the popular "Turbo" moniker.

The Turbo product set includes Turbo Delphi for Win32, Turbo Delphi for .NET, Turbo

C++, and Turbo C#. Each version is available in two editions: "Explorer'' a free

downloadable version and "Professional" a relatively cheap (US$399) version which

5

opens access to thousands of third-party components. Unlike earlier "Personal"

editions of Delphi, new ''Explorer'' editions can be used for commercial development.

On November 14, 2006, Borland announced the cancellation of the sale of its

Development tools; instead of that it would spin them off into an independent company

named "CodeGear"

1.2.4 Advantages & Disadvantages Delphi

Delphi exhibits the following advantages:

• Rapid Application Development (RAD)

• Based on a well-designed language - high-level and strongly typed, with low

level escapes for experts

• A large community on Usenet and the World Wide Web (e.g.

news://newsgroups.borland.com and Borland's web access to Delphi)

• Can compile to a single executable, simplifying distribution and reducing DLL

versioning issues

• Many VCL and third-party components (usually available with full source code)

and tools (documentation, debug tools, etc.)

• Quick optimizing compiler and ability to use assembler code

• Multiple platform native code from the same source code

• High level of source compatibility between versions

• Cross Kylix - a third-party toolkit which allows you to compile native

Kylix/Linux applications from inside the Windows Delphi IDE, hence easily

enabling dual-platform development and deployment

• Cross FBC - a sister project to Cross Kylix, which enables you to cross-compile

your Windows Delphi applications to multi-platform targets - supported by the

Free Pascal compiler - without ever leaving the Delphi IDE

• Class helpers to bridge functionality available natively in the Delphi RTL, but

not available in a new platform supported by Delphi

• The language's object orientation features only class- and interface-based

Polymorphism in object-oriented programming polymorphism

6

Disadvantages:

• Limited cross-platform capability for Delphi itself. Compatibles provide more

architecture/OS combinations

• Access to platform and third party libraries require header files to be translated

to Pascal. This creates delays and introduces the possibilities of errors in

translation.

• There are fewer published books on Delphi than on other popular programming

languages such as C++ and C#

• A reluctance to break any code has lead to some convoluted language design

choices, and orthogonally and predictability have suffered

1.3 Delphi 6 Editions

There are 3 editions in Delphi 6:

• Delphi Personal - makes learning to develop non-commercial Windows

applications fast and fun. Delphi 6 Personal makes learning Windows

development easy with drag-and-drop visual programming.

• Delphi Professional - adds the tools necessary to create applications with the

latest Windows® ME/2000 look-and-feel. Dramatically enhance functionality

with minimal code using the power and flexibility of SOAP and XML to easily

integrate Web Services into client-side applications.

• Delphi Enterprise - includes additional tools, extensive options for Internet.

Delphi 6 makes next-generation e-business development with Web Services a

snap.

This Program will concentrate on the Enterprise edition.

1.3.1 Delphi 6 Architect

Delphi 6 Architect is designed for professional enterprise developers who need

to adapt quickly to changing business rules and manage sophisticated applications that

synchronize with multiple database schemas. Delphi 2006 Architect includes an

advanced ECO III framework that allows developers to rapidly deploy scalable external

facing Web applications with executable state diagrams, object-relational mapping, and

transparent persistence.

7

Delphi 6 Architect includes all of the capabilities of the Enterprise edition, and

includes the complete ECO III framework, including new support for ECO State

Machines powered by State Chart visual diagrams, and simultaneous persistence to

multiple and mixed database servers.

• State Chart Diagrams

• Executable ECO State Machines

• Multi- and Mixed- ECO database support

1.3.2 Installation Delphi 6

To install Delphi 6 Enterprise, run INSTALL.EXE (default location C:\Program

Files\Borland Delphi) and follow the installation instructions.

We are prompted to select a product to install; you only have one choice "Delphi 6":

Figure 1.1 The Select Page For Start Installation

While the setup runs, you'll need to enter your serial number and the authorization key

(the two you got from inside a CdRom driver).

8

Figure 1.2 Serial Number And Authorization Screen

Later, the License Agreement screen wills popup:

Figure 1.3 License Agreement Screen

After that, you have to pick the Setup Type, choose Typical. This way Delphi 6

Enterprise will be installed with the most common options. The next screen prompts

you to choose the Destination folder.

~)'l))i<'<c?~ _, __ ;;/~.:;,) f -,"«-"'-"' !t~,-S>-..:,ro-lf>A>-,~-- ...-c-
"""' i

Figure 1.4 SetUp Type and Destination Folder Screen

At the end of the installation process, the set-up program will create a sub menu

m the Programs section of the Start menu, leading to the main Delphi 6 Enterprise

program plus some additional tools.

9

Ci Borland Delphi 6 •. C,: Help •. I

Figure 1.5 Start Menu

1.4 A Tour of the Environment

This chapter explains how to start Delphi and gives you a quick tour of the main

parts and tools of the Integrated Development Environment (IDE)

1.4.1 Running Delphi for the First Time

You can start Delphi in a similar way to most other Windows applications:

• Choose Programs I Borland Delphi 6 I Delphi 6 from the Windows Start menu

• Choose Run from the Windows Start menu and type Delphi32

• Double-click Delphi32.exe in the $(DELPHI)\Bin folder. Where $(DELPHI) is a

folder where Delphi was installed. The default is C:\Program

Files\Borland\Delphi6.

• Double-click the Delphi icon on the Desktop (if you've created a shortcut)

a, Borland Delphi 6 RliJ Ei
,...-.- .---- -- >~

it)hew g Ci F _gvorites H elp

Borland Delphi 6
t: [tr:~';>

Help Delphi 6 Image Editor Register Now

Figure 1.6 Borland Delphi 6 Folder

10

1.4.2 The Delphi IDE

As explained before, one of the ways to start Delphi is to choose Programs

Borland Delphi 6 I Delphi 6 from the Windows Start menu.

When Delphi starts (it could even take one full minute to start - depending on

your hardware performance) you are presented with the IDE: the user interface where

you can design, compile and debug your Delphi projects.

Figure 1.7 IDE

Like most other development tools (and unlike other Windows applications),

Delphi IDE comprises a number of separate windows.

Some of the facilities that are included in the "Integrated Development

Environment" (IDE) are listed below:

• A syntax sensitive program file editor

• A rapid optimizing compiler

• Built in debugging /tracing facilities

• A visual interface developer

• Syntax sensitive help files

• Database creation and editing tools

11

• Image/Icon/Cursor creation I editing tools

• Version Control CASE tools

1.4.3 The Menus & Toolbar

The main window, positioned on the top of the screen, contains the main menu,

toolbar and Component palette.

speed bar component palette

Figure 1.8 Menu, Title, Speed Bar & Component Palette

The title bar of the main window contains the name of the current project (you'll

see in some of the future chapters what exactly is a Delphi project). The menu bar

includes a dozen drop-down menus - we'll explain many of the options in these menus

later through this course. The toolbar provides a number of shortcuts to most frequently

used operations and commands - such as running a project, or adding a new form to a

project. To find out what particular button does, point your mouse "over" the button and

wait for the tool tip. As you can see from the tool tip (for example, point to [Toggle

Form/Unit]), many tool buttons have keyboard shortcuts ([F12]).

The menus and toolbars are freely customizable. I suggest you to leave the

default arrangement while working through the chapters of this course.

1.4.4 The Component Palette

You are probably familiar with the fact that any window in a standard Windows

application contains a number of different (visible or not to the end user) objects, like:

buttons, text boxes, radio buttons, check boxes etc. In Delphi programming terminology

such objects are called controls (or components). Components are the building blocks of

every Delphi application. To place a component on a window you drag it from the

component palette. Each component has specific attributes that enable you to control

your application at design and run time.

12

click to see Win32 controls

click the arrow to see more controls on a page

Figure 1.9 Component Palates

Depending on the version of Delphi (assumed Delphi 6 Personal through this

course), you start with more than 85 components at your disposal - you can even add

more components later (those that you create or from a third party component vendor).

The components on the Component Palette are grouped according to the

function they perform. Each page tab in the Component palette displays a group of

icons representing the components you can use to design your application interface. For

example, the Standard and Additional pages include controls such as an edit box, a

button or a scroll box.

To see all components on a particular page (for example on the Win32 page) you

simply click the tab name on the top of the palette. If a component palette lists more

components that can be displayed on a page an arrow will appear on a far right side of

the page allowing you to click it to scroll right. If a component palette has more tabs

(pages) that can be displayed, more tabs can be displayed by clicking on the arrow

buttons on the right-hand side.

1.4.5 The Code Editor

Each time you start Delphi, a new project is created that consists of one *empty*

window. A typical Delphi application, in most cases, will contain more than one

window - those windows are referred to as forms.

In our case this form has a name, it is called Forml. This form can be renamed,

resized and moved, it has a caption and the three standard buttons which are minimize,

maximize and close. As you can see a Delphi form is a regular Windows window

13

1Jini:l.:JV$ ~ J!ii·fe.itlt}tt§°!' Syifij"t} i s , \tfl.X: t ~).fl't-W.~ CJ (i;.t<:.H~,,1~ Ct

l>:P)J..!)l;;f,:

"~' t.-::r-n-,l; rrc.c.Til:

Figure 1.10 Code Editor Window

If the Forml is the active window and you press [F12], the Code Editor window

will be placed on top. As you design user interface of your application, Delphi

automatically generates the underlying Object Pascal code. More lines will be added to

this window as you add your own code that drives your application. This window

displays code for the current form (Forml); the text is stored in a (so-called) unit -

Unitl. You can open multiple files in the Code Editor. Each file opens on a new page of

the Code editor, and each page is represented by a tab at the top of the window.

1.4.6 The Object Inspector

Each component and each form has a set of properties - such as color, size,

position, caption - that can be modified in the Delphi IDE or in your code, and a

collection of events - such as a mouse click, keypress, or component activation - for

which you can specify some additional behavior. The Object Inspector displays the

properties and events (note the two tabs) for the selected component and allows you to

change the property value or select the response to some event.

14

Figure 1.11 Object Inspector

For example, each form has a Caption (the text that appears on it's title bar). To

change the captions of Forml first activate the form by clicking on it. In the Object

Inspector find the property Caption (in the left column), note that it has the 'Forml'

value (in the right column). To change the captions of the form simply type the new text

value, like 'My Form' (without the single quotes). When you press [Enter] the caption

of the form will change to My Form.

Note that some properties can be changed more simply, the position of the form

on the screen can be set by entering the value for the Left and Top properties - or the

form can be simply dragged to the desired location.

1.4.7 The Object TreeView

Above the Object Inspector you should see the Object TreeView window. For

the moment its display is pretty simple. As you add components to the form, you'll see

that it displays a component's parent-child relationships in a tree diagram. One of the

great features of the Object TreeView is the ability to drag and drop components in

order to change a component container without losing connections with other

components.

15

• ··fl'Jl DataSource1
[£,,,~ Default {Session}

• ,,,[;1 Edit1
···li'.J E dit2

• .. fi1 Edit3
... 122:J Image 1
···r;J lmage3
~ lmage4
·r;J lmage5
···'4 lmagelist1

· ··llfl lmagelist2
·r;J Label1
r;J Label2
~ Label3

.. r".:'I I ~holA
V

Figure 1.12 Object Tree View

The Object Tree View, Object Inspector and the Form Designer (the Forml window)

work cooperatively. If you have an object on a form (we have not placed any yet) and

click it, its properties and events are displayed in the Object Inspector and the

component becomes focused in the Object TreeView.

1.4.8 Class Completion

Class Completion generates skeleton code for classes. Place the cursor anywhere

within a class declaration; then press Ctrl+Shift+C, or right-click and select Complete

Class at Cursor. Delphi automatically adds private read and write specifies to the

declarations for any properties that require them, and then creates skeleton code for all

the class's methods. You can also use Class Completion to fill in class declarations for

methods you've already implemented.

To configure Class Completion, choose Tools I Environment Options and click

the Explorer tab.

16

Type Librar.v
Preferences j

j Environment Variables I Delphi Direct I
Designer j Object Inspector I Palette j Librery

Internet
Explorer

Explorer options"'·-··--···-···"·········-·-· .. ··,

P ~utomaticall.v.show.Explorer;

P Highlight jncomplete class items

Show _geclaration syntax

Explorer ca!egories:

~ J Protected
!;?] l Public
[v' l Published
L;;?J l Field
:~: 1 Properties
[i2] i Methods

Classes
0;;?] l Interfaces
[ii' l Procedures
G2] l Types
'.¥'' l Variables/Constants
,.;;,. l Uses

'i Virtuals
'1 Statics

.,, i Inherited
'.i Introduced

Explorer sorting
(. Alpha!;ietical

Class completion option

P finish incomplete properties

r- Initial browser view
: r. Classes r Units
I - -

r globals

Browser scope · ·· · ··
r. Eroject symbols onl.v

r Ajl symbols

I OK I Cancel j Help

Fig.1.13 Class Completion

1.4.9 Debugging applications

The IDE includes an integrated debugger that helps you locate and fix errors in

your code. The debugger lets you control program execution, watch variables, and

modify data values while your application is running. You can step through your code

line by line, examining the state of the program at each breakpoint.

17

· r;;/ Step Over

5 Trace Into
~± Trace to Next Source Line
[I± Run to Cursor

[ml Evaluate/Modify. , ,

~ Add Watch ...

Add Breakpoint

i"

F9 f
r

FS

F7

Shift+F7

F4

Ctrl+F7

Ctrl+F5

Figurel.14 Run

To use the debugger, you must compile your program with debug information.

Choose Project I Options, select the Compiler page, and check Debug Information. Then

you can begin a debugging session by running the program from the IDE. To set

debugger options, choose Tools I Debugger Options.

Many debugging windows are available, including Breakpoints, Call Stack,

Watches, Local Variables, Threads, Modules, CPU, and Event Log. Display them by

choosing View I Debug Windows. To learn how to combine debugging windows for

more convenient use, see "Docking tool windows".

1.4.10 Exploring Databases

The SQL Explorer (or Database Explorer in some editions of Delphi) lets you

work directly with a remote database server during application development. For

example, you can create, delete, or restructure tables, and you can import constraints

while you are developing a database application.

18

Object Dictionary Edit 1/iew Options Help

;< &I
· Ali·o"~i'~;~·Ab;~·· :··D:irl~i~ d·~okta:db·
Dat~es j Dictiona.ty j Defrition ! LI~,;;, •.•••••.• 1 ,I
!.1 'BLoc. ~ ·---;:-·111s,,..,, Js •. rnm Jc~,i
: e MS Access Database • 4
''.:senha
,;: ·!al Tables

ff ·rn!I ARIZA.d:i
i ·affl arizaduumu.DB
;t- mt! ONS.dJ
f ml! GIAIS.dJ
+ rml lLCE.cb
'.f.· ml! kasa.DB
:f: ·!ml kasal.DB
): ·mff kasacikis_DB
(t r!in KULLANJLAN.DB
~: [El KUA.db
J rn!I MARKA.dJ
(f.· mt! MODELdb
-i ·mff PAACAGIAIS.DB
:t." mn Pasword.db
';f rnn per.db
f ·rffll SERVIS.db

:A·;te~~
<:

Figure 1.15 SQL Explorer

1.4.11 Templates and the Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards,

DLLs, sample applications, and other items that can simplify development. Choose File

I New to display the New Items dialog when you begin a project. Check the Repository

to see if it contains an object that resembles one you want to create.

• ii E6 @ ~ -
~ Batch F~e CLX Component Console

Appficetion Application

~ w D ~ ~
Data Module DLL Wizard Form Frame Package

re!' 00 U@J ~ §
Resowce DLL Service Service Te><t Thlead Object

Wizard Application

~ L
XML Data
Binding

Projects l Data Modules

~--···~-

Control Panel Control Panel
Application Module

Project Group Hepot

Unit Web Serve,
Application

OK !:!elp

Figure 1.16 New Item

19

You can add your own objects to the Repository to facilitate reusing them and

sharing them with other developers. Reusing objects lets you build families of

applications with common user interfaces and functionality; building on an existing

foundation also reduces development time and improves quality. The Object Repository

provides a central location for tools that members of a development team can access

over a network.

1.5 Programming with Delphi

The following section provides an overview of software development with Delphi.

1.5.1 Starting a New Application

Before beginning a new application, create a folder to hold the source files.

1. Create a folder in the Projects directory off the main Delphi directory.

2. Open a new project.

Each application is represented by a project. When you start Delphi, it opens a blank

project by default. If another project is already open, choose File I New Application
to create a new project. When you open a new project, Delphi automatically creates

the following files.

• Project I .DPR : a source-code file associated with the project. This is

called a project file.

• Unitl .PAS : a source-code file associated with the main project form.

This is called a unit file.

• Unitl .DFM : a resource file that stores information about the mam

project form. This is called a form file.

3. Choose File I Save All to save your files to disk. When the Save dialog appears,

navigate to your folder and save each file using its default name.

Later on, you can save your work at any time by choosing File I Save All.

20

When you save your project, Delphi creates additional files in your project

directory. You don't need to worry about them but don't delete them.

When you open a new project, Delphi displays the project's main form, named

Forml by default. You'll create the user interface and other parts of your application by

placing components on this form.

Figure 1.17 Form Screen

The default form has maximize, rmmrmze buttons and a close button, and a

control menu

Next to the form, you'll see the Object Inspector, which you can use to set

property values for the form and components you place on it.

The drop-down list at the top of the Object Inspector shows the current selected

object. When an object is selected the Object Inspector shows its properties.

1.5.2 Setting Property Values

When you use the Object Inspector to set properties, Delphi maintains your

source code for you. The values you set in the Object Inspector are called design-time

settings.

For Example; set the background color of Forml to Aqua.

21

Find the form's Color property in the Object Inspector and click the drop-down

list displayed to the right of the property. Choose clAqua from the list.

1.5.3 Adding objects to the form

The Component palette represents components by icons grouped onto tabbed

pages. Add a component to a form by selecting the component on the palette, then

clicking on the form where you want to place it. You can also double-click a component

to place it in the middle of the form.

D~·r.l 1J'.'.Sl Q6r;J ~
jl ail ;::f ri / · o ;, 1~· [5l if t A r.hY •~ •:§J IX Ii ~ ·~ = - -=

Components

Component palette tabs

Figure 1.18 Standard Bar

1.5.4 Add a Table and a StatusBar to the Form

Drop a Table component onto the form. Click the BDE tab on the Component

palette. To find the Table component, point at an icon on the palette for a moment;

Delphi displays a Help hint showing the name of the component.

EJle £.dit '2_earch 'yJew e_roject B_un ~omponent Q_atabase jcols Window t!elp

D ~ • riii;J ~ '.'.:S' ~ i;;;; @ Slandard I Addilional J \liin32 I Svstern Data Access Dalo Conlrols I dbExoress I DaiaSnao
... r-, -[?] a-.-J'~8 •.. i[]~~'-e / ... c3 o· hS ~ -sO.L SQL[J lli.iJII :J-1i """'trnJ \QL ~ m1.,

Figure 1.19 BDE Component palette

22

When you find the Table component, click it once to select it, and then click on

the form to place the component. The Table component is non visual, so it doesn't

matter where you put it. Delphi names the object Tablel by default. (When you point to

the component on the form, Delphi displays its name-Tablel-and the type of object it

is-Table.)

.... -.M.:
Table!: TT able I: -

Figure 1.20 Table in the Form

Each Delphi component is a class; placing a component on a form creates an

instance of that class. Once the component is on the form, Delphi generates the code

necessary to construct an instance object when your application is running.

Set the DatabaseName property of Tablel to DBDEMOS. (DBDEMOS is an

alias to the sample database that you're going to use.)

Select Tablel on the form, and then choose the DatabaseName property in the

Object Inspector. Select DBDEMOS from the drop-down list.

23

Form1
:Ei'~ Default {Session}

r--:: ~~ DBDEMOS {Alias}
f:F ? ..\ < ?> {Table 1 }

Table1

ii Properties I Events I
' AutoR efr~sh T F al;e

CachedU pdete False
. c~·n;tr~i~ts I [f Che?kConstr aints
DatabaseName' DBDEMOS ,..
Defaultlndex JdBASE Files

~ma Exclusive
FieldDefs
Filter
Filtered

1±1 FilterOptions MS Access Database
lndexDefs seniha
I ndexFieldN a1mrs_in_e_m _J

lndexFiles
lndexName
M asterFields
Master Source
Name T able1

(TI ndexFiles l

Figure 1.21 Select DatabaseName

Double-click the StatusBar component on the Win32 page of the Component

palette. This adds a status bar to the bottom of the application.

Set the AutoHint property of the status bar to True. The easiest way to do this is

to double-click on False next to AutoHint in the Object Inspector. (Setting AutoHint to

True allows Help hints to appear in the status bar at runtime.)

1.5.5 Connecting to a Database

The next step is to add database controls and a DataSource to your form.

24

1. From the Data Access page of the Component palette, drop a DataSource

component onto the form. The DataSource component is non visual, so it

doesn't matter where you put it on the form. Set its DataSet property to Table I.

2. From the Data Controls page, choose the DBGrid component and drop it onto

your form. Position it in the lower left comer of the form above the status bar,

and then expand it by dragging its upper right comer.

If necessary, you can enlarge the form by dragging its lower right comer. Your form

should now resemble the following figure:

The Data Control page on Component palette holds components that let you view

database tables.

->
,l.':.o

Figure 1.22 DBGrid in the Form

25

3. Set DBGrid properties to align the grid with the form. Double-click Anchors in

the Object Inspector to display akLeft, akTop, akRight, and akBottom; set them

all to true.

4. Set the DataSource property of DBGrid to DataSourcel (the default name of the

DataSource component you just added to the form).

Now you can finish setting up the Tablel object you placed on the form earlier.

5. Select the Tablel object on the form, and then set its TableName property to

BIOLIFE.DB. (Name is still Tablel .) Next, set the Active property to True.

When you set Active to True, the grid fills with data from the BIOLIFE.DB

database table. If the grid doesn't display data, make sure you've correctly set the

properties of all the objects on the form, as explained in the instructions above. (Also

verify that you copied the sample database files into your ... \Borland Shared\Data

directory when you installed Delphi.)

·~·
-~,

Species No Cat~gCJrt. Common=N ame A

~ 90020 T riggerfish Clown T riggerfish
90030 Snapper Red Emperor
90050 wrasse Giant Maori Wrasse
90070 Angelfish Blue Angelfish
90080 Cod Lunartail R ockcod
90090 Scorpionfish Firefish
901 IJO Butterflylish 0 rnate B utlerflylish

80110 Shark Swell Shark
v

< .;,

.....
.

.

Figure 1.23 Show Table

26

The DBGrid control displays data at design time, while you are working in the IDE.

This allows you to verify that you've connected to the database correctly. You cannot,

however, edit the data at design time; to edit the data in the table, you'll have to run the

application.

6. Press F9 to compile and run the project. (You can also run the project by

clicking the Run button on the Debug toolbar, or by choosing Run from the Run

menu.)

7. In connecting our application to a database, we've used three components and

several levels of indirection. A data-aware control (in this case, a DBGrid)

points to a DataSource object, which in tum points to a dataset object (in this

case, a Table). Finally, the dataset (Tablel) points to an actual database table

(BIOLIFE), which is accessed through the BDE alias DBDEMOS. (BDE aliases

are configured through the BDE Administrator.)

data-aware control dataset
(Grid) ~ DataSource ~ (Table) ~ BDE ~ database

This architecture may seem complicated at first, but in the long run it simplifies

development and maintenance. For more information, see "Developing database

applications" in the Developer's Guide or online Help.

27

CHAPTER TWO

2 THE RA VE REPORTING

2.1 Project Tree

The Project Tree provides an efficient way to visually manage all of the reports in

your project. It quickly tells you the structure of your reporting project and the types of

components contained on each page with icons that are the same as the component

buttons. The Project Tree also visually shows parent-child relationships, the print order

of component as well as the current selection (green check marks). You can select

components by clicking on the component on the Page in the Visual Designer or on the

Project Tree. Non-visual components appear only in the Project Tree in order not to

clutter up your report design.

R aveProject
:.:::.1 <?' Report Library

r::::, [Um Reportl
liliJ Pagel

~ Global Page Catalog
(:=I • Data View D ictionsry

"ffl Databasel

Figure 2.1 Project Tree

There are three main sections in the Project Tree:

• The Report Library

• The Global Page Catalog

• The Data View Dictionary
Reports themselves can contain any number of page definitions. Global Pages are

used to hold items that you want accessible to multiple reports. Data Views contain your

field definitions and provide a link to the data in your application.

28

2.2 Design Tools

Rave is all about easy management. Besides making reporting easy and organized,

Rave likes to keep itself organized and all according to what you want.

Figure 2.2 Toolbars

Since Rave is designed to be of ease to you there are three easy three ways for you to

manage the many toolbars within Rave, which are:

• Tab-docking

• Normal docking

• Free-floating

Rave's many toolbars make it easy to design even the most complicated report. The

toolbars include: Project, Designer, Zoom, Alignment, Color, Line, Font, Standard,

Drawing, Report and Barcode component toolbars. Since it is possible to create and

install new components, you may have other component toolbar buttons in your

designer.

Project t3

Figure 2.3 Project Toolbar

The Project toolbar provides quick access to project level functions such as New

Project, Project Open, Project Save, New Report, New Global Page, New Data View,

New Report Page or Execute Report.

29

Figure 2.4 Designer Toolbar

The Designer toolbar allows you to change the characteristics of the Page in the

Visual Designer. Characteristics such as whether the grid is being shown, snap to grid,

draw grid on top, show band headers, show rulers, and show the waste area of the page.

The last button brings up Rave' s extensive Preferences dialog, which is described later.

Zoom f3
10 • I

Figure 2.5 Zoom Toolbar

When you are working on a report with a complex design, you will find it much

easier if you become familiar with the Zoom toolbar, which gives you quick access to

Rave's extensive zooming capabilities. Select the zoom percent from a drop down list,

type it in or use the Zoom Tool, Zoom In, Zoom Out, Zoom Selected, Zoom Page

Width or Zoom Whole Page buttons.

Alignment t:i

Figure 2.6 Alignment Toolbar

To help keep your report looking professional, Raves Alignment toolbar

provides access to a whole host of options to micro-manage the components on your

page. The Left/fop, Center, Right/Bottom, Center In Parent, Space Equally, Equate

Widths/Heights options offer the traditional alignment options. The Move Forward,

Move Behind, Bring to Front and Send to Back order movement buttons allow you to

change the print order of components and are visually backed up by the listing of the

components in the Project Tree. Lastly, the buttons Tap Left, Tap Right, Tap Up and

30

Tap Down allow you to micro-adjust the position of components to the exact position

you need.

Figure 2.7 Colors Toolbar

The Color toolbar allows you to quickly select the primary and secondary colors

of your components. There are 8 color spots that you can use to store any custom colors

that you will be reusing throughout the project. If the colors available aren't enough,

you can double click on the custom color palettes and create a different color using

Rave's Color Editor (shown at right). With the Color Editor, you can select from a

wider variety or colors or create your own combination of Red, Green and Blue and

even select a percent saturation for the current color.

Color Editor El I
QK Current Color - Yellow (25%)

~ancel

olor Value------------------,--~

Green -3mW %

!2ss :zj !2ss :zj jo :zj !2s :zj t!_ew Color

Figure 2.8 Colors Editor

The Line toolbar is a useful tool for changing the line/border thickness and style

for components such as Line and Circle. Sizes are listed in points instead of pixels so

that your lines will always be the same thickness on your reports no matter the

resolution of the printer that you are using.

I I -1 •.. _::-_--...;..- -- -H-air-lir-1e---------- -.;..;.3...,••----, j 3
lines t3

Figure 2.9 Line Toolbar

31

The Font toolbar provides quick access to a text component's font and alignment

properties. It can also be useful for quickly viewing the font options for the currently

selected text component(s).

Figure 2.10 Fonts Toolbar

2.3 Reuse and Maintenance Tools

Reports often take a large part of the development time for an application. Many

times, there are many similarities between the design of separate reports.

This is where Rave's Mirroring technology comes in. When a component is set to

mirror another, it assumes the appearance and properties of the component it is

mirroring. The two components can be on the same page, across pages within the same

report or on a global page. This is the primary purpose of a global page. You can almost

think of it like an Object Repository, a central location for you to store reporting items

that you want accessible to more than one report. If the component is a container control

like TraveSection (similar to Delphi's Tpanel), all child components are mirrored as

well. When the original component changes, all mirroring components will also change.

While the mirrored component cannot change it properties, you can add additional

components if it is a container control.

Here are just a few examples of where Mirroring would be useful:

Your customer wants a standard page header and footer on ever~ page of their

50 reports. Now imagine you have all the reports done and your customer wants to

change the layout of the headers and footers.

The Old Way - You would need to open up all 50 report definitions and change

them one at a time.

32

The Rave Way - You would mirror the standard header and footer on each

report you create and then any changes would only have to be done in one location.

Also, if the standard header included a large bitmap, your reporting project would only

contain a single copy rather than the many copies that a traditional report designer

would require. You have to replicate a pre-printed form. The problem is there are 6

different variations of this form with only minor differences between each.

The Old Way - Assuming a traditional report designer could even handle this

type of report, you would create the first form, cut and paste it into the second, make the

minor modifications, then repeat for the other 4 forms, ending up with 6 reports that

would be hard to maintain and take up a lot more memory.

The Rave Way - You would first create the common items of the form on a

separate page, then mirror those on each form and add the unique parts for each as

needed. If anything ever needed to be changed in the common section of the form, you

would only need to change it in one place and since you're sharing most of the form's

content, the report definitions take up much less room.

Rave Reports 4 0 - D \tpp10\Rave4\0emos\Rave\RaveDemo ,av ll@Ef

J~ ·.e/:=~=ary

l lot<e><lUct<>nReport
Mas1erOetailReport
GioupingReport
MirrorReport
DataMlrrorReport

1:::;
t"' USSection
r,= lnterSection

.....J Rectangle2
./,/' SectioflS

m¥: DatoText2
T'T;~1
TText2
,- Addf1 OolySection
~- Add/'1 Addt2Sect00
,;~ aoo esssecnoo

I MuJIOageReport

MSJIM. ergeReport
rwooeteas
W2TaxForm

I::; ~ Olob; ~::;;stalag
~ Globa!Poge1
[lj Globa1Page2

1 - • Data View Dictionary
f!!I CustomerDV
0 o-ce.sov
t! Bioli!eDV
if!etiertsDV
@nemsOV

G ~ .• ~.-r."r.."-~"'

iComp.any
~Add<1
\c";ty +·;,·.··s1:i1e-.. r •. - •.. z,p
~Country · 0

JComp~nv
rAddr1

Figure 2.11 Mirror Report Example

33

Every text component has a FontMirror property which you can assign to a

FontMaster component. This will allow you to change the fonts of many text controls

from a single location. Imagine having Header, Body and Footer FontMaster

components on a global page and changing the appearance of all of your reports with

just a few mouse clicks.

Another important aspect of maintaining any large project is documentation. The

Project and every Report, Page, Data View and Data Field component has a multi-line

Description Property that can be used to comment the intended usage or other

information. This can be useful if you are coming back to a project that you last worked

on 6 months ago or especially if another programmer or your end user will be

modifying reports that you created.

2.4 Standard Components

Standard £j

Figure 2.12 Standard Tool Bar

Text - This component is used to display fixed text on your report for items such

as column headers or report titles.

Memo - This component is used to display fixed text in a word wrapped fashion

on your report. Using the MailMergeltems property and the Mail Merge Editor shown

below, you can create a mail merge type of report where Rave will replace tokens in the

memo text with a replacement string. Note that this replacement string can be edited

with the Edit button, which will display the Data Text Editor for quite a bit of extra

functionality.

Section - This component is a terrific component manager. It acts as a container

for other components, in other words it help you to group components together. By

34

properly using section components and mirroring, you can create reusable and

maintainable reports in no time flat.

Bitmap - This component is used to display a bitmap (*.bmp). Through the

FileLink property you can reference a file on the hard disk.

Metafile - This component is used to display a metafile (* .wmf). Through the

FileLink property you can reference a file on the hard disk.

FontMaster - This component is used to control the font characteristics of any text

control through their FontMirror properties. See Reuse and Maintenance for more

information.

2.5 Drawing Components

Line - Draws a diagonal line. (This may not seem like a unique feature but did

you know that most Delphi reporting tools cannot create a diagonal line visually.)

Drawing tJ

Figure 2.13 Drawing Tool Bar

Hline - Draws a horizontal line.

Vline - Draws a vertical line.

Rectangle - Draws a rectangle.

Square - Draws a square.

Ellipse - Draws an ellipse.

Circle - Draws a circle.

2.6 Reporting Components

Region - This component acts as a container for Band and DataBand components.

To create a composite or sub-report, simply drop more than one region on a page and

add the appropriate bands to each.

35

Figure 2.14 Report Tool Bar

Band - This component is primarily used to create header and footer bands in a

banded style report. A Band component can only be created within a region and it's

purpose is controlled through the Band Style Editor shown below. The Band Style

Editor displays a virtual layout of all of your bands for the given print locations of each

band or data band. Note that you can create as many Bands as you like and a Band may

print in multiple locations if the report design requires it. So for example, if you want a

solid horizontal line to appear above and below a detail body, you could create a single

band and set it to print on both the Body Header and Body Footer. You can also control

the Print Occurrence for a Band, having it continue on a new page or column or any

combination of occurrence settings. You can set a Band to group on specific fields and

can create as many different types of group headers or footers as your report requires.

Basically, with Rave's Band and DataBand components, you'll be able to create just

about any banded style layout that you can imagine.

Band Display for Region1 DataBi

, Demo TextBand (8)
, Band1 (R) + Data8and1 (Master)

, 8and2(8)
, Band3(8) + D,rt,,Band? (Detain + D,ltaBand? (Detain
+ DataBand? (Detail}
.l Band4 (b)

, Band1 (R) + Data8and1 (Master)
, Band2 (8)
, 8and3(8) + DataBaml2 (Detail) + DataBand2 (Detail) + DataB,md2 (Detain
.l Band4 (b)

, 8and1 (R)

+ Data8and1 (Master)
, Band2(8)
, 8and3(8) + Dat.lBaml2 (Detail) + DataBand2 (Det.lil) + DataBand? (Detail>
.l 8and4 (b)

QK

~ancel

Prir,t t,,_ocation

[J !;l_ody Header (B)
[J Q.roup Header (G)

[J B_ow Header (R)
G'.J Q.etail (D)

[J ROY\'.: Footer (r)

[J Grou12. Footer (g)

[J Bodt. Footer (b)

Print occurrence

G'.] E_irst (1)
[J (iew Page (P)
[J N~w Column (C)

Figure 2.15 Band Style Editor

36

DataBand - The DataBand component is fairly similar to a band component

except that it is tied to a particular DataView and iterates across the rows in the

Data View. You can link DataBands together for Master-Detail to unlimited levels or

multiple details on the same level. Some advanced features that are supported by a

DataBand include KeepBodyTogether, KeepRowTogther, StartNewPage, MaxRows

and Orphan/Widow control.

DataText - The DataText component is the primary means to output fields from

your database. You can quickly select a specific Data View and DataField with Property

Panel or use the Data Text Editor shown below to create any combination of string

constants, data fields, report variables or project parameters. The & concatenation

operator is the same as the + operator, except that it also inserts a space. Report

Variables are items such as total pages or current date and time in a variety of formats.

Project Parameters are custom variables that you create and initialize from your Delphi

application. Project Parameters can be used for items such as user defined report titles,

printing the current user name or other custom information.

Data Fields
Data Vie-,v Data Field

CustNo

(~) Selected Insert Eield V

Report Variables
v I insert E_eport Var J

s A•------·.- ==·-A
, T otalPages

v I' Insert E'_arameter J

Post lnrtialize Variables

v [Insert Pl '{ar

Data Text

'Page' & Report .CurrentPage & 'of' & Report TotalPages

QK I i ~ancel

Figure 2.16 Data Text Editor

37

DataMemo - This component is very similar to the Memo component except

that it retrieves data from a DataField. DataMemo component's print text data out in a

word wrapped fashion and the DataField can be any text type, not just memo fields. It

also has RTF and mail merge support.

CalcText - This component is used to perform simple operations such as Sum,

Average, Count, Min and Max on a data field. You can set the value as a running total

and place it in any type of band or anywhere on the page) you need it.

DataMirrorSection - The data mirror section component is similar to Raves

section component (found in the Standard Toolbar) with one major difference, it will

dynamically mirror another section depending upon the value of a DataField. You

configure the data mirror section using the Data Mirror Editor (shown below). This

component is very useful for printing out data that has different formats depending upon

the type of data. One example is an address field that could print a US format if the

country field is "US" and an international format otherwise (using the Default option in

the Data Mirror Editor). You could also print Boolean field values with your own

custom bitmaps.

Data Mirrors
• Default ' (Page2 lnterSection)

Q_elete

Data Minor Settings

Field Value

us

0Default

Mirrored Section

Page2 .USSectiori v

Figure 2.17 Data Mirror Editor

38

2. 7 Barcode Components

Figure 2.18 Barcode Toolbar

PostNetBarCode - Prints a US PostNet bar code.

12of5BarCode - Prints Interleaved 2 of 5 barcodes.

Code39BarCode - Prints standard and extended Code 39 barcodes.

Code128BarCode - Prints A, B and C Code 128 barcodes.

UPCBarCode - Prints UPC-12 barcodes.

EANBarCode -Prints EAN-13 barcodes.

2.8 Anchors

Anchors are a powerful way to create a report that dynamically adjusts to

changing sizes. This allows you to create reports that can print well whether the user

selects landscape or portrait, 8.5" by 11" or A4. There are 6 different anchor values for

both the horizontal and vertical dimensions to allow you to control each component in

exactly the manner that it needs. The Anchor Editor (shown at right) even shows you a

helpful bitmap of how each anchor setting works.

Horizontal Anchor

()Iop C1hett
:)!:light
Q>C!2_nter
()Stretc!l
()Resil_e
()Spreag

()~ottom
()~enter
()~retch
(f.)Res[ze
()Sgread

Verfo:::c1l Sample Horizontal Semple

i111Elfilj • ·11111JJr•

QK J I (;_ancel

Figure 2.19 Anchor Editor

39

2.9 Code Based Reports

Lately Delphi has decided to include Rave Reports as the default reporting

solution, replacing Quick Reports. Since they work in very different paradigms, many

people were confused by the new environment. This is intended as an introduction for

people who haven't worked with Rave yet, and would like to start.

Nowadays Delphi ships with Rave Reports 5.0.8. If you haven't already,

download the update from the registered users page, since it fixes some important

problems.

You can develop reports with Rave using two different ways: Code Based or with

the Visual Designer.

With Code Based, you write reports using plain Delphi code. That provides a very

flexible way displaying any kind of data, allowing any kind of complex layouts.

To write a code based report, just drop a TrvSystem component on the form and

write the report on the OnPrint event handler. Sender is the report you are creating, and

can be typecasted to TbaseReport. It contains all the methods you need to output

information to that particular report.

2.9.1 Simple Code Base Report

Here's a simple report using the code based mechanism:

procedure TformMain.RvSystemPrint(Sender: Tobject);

begin

with Sender as TbaseReport do

begin

SetFont('Arial', 15);

GotoXY(l,1);

Print('Welcome to Code Based Reporting in Rave');

end;

end;

40

To execute this report, call RvSystem.Execute method.

So, what does that simple code do? First, it calls SetFont to select the font and

size of the text that will be printed from that point on. Then it positions the cursor on the

coordinates (1,1). These coordinates are expressed using the units set in the

SystemPrinter.Units property of the RvSystem object, and it defaults to Inches. You can

set it to unUser and set a number relative to Inches in the SysternPrinter.UnitsFactor

property. For example, if UnitsFactor was set to 0.5 then 1 unit would correspond to

half an inch. Finally, the code calls the Print method to output the text. Here's the

output:

ofl '~ ~ @l ~ Zoom

Welcome to Code Based Reporiing in Rave

.V

Figure 2.20 Report Preview

2.9.2 Tabular Code Based Report

Here's another example. It displays a list of the folders in the root of the current

drive, along with a recursive count of number of files and folder, and total size of the

files included in each folder.

Procedure TformMain.PrintTabularReport(Report: TbaseReport);

var

FolderList : TstringList;

I : Integer;

NumFiles : Cardinal;

41

NumFolders : Cardinal;

SizeFiles : Cardinal;

Root : string;

begin

with Report do

begin

SetFont('Arial', 15);

New Line;

PrintCenter('List of Folders in the Drive Root', 4);

New Line;

New Line;

ClearTabs;

SetTab(0.2, pjLeft, 1. 7, 0, 0, O);

SetTab(l.7, pjRight, 3.1, 0, 0, 0);

SetTab(3.l, pjRight, 3.5, 0, 0, O);

SetTab(3.5, pjRight, 4.5, 0, 0, O);

SetFont('Arial', 10);

Bold := True;

PrintTab('Folder Name');

PrintTab('Number of Files');

PrintTab('Number of Folders');

PrintTab('Size of Files');

Bold := False;

New Line;

FolderList := TstringList.Create;

try

Root := IncludeTrailingPathDelimiter(ExtractFileDrive(ParamStr(O)));

EnumFolders(FolderList, Root);

for I := 0 to FolderList.Count - 1 do

begin

PrintTab(FolderList[I]);

GetFolderlnfo(IncludeTrailingPathDelimiter(Root+FolderList[I]),

NumFiles, NumFolders, SizeFiles);

42

PrintTab(Format(' %u' ,[NumFiles]));

PrintTab(Format('%u' ,[NumFolders]));

PrintTab(Format('o/ou bytes' ,[SizeFiles]));

New Line;

end;

finally

FolderList.Free;

end;

end;

end;

Notice that a different approach has been taken: instead of specifying the

coordinates of each text output, the printing was done using Lines and Columns as

references. The line heigh depends on the size of the current font: each unit represents

l/72nds of an inch, so each line printed with a size 10 font will have, ppropriate y, a

height of 0.138 inches. Lines are advanced after calls to PrintLn or NewLine. Colums

are defined using calls to the SetTabs method, and the PrintTab method will print the

text in the current column and advance to the next one. Here's the output:

List of Folders in the Drive Root

Fol<le1 Naine
Arquivos de programas
Documents and Settings
WINDO\IVS

Number of Files
984
899

5205

N11mhe1 of Folders
1571
1359
6407

Size of Files
289576931 bytes
431507112 bytes
1544102897 bytes

Figure 2.21 Report Preview

2.9.3 Graphical Code Based Report

You can include shapes and images in your code based report, along with the

text. The following example demonstrates that:

procedure TformMain.PrintGraphicsReport(Report: TbaseReport);

var

43

Bitmap : Tbitmap;

begin

with Report do

begin

Canvas.Brush.Color := clGray;

Rectangle(0.3, 0.3, 4.7, 3.3);

SetFont('Arial', 15);

FontColor := clRed;

PrintXY(0.5,0.5, 'Just look at all the graphics!');

Bitmap := Tbitmap.Create;

try

Bitmap.LoadFromFile('delphi.bmp');

PrintBitmap(3.5,0.3,1,1, Bitmap);

PrintBitmap(l,2,3,3, Bitmap);

Canvas.Pen.Color := clBlue;

Canvas.Brush.Bitmap := Bitmap;

Ellipse(5,0.3 ,6,3 .3);

Ellipse(2,1,4,l .9);

finally

Bitmap.Free;

end;

Canvas.Pen.Color := clBlack;

Canvas.Brush.Style := bsSolid;

Canvas.Brush.Color := clYellow;

Pie(0.7 ,0.7, 1.7, 1.7, 1,1,1,2);

Canvas.Brush.Color := clGreen;

Pie(0.7,0.7,1.7,1.7,1,2,1,1);

end;

end;

In this example the methods Rectangle, Ellipse and Pie have been used draw

shapes with different fills. Bitmaps were outputted using PrintBitmap and as the brush

of the ellipses. Here's the output:

44

Graphics Report Example

Figure 2.22 Report Preview

2.10 Visually Designed Reports

2.10.1 The Visual Designer

If you are used to work with Quick Reports, the default reporting engme

included in the previous versions of Delphi, you created your reports using Delphi's

own form designer, and they were save in the DFM, included as resources in your

executable. Rave works a bit differently in this aspect: it has it's own report designer,

and saves the report using it's own file format. This has some advantages, including the

fact that your reports can be made "standalone", and be used or updated independently

of your application, or even made available in a Intranet or in the Internet, using

Nevrona's Rave Report Server. Of course, you can still have it saved in a form's DFM.

To get started with the Rave Visual Designer, drop a TrvProject in a form. This

will be the link from your application to the reports you are developing. If you want,

you can add a TrvSystem and link your RvProject to it, through it's Engine property.

The RvSystem is the object responsible for the general configuration of the reports: the

printer that is going to be used, the margins, the number of pages, and so on. To start a

new project, double click the RvProject you added to the form, or select "Rave Visual

Designer" from its context menu.

45

This is the interface that you will be working on:

Figure 2.23 Rave Visual Designer

The interface is simple, and you might be familiar with some parts of it from

Delphi's IDE. On the top there's the menu, the toolbar, and the component pallete that

contain the components that will be used in the reports. In the left there's the Object

Inpector, which will be used to adjust the properties of the components of the report. In

the middle there's the Page Designer or the Event Editor, and in the left there's the very

usefull Project Treeview. For a quick overview of the components in the pallete, you

can go to Nevrona's Visual Designer page.

A Rave Project File can have one or more reports. That way you can keep

common items between them in a single location, called Global Pages. If you expand

the Report Library node of the Project Treeview, you can see that right now you are

working on Reportl. Clicking on it, its properties will show on the Inspector. Let's

change it's name and call it SimpleReport. Next, go to the Standard tab on the

Component Pallete, and pick a Text component and add it to the page. Change its text

property, and adjust its size and position. Here's how it looks like:

46

Figure 2.24 Component Palette: Standard Tab

As you can see, the properties that were changed from the default values are

shown in bold. In this case, I changed the Font, Text and Truncate properties. By default

it does not highlight Name, Pos and Size changes. If you'd like to see them, right click

the Inspector and uncheck "Exclude Name, Size and Pos changes" in the context menu.

You might have also noticed that Rave does not have an auto size property. You

can use the Truncate property to have that effect: if truncate is false, the design time size

will have no effect. -

You can see the result of this simple report right on the designer: Press F9 or use

File/Execute Report to run it. Now let's do it in our application. Save your project and

return to Delphi. Change to ProjectFile property of RvProject to point to the file you

just saved. To run the report, add a call to the Execute method of the RvProject object in

a button click, for example.

RvProject.Execute will only work for now because we only have one report in

this project. If we had multiple reports, we'd have to call SelectReport to choose one

before calling Execute, or calling ExecuteReport directly.

47

Here's the output:

Welcorne to Rave Reports Visual Designer

<

Figure 2.25 Report Preview

Tip: If you Close and Open your project before executing, you won't need to to

recompile your application or restart it to see the changes you just made in the designer.

2.10.2 Interacting with the Project

If you worked with Quick Reports, you might be used to manipulating the

objects in runtime, changing their Position, Text and Visibility. After all, they were just

Tobjects ! While this is possible with Rave, and I' 11 cover it in a later article, it's a little

harder than it was with QR. But don't worry, Rave provides a different answer to this

kind of problems.

Parameters

If you can use parameters in your reports. They can be defined using the

parameters property of either the Project, a Report or a Page. Parameters can be defined

in either of these places, they are just in multiple places for easier access.

You can only select the Project and a Report through the Project Treeview. A

page, however, can be selected using the Project Treeview or clicking on it's title above

the page designer.

48

Among other uses, you can print parameters. So, for instance, if the title of your

report can be user-defined, you could pass it from your application into the report as a

parameter.

Let's add a new report to this project to see how parameters work. To do that,

click the fourth button on the toolbar or choose File/New Report. Call it

ParametrizedReport, changing its name through the object inspector. This report is

going to be very similar to the first one, except the text is going to be user-defined.

Now we need to define the parameter that is going to be printed. To do that, still

having the report as the selected object, open the property editor the the parameters

property. There should be listed all parameters of this report, each on a separate line.

Add a parameter called Name, like this:

QK I ~ancel J
Figure 2.26 Strings Editor

Parameters can be printed using a DataText component, available in the Report

tab of the component pallete. Add a DataText to the page, and open the property editor

of the DataField property. There you can choose which field is going to be printed,

when working with DataAware reports. You can also choose Project Variables,

Parameters and Post-Initialize Variables from there.

49

So choose the parameter added previous! y from the Parameters drop-down

combo and press the Insert Parameter button. The data text expression is now

Param.Name. Press OK and try to execute the report, as before. Nothing is printed,

since the parameter has not been set.

We need to set this parameter before printing. Don't forget to save your changes,

and return to Delphi, adding a call to SelectReport before Execute, so we can see the

right report. Before executing, though, we need to set the parameter we added. That is

made using RvProject's SetParam method. This is how my code looks like right now:

procedure TformMain.btnExecuteClick(Sender: Tobject);

begin

RvProject.Open;

RvProject.SelectReport('ParametrizedReport' ,False);

RvProject.SetParam('Name' ,'Leonel');

R vProject.Execute;

RvProject.Close;

end;

Now, when we execute the report, we are going to see the string we set as a parameter

printed.

Tip: You can use RvProject.GetReportList to get a list of avaible projects, and add them

to a ComboBox, or a RadioGroup, for example. That makes selecting the report easier.

But this is too simple. Let's change the expression that is going to be printed. Return to

Rave Designer and open the property editor for the Data Text we added. You can add

any text you want, combining text, fields, parameters and variables. I changed it to this:

-Deta Text

'Hello, ' + Param .Name+ ', nice to meet you '

s

Figure 2.27 Data Text Sample

50

Here's the result:

Hello, Leonel, nice to meet you.

Figure 2.28 Report Preview

Post-Initialize Variables

Post-Initialize Variables, or simply PI Vars, are variables whose value is only

known after the report has already been printed. It may sound strange, at first, but think

about the number of pages of a report, for example. We can only know it's value after

the report is ready. Actually TotalPages is a report variable that acts like a PI var, and

can easily be printed using DataTexts as we did with Parameters.

Global Pages

When you have parts of reports that are common to two or more reports, you can

put these in a global page. Let's ppropr we have a header with our company name, the

date and time that report is being printed, the current page and the number of pages of

that report. We want that header to be in every report. How can we do it?

First, add a global page to the project, using File/New Global Page, or the

Toolbar shortcut. In that page, add a section component, available in the standard tab of

the component palette.

Sections are logical groupings of components. They can be used to group

component so they can be easily moved around the report or as containers for Mirrors,

as we are doing right now.

51

Inside that section we add what we want to be printed. In this case, a few DataTexts.

My header looks like this:

Introduction to Rave Reports
(Report.DateShort + '' + Report.TimeShort) ['Page'+ Report.C'urrentPage +'of'+ Report.TotalPages+ '.!] '

Figure 2.29 Header Sample

Hint: Instead of changing the font property of several components to the same

font, link them to a FontMaster component, available in the standard tab, and set the

font on it. That way is easier to change the font in the future, in case it's needed.

Now add another section to the Pagel of SimpleReport. Set its Mirror property

to GlobalPagel .Sectionl. You will see a copy of the header you created in the global

page. Do the same thing to ParametrizedReport. Now both reports share the same

header. Here how it looks like:

0' : Cl 'lo, •

Introduction to Rave Reports
31JDS/200316:42 Page 1 of 1.

Hello, Leonel, nice to meet you.

<J

Figure 2.30 Report Preview

Conditional Printing

Sometimes we need to print certain parts of a reporting depending of some

conditions. Rave has a very powerful way of dealing with this. We can conditionally

mirror sections depending on field values or parameters. Let's create a new Report,

calling it a Conditiona!Report.

52

Let's pretend that this new report is a trick one. The user can choose the header

that is going to be printed, from two different kinds of headers. He can also choose for

the report to be printed without a header. We are going to use a parameter to tell the

report what kind of header is going to be printed, and a DataMirrorSection to select the

proper header at runtime.

First, add a parameter to this new report called Header Kind. Let's assume that it

will have the values HO (for no header), Hl (for the first header), H2 (for the second

kind of header). Now add a new section to the global page (you can reach it through the

Project Treeview), with the second kind of header layout. I created a header similar to

the first one, changing the font title and adding a border around the values. It looks like

this:

introduction to Rave Reports
[Report.Date Short + '' + Report.TimeShort J ['Page'+ Report.CurrentPage +'of'+ Report.TotalPages +'.']I'.

Figure 2.31 Header Sample

Now return to the Pagel of ConditionalReport, and add a DataMirrorSection,

available at the Report tab of the component pallete. Go to its DataField property editor,

and set Param.HeaderKind as the expression. Now go to the DataMirrors property

editor, and add two Data Mirrors: if the value is Hl, it should point to the first header,

H2, to the second. Since HO does not match any mirrors, nothing will be printed. It

should look like this:

53

0Def.ault

OK. . J l C~ncel

Figure 2.32 Data Mirror Editor

Notice that I gave more meaningful names to each of the sections earlier.

Hint: You can use the OnMirrorValue event of the DataMirrorSection to work

on ranges of values.

Now return to Delphi and add the code to set the parameter according to the

user's choice. I added a ComboBox with the options and my code looks like this:

Procedure TformMain.btnExecuteClick(Sender: Tobject);

Begin

RvProject.Open;

RvProject.SelectReport (cmbReports.Text, False);

case cmbReports.Itemlndex of

1: RvProject.SetParam('Name' ,edName.Text);

2: RvProject.SetParam('HeaderKind' ,Format('Ho/od' ,[cmbHeaderKind.Itemlndex]));

end;

RvProject.Execute;

RvProject.Close;

end;

Now the proper header will be printed according to the user's choice.

Embedding the Project in the Executable

54

When you deploy your application, you must include you project file. You can

have it as a separated file, so you can update it in a easier way, only shipping a new one,

without recompiling your application, or include it in your executable. It's easy to do

that: open the property editor for the StoreRA V property of RvProject. There you can

press Load to include the file in the DFM, Save to extract a previously saved file, and

Clear to remove an embedded file. When there's a file loaded in this property, you don't

need to ship the project file separately.

2.11 Data Aware Reports

2.11.1 The Database Connection

There are two ways to access data from inside a report: you can share the same

connection established by your application, fetching records from Datasets that exists in

your Forms or Datamodules, or you can configure a new connection on the report,

allowing it to be independent of a particular application. For the first method you would

use a Direct Data View and a Driver Data View for the second. Data View is the analog

of a DataSource/DataSet combination inside the report.

If you intend to deploy your application using Nevrona's Rave Report Server, you

should use Driver Data Views.

2.11.2 The Driver Data View

Let's create a simple database report using a Driver Data View. Start the Rave Visual

Designer, and start a new project. We need to define the database connection. To do

this, choose File/New Database Object, or press the sixth button in the toolbar (the

purple cube). The Data Connections window will appear:

55

Data Object Type

I Data Lookup Security Controller

fj Database Connection

I!! Direct Data View
Ill Driver Data View
t\i Simple Securlty Controller

:;,,-\ L. ~a~~:'
Figure 2.33 Data Connection Window

Choose Database Connection, and you will be asked which Data Link you are

going to be using. There is a folder called DataLinks where Rave has been installed,

containing some files with the .rvd extensions, responsible from the connection

mechanism. By default, you can choose between BDE, DbExpress and ADO. I'll be

using BDE for this example. Choose BDE; press Finish, and the Database Connection

Parameters window will show up. Every Data Link has a different set of connection

parameters available, similar to those available in the Delphi IDE. For now, just set

Alias to DbDemos and press OK. Notice that a Database object has been added to the

Project Treeview, under Data View Dictionary:

R aveProject
::::! ~ Report Library

E [{ffij Reportl
[ill) Pagel

~ Global Page Catalog
i.=J •• Data View Dictionary

~(!l:lt Databasel

Figure 2.34 Project Tree View

Notice that the settings you configured in the Database Connection Parameters,

after the wizard, including usemame and password, if applicable, were saved in the

AuthDesign property of the Database component. In the AuthRun property you can use

different settings to be used at runtime, when your report has been deployed.

56

We are going to create now the Driver Data View. Click on New Data Object,

and then choose Driver Data View. You should now choose the Database Connection

that is going to be used by this Data View: choose the Database created in the previous

step. A Query Advanced Designer will show up. Drag and Drop the table customer.db

from the table list to the Layout window. It should look like this:

Tables
-~"'"'""-"""»-'"""'w&m:re & m<ow-,re-~,.,.;;,

animals. dbf
biolife.db
clients.dbf
country.db
custolv.db
customer.db
employee. db
events.db I holdings dbf

, industry. dbf
~iWm~lijfr0"·"

F.ll.'><
TaxRate
Contact
I -. ~J •....• i ~,;-:,.;.".'.".'.".:'f). :-:,~.-.

master.dbf
nextcust.db
nextitem. db

i nextord.db I orders.do
·1 parts db
reservat. db
vendors.db

I venues.db

Editor OK J [Cancel

Figure 2.35 Query Advanced Designer Window

If you have more than one table, you should drag and drop fields that should be

joined between tables. If you press the Editor Button you can check the generated SQL,

or type-in a more complex query. Let's keep the simple Customer Listing for now.

Press OK and a Driver Data View will be added to the Project Treeview, below the

Database components, having the selected fields as subitems:

57

i,;:1 • Data View Dictionary
· fD DbDemo:s

'.::I 9 DvCustomer
i!i DvCustomerCusNo
Q'.it DvCustometCompany
Qlt DvCustomerAddr1
5 DvCustomerAddr2
Q'.it DvCustomerCity
·FJ! D vCustomerS tate
Fm D vCustomerZip
Q'.it D vCustomerCountry
·fi D vCustomerPhone e DvCustomerFPX
ti DvCustomerT axRate
Q'.it DvCustomerContact
f:~ D vCustomerla:stl nvoiceD ate

Figure 2.36 Project Tree View

Notice that I renamed the Database Connection and the Data Viewto more

appropriate names. It's in the Treeview where properties of the fields should be set, like

the Display Label (FullName property), and the DisplayFormat.

2.11.3 Regions and Bands

Report components that should be printed in a fixed position in every page, like

fixed headers and footers can be put directly in page. Components, whose position will

be dependent of previously printed items, should be put in bands. DataBands will be

printed once for every record in the linked Data View, while regular Bands will only be

printed once, regardless of how many records have been selected. Both can contain

Data-Aware components (like DataText), or regular components (like Text).

Bands should be put inside Regions. Regions delimitate the width of the bands,

and the maximum height that bands can use before starting a new page. One page can

have many Regions, and one Region can contain many Bands.

Add a Region to the Page covering its whole area. Inside the region add a Band,

to be used as the report header, a DataBand, to print the customer information, and

another Band, the report footer.

58

If you wish to change the ordering of existing bands in a report, use the Move

Forward and Move Behind buttons in the Aligment Toolbar.

Rename the bands to more meaningful names (I used Header, CustomerData and

Footer). Set the Data View property of CustomerData to DvCustomer, and set

CustomerData as the Controller Band of the Header and Footer bands. You should also

run the Band Style Editor, from the Object Inspector, and set the Print Location of those

two bands to Body Header and Body Footer, respectively. You can have an idea on how

the report is going to be printed observing the Band Display as you change the settings.

It shows iterating bands repeated three times, and other bands only once:

T Header (B) + CustornerData (Master)
+ CustornerData (Master) + CustornerData (Master)
i Footer fl>}

Figure 2.37 Band Display

We also want the Header to be printed in other pages in case the listing spans

more than one page: check the New Page option in the Print Occurrence groupbox, in

that same dialog.

The Footer band will only print when DvCustomers has reached its end. If you

want it printed in every page, regardless of that, just put the components directly on the

page, below the region, and not in a Band.

In the editor, you can quickly identify the relationship between bands, their

styles and their print occurrences:

I.~ Region1 : .custo~eri::.aia Master ·1 P

I i Region1 : F oater .---~·····-······-··· .. -·

Figure 2.38 Editor Sample

59

2.11.4 Adding Fields

It's not hard to add fields to a report. You can Ctrl+Drag the fields from the

DataView, in the Project Treeview, to add DataText components to the report, and

Alt+Drag them to add Text components containing the Fullname property. This allows

you to quickly create the layout of the report. Now add some fields to CustomerData

and their title to the Header. I added CustNo, Company, Phone, TaxRate and

LastlnvoiceDate.

Don't forget that you can use the tools on the Alignment Toolbar to align the

components, even if they are in different bands.

I added a title to the Header band and a simple text to the Footer band, indicating

that the listing has ended. Later on the series we are going to see how to use the CalcOp

and CalcTotal components to be able to add totals, averages and other calculated values

to the Footer.

2.11.5 Adding the Report to Your Project

To add this report to your project you should use use the same approach as seen

in Part II: just use a RvProject in a Form or DataModule, link it to the report file, and

call its Execute method. But there is one gotcha when using Driver Data Views: your

application must load the ppropriate driver. To do that, just add the unit RvDLBDE to

your uses clause, if using BDE, RvDLDBX if using DbExpress, or RvDLADO if using

ADO.

60

CHAPTER THREE

3 STOCK PROPERTY BY USING DELPHI

3.1 Database Connection Screen

When user executes program, first database connection screen appears.In this

screen user enters user name and password to use the program.so user must have a valid

user name and password.Also user must have appropriate privileges on database; such

as view, add, update, delete.

Figure 3.1 Database Connection Screen

61

If user name or passwords are not entered correctly a screen appears with a

message as"please insert true UserName and Password".

0 please insert true UserName and Password

I OK I
Figure 3.2 Warning Message

62

3.2 Main Menu

When the user name and password are entered correctly user meets the Main

Menu screen.As you can see in this figure there are 15 sections; house to let, house for

sale, shop to let, shop for sale, plot for sale, garden for sale, building for sale, farm for

sale, villa for sale, field for sale, flier print, about, informations, user register and exit

are the names of the sections.

Figure 3.3 Main Menu

63

3.3 House to Let Menu
In house to let menu user can organize,search and print of house to let.

3.3.1 House to let Organize Form
House to let organize form have 8 sections.The sections will be explain below.

New; create new application. Previous; you can call the previous application using this

button. Next; you can call the next application using this button. Clear; with this button

you can cancel the application. Cancel; with this button you can clear the application.

Save; with this button you can save the application. Search; with this button you can

search the application.Print; with this button you can print the application.

If already rented checkbox signed it means this house already rented otherwise if

it is not signed it means it is available for let. Houseowner informations show the

information of owner.Buyer informations show the information of customer. House to

let informations show the information of house.

Figure 3.4 House to Let Organize Form

64

3.3.2 House to Let Search Form

House to let search form show to user detailed information and same time you

can search the houses available for customer. Using preview button you can go to initial

form.

21/04/2006
125 GONYELi
260 ORTAK.OY 3+1

70.000,00 TL True
90.000,00 TL False

Figure 3.5 House to Let Search Form

65

At house to let search part you can search available houses for letting according

to their features.If the condition of house is false it means the house is empty you can let

the house.If the condition is true it means you can not let the house because the house is

already was letted.

V

Figure 3.6 House to Let Search Form in Edit Mode

66

If you press previous section you can go to the current page of available house.

Figure 3.7 House to Let Organize Form in Edit Mode

67

3.3.3 House to Let Report Form

Using house to let report form you can print the informations about that house.

ESER PROPERTY
HOUSE TO LET

2
M 260

TYPE 3+1

bl STRICT ORTAKOY

PRICE 90. 000. 00 TL

TELEPMONE 0000 000 00 00 9999 999 99 99
V

0% :Page I of I

Figure 3.8 House to Let Report Form

68

3.4 House for Sale Menu
In house for sale menu user can organize,search and print of house for sale.

3.4.1 House for Sale Organize Form
House for sale organize form have 8 sections.The sections will be explain below.

New; create new application. Previous; you can call the previous application using this

button. Next; you can call the next application using this button. Clear; with this button

you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application. Search; with this button

you can search the application.Print; with this button you can print the application.

If already sold checkbox signed it means this house already sold otherwise if it is

not signed it means it is available for sale.Houseowner informations show the

information of owner.Buyer informations show the information of customer.House for

sale informations show the information of house.

Figure 3.9 House for Sale Organize Form

69

3.4.2 House for Sale Search Form

House for sale search form show to user detailed information and same time you

can search the houses available for customer.Using preview button you can go to initial

form.

15/11/1999
225 T AS Kl N KOY
145 HAMiTKOY

2+1
3+1

85.000,00 TL True
66.000,00 TL False

Figure 3.10 House for Sale Search Form

70

At house for sale search part you can search available houses for selling

according to their features.If the condition of house is false it means the house is empty

you can sale the house.If the condition is true it means you can not sale the house

because the house is already was sold.

Figure 3.11 House for Sale Search in Edit Mode

71

If you press previous section you can go to the current page of available house.

Figure 3.12 House for Sale Organize Form in Edit Mode

72

3.4.3 House for Sale Report Form

Using house to let report form you can print the informations about that house.

ESER PROPERTY
HO USE FOR SALE

2
M

TYPE

DISTRICT

PRICE

TELEPHONE

145

3+1

HAMiTKOY

66.000, 00 TL

0532 345 21 34 0542 843 77 59

0% !page i of 1

Figure 3.13 House for Sale Report

73

3.5 Shop to Let Menu
In shop to let menu user can organize,search and print of shop to let.

3.5.1 Shop to Let Organize Form
Shop to let organize form have 8 sections.The sections will be explain below.

New; create new application. Previous; you can call the previous application using this

button.Next; you can call the next application using this button.Clear; with this button

you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application. Search; with this button

you can search the application.Print; with this button you can print the application.

If already rented checkbox signed it means this shop already rented otherwise if

it is not signed it means it is available for let.Owner of a shop informations show the

information of owner.Buyer informations show the information of customer.Shop to let

informations show the information of shop.

Figure 3.14 Shop to Let Organize Form

74

3.5.2 Shop to Let Search Form

Shop to let search form show to user detailed information and same time you can

search the shops available for customer.Using preview button you can go to initial form.

R egistr ationdate
~ 03/11/2003
30/01/1989

55 DEREBOYU
85 YENiKENT GALERi

45.000.00 TL True
45.000.00 TL False

Figure 3.15 Shop to Let Search Form

75

At shop to let search part you can search available shops for letting according to

their features.If the condition of shop is false it means the shop is empty you can let the

shop.If the condition is true it means you can not sale the shop because the shop is

already was letted.

V

>

Figure 3.16 Shop to Let Search Form in Edit Mode

76

If you press previous section you can go to the current page of available shop.

Figure 3.17 Shop to Let Organize Form in Edit Mode

77

3.5.3 Shop to Let Report Form

Using shop to let report form you can print the informations about that shops.

ESER PROPERTY

SHOP TO LET

2
M

TYPE

DISTRICT

PRICE

TELEPHONE

85

GALER!

YENIKENT

45.000, 00 TL

0532 345 21 34 0542 843 rr 59

0% Page 1 of 1

Figure 3.18 Shop to Let Report

78

3.6.2 Shop for Sale Search Form

Shop for sale search form show to user detailed information and same time you

can search the shops available for customer.Using preview button you can go to initial

form.

23/12/1996

55 GiRNEKAPI
75 KUl;:UKKAYMAKL ZEMiN

38.000,00 TL True
65.000,00 TL False

V

Figure 3.20 Shop for Sale Search Form

80

At shop for sale search part you can search available shops for selling according

to their features.If the condition of shop is false it means the shop is empty you can sale

the shop.If the condition is true it means you can not sale the shop because the shop is

already was sold.

V

Figure 3.21 Shop for Sale Search Form in Edit Mode

81

3.6 Shop for Sale Menu
In shop for sale menu user can organize, search and print of shop for sale.

3.6.1 Shop for Sale Organize Form
Shop for sale organizes form have 8 sections.The sections will be explain below.

New; create new application.Previous; you can call the previous application using this

button.Next; you can call the next application using this button.Clear; with this button

you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application.Search; with this button

you can search the application.Print; with this button you can print the application.

If already sold checkbox signed it means this shop already sold otherwise if it is

not signed it means it is available for sale.Owner of a shop informations show the

information of owner.Buyer informations show the information of customer.Shop for

sale informations show the information of shop.

Figure 3.19 Shop for Sale Organize Form

79

If you press previous section you can go to the current page of available shop.

Figure 3.22 Shop for Sale Organize Form in Edit Mode

82

3.6.3 Shop for Sale Report Form

Using shop for sale report form you can print the informations about that shops.

ESER PROPERTY

SHOP FOR SALE

2
M 75

TYPE ZEMiN

DISTRICT

PRICE 65.000, 00 TL

TELEPHONE 0532 345 21 34 0542 843 77 59

0% Page 1 of 1

Figure 3.23 Shop for Sale Report Form

83

3. 7 Plot for Sale Menu
In plot for sale menu user can organize, search and print of plot for sale.

3.7.1 Plot for Sale Organize Form
Plot for sale organizes form have 8 sections.The sections will be explain below.

New; create new application.Previous; you can call the previous application using this

button.Next; you can call the next application using this button.Clear; with this button

you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application.Search; with this button

you can search the application.Print; with this button you can print the application.

If already sold checkbox signed it means this plot already sold otherwise if it is

not signed it means it is available for sale.Owner of a plot informations show the

information of owner.Buyer informations show the information of customer.Plot for

sale informations show the information of plot.

Figure 3.24 Plot for Sale Organize Form

84

3.7.2 Plot for Sale Search Form

Plot for sale search form show to user detailed information and same time you

can search the plots available for customer.Using preview button you can go to initial

form.

,, 1 5/02/2000
320 S EF AKOY
400 LEMAR PARKYANI 95.000,00 TL False

Figure 3.25 Plot for Sale Search Form

85

At plot for sale search part you can search available plots for selling according to

their features.If the condition of plot is false it means the plot is empty you can sale the

plot.If the condition is true it means you can not sale the plot because the plot is already

was sold.

Figure 3.26 Plot for Sale Search Form in Edit Mode

86

If you press previous section you can go to the current page of available plot.

Figure 3.27 Plot for Sale Organize Form in Edit Mode

87

3.7.3 Plot for Sale Report Form

Using plot for sale report form you can print the informations about that plots.

ESER PROPERTY

PLOT FOR SALE

2
M

TYPE

DISTRICT

PRICE

TELEPHONE

320

YOL0ST0

SEFAKOY

85.000, 00 TL

0532 345 21 34 0542 843 77 59

0% ,Page 1 of 1

Figure 3.28 Plot for Sale Report Form

88

3.8 Garden for Sale Menu
In garden for sale menu user can organize, search and print of garden for sale.

3.8.1 Garden for Sale Organize Form
Garden for sale organize form have 8 sections.The sections will be explain

below.New; create new application. Previous; you can call the previous application

using this button.Next; you can call the next application using this button.Clear;with

this button you can cancel the application.Cancel; with this button you can clear the
V

application.Save; with this button you can save the application. Search; with this button

you can search the application. Print; with this button you can print the application.

If already sold checkbox signed it means this garden already sold otherwise if it

is not signed it means it is available for sale.Owner of a garden informations show the

information of owner.Buyer informations show the information of customer.Garden for

sale informations show the information of garden.

Figure 3.29 Garden for Sale Organize Form

89

3.8.2 Garden for Sale Search Form

Garden for sale search form show to user detailed information and same time

you can search the gardens available for customer.Using preview button you can go to

initial form.

350 KAYALI 410 KAYISI 88.000,00 TL False

Figure 3.30 Garden for Sale Search Form

90

At garden for sale search part you can search available gardens for selling

according to their features.If the condition of garden is false it means the garden is

empty you can sale the garden.If the condition is true it means you can not sale the

garden because the garden is already was sold.

Figure 3.31 Garden for Sale Search Form in Edit Mode

91

If you press previous section you can go to the current page of available garden.

Figure 3.32 Garden for Sale Organize Form in Edit Mode

92

3.8.3 Garden for Sale Report Form

Using garden for sale report form you can print the informations about that gardens.

ESER PROPERTY
GARDEN FOR SALE

2
M

TYPE

DISTRICT

PRICE

TELEPHONE

350

410 KAYISI

KAY ALI

88.000, 00 TL

0532 345 21 34 0542 843 77 59

0% 'Page 1 of 1

Figure 3.33 Garden for Sale Report Form

93

3.9 Building For Sale Menu
In building for sale menu user can organize, search and print of building for sale.

3.9.1 Building for Sale Organize Form
Building for sale organize form have 8 sections. The sections will be explain

below.New; create new application. Previous; you can call the previous application

using this button.Next; you can call the next application using this button. Clear; with

this button you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application.Search; with this button

you can search the application. Print; with this button you can print the application.

If already sold checkbox signed it means this building already sold otherwise if

it is not signed it means it is available for sale.Owner of a building informations show

the information of owner. Buyer informations show the information of

customer.Building for sale informations show the information of building.

Figure 3.34 Building for Sale Organize Form

94

3.9.2 Building for Sale Search Form

Building for sale search form show to user detailed information and same time

you can search the buildings available for customer.Using preview button you can go to

initial form.

01/01/1993
320 METROPOL 4+ 1
185 BAHCELiEVLI 3+ 1 98. 765,00 TL False

V

Figure 3.35 Building for Sale Search Form

95

At building for sale search part you can search available buildings for selling

according to their features.If the condition of building is false it means the building is

empty you can sale the building.If the condition is true it means you can not sale the

building because the building is already was sold.

V

Figure 3.36 Building for Sale Search Form in Edit Mode

96

If you press previous section you can go to the current page of available building.

Figure 3.37 Buildiing for Sale Organize Form in Edit Mode

97

3.9.3 Building for Sale Report Form

Using building for sale report form you can print the informations about that buildings.

ESER PROPERTY
BUILDING FOR SA LE

2
M 320

TYPE 4+1

DISTRICT METROPOL

PRICE 75.000, 00 TL

TELEPHONE 0532 345 21 34 0542 843 77 59

0% IPage 1 of 1

Figure 3.38 Building for Sale Report Form

98

3.10 Farm for Sale Menu
In farm for sale menu user can organize, search and print of farm for sale.

3.10.1 Farm for Sale Organize Form
Farm for sale organize form have 8 sections.The sections will be explain below.

New; create new application. Previous; you can call the previous application using this

button.Next; you can call the next application using this button. Clear; with this button

you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application. Search; with this button

you can search the application. Print; with this button you can print the application.

If already sold checkbox signed it means this farm already sold otherwise if it is

not signed it means it is available for sale.Owner of a farm informations show the

information of owner.Buyer informations show the information of customer.Farm for

sale informations show the information of farm.

Figure 3.39 Farm for Sale Organize Form

99

3.10.2 Farm for Sale Search Form

Farm for sale search form show to user detailed information and same time you

can search the farms available for customer.Using preview button you can go to initial

form.

29/03/1983
3200 HAMiTKOY
4000 DEMiRHAN TAVUK

87.000,00 TL True
65.000,00 TL False

Figure 3.40 Farm for Sale Search Form

100

At farm for sale search part you can search available farms for selling according

to their features.If the condition of farm is false it means the farm is empty you can sale

the farm.If the condition is true it means you can not sale the farm because the farm is

already was sold.

V

Figure 3.41 Farm for Sale Search Form in Edit Mode

101

If you press previous section you can go to the current page of available farm.

Figure 3.42 Farm for Sale Organize Form in Edit Mode

102

3.10.3 Farm for Sale Report Form

Using farm for sale report form you can print the informations about that farms.

ESER PROPERTY

FARM FOR SALE

2
M

TYPE

DISTRICT

PRICE

TELEPHONE

4000

TAVUK

DEMiRHAN

65.000, 00 TL

0532 345 21 34 0542 843 77 59

0% Paqe 1 of 1

Figure 3.43 Farm for Sale Report Form

103

3.11 Villa for Sale Menu
In villa for sale menu user can organize, search and print of villa for sale.

3.11.1 Villa for Sale Organize Form
Villa for sale organize form have 8 sections.The sections will be explain below.

New; create new application. Previous; you can call the previous application using this

button.Next; you can call the next application using this button. Clear; with this button

you can cancel the application.Cancel; with this button you can clear the

application.Save; with this button you can save the application. Search; with this button

you can search the application. Print; with this button you can print the application.

If already sold checkbox signed it means this villa already sold otherwise if it is

not signed it means it is available for sale. Owner of a villa informations show the

information of owner.Buyer informations show the information of customer.Villa for

sale informations show the information of villa.

Figure 3.44 Villa for Sale Organize Form

104

3.11.2 Villa for Sale Search Form

Villa for sale search form show to user detailed information and same time you

can search the villas available for customer. Using preview button you can go to initial

form.

R eqistr ationdate
320 0 RT AKOY
225 ERYAMAN DUB LEX

92.000,00 TL True
99.000,00 TL False

1 ~ I 01 10911990
fl 1 7 /0.(/2001

Figure 3.45 Villa for Sale Search Form

105

At villa for sale search part you can search available villas for selling according

to their features. If the condition of villa is false it means the villa is empty you can sale

the villa.If the condition is true it means you can not sale the villa because the villa is

already was sold.

V

Figure 3.46 Villa for Sale Search Form in Edit Mode

106

If you press previous section you can go to the current page of available villa.

Figure 3.47 Villa for Sale Organize Form in Edit Mode

107

3.11.3 Villa for Sale Report Form

Using villa for sale report form you can print the informations about that villas.

ESER PROPERTY

VILLA FOR SALE

2
M

TYPE

DISTRICT

PRICE

TELEPHONE

320

DUBLEX

ORTAKOY

92.000, 00 TL

0532 345 21 34 0542 843 77 59

0% iPage 1 of 1

108

3.12 Field for Sale Menu
In field for sale menu user can organize, search and print of field for sale.

3.12.1 Field for Sale Organize Form
Field for sale organize form have 8 sections.The sections will be explain below.

New; create new application.Previous; you can call the previous application using this

button.Next; you can call the next application using this button.Clear; with this button

you can cancel the application. Cancel; with this button you can clear the application.

Save; with this button you can save the application. Search; with this button you can

search the application. Print; with this button you can print the application.

If already sold checkbox signed it means this field already sold otherwise if it is

not signed it means it is available for sale.Owner of a field informations show the

information of owner.Buyer informations show the information of customer.Field for

sale informations show the information of field.

Figure 3.48 Field for Sale Organize Form

109

3.12.2 Field for Sale Search Form

Field for sale search form show to user detailed information and same time you

can search the fields available for customer.Using preview button you can go to initial

form.

21/06/1990
21/05/1989
05/1112004

4600 TASLIKOY KUYUSUZ 75.000,00 TL False
78-000,00 TL False
75.000,00 TL False

4600 T AS LI KOY 105 KAYISI
2500 DEGiRMELiK KUYULU

V

>

Figure 3.49 Field for Sale Search Form

110

At field for sale search part you can search available fields for selling according

to their features.If the condition of field is false it means the field is empty you can sale

the field.If the condition is true it means you can not sale the field because the field is

already was sold.

2500 DEGiRMENLiK KUYULU

Figure 3.50 Field for Sale Search Form in Edit Mode

111

If you press previous section you can go to the current page of available field.

Figure 3.51 Field for Sale Organize Form in Edit Mode

112

3.12.3 Field for Sale Report Form

Using field for sale report form you can print the informations about that fields.

ESER PROPERTY

FIELD FOR SALE

2
M 2500

TYPE KUYULU

DISTRICT DEGIRMENLiK

PRICE 75. 000, 00 TL

TELEPHONE 053 2 345 21 34 0542 843 77 59

0% Page 1 of 1

Figure 3.52 Field for Sale Report Form

113

3.13 Flier Print Menu

In flier print menu user can print all advertisements.

3.13.1 Flier Print Organize Form

In flier print organize form user can print all advertisements related to each type

houses, shops, villas, plots, fields.jgardens, buildings and farms.

Using preview button you can go to main menu.

Figure 3.53 Flier Print Form

114

3.13.2 House to Let Advertisements Form

Using this form you can print the advertisements about that house to let.

ESER PROPERTY

HOUSES TO LET

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE METER DISTRICT J>RICE TYPE

125 GONYEU

ORT.A.KOY 00.COJ,OJ TL

SnJDYO EV 70.COJ,OO TL

3+1 260

iPage 1 of 1

Figure 3.54 House to Let Advertisements Form

115

3.13.3 Villa for Sale Advertisements Form

Using this form you can print the advertisements about that villa for sale.

ESER PROPERTY
VILLAS FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE lv\ETER DISTRICT TYPE PRICE

ORTAKOY DUBLEX Q20)J,00 ll..

ERYAMAN DUBL.EX 9d.COJ,OO ll..

C

:Page 1 of 1

Figure 3.55 Villa for Sale Advertisements Form

116

3.13.4 Shop to Let Advertisements Form

Using this form you can print the advertisements about that shop to let.

ESER PROPERTY

SHOPS TO LET

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE METER PRICE t>ISTl<ICT TYPE

55 PA.3.AJ 45COJ,OJ TL DEREBOYU

85 YENiKENT GAL£Ri 45.COJ,OJ TL

Page 1 of 1

Figure 3.56 Shop to Let Advertisements Form

117

3.13.5 Plot for Sale Advertisements Form

Using this form you can print the advertisements about that plot for sale.

ESER PROPERTY
PLOTS FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE METER t>ISTRICT TYPE PRICE

SEFAKOY

LEM.A.R

YDLUSlU

PARKY AN I

85 0::0.00 TL

95 0::0,00 TL

Page 1 of 1

Figure 3.57 Plot for Sale Advertisements Form

118

3.13.6 House for Sale Advertisements Form

Using this form you can print the advertisements about that house for sale.

ESER PROPERTY
HOVSES FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE METER DISTRICT TYPE PRICE

225 TA;KINKOY

HMI.ITKdY

2+1

3+1

85.000,00 TL

66.000,00 TL 145

V
Page 1 of 1

Figure 3.58 House for Sale Advertisements Form

119

3.13.7 Field for Sale Advertisements Form

Using this form you can print the advertisements about that field for sale.

ESER PROPERTY
FIELDS FOR SALE

TELEPHONE . 0000 000 00 00 9999 999 99 99 .
SQUARE METER DISTRICT T'~E f>RICE

3<00 KANUDERE 217 ELMA OOCOJDO TL

-eoo TA~UKOY l<JJYUSUZ: 75COJDO TL

-eoo TA~UKOY 105 KAYISI 78.COJDO TL

2500 DEGiRMELiK l<JJYUW 75.COJDO TL

V

;Page I of I

Figure 3.59 Field for Sale Advertisements Form

120

3.13.8 Shop for Sale Advertisements Form

Using this form you can print the advertisements about that shop for sale.

ESER PROPERTY
SHOPS FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE METER bl.STRICT TYPE PRICE

55

75

GiRI\EKAPI

KLJ(LJKKAY 111.AKLI

38.000,00 TL

65.000,00 TL

ZEMiN

ZEll\iN

'Page 1 of 1

Figure 3.60 Shop for Sale Advertisements Form

121

3.13.9 Garden for Sale Advertisements Form

Using this form you can print the advertisements about that garden for sale.

ESER PROPERTY
GARDENS FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE HETER t>ISTRICT PRICE

GOfNELi lll.000,00 TL

83.000,00 TL KAYALJ

f Page 1 of 1

Figure 3.61 Garden for Sale Advertisements Form

122

3.13.10 Building for Sale Advertisements Form

Using this form you can print the advertisements about that building for sale.

ESER PROPERTY
BUILDINGS FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE METER DISTRICT PRICE

32J

185

MElROPOL

BAHi.ELiEVLER

4+-1

s!-1

75.0::0 .00 1L

93.765.00 1L

Page 1 of 1

Figure 3.62 Building for Sale Advertisements Form

123

3.13.11 Farm for Sale Advertisements Form

Using this form you can print the advertisements about that farm for sale.

ESER PROPERTY
FARMS FOR SALE

TELEPHONE 0000 000 00 00 9999 999 99 99

SQUARE IAETER TWE PRICE DISTRICT

320)

4XO

HA.Min<OY

DEMiRHA.N

BUYUKBA~

TAVUK

87.0:0,00 TL

650:0,00 TL

hge 1 of 1

Figure 3.63 Farm for Sale Advertisements Form

124

3.14 User Register Menu

When you press the user register button you are going to open new form here who

will use this program can be registered and they can use the program and same time you

can exchange your password.If you press new button new admin can be added to user

list.If you press edit button you can change your informations.If you press save button

you can save your informations.If you press delete button you can deleted.User

information from system.If you press refresh button you can clean the page.If you press

cancel button you can leave this form and you can go to main menu.

Figure 3.64 User Register From

125

3.15 About Menu

This form gives informations about the current program and owner of this

program.

Figure 3.65 About Form

126

3.16 Informations Menu

Using informations menu you can get all informations about the property.

Figure 3.66 Informations Form

127

3.17 Exit Menu

When you click the exit menu (yes I no) you can decide to continue search or

exit the program.

Do you want to exit program?

Yes sl No -· --··-··-·-· ·-··-··
Figure 3.67 Exit Form

128

CONCLUSION

In this Graduation Project stock program for any property using Delphi was

examined.

This program can be used easily for each user that can record customer

information.

The operation structures of this program could be explained briefly; as follows

when user executes program, first database connection screen appears. In this screen

user enters user name and password to use the program. so user must have a valid user

name and password. Also user must have appropriate privileges on database; such as

view, add, update, delete.

When the user name and password are entered correctly user meets the Main

Menu screen.As you can see in this figure there are 15 sections; house to let, house for

sale, shop to let, shop for sale, plot for sale, garden for sale, building for sale, farm for

sale, villa for sale, field for sale, flier print, about, informations, user register and exit

are the names of the sections.

For future implementations the current program can be developed using different

program languages.

129

REFERENCES

http://www.codegear.com

http://www.scalabium.com/faq/dc_tips.htm

http://www.nevrona.com/

Delphi Programming Explorer, Jeff Dontemann-Jim Mischel ISBN 1-883-57725-X

Database Application Developers Book for Delphi (e Book)

Borland Delphi 6 for Windows (e Book)

Mastering Delphi 6 - Marco Cantu

130

APPENDIX

Program Codes

unit Unitl;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, jpeg, ExtCtrls, lmglist, Comctrls, ToolWin;

type
TForml = class(TForm)
lmagel: Tlmage;
Labell: Tlabel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
BitBtnS: TBitBtn;
BitBtn6: TBitBtn;
BitBtn7: TBitBtn;
BitBtn8: TBitBtn;
BitBtn9: TBitBtn;
BitBtnlO: TBitBtn;
BitBtnll: TBitBtn;
BitBtn12: TBitBtn;
BitBtn13: TBi~Btn;
Bevell: TBevel;
Bevel2: TBevel;
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
Bevel6: TBevel;
Bevell: TBevel;
Bevel8: TBevel;
Bevel9: TBevel;
BevellO: TBevel;
Bevelll: TBevel;
Bevel12: TBevel;
Timerl: Dimer;
lmagelistl: Tlmagelist;
lmagelist2: Tlmagelist;
Label2: TLabel;
BitBtn14: TBitBtn;
Bevel13: TBevel;
Bevel14: TBevel;
procedure BitBtnlClick(Sender: TObject);

131

procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure BitBtnSClick(Sender: TObject);
procedure BitBtn6Click(Sender: TObject);
procedure BitBtn9Click(Sender: TObject);
procedure BitBtn7Click(Sender: TObject);
procedure BitBtn8Click(Sender: TObject);
procedure BitBtnlOClick(Sender: TObject);
procedure BitBtnllClick(Sender: TObject);
procedure BitBtn12Click(Sender: TObject);
procedure BitBtn13Click(Sender: TObject);
procedure TimerlTimer(Sender: TObject);
procedure Label2Db1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure BitBtn14Click(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
Forml: TForml;

implementation

uses unit2, units, unit8, unitlO, unit6, unit3, unit4,unit9, unit7,
unitll, unit22, unit23, unit44, unit45, unit47;

{$R * .dfm}

procedure TForml.BitBtnlClick(Sender: TObject);
begin
housetolet.ShowModal;
end;

procedure TForml.BitBtn2Click(Sender: TObject);
begin
shoptolet.ShowModal;
end;

procedure TForml.BitBtn3Click(Sender: TObject);
begin
plot.ShowModal;
end;

procedure TForml.BitBtn4Click(Sender: TObject);
begin
building.ShowModal;

132

end;

procedure TForml.BitBtnSClick(Sender: TObject);
begin
villa.ShowModal;
end;

procedure TForml.BitBtn6Click(Sender: TObject);
begin
flierprint.ShowModal;
end;

procedure TForml.BitBtn9Click(Sender: TObject);
begin
garden.ShowModal;
end;

procedure TForml.BitBtn7Click(Sender: TObject);
begin
houseforsale.ShowModal;
end;

procedure TForml.BitBtn8Click(Sender: TObject);
begin
shopforsale.ShowModal;
end;

procedure TForml.BitBtnlOClick(Sender: TObject);
begin
farm.ShowModal;
end;

procedure TForml.BitBtnllClick(Sender: TObject);
begin
field.ShowModal;
end;

procedure TForml.BitBtn12Click(Sender: TObject);
begin
about.ShowModal;
end;

procedure TForml.BitBtn13Click(Sender: TObject);
begin
if(Application.MessageBox('Do you want to exit program?','ESER
PROPERTY',MB_ YESNO)=IDYES)then
halt;
end;

procedure TForml.TimerlTimer(Sender: TObject);
begin

133

forml.caption:='ESER PROPERTY
end;

'+DateTOStr(now)+' '+ TIMETostr(now)+' '· I

procedure TForml.Label2DblClick(Sender: TObject);
begin
informations.Show;
end;

procedure TForml.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu);
Forml.ClientHeight:=599;
Forml.ClientWidth:=1072;
end;

procedure TForml.BitBtn14Click(Sender: TObject);
begin
form47.ShowModal;
end;

end.

unit Unit2;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, DBCtrls, ExtCtrls, Buttons, lmglist, ComCtrls, ToolWin,
Mask;

type
Thousetolet = class(TForm)
GroupBoxl:TGroupBo~
GroupBox2: TGroupBox;
GroupBox3: TGroupBox;
ToolBarl: noolBar;
ToolButtonl: noolButton;
Too1Button2: noolButton;
Too1Button3: noolButton;
Too1Button4: noolButton;
ToolButtonS: noolButton;
Too1Button6: noolButton;
Too1Button7: noolButton;
Too1Button8: noolButton;
Too1Button9: noolButton;
ToolButtonlO: noolButton;
ToolButtonll: noolButton;
lmagelistl: Tlmagelist;

134

BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
Bevell: TBevel;
Bevel2: TBevel;
DBCheckBoxl:TDBCheckBo~
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Labels: TLabel;
Label6: TLabel;
Label7: Tlabel;
Label8: Tlabel;
Label9: TLabel;
LabellO: Tlabel;
Labelll: TLabel;
Label12: TLabel;
Label13: Tlabel;
Label14: TLabel;
LabellS: Tlabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
DBEdit13: TDBEdit;
DBEdit14: TDBEdit;
DBEditlS: TDBEdit;
procedure ToolButtonlClick{Sender: TObject);
procedure Too1Button3Click{Sender: TObject);
procedure ToolButtonSClick{Sender: TObject);
procedure Too1Button7Click{Sender: TObject);
procedure BitBtnlClick{Sender: TObject);
procedure BitBtn2Click{Sender: TObject);
procedure DBCheckBoxlClick{Sender: TObject);
procedure ToolButtonllClick{Sender: TObject);
procedure DBEditlEnter{Sender: TObject);
procedure DBEditlExit{Sender: TObject);
procedure Too1Button9Click{Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);

135

private
{ Private declarations}

public
{ Public declarations }

end;

var
housetolet: Thousetolet;

implementation

uses unit45, unit12, unit24;

{$R *.dfm}

procedure Thousetolet.ToolButtonlClick(Sender: TObject);
begin
dm.tkhouse.lnsert;
end;

procedure Thousetolet.Too1Button3Click(Sender: TObject);
begin
dm.tkhouse.Prior;
end;

procedure Thousetolet.Too1Button5Click(Sender: TObject);
begin
dm.tkhouse.Next;
end;

procedure Thousetolet.Too1Button7Click(Sender: TObject);
begin
dm.tkhouse.Cancel;
end;

procedure Thousetolet.BitBtnlClick(Sender: TObject);
begin
housetoletsearch.ShowModal;
end;

procedure Thousetolet.BitBtn2Click(Sender: TObject);
begin
housetoletreport.QuickRepl.Preview;
end;

procedure Thousetolet.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;
DBCheckBoxl.Caption:='Already rented';

136

end;
if DBCheckboxl.Checked=false then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='this house give to let';
end;
end;

procedure Thousetolet.Too1Button11Click(Sender: TObject);
begin
dm.tkhouse.Edit;
dm.tkhouse.Post;
ShowMessage('Record is registered');
end;

procedure Thousetolet.D8Edit1Enter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

procedure Thousetolet.D8Edit1Exit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;
end;

procedure Thousetolet.Too1Button9Click(Sender: TObject);
begin
try
if(Application.MessageBox('Record will be delete are you
sure?','Confirmation',MB_ YESNO)=IDYES) then
dm.tkhouse.Delete;
except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Thousetolet.FormKeyPress(Sender: TObject; var Key: Char);
begin
If (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Thousetolet.FormCreate(Sender: TObject);
begin
housetolet.ClientHeight:=606;
housetolet.ClientWidth:=695;
end;

137

end.

unit Unit3;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, lmglist, ComCtrls, ToolWin, StdCtrls, Mask, DBCtrls, Buttons,
ExtCtrls;

type
Tshopforsale = class(TForm)
ToolBarl: noolBar;
ToolButtonl: TioolButton;
Too1Button2: TioolButton;
Too1Button3: noolButton;
Too1Button4: TioolButton;
ToolButtonS: TioolButton;
Too1Button6: TioolButton;
Too1Button7: noolButton;
Too1Button8: TioolButton;
Too1Button9: TioolButton;
ToolButtonlO: TioolButton;
ToolButtonll: TioolButton;
lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
Bevel3: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
Bevel4: TBevel;
Bevels: TBevel;
DBCheckBoxl:TDBCheckBo~
GroupBoxl: TGroupBox;
GroupBox2: TGroupBox;
GroupBox3: TGroupBox;
Label 1: Tlabel;
Label2: Tlabel;
Label3: Tlabel;
Label4: Tlabel;
Labels: Tlabel;
Label6: Tlabel;
Label7: Tlabel;
Label8: Tlabel;
Label9: Tlabel;
LabellO: Tlabel;
Labelll: Tlabel;
Label12: Tlabel;

138

Label13: TLabel;
Label14: Tlabel;
LabellS: Tlabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
DBEdit13: TDBEdit;
DBEdit14: TDBEdit;
DBEditlS: TDBEdit;
procedure DBCheckBoxlClick(Sender: TObject);
procedure ToolButtonllClick(Sender: TObject);
procedure ToolButtonlClick(Sender: TObject);
procedure Too1Button3Click(Sender: TObject);
procedure ToolButtonSClick(Sender: TObject);
procedure Too1Button7Click(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure DBEditlEnter(Sender: TObject);
procedure DBEditlExit(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure Too1Button9Click(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
shopforsale: Tshopforsale;

implementation

uses unit45, unitlS, unit27;

{$R * .dfm}

procedure Tshopforsale.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;

139

DBCheckBoxl.Caption:='Already sold';
end;
if DBCheckboxl.Checked=false then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='Sell shop';
end;
end;

procedure Tshopforsale.ToolButtonllClick(Sender: TObject);
begin
dm.tsshop.Edit;
dm.tsshop.Post;
ShowMessage('Record is registered');
end;

procedure Tshopforsale.ToolButtonlClick(Sender: TObject);
begin
dm.tsshop.lnsert;
end;

procedure Tshopforsale.Too1Button3Click(Sender: TObject);
begin
dm.tsshop.Prior;
end;

procedure Tshopforsale.ToolButtonSClick(Sender: TObject);
begin
dm.tsshop.Next;
end;

procedure Tshopforsale.Too1Button7Click(Sender: TObject);
begin
dm.tsshop.Cancel;
end;

procedure Tshopforsale.BitBtnlClick(Sender: TObject);
begin
shopforsalesearch.ShowModal;
end;

procedure Tshopforsale.BitBtn2Click(Sender: TObject);
begin
shopfo rsa lereport.QuickRep 1. Preview;
end;

procedure Tshopforsale.DBEditlEnter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

140

procedure Tshopforsale.DBEditlExit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;

end;

procedure Tshopforsale.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tshopforsale.Too1Button9Click(Sender: TObject);
begin
try
if (Application.MessageBox('Record will be deleted are you
sure?','Confirmation',MB_ YESNO)=IDYES) then
dm.tsshop.Delete;
except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Tshopforsale.FormCreate(Sender: TObject);
begin
shopforsale.ClientHeight:=608;
shopforsale.ClientWidth:=695;
end;

end.

unit Unit4;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, Buttons, ExtCtrls, lmglist, ComCtrls,
ToolWin;

type
Thouseforsale = class(TForm)
ToolBarl: TioolBar;
ToolButtonl: TioolButton;

141

Too1Button2: TioolButton;
Too1Button3: TioolButton;
Too1Button4: TioolButton;
ToolButtonS: TioolButton;
Too1Button6: TioolButton;
Too1Button7: TioolButton;
Too1Button8: TioolButton;
Too1Button9: TioolButton;
ToolButtonlO: TioolButton;
ToolButtonll: TioolButton;
lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
DBCheckBoxl:TDBCheckBo~
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
GroupBoxl:TGroupBo~
GroupBox2: TGroupBox;
GroupBox3: TGroupBox;
Labell: TLabel;
Label2: Tlabel;
Label3: Tlabel;
Label4: Tlabel;
Labels: TLabel;
Label6: Tlabel;
Label7: Tlabel;
Label8: Tlabel;
Label9: Tlabel;
LabellO: Tlabel;
Labelll: Tlabel;
Label12: Tlabel;
Label13: TLabel;
Label14: Tlabel;
LabellS: Tlabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
DBEdit13: TDBEdit;
DBEdit14: TDBEdit;

142

DBEditlS: TDBEdit;
procedure ToolButtonlClick(Sender: TObject);
procedure Too1Button3Click(Sender: TObject);
procedure ToolButtonSClick(Sender: TObject);
procedure Too1Button7Click(Sender: TObject);
procedure ToolButtonllClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure DBCheckBoxlClick(Sender: TObject);
procedure DBEditlEnter(Sender: TObject);
procedure DBEditlExit(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure Too1Button9Click(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
houseforsale: Thouseforsale;

implementation

uses unit45, unit14, unit26;

{$R *.dfm}

procedure Thouseforsale.ToolButtonlClick(Sender: TObject);
begin
dm.tshouse.lnsert;
end;

procedure Thouseforsale.Too1Button3Click(Sender: TObject);
begin
dm.tshouse.Prior;
end;

procedure Thouseforsale.ToolButtonSClick(Sender: TObject);
begin
dm.tshouse.Next;
end;

procedure Thouseforsale.Too1Button7Click(Sender: TObject);
begin
dm.tshouse.Cancel;
end;

procedure Thouseforsale.ToolButtonllClick(Sender: TObject);
begin

143

dm.tshouse.Edit;
dm.tshouse.Post;
ShowMessage('Record is registered');
end;

procedure Thouseforsale.BitBtnlClick(Sender: TObject);
begin
houseforsalesearch.ShowModal;
end;

procedure Thouseforsale.BitBtn2Click(Sender: TObject);
begin
houseforsa lereport.QuickRepl. Preview;
end;

procedure Thouseforsale.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;
DBCheckBoxl.Caption:='Already sold';
end;
if DBCheckboxl.Checked=false then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='Sell house';
end;
end;

procedure Thouseforsale.DBEditlEnter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

procedure Thouseforsale.DBEditlExit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;
end;

procedure Thouseforsale.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Thouseforsale.Too1Button9Click(Sender: TObject);
begin

144

try
if {Application.MessageBox('Record wii be deleted are you
sure?','Confirmation',MB_ YESNO)=IDYES) then
dm.tshouse.Delete;
except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Thouseforsale.FormCreate{Sender: TObject);
begin
houseforsale.ClientHeight:=609;
houseforsa le .Clie ntWidth :=695;
end;

end.

unit UnitS;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, Buttons, ExtCtrls, lmglist, ComCtrls,
ToolWin;

type
Tshoptolet = class(TForm)
ToolBarl: TioolBar;
ToolButtonl: TioolButton;
Too1Button2: TioolButton;
Too1Button3: TioolButton;
Too1Button4: TioolButton;
ToolButtonS: TioolButton;
Too1Button6: TioolButton;
Too1Button7: TioolButton;
Too1Button8: TioolButton;
Too1Button9: TioolButton;
ToolButtonlO: Dool Button;
ToolButtonll: noolButton;
lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
DBCheckBoxl:TDBCheckBo~
Bevel3: TBevel;

145

Bevel4: TBevel;
Bevels: TBevel;
GroupBoxl:TGroupBo~
GroupBox2:TGroupBo~
GroupBox3: TGroupBox;
Labell: TLabel;
Label2: Tlabel;
Label3: TLabel;
Label4: Tlabel;
Labels: TLabel;
Label6: Tlabel;
Label7: Tlabel;
Label8: Tlabel;
Label9: Tlabel;
LabellO: TLabel;
Labelll: Tlabel;
Label12: Tlabel;
Label13: Tlabel;
Label14: TLabel;
LabellS: Tlabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
DBEdit13: TDBEdit;
DBEdit14: TDBEdit;
DBEditlS: TDBEdit;
procedure ToolButtonlClick(Sender: TObject);
procedure Too1Button3Click(Sender: TObject);
procedure ToolButtonSClick(Sender: TObject);
procedure Too1Button7Click(Sender: TObject);
procedure Too1Button9Click(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure Too1Button11Click(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure DBEditlEnter(Sender: TObject);
procedure DBEditlExit(Sender: TObject);
procedure DBCheckBoxlClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public

146

{ Public declarations}
end;

var
shoptolet: Tshoptolet;

implementation

uses unit45, unitl3, unit25;

{$R *.dfm}

procedure Tshoptolet.ToolButtonlClick(Sender: TObject);
begin
dm.tkshop.lnsert;
end;

procedure Tshoptolet.Too1Button3Click(Sender: TObject);
begin
dm.tkshop.Prior;
end;

procedure Tshoptolet.ToolButtonSClick(Sender: TObject);
begin
dm.tkshop.Next;
end;

procedure Tshoptolet.Too1Button7Click(Sender: TObject);
begin
dm.tkshop.Cancel;
end;

procedure Tshoptolet.Too1Button9Click(Sender: TObject);
begin
try

if(Application.MessageBox('Record will be deleted are you
sure?', 'Confirmation',M B _ YES NO)=I DYES) then
dm.tkshop.Delete;

except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Tshoptolet.BitBtnlClick(Sender: TObject);
begin
shoptoletsearch.ShowModal;
end;

procedure Tshoptolet.BitBtn2Click(Sender: TObject);

147

begin
shoptoletreport.QuickRepl. Preview;
end;

procedure Tshoptolet.ToolButtonllClick(Sender: TObject);
begin
dm.tkshop.Edit;
dm.tkshop.Post;
ShowMessage('Record is registered');
end;

procedure Tshoptolet.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tshoptolet.DBEditlEnter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

procedure Tshoptolet.DBEditlExit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;
end;

procedure Tshoptolet.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;
DBCheckBoxl.Caption:='Already rented';
end;
if DBCheckboxl.Checked=fa lse then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='This shop give to let';
end;
end;

procedure Tshoptolet.FormCreate(Sender: TObject);
begin
shoptolet.ClientHeight:=614;
shoptolet.ClientWidth :=695;
end;

end.

148

unit Unit6;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, Buttons, ExtCtrls, lmglist, ComCtrls,
ToolWin;

type
Tplot = class{TForm)
ToolBarl: TioolBar;
ToolButtonl: TioolButton;
Too1Button2: TioolButton;
Too1Button3: TioolButton;
Too1Button4: TioolButton;
ToolButtonS: TioolButton;
Too1Button6: TioolButton;
Too1Button7: TioolButton;
Too1Button8: noolButton;
Too1Button9: TioolButton;
ToolButtonlO: TioolButton;
ToolButtonll: TioolButton;
lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
DBCheckBoxl: TDBCheckBox;
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
GroupBoxl:TGroupBo~
GroupBox2: TGroupBox;
Labell: Tlabel;
Label2: Tlabel;
Label3: Tlabel;
Label4: Tlabel;
Labels: TLabel;
Label6: TLabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
GroupBox3: TGroupBox;
Label7: Tlabel;

149

Label8: Tlabel;
Label9: Tlabel;
LabellO: TLabel;
Labelll: TLabel;
Label12: TLabel;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
procedure ToolButtonlClick{Sender: TObject);
procedure Too1Button3Click{Sender: TObject);
procedure ToolButtonSClick{Sender: TObject);
procedure Too1Button7Click{Sender: TObject);
procedure ToolButtonllClick{Sender: TObject);
procedure DBCheckBoxlClick{Sender: TObject);
procedure BitBtnlClick{Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure FormKeyPress{Sender: TObject; var Key: Char);
procedure Too1Button9Click{Sender: TObject);
procedure DBEditlEnter(Sender: TObject);
procedure DBEditlExit{Sender: TObject);
procedure FormCreate{Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
plot: Tplot;

implementation

uses unit45, unit16, unit28;

{$R * .dfm}

procedure Tplot.ToolButtonlClick{Sender: TObject);
begin
dm.tsplot.lnsert;
end;

procedure Tplot.Too1Button3Click{Sender: TObject);
begin
dm.tsplot.Prior;
end;

procedure Tplot.ToolButtonSClick{Sender: TObject);
begin

150

dm.tsplot.Next;
end;

procedure Tplot.Too1Button7Click(Sender: TObject);
begin
d m. tsplot.Ca nee!;
end;

procedure Tplot.ToolButtonllClick(Sender: TObject);
begin
dm.tsplot.Edit;
dm.tsplot.Post;
ShowMessage('Record is registered'};
end;

procedure Tplot.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;
DBCheckBoxl.Caption:='Already sold';
end;
if DBCheckboxl.Checked=false then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='Sell plot';
end;
end;

procedure Tplot.BitBtnlClick(Sender: TObject);
begin
plotforsa Iese arch .ShowModa I;
end;

procedure Tplot.BitBtn2Click(Sender: TObject);
begin
plotforsalereport.QuickRepl.Preview;
end;

procedure Tplot.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tplot.Too1Button9Click(Sender: TObject);
begin
try

151

if (Application.MessageBox('Record will be deleted are you
sure?','Confirmation',MB_YESNO)=IDYES) then
dm.tsplot.Delete;
except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Tplot.DBEditlEnter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

procedure Tplot.DBEditlExit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;
end;

procedure Tplot.FormCreate(Sender: TObject);
begin
plot.ClientHeight:=608;
plot.ClientWidth:=695;
end;

end.

unit Unit7;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, Buttons, ExtCtrls, lmglist, ComCtrls,
ToolWin;

type
Tgarden = class(TForm)
ToolBarl: TioolBar;
ToolButtonl: TioolButton;
Too1Button2: TioolButton;
Too1Button3: TioolButton;
Too1Button4: TioolButton;
Tool Buttons: TioolButton;
Too1Button6: TioolButton;
Too1Button7: TioolButton;
Too1Button8: TioolButton;
Too1Button9: TioolButton;
ToolButtonlO: TioolButton;
ToolButtonll: TioolButton;

152

lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
DBCheckBoxl:TDBCheckBo~
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
GroupBoxl: TGroupBox;
GroupBox2: TGroupBox;
GroupBox3:TGroupBo~
Labell: Tlabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Labels: TLabel;
Label6: Tlabel;
Label7: Tlabel;
Label8: Tlabel;
Label9: Tlabel;
LabellO: Tlabel;
Labelll: Tlabel;
Label12: Tlabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
procedure DBEditlEnter(Sender: TObject);
procedure DBEditlExit(Sender: TObject);
procedure Too1Button1Click(Sender: TObject);
procedure Too1Button3Click(Sender: TObject);
procedure ToolButtonSClick(Sender: TObject);
procedure Too1Button7Click(Sender: TObject);
procedure ToolButtonllClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure DBCheckBoxlClick(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure Too1Button9Click(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

153

public
{ Public declarations}

end;

var
garden: Tgarden;

implementation

uses unit45, unitl7, unit29;

{$R *.dfm}

procedure Tgarden.DBEditlEnter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;

end;

procedure Tgarden.DBEditlExit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;

end;

procedure Tgarden.ToolButtonlClick(Sender: TObject);
begin
dm.tsgarden.lnsert;
end;

procedure Tgarden.Too1Button3Click(Sender: TObject);
begin
dm.tsgarden.Prior;
end;

procedure Tgarden.ToolButtonSClick(Sender: TObject);
begin
dm.tsgarden.Next;
end;

procedure Tgarden.Too1Button7Click(Sender: TObject);
begin
dm.tsgarden.Cancel;
end;

procedure Tgarden.ToolButtonllClick(Sender: TObject);
begin
dm.tsgarden.Edit;
dm.tsgarden.Post;
ShowMessage('Record is registered');
end;

procedure Tgarden.BitBtnlClick(Sender: TObject);

154

begin
gardenforsalesearch.ShowModal;
end;

procedure Tgarden.BitBtn2Click(Sender: TObject);
begin
gardenforsalereport.QuickRepl.Preview;
end;

procedure Tgarden.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;
DBCheckBoxl.Caption:='Already sold';
end;
if DBCheckboxl.Checked=false then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='Sell garden';
end;
end;

procedure Tgarden.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tgarden.Too1Button9Click(Sender: TObject);
begin
try
if (Application.MessageBox('Record wii be deleted are you
sure ?','Confirmation',MB_ YESNO)=IDYES) then
dm.tsgarden.Delete;
except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Tgarden.FormCreate(Sender: TObject);
begin
garden.ClientHeight:=617;
garden.ClientWidth:=695;
end;

end.

155

unit Unit8;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, Buttons, ExtCtrls, lmglist, ComCtrls,
ToolWin;

type
Tbuilding = class(TForm)
ToolBarl: noolBar;
ToolButtonl: TioolButton;
Too1Button2: noolButton;
Too1Button3: TioolButton;
Too1Button4: TioolButton;
ToolButtonS: TioolButton;
Too1Button6: TioolButton;
Too1Button7: noolButton;
Too1Button8: TioolButton;
Too1Button9: TioolButton;
ToolButtonlO: TioolButton;
ToolButtonll: TioolButton;
lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
GroupBoxl: TGroupBox;
GroupBox2: TGroupBox;
GroupBox3: TGroupBox;
Labell: Habel;
Label2: Habel;
Label3: Habel;
Label4: Habel;
Labels: Habel;
Label6: TLabel;
Label7: Habel;
Labels: Habel;
Label9: Habel;
LabellO: Habel;
Labelll: TLabel;
Label12: Habel;
Label13: Habel;
Label14: Habel;
LabellS: Habel;

156

DBCheckBoxl: TDBCheckBox;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
DBEditl3: TDBEdit;
DBEdit14: TDBEdit;
DBEditlS: TDBEdit;
procedure DBEditlEnter(Sender: TObject);
procedure DBEditlExit(Sender: TObject);
procedure ToolButtonlClick(Sender: TObject);
procedure Too1Button3Click(Sender: TObject);
procedure Too1Button5Click(Sender: TObject);
procedure Too1Button7Click(Sender: TObject);
procedure ToolButtonllClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure DBCheckBoxlClick(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure Too1Button9Click(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
building: Tbuilding;

implementation

uses unit45, unit18, unit30;

{$R *.dfm}

procedure Tbuilding.DBEditlEnter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

procedure Tbuilding.DBEditlExit(Sender: TObject);
begin

157

if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;
end;

procedure Tbuilding.ToolButtonlClick(Sender: TObject);
begin
dm.tsbuilding.lnsert;
end;

procedure Tbuilding.Too1Button3Click(Sender: TObject);
begin
dm.tsbuilding.Prior
end;

procedure Tbuilding.ToolButtonSClick(Sender: TObject);
begin
dm.tsbuilding.Next
end;

procedure Tbuilding.Too1Button7Click(Sender: TObject);
begin
dm.tsbuilding.Cancel;
end;

procedure Tbuilding.ToolButtonllClick(Sender: TObject);
begin
dm.tsbuilding.Edit;
dm.tsbuilding.Post;
ShowMessage('Record is registered');
end;

procedure Tbuilding.BitBtnlClick(Sender: TObject);
begin
buildingforsalesearch.ShowModal;
end;

procedure Tbuilding.BitBtn2Click(Sender: TObject);
begin
buildingforsalereport.QuickRepl.Preview;
end;

procedure Tbuilding.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;
DBCheckBoxl.Caption:=' Already sold';
end;
if DBCheckboxl.Checked=false then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='Sell building';

158

end;
end;

procedure Tbuilding.FormKeyPress(Sender: TObject; var Key: Char);
begin

if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tbuilding.Too1Button9Click(Sender: TObject);
begin
try
if (Application.MessageBox('Record wii be deleted are you
sure?','Confirmation',MB_ YESNO)=IDYES) then
dm.tsbuilding.Delete;
except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Tbuilding.FormCreate(Sender: TObject);
begin
building.ClientHeight:=593;
building.ClientWidth:=695;
end;

end.

unit Unit9;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, Buttons, ExtCtrls, lmglist, ComCtrls,
ToolWin;

type
Tfield = class(TForm)
ToolBarl: TioolBar;
ToolButtonl: TioolButton;
Too1Button2: TioolButton;
Too1Button3: TioolButton;
Too1Button4: TioolButton;
ToolButtonS: TioolButton;

159

Too1Button6: noolButton;
Too1Button7: TioolButton;
Too1Button8: noolButton;
Too1Button9: noolButton;
ToolButtonlO: TioolButton;
ToolButtonll: TioolButton;
lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
GroupBoxl: TGroupBox;
GroupBox2:TGroupBo~
GroupBox3:TGroupBo~
Labell: Tlabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Labels: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
LabellO: Tlabel;
Labelll: Tlabel;
Label12: TLabel;
DBCheckBoxl: TDBCheckBox;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
procedure ToolButtonlClick(Sender: TObject);
procedure Too1Button3Click(Sender: TObject);
procedure ToolButtonSClick{Sender: TObject);
procedure Too1Button7Click(Sender: TObject);
procedure ToolButtonllClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure DBCheckBoxlClick{Sender: TObject);
procedure Too1Button9Click(Sender: TObject);

160

procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure DBEditlEnter(Sender: TObject);
procedure D8Edit1Exit(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
field: Tfield;

implementation

uses unit45, unit20, unit31;

{$R *.dfm}

procedure Tfield.ToolButtonlClick(Sender: TObject);
begin
dm.tsfield.lnsert;
end;

procedure Tfield.Too1Button3Click(Sender: TObject);
begin
dm.tsfield.Prior;
end;

procedure Tfield.ToolButtonSClick(Sender: TObject);
begin
dm.tsfield.Next;
end;

procedure Tfield.Too1Button7Click(Sender: TObject);
begin
dm.tsfield.Cancel;
end;

procedure Tfield.Too1Button11Click(Sender: TObject);
begin
dm.tsfield.Edit;
dm.tsfield.Post;
ShowMessage('Record is registered');
end;

procedure Tfield.BitBtnlClick(Sender: TObject);
begin
fieldforsalesearch.ShowModal;
end;

161

procedure Tfield.BitBtn2Click(Sender: TObject);
begin
fieldforsa lereport.Qu ickRepl. Preview;
end;

procedure Tfield.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;
DBCheckBoxl.Caption:='Already sold';
end;
if DBCheckboxl.Checked=false then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='Sell field';
end;

end;

procedure Tfield.Too1Button9Click(Sender: TObject);
begin
try
if (Application.MessageBox('Record wii be deleted are you
sure?','Confirmation',MB_ YESNO)=IDYES) then
dm. tsfield .Delete;
except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Tfield.FormKeyPress(Sender: TObject; var Key: Char);
begin
If (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tfield.DBEditlEnter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

procedure Tfield.DBEditlExit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;
end;

procedure Tfield.FormCreate(Sender: TObject);

162

begin
fie Id .ClientHe ight:=607;
field.ClientWidth:=69S;

end;

end.

unit UnitlO;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, Buttons, ExtCtrls, lmglist, ComCtrls,
ToolWin;

type
Tvilla = class(TForm)
ToolBarl: TioolBar;
ToolButtonl: TioolButton;
Too1Button2: TioolButton;
Too1Button3: TioolButton;
Too1Button4: noolButton;
ToolButtonS: TioolButton;
Too1Button6: TioolButton;
Too1Button7: TioolButton;
Too1Button8: TioolButton;
Too1Button9: TioolButton;
ToolButtonlO: TioolButton;
ToolButtonll: TioolButton;
lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
GroupBoxl: TGroupBox;
GroupBox2: TGroupBox;
GroupBox3: TGroupBox;
Labell: Tlabel;
Label2: Tlabel;
Label3: Tlabel;
Label4: TLabel;
Labels: TLabel;
Label6: TLabel;
Label7: Tlabel;

163

Label8: Tlabel;
Label9: Tlabel;
LabellO: Tlabel;
Labelll: Tlabel;
Label12: TLabel;
DBCheckBoxl: TDBCheckBox;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
procedure DBEditlEnter(Sender: TObject);
procedure DBEditlExit(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure ToolButtonlClick(Sender: TObject);
procedure Too1Button3Click(Sender: TObject);
procedure ToolButtonSClick(Sender: TObject);
procedure Too1Button7Click(Sender: TObject);
procedure ToolButtonllClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure Too1Button9Click(Sender: TObject);
procedure DBCheckBoxlClick(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
villa: Tvilla;

implementation

uses unit45, unit19, unit32;

{SR *.dfm}

procedure Tvilla.DBEditlEnter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

164

procedure Tvilla.DBEditlExit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;

end;

procedure Tvilla.FormCreate(Sender: TObject);
begin
villa.ClientHeight:=609;
vi I la .ClientWidth :=695;
end;

procedure Tvilla.ToolButtonlClick(Sender: TObject);
begin
dm.tsvilla.lnsert;
end;

procedure Tvilla.Too1Button3Click(Sender: TObject);
begin
dm.tsvilla.Prior;
end;

procedure Tvilla.ToolButtonSClick(Sender: TObject);
begin
dm.tsvilla.Next;
end;

procedure Tvilla.Too1Button7Click(Sender: TObject);
begin
dm.tsvilla.Cancel;
end;

procedure Tvilla.ToolButtonllClick(Sender: TObject);
begin
dm.tsvilla.Edit;
dm.tsvilla.Post;
ShowMessage('Record is registered');
end;

procedure Tvilla.BitBtnlClick(Sender: TObject);
begin
villaforsalesearch.ShowModal;
end;

procedure Tvilla.BitBtn2Click(Sender: TObject);
begin
vi I lafo rsa lereport.Qu ickRepl. Preview;
end;

procedure Tvilla.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then

165

begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tvilla.Too1Button9Click(Sender: TObject);
begin
try
if (Application.MessageBox('Record wii be deleted are you
sure?','Confirmation',MB_ YESNO)=IDYES) then
dm.tsvilla.Delete;
except

ShowMessage('Cant delete empty record!');
end;

end;

procedure Tvilla.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;
DBCheckBoxl.Caption :='Already sold';
end;
if DBCheckboxl.Checked=false then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='Sell villa';
end;
end;

end.

unit Unitll;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, DBCtrls, StdCtrls, Mask, Buttons, ExtCtrls, lmglist, ComCtrls,
ToolWin;

type
Tfarm = class(TForm)
ToolBarl: TioolBar;
ToolButtonl: noolButton;
Too1Button2: TioolButton;
Too1Button3: TioolButton;

166

Too1Button4: TioolButton;
ToolButtonS: TioolButton;
Too1Button6: TioolButton;
Too1Button7: TioolButton;
Too1Button8: TioolButton;
Too1Button9: TioolButton;
ToolButtonlO: TioolButton;
ToolButtonll: TioolButton;
lmagelistl: Tlmagelist;
Bevell: TBevel;
Bevel2: TBevel;
Bevel3: TBevel;
Bevel4: TBevel;
Bevels: TBevel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
DBCheckBoxl:TDBCheckBo~
GroupBoxl: TGroupBox;
GroupBox2:TGroupBo~
GroupBox3: TGroupBox;
Labell: Tlabel;
Label2: TLabel;
Label3: Tlabel;
Label4: Tlabel;
Labels: TLabel;
Label6: Tlabel;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
DBEdit12: TDBEdit;
Label7: Tlabel;
Label8: Tlabel;
Label9: TLabel;
LabellO: Tlabel;
Labelll: Tlabel;
Label12: Tlabel;
procedure DBEditlEnter(Sender: TObject);
procedure DBEditlExit(Sender: TObject);
procedure ToolButtonlClick(Sender: TObject);
procedure Too1Button3Click(Sender: TObject);
procedure ToolButtonSClick(Sender: TObject);
procedure Too1Button7Click(Sender: TObject);
procedure ToolButtonllClick(Sender: TObject);

167

procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure DBCheckBoxlClick(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure Too1Button9Click(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
farm: Tfarm;

implementation

uses unit45, unit21, unit33;

{$R * .dfm}

procedure Tfarm.DBEditlEnter(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMoneyGreen;
end;

procedure Tfarm.DBEditlExit(Sender: TObject);
begin
if sender is tdbedit then tdbedit(sender).Color:=clMenuBar;

end;

procedure Tfarm.ToolButtonlClick(Sender: TObject);
begin
dm.tsfarm.lnsert;
end;

procedure Tfarm.Too1Button3Click(Sender: TObject);
begin
dm.tsfarm.Prior;
end;

procedure Tfarm.ToolButtonSClick(Sender: TObject);
begin
dm.tsfarm.Next;
end;

procedure Tfarm.Too1Button7Click(Sender: TObject);
begin
dm.tsfarm.Cancel;
end;

168

procedure Tfarm.ToolButtonllClick(Sender: TObject);
begin
dm.tsfarm.Edit;
dm.tsfarm.Post;
ShowMessage('Record is registered');
end;

procedure Tfarm.BitBtnlClick(Sender: TObject);
begin
fa rmforsa Iese arch .ShowModa I;
end;

procedure Tfarm.BitBtn2Click(Sender: TObject);
begin
farmforsalereport.QuickRepl.Preview;
end;

procedure Tfarm.DBCheckBoxlClick(Sender: TObject);
begin
if DBCheckBoxl.Checked=true then
begin
GroupBox2.Visible:=true;
DBCheckBoxl.Caption:='Already sold';
end;
if DBCheckboxl.Checked=false then
begin
GroupBox2.Visible:=false;
DBCheckBoxl.Caption:='sell farm';
end;
end;

procedure Tfarm.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tfarm.Too1Button9Click(Sender: TObject);
begin
try
if (Application.MessageBox('Record will be deleted are you
sure ?','Confirmation',M B_ YESNO)=IDYES) then
dm.tsfarm.Delete;
except

ShowMessage('Cant delete empty record!');
end;

end;

169

procedure Tfarm.FormCreate(Sender: TObject);
begin
farm.ClientHeight:=607;
farm.ClientWidth:=695;
end;

end.

unit Unit12;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, ExtCtrls, Buttons, DB, DBTables;

type
Thousetoletsearch = class(TForm)
GroupBoxl: TGroupBox;
Editl: TEdit;
Edit2: TEdit;
DBGridl: TDBGrid;
BitBtnl: TBitBtn;
Labell: Tlabel;
Label2: Tlabel;
Label3: Tlabel;
Label4: TLabel;
Bevell: TBevel;
Edit3: TEdit;
Edit4: TEdit;
procedure EditlEnter(Sender: TObject);
procedure EditlExit(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure Edit4Change(Sender: TObject);
procedure DBGridlDblClick(Sender: TObject);
procedure EditlKeyPress(Sender: TObject; var Key: Char);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure BitBtnlClick(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var

170

housetoletsearch: Thousetoletsearch;

implementation

uses unit45, unit2;

{$R *.dfm}

procedure Thousetoletsearch.EditlEnter(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMoneyGreen;
end;

procedure Thousetoletsearch.EditlExit(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMenuBar;
end;

procedure Thousetoletsearch.EditlChange(Sender: TObject);
begin
if Editl.Text<>" then begin
dm.tkhouse.Filtered:=true;
dm.tkhouse.Filter:='[Squaremeter]='+ Editl.Text;
end
else
dm.tkhouse. Filtered :=false;
end;

procedure Thousetoletsearch.Edit2Change(Sender: TObject);
begin
if Edit2.Text<>" then begin
dm.tkhouse.Filtered:=true;
dm.tkhouse.Filter:='[District]=' + #39 + Edit2.Text + '*' + #39;
end
else
dm.tkhouse.Filtered:=false;

end;

procedure Thousetoletsearch.Edit3Change(Sender: TObject);
begin
if Edit3.Text<>" then begin
dm.tkhouse.Filtered:=true;
dm .tkhouse.Filter:='[Price]='+ Edit3.Text;
end
else
dm .tkhouse .Filtered :=false;
end;

procedure Thousetoletsearch.Edit4Change(Sender: TObject);

171

begin
if Edit4.Text<>" then begin
dm.tkhouse.Filtered:=true;
dm.tkhouse.Filter:='[Heatingsystem]=' + #39 + Edit4.Text + '*' + #39;
end
else
dm.tkhouse.Filtered:=false;
end;

procedure Thousetoletsearch.DBGridlDblClick(Sender: TObject);
begin
housetolet.Show;
housetoletsearch.Close;
end;

procedure Thousetoletsearch.EditlKeyPress(Sender: TObject; var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //Return null if not chr or space.
Beep; //inform user with a beep sound.
end;
end;

procedure Thousetoletsearch.Edit3KeyPress(Sender: TObject; var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //Return null if not chr or space.
Beep; //inform user with a beep sound.
end;
end;

procedure Thousetoletsearch.BitBtnlClick(Sender: TObject);
begin
housetoletsearch.Close;
end;

procedure Thousetoletsearch.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Thousetoletsearch.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu];

172

housetoletsearch.ClientHeight:=516;
housetoletsearch.ClientWidth:=590;
end;

end.

unit Unit13;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, Buttons, ExtCtrls;

type
Tshoptoletsearch = class(TForm)
RESEARC: TGroupBox;
Labell: Tlabel;
Label2: Tlabel;
Label3: Tlabel;
Label4: TLabel;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Bevell: TBevel;
BitBtnl: TBitBtn;
DBGridl: TDBGrid;
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure Edit4Change(Sender: TObject);
procedure EditlEnter(Sender: TObject);
procedure EditlExit(Sender: TObject);
procedure EditlKeyPress(Sender: TObject; var Key: Char);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure DBGridlDblClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
shoptoletsearch: Tshoptoletsearch;

173

implementation

uses unit45, units;

{$R *.dfm}

procedure Tshoptoletsearch.EditlChange(Sender: TObject);
begin
if Editl.Text<>" then begin
dm.tkshop.Filtered:=true;
dm.tkshop.Filter:='[Squaremeter]='+ Editl.Text;
end
else
dm.tkshop.Filtered:=false;
end;

procedure Tshoptoletsearch.Edit2Change(Sender: TObject);
begin
if Edit2.Text<>" then begin
dm.tkshop.Filtered:=true;
dm.tkshop.Filter:='[District]=' + #39 + Edit2.Text + '*' + #39;
end
else
dm.tkshop.Filtered:=false;
end;

procedure Tshoptoletsearch.Edit3Change(Sender: TObject);
begin
if Editl.Text<>" then begin
dm. tkshop. Filtered :=true;
dm. tkshop.Filter:=' [Price]='+ Edit3.Text;
end
else
dm.tkshop.Filtered:=false;
end;

procedure Tshoptoletsearch.Edit4Change(Sender: TObject);
begin
if Edit4.Text<>" then begin
dm.tkshop.Filtered:=true;
dm.tkshop.Filter:='[Heatingsystem]=' + #39 +Edit4.Text +'*' + #39;
end
else
dm .tkshop. Filtered :=false;
end;

procedure Tshoptoletsearch.EditlEnter(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMoneyGreen;
end;

174

procedure Tshoptoletsearch.EditlExit(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMenuBar;
end;

procedure Tshoptoletsearch.EditlKeyPress(Sender: TObject; var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //return null if not chr or a space.
Beep; //inform user with a beep sound.
end;
end;

procedure Tshoptoletsearch.Edit3KeyPress(Sender: TObject; var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0;
Beep;
end;
end;

//return null if not chr or a space.
//inform user with a beep sound.

procedure Tshoptoletsearch.DBGridlDblClick(Sender: TObject);
begin
shoptolet.Show;
sho ptoletsea rch .Close;
end;

procedure Tshoptoletsearch.BitBtnlClick(Sender: TObject);
begin
shoptoletsearch.Close;
end;

procedure Tshoptoletsearch.FormKeyPress(Sender: TObject; var Key: Char);
begin
If (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tshoptoletsearch.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu];
sho ptoletsea rch .Cl ientHeight:=516;
shoptoletsearch.ClientWidth:=595;
end;

175

end.

unit Unit14;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, Buttons, ExtCtrls;

type
Thouseforsalesearch = class(TForm)
GroupBoxl:TGroupBo~
Labell: Tlabel;
Label2: Tlabel;
Label3: Tlabel;
Label4: TLabel;
Bevell: TBevel;
BitBtnl: TBitBtn;
DBGridl: TDBGrid;
Edit4: TEdit;
Edit3: TEdit;
Edit2: TEdit;
Editl: TEdit;
procedure EditlChange(Sender: TObject);
procedure EditlEnter(Sender: TObject);
procedure EditlExit(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure Edit4Change(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure DBGridlDblClick(Sender: TObject);
procedure EditlKeyPress(Sender: TObject; var Key: Char);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
houseforsalesea rch: Thouseforsalesearch;

implementation

uses unit45, unit4;

{$R *.dfm}

176

procedure Thouseforsalesearch.EditlChange(Sender: TObject);
begin
if Editl.Text<>" then begin
dm.tshouse.Filtered:=true;
dm.tshouse.Filter:='[Squaremeter)='+ Editl.Text;
end
else
drn.tshouse.Filtered=false:
end;

procedure Thouseforsalesearch.EditlEnter(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMoneyGreen;
end;

procedure Thouseforsalesearch.EditlExit(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMenuBar;
end;

procedure Thouseforsalesearch.Edit2Change(Sender: TObject);
begin
if Edit2.Text<>" then begin
dm .tshouse. Filtered :=true;
dm.tshouse.Filter:='[District]=' + #39 + Edit2.Text + '*' + #39;
end
else
dm. tshouse. Filtered :=false;
end;

procedure Thouseforsa Iese arch. Ed it3Cha nge(Sender: TObject);
begin
if Edit3.Text<>" then begin
dm .tshouse .Filtered :=true;
dm.tshouse.Filter:='[Price]='+ Edit3.Text;
end
else
dm.tshouse.Filtered:=false;
end;

procedure Thouseforsalesearch.Edit4Change(Sender: TObject);
begin
if Edit4.Text<>" then begin
dm .tshouse. Filtered :=true;
dm.tshouse.Filter:='[Heatingsystem)=' + #39 + Edit4.Text + '*' + #39;
end
else
dm.tshouse.Filtered:=false;
end;

177

procedure Thouseforsalesearch.BitBtnlClick(Sender: TObject);
begin
houseforsalesearch.Close;
end;

procedure Thouseforsalesearch.DBGridlDblClick(Sender: TObject);
begin
houseforsale.Show;
houseforsalesearch.Close;
end;

procedure Thouseforsalesearch.EditlKeyPress(Sender: TObject;
var Key: Char);

begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //return null if not chr or space.
Beep; //inform user with e beep sound.
end;
end;

procedure Thouseforsalesearch.Edit3KeyPress(Sender: TObject;
var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //return null if not chr or space.
Beep; //inform user withe beep sound.
end;
end;

procedure Thouseforsalesearch.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Thouseforsalesearch.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu];
ho useforsa Iese arch .Cl ie ntHeight:=516;
houseforsalesearch.ClientWidth:=594;
end;

end.

178

unit UnitlS;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, Buttons, ExtCtrls;

type
Tshopforsalesearch = class(TForm)
GroupBoxl: TGroupBox;
Labell: Tlabel;
Label2: Tlabel;
Label3: TLabel;
Label4: Tlabel;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Bevell: TBevel;
BitBtnl: TBitBtn;
DBGridl: TDBGrid;
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure Edit4Change(Sender: TObject);
procedure EditlEnter(Sender: TObject);
procedure EditlExit(Sender: TObject);
procedure DBGridlDblClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure EditlKeyPress(Sender: TObject; var Key: Char);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
shopforsalesearch: Tshopforsalesearch;

implementation

uses unit45, unit3;

{$R *.dfm}

procedure Tshopforsalesearch.EditlChange(Sender: TObject);

179

begin
if Editl.Text<>" then begin
dm.tsshop.Filtered:=true;
dm.tsshop.Filter:='[Squaremeter]='+ Editl.Text;
end
else
dm.tsshop.Filtered:=false;
end;

procedure Tshopforsalesearch.Edit2Change(Sender: TObject);
begin
if Edit2.Text<>" then begin
dm.tsshop.Filtered:=true;
dm.tsshop.Filter:='[District]=' + #39 + Edit2.Text + '*' + #39;

end
else
dm.tsshop.Filtered:=false;
end;

procedure Tshopforsalesearch.Edit3Change(Sender: TObject);

begin
if Editl.Text<>" then begin
dm.tsshop.Filtered:=true;
dm.tsshop.Filter:=' [Price]='+ Edit3 .Text;
end
else
dm.tsshop.Filtered:=false;
end;

procedure Tshopforsalesearch.Edit4Change(Sender: TObject);
begin
if Edit4.Text<>" then begin
dm.tsshop.Filtered:=true;
dm.tsshop.Filter:='[Heatingsystem]=' + #39 +Edit4.Text +'*' + #39;

end
else
dm.tsshop.Filtered:=false;
end;

procedure Tshopforsalesearch.EditlEnter(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMoneyGreen;
end;

procedure Tshopforsalesearch.EditlExit(Sender: TObject);

begin
if sender is tedit then tedit(sender).Color:=clMenuBar;

end;

procedure Tshopforsalesearch .DBGrid lDblClick(Sender: TObject);

begin

180

shopforsale.Show;
shopforsalesearch.Close;
end;

procedure Tshopforsalesearch.BitBtnlClick(Sender: TObject);
begin
shopforsalesearch.Close;
end;

procedure Tshopforsalesearch.EditlKeyPress(Sender: TObject; var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //return null if not chr or a space.
Beep; //inform user with a beep sound.
end;
end;

procedure Tshopforsalesearch.Edit3KeyPress(Sender: TObject; var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //return null if not chr or a space.
Beep; //inform user with a beep sound.
end;
end;

procedure Tshopforsalesearch.FormKeyPress(Sender: TObject; var Key: Char);
begin
if (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tshopforsalesearch.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu];
shopforsa Iese arch .ClientHeight:=516;
shopforsa Iese arch .ClientWidth: =597;
end;

end.

unit Unit16;

interface

181

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, Buttons, ExtCtrls;

type
Tplotforsalesearch = class(TForm)
GroupBoxl: TGroupBox;
Bevell: TBevel;
BitBtnl: TBitBtn;
Labell: Tlabel;
Label2: Tlabel;
Label3: Tlabel;
DBGridl: TDBGrid;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure EditlEnter(Sender: TObject);
procedure EditlExit(Sender: TObject);
procedure DBGridlDblClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure EditlKeyPress(Sender: TObject; var Key: Char);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
plotforsalesearch: Tplotforsalesearch;

implementation

uses unit45, unit6;

{$R * .dfm}

procedure Tplotforsalesearch.EditlChange(Sender: TObject);
begin
if Editl.Text<>" then begin
dm.tsplot.Filtered:=true;
dm.tsplot.Filter:='[Squaremeter)=' + editl.Text;
end
else
dm.tsplot.Filtered:=false;

182

end;

procedure Tplotforsalesearch.Edit2Change(Sender: TObject);
begin
if Edit2.Text<>" then begin
dm.tsplot.Filtered:=true;
dm.tsplot.Filter:='[District]=' +#39 + Edit2.Text + '*' + #39;
end
else
dm.tsplot.Filtered:=false;
end;

procedure Tplotforsalesearch.Edit3Change(Sender: TObject);
begin
if Edit3.Text<>" then begin
dm.tsplot.Filtered:=true;
dm.tsplot.Filter:='[Price]=' + Edit3.Text;
end
else
dm.tsplot.Filtered:=false;
end;

procedure Tplotforsalesearch.EditlEnter(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMoneyGreen;

end;

procedure Tplotforsalesearch.EditlExit(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMenuBar;
end;

procedure Tplotforsalesearch.DBGridlDblClick(Sender: TObject);
begin
plot.Show;
plotforsalesearch.Close;
end;

procedure Tplotforsalesearch.BitBtnlClick(Sender: TObject);
begin
plotforsalesearch.Close;
end;

procedure Tplotforsalesearch.EditlKeyPress(Sender: TObject; var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //return null if not chr or a space.
Beep; //inform user with a beep sound.
end;
end;

183

procedure Tplotforsalesearch.Edit3KeyPress(Sender: TObject; var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //return null if not chr or a space.
Beep; //inform user with a beep sound.
end;
end;

procedure Tplotforsalesearch.FormKeyPress(Sender: TObject; var Key: Char);
begin
If (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tplotforsalesearch.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu];
plotforsa Iese a rch.ClientHeight:=516;
plotforsalesearch.ClientWidth:=595;
end;

end.

unit Unit17;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, Buttons, ExtCtrls;

type
Tgardenforsalesearch = class(TForm)
GroupBoxl:TGroupBo~
Labell: Habel;
Label2: Tlabel;
Label3: Tlabel;
Bevell: TBevel;
BitBtnl: TBitBtn;
DBGridl: TDBGrid;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;

184

procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure D8Grid1Db1Click(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure EditlEnter(Sender: TObject);
procedure EditlExit(Sender: TObject);
procedure EditlKeyPress(Sender: TObject; var Key: Char);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations}

end;

var
ga rdenforsa Iese arch: Tga rdenforsa Iese arch;

implementation

uses unit45, unit7;

{$R *.dfm}

procedure Tga rdenforsalesea rch.EditlCha nge(Sender: TObject);
begin
if Editl.Text<>" then begin
dm.tsgarden.Filtered:=true;
dm.tsgarden.Filter:='[Squaremeter]=' + editl.Text;
end
else
dm.tsgarden.Filtered:=false;
end;

procedure Tgardenforsalesearch.Edit2Change(Sender: TObject);
begin
if Edit2.Text<>" then begin
dm.tsgarden.Filtered:=true;
dm.tsgarden.Filter:='[District]=' +#39 + Edit2.Text + '*' + #39;
end
else
dm.tsgarden.Filtered:=false;
end;

procedure Tgardenforsalesearch.Edit3Change(Sender: TObject);
begin
if Edit3.Text<>" then begin
dm.tsgarden.Filtered:=true;
dm.tsgarden.Filter:='[Price]=' + Edit3.Text;

185

end
else
dm.tsgarden.Filtered:=false;
end;

procedure Tgardenforsalesearch.DBGridlDblClick(Sender: TObject);
begin
garden.Show;
gardenforsalesearch.Close;
end;

procedure Tgardenforsalesearch.BitBtnlClick(Sender: TObject);
begin
gardenforsalesearch.Close;
end;

procedure Tgardenforsalesearch.EditlEnter(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMoneyGreen;
end;

procedure Tgardenforsalesearch.EditlExit(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMenuBar;
end;

procedure Tgardenforsalesearch.EditlKeyPress(Sender: TObject;
var Key: Char);

begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0;
Beep;
end;
end;

//return null if not chr or space.
//inform user withe beep sound.

procedure Tga rdenforsa Iese a rch.Edit3KeyPress(Sender: TObject;
var Key: Char);

begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //return null if not chr or space.
Beep; //inform user with e beep sound.
end;
end;

procedure Tga rdenforsalesearch.Form KeyPress(Sender: TObject;
var Key: Char);

begin

if (Key= #13) then

186

begin
key:= #0;
Perform(WM_NEXTDLGCH, 0, O);
end;

end;

procedure Tgardenforsalesearch.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu];
gardenforsalesearch.ClientHeight:=514;
gardenforsalesearch.ClientWidth:=585;
end;

end.

unit Unit18;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, Buttons, ExtCtrls;

type
Tbuildingforsalesearch = class(TForm)
GroupBoxl: TGroupBox;
Labell: Habel;
Label2: Habel;
Label3: Habel;
Label4: Tlabel;
Bevell: TBevel;
BitBtnl: TBitBtn;
DBGridl: TDBGrid;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure Edit4Change(Sender: TObject);
procedure DBGridlDblClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure EditlKeyPress(Sender: TObject; var Key: Char);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure Edit1Enter(Sender: TObject);
procedure EditlExit(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);

187

private
{ Private declarations}

public
{ Public declarations}

end;

var
buildingforsalesearch: Tbuildingforsalesearch;

implementation

uses unit45, unit8;

{$R * .dfm}

procedure Tbuildingforsalesearch.EditlChange(Sender: TObject);
begin
if Editl.Text<>" then begin
dm.tsbuilding.Filtered:=true;
dm.tsbuilding.Filter:='[Squaremeter)=' + Editl.Text;
end
else
d m. tsbu ildi ng. Filtered =false:
end;

procedure Tbuildingforsalesearch.Edit2Change(Sender: TObject);
begin
if Edit2.Text<>" then begin
dm.tsbuilding.Filtered:=true;
dm.tsbuilding.Filter:='[District)=' + #39 + Edit2.Text + '*' + #39;
end
else
d m. tsbu ild i ng. Filtered =false:

end;

procedure Tbuildingforsalesearch.Edit3Change(Sender: TObject);
begin
if edit3.Text<>" then begin
dm.tsbuilding.Filtered:=true;
dm.tsbuilding.Filter:='[Price)=' + Edit3.Text;
end
else
d m. tsbu ild i ng. Filtered =false:
end;

procedure Tbuildingforsalesearch.Edit4Change(Sender: TObject);
begin
if edit4.Text<>" then begin
dm.tsbuilding.Filtered:=true;

188

dm.tsbuilding.Filter:='[Heatingsystem]=' + #39 + edit4.Text + '*' + #39;
end
else
d m. tsbui Id ing. Filtered =false:
end;

procedure Tbuildingforsalesearch.DBGridlDblClick(Sender: TObject);
begin
building.Show;
buildingforsalesearch.Close;
end;

procedure Tbuildingforsalesearch.BitBtnlClick(Sender: TObject);
begin
buildingforsalesearch.Close;
end;

procedure Tbuildingforsalesearch.EditlKeyPress(Sender: TObject;
var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then

begin
key:=#0; //return null if not chr or space.
Beep; //inform user withe beep sound.
end;
end;

procedure Tbuildingforsalesearch.Edit3KeyPress(Sender: TObject;
var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //return null if not chr or space.
Beep; //inform user with e beep sound.
end;
end;

procedure Tbuildingforsalesearch.EditlEnter(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMoneyGreen;
end;

procedure Tbuildingforsalesearch.EditlExit(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMenuBar;
end;

procedure Tbuildingforsalesearch.FormKeyPress(Sender: TObject;
var Key: Char);
begin
if (Key= #13) then

189

begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tbuildingforsalesearch.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu];
buildingforsalesearch.ClientHeight:=516;
buildingforsalesearch.ClientWidth:=589;
end;

end.

unit Unit19;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, Buttons, ExtCtrls;

type
Tvillaforsalesearch = class(TForm)
GroupBoxl: TGroupBox;
Labell: Habel;
Label2: Habel;
Label3: Habel;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Bevell: TBevel;
BitBtnl: TBitBtn;
DBGridl: TDBGrid;
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure EditlEnter(Sender: TObject);
procedure EditlExit(Sender: TObject);
procedure DBGridlDblClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure EditlKeyPress(Sender: TObject; var Key: Char);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public

190

{ Public declarations}
end;

var
villaforsalesearch: Tvillaforsalesearch;

implementation

uses unit45, unitlO;

{$R *.dfm}

procedure Tvillaforsalesearch.EditlChange(Sender: TObject);
begin
if Editl.Text<>" then begin
dm.tsvilla.Filtered:=true;
dm.tsvilla.Filter.:='[Squaremeter]='+ Editl.Text;
end
else
dm.tsvilla.Filtered:=false;
end;

procedure Tvillaforsalesearch.Edit2Change(Sender: TObject);
begin
if Edit2.Text<>" then begin
dm. tsvilla .Filtered:=true;
dm.tsvilla.Filter:='[District]=' + #39 + Edit2.Text + '*' + #39;
end
else
dm.tsvilla.Filtered:=false;
end;

procedure Tvillaforsalesearch.Edit3Change(Sender: TObject);
begin
if Edit3.Text<>" then begin
dm.tsvilla.Filtered:=true;
dm.tsvilla.Filter:=' [Price]='+ Edit3. Text;
end
else
dm.tsvilla.Filtered:=false;
end;

procedure Tvillaforsalesearch.EditlEnter(Sender: TObject);
begin

if sender is tedit then tedit(sender).Color:=clMoneyGreen;
end;

procedure Tvillaforsalesearch.EditlExit(Sender: TObject);
begin

if sender is tedit then tedit(sender).Color:=clMenuBar;
end;

191

procedure Tvillaforsalesearch.DBGridlDblClick(Sender: TObject);
begin
villa.Show;
villaforsalesearch.Close;
end;

procedure Tvillaforsalesearch.BitBtnlClick(Sender: TObject);
begin
villaforsalesearch.Close;
end;

procedure Tvillaforsalesearch.EditlKeyPress(Sender: TObject;
var Key: Char);

begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //return null if not chr or a space.
Beep; //inform user with a beep sound.
end;
end;

procedure Tvillaforsalesearch.Edit3KeyPress(Sender: TObject;
var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //return null if not chr or a space.
Beep; //inform user with a beep sound.
end;
end;

procedure Tvillaforsalesearch.FormKeyPress(Sender: TObject; var Key: Char);
begin
If (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tvillaforsalesearch.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu];
villaforsalesearch.ClientHeight:=516;
vi I laforsa Iese arch .Clie ntWidth :=595;
end;

end.

192

unit Unit20;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, Buttons, ExtCtrls;

type
Tfieldforsalesearch = class(TForm)
GroupBoxl:TGroupBo~
Labell: Tlabel;
Label2: Tlabel;
Label3: TLabel;
Bevell: TBevel;
BitBtnl: TBitBtn;
DBGridl: TDBGrid;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure EditlEnter(Sender: TObject);
procedure EditlExit(Sender: TObject);
procedure EditlKeyPress(Sender: TObject; var Key: Char);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure DBGridlDblClick(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
fieldforsalesearch: Tfieldforsalesearch;

implementation

uses unit45, unit9;

{$R *.dfm}

procedure Tfieldforsalesearch.EditlChange(Sender: TObject);
begin
if Editl.Text<>" then begin
dm .tsfield. Filtered :=true;

193

dm.tsfield.Filter:='[Squaremeter]=' + editl.Text;
end
else
dm.tsfield.Filtered:=false;
end;

procedure Tfieldforsalesearch.Edit2Change(Sender: TObject);
begin
if Edit2.Text<>" then begin
dm.tsfield.Filtered:=true;
dm.tsfield.Filter:='[District]=' +#39 + Edit2.Text + '*' + #39;
end
else
dm.tsfield.Filtered:=false;
end;

procedure Tfieldforsalesearch.Edit3Change(Sender: TObject);
begin
if Edit3.Text<>" then begin
dm .tsfield. Filtered :=true;
dm.tsfield.Filter:='[Price]=' + Edit3.Text;
end
else
dm.tsfield.Filtered:=false;
end;

procedure Tfieldforsalesearch.EditlEnter(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMoneyGreen;
end;

procedure Tfieldforsalesearch.EditlExit(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMenuBar;

end;

procedure Tfieldforsa lesearch. Ed itl KeyPress(Se nder: TO bject;
var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin
key:=#0; //return null if not chr or space.
Beep; //inform user withe beep sound.
end;
end;

procedure Tfieldforsalesearch.Edit3KeyPress(Sender: TObject;
var Key: Char);
begin
if not (key in ['0' .. '9',#8,#13]) then
begin

194

key:=#0; //return null if not chr or space.
Beep; //inform user withe beep sound.
end;
end;

procedure Tfieldforsalesearch.DBGridlDblClick(Sender: TObject);
begin
field.Show;
fieldforsalesearch.Close;
end;

procedure Tfieldforsalesearch.BitBtnlClick(Sender: TObject);
begin
fieldforsalesearch.Close;
end;

procedure Tfieldforsalesearch.FormKeyPress(Sender: TObject; var Key: Char);
begin
If (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tfieldforsalesearch.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu);
fieldforsalesearch.ClientHeight:=516;
fieldforsa Iese arch .ClientWidth :=595;
end;

end.

unit Unit21;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, Grids, DBGrids, StdCtrls, Buttons, ExtCtrls;

type
Tfarmforsalesearch = class(TForm)
GroupBoxl:TGroupBo~
Labell: TLabel;
Label2: Tlabel;
Label3: TLabel;
Bevell: TBevel;

195

BitBtnl: TBitBtn;
DBGridl: TDBGrid;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
procedure EditlChange(Sender: TObject);
procedure Edit2Change(Sender: TObject);
procedure Edit3Change(Sender: TObject);
procedure EditlEnter(Sender: TObject);
procedure EditlExit(Sender: TObject);
procedure EditlKeyPress(Sender: TObject; var Key: Char);
procedure Edit3KeyPress(Sender: TObject; var Key: Char);
procedure D8Grid1Db1Click(Sender: TObject);
procedure BitBtnlClick(Sender: TObject);
procedure FormKeyPress(Sender: TObject; var Key: Char);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
farmforsalesearch: Tfarmforsalesearch;

implementation

uses unit45, unitll;

{$R *.dfm}

procedure Tfarmforsalesearch.EditlChange(Sender: TObject);
begin
if Editl.Text<>" then begin
dm .tsfarm.Filtered :=true;
dm.tsfarm.Filter:='[Squaremeter]=' + editl.Text;
end
else
dm.tsfarm. Filtered :=false;
end;

procedure Tfarmforsalesearch.Edit2Change(Sender: TObject);
begin
if Edit2.Text<>" then begin
dm.tsfarm.Filtered:=true;
dm.tsfarm.Filter:='[District]=' +#39 + Edit2.Text + '*' + #39;
end
else
dm. ts farm. Filtered :=false;
end;

196

procedure Tfa rmforsa lesearch. Ed it3Cha nge(Se nder: TObject);
begin
if Edit3.Text<>" then begin
dm.tsfarm.Filtered:=true;
dm.tsfarm.Filter:='[Price]=' + Edit3.Text;
end
else
dm.tsfarm.Filtered:=false;
end;

procedure Tfarmforsalesearch.EditlEnter(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMoneyGreen;
end;

procedure Tfarmforsalesearch.EditlExit(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMenuBar;

end;

procedure Tfarmforsalesearch.EditlKeyPress(Sender: TObject; var Key: Char);
begin
if not (key in ['0' . .'9',#8,#13]) then
begin
key:=#0; //return null if not chr or space.
Beep; //inform user withe beep sound.
end;
end;

procedure Tfarmforsalesearch.Edit3KeyPress(Sender: TObject; var Key: Char);
begin
if not (key in ['0' . .'9',#8,#13]) then
begin
key:=#0; //return null if not chr or space.
Beep; //inform user with e beep sound.
end;
end;

procedure Tfarmforsalesearch.DBGridlDblClick(Sender: TObject);
begin
farm.Show;
farmforsalesearch.Close;
end;

procedure Tfarmforsalesearch.BitBtnlClick(Sender: TObject);
begin
farmforsalesearch.Close;
end;

procedure Tfarmforsalesearch.FormKeyPress(Sender: TObject; var Key: Char);
begin

197

If (Key= #13) then
begin
key:= #0;
Perform(WM_NEXTDLGCTL, 0, O);
end;

end;

procedure Tfarmforsalesearch.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu];
farmforsalesearch.ClientHeight:=516;
farmforsalesearch.ClientWidth:=595;

end;

end.

unit Unit22;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, jpeg, ExtCtrls;

type
Tabout = class(TForm)
lmagel: Tlmage;
Labell: TLabel;
Label2: Tlabel;
procedure FormCreate(Sender: TObject);
procedure lmagelClick(Sender: TObject);

private
{ Private declarations}
public
{ Public declarations }

end;

var
about: Tabout;

implementation

{$R * .dfm}

procedure Tabout.FormCreate(Sender: TObject);
begin
about.ClientHeight:=275;
about.ClientWidth:=427;
end;

198

procedure Tabout.lmagelClick(Sender: TObject);
begin

end;

end.

unit Unit23;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons;

type
Tflierprint = class(TForm)
Labell: Tlabel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
BitBtnS: TBitBtn;
BitBtn6: TBitBtn;
BitBtn7: TBitBtn;
BitBtn8: TBitBtn;
BitBtn9: TBitBtn;
BitBtnlO: TBitBtn;
BitBtnll: TBitBtn;
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure BitBtnSClick(Sender: TObject);
procedure BitBtn6Click(Sender: TObject);
procedure BitBtn7Click(Sender: TObject);
procedure BitBtn8Click(Sender: TObject);
procedure BitBtn9Click(Sender: TObject);
procedure BitBtnlOClick(Sender: TObject);
procedure BitBtnllClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations}

end;

var
flierprint: Tflierprint;

199

implementation

uses unit34, unit35, unit36, unit37, unit38, unit39, unit40, unit41, unit42, unit43;

{$R *.dfm}

procedure Tflierprint.BitBtnlClick(Sender: TObject);
begin
form34.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn2Click(Sender: TObject);
begin
form35.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn3Click(Sender: TObject);
begin
form36.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn4Click(Sender: TObject);
begin
form37 .QuickRepl.Preview;
end;

procedure Tflierprint.BitBtnSClick(Sender: TObject);
begin
form40.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn6Click(Sender: TObject);
begin
form43.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn7Click(Sender: TObject);
begin
form38.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn8Click(Sender: TObject);
begin
form42.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn9Click(Sender: TObject);
begin
form39.QuickRepl.Preview;
end;

200

procedure Tflierprint.BitBtnlOClick(Sender: TObject);
begin
form41.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtnllClick(Sender: TObject);
begin
flierprint.Close;
end;

procedure Tflierprint.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu];
flierprint.ClientHeight:=599;
flierprint.ClientWidth:=611;
end;

end.

unit Unit23;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons;

type
Tflierprint = class(TForm)
Labell: Tlabel;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
BitBtnS: TBitBtn;
BitBtn6: TBitBtn;
BitBtn7: TBitBtn;
BitBtn8: TBitBtn;
BitBtn9: TBitBtn;
BitBtnlO: TBitBtn;
BitBtnll: TBitBtn;
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure BitBtnSClick(Sender: TObject);
procedure BitBtn6Click(Sender: TObject);
procedure BitBtn7Click(Sender: TObject);
procedure BitBtn8Click(Sender: TObject);

201

procedure BitBtn9Click(Sender: TObject);
procedure BitBtnlOClick(Sender: TObject);
procedure BitBtnllClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
flierprint: Tflierprint;

implementation

uses unit34, unit35, unit36, unit37, unit38, unit39, unit40, unit41, unit42, unit43;

{$R *.dfm}

procedure Tflierprint.BitBtnlClick(Sender: TObject);
begin
form34.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn2Click(Sender: TObject);
begin
form35.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn3Click(Sender: TObject);
begin
form36.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn4Click(Sender: TObject);
begin
form37 .QuickRepl.Preview;
end;

procedure Tflierprint.BitBtnSClick(Sender: TObject);
begin
form40.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn6Click(Sender: TObject);
begin
form43.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn7Click(Sender: TObject);
begin

202

form38.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn8Click(Sender: TObject);
begin
form42.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtn9Click(Sender: TObject);
begin
form39.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtnlOClick(Sender: TObject);
begin
form41.QuickRepl.Preview;
end;

procedure Tflierprint.BitBtnllClick(Sender: TObject);
begin
flierprint.Close;
end;

procedure Tflierprint.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu];
flierprint.ClientHeight:=599;
flierprint.ClientWidth:=611;
end;

end.

unit Unit25;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
Tshoptoletreport = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl:TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRLabel4: TQRLabel;

203

QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRLabel8: TQRLabel;
QRLabel9: TQRLabel;
QRLabellO: TQRLabel;
QRLabelll: TQRLabel;
QRLabel12: TQRLabel;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;
QRDBText4: TQRDBText;
QRDBTextS: TQRDBText;
QRDBText6: TQRDBText;
QRDBText7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
shoptoletreport: Tshoptoletreport;

implementation

uses unit45;

{$R *.dfm}

procedure Tshoptoletreport.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit26;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
Thouseforsalereport = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
DetailBandl: TQRBand;

204

QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRLabel8: TQRLabel;
QRLabel9: TQRLabel;
QRLabellO: TQRLabel;
QRLabelll: TQRLabel;
QRLabel12: TQRLabel;
QRD8Text2: TQRDBText;
QRD8Text3: TQRDBText;
QRD8Text4: TQRDBText;
QRDBTextS: TQRDBText;
QRD8Text6: TQRDBText;
QRD8Text7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
houseforsalereport: Thouseforsalereport;

implementation

uses unit45;

{$R *.dfm}

procedure Thouseforsalereport.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit27;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

205

type
Tshopforsalereport = class(TForm)

QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRLabel8: TQRLabel;
QRLabel9: TQRLabel;
QRLabellO: TQRLabel;
QRLabelll: TQRLabel;
QRLabel12: T.QRLabel;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;

QRDBText4: TQRDBText;
QRDBTextS: TQRDBText;
QRDBText6: TQRDBText;
QRDBText7: TQRDBText;
procedure FormCreate(Sender: TObject);

private

{ Private declarations}
public
{ Public declarations}

end;

var
shopforsalereport: Tshopforsalereport;

implementation

uses unit45;

{$R *.dfm}

procedure Tshopforsalereport.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit28;

interface

206

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
Tplotforsalereport = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRLabel8: TQRLabel;
QRLabel9: TQRLabel;
QRLabellO: TQRLabel;
QRLabelll: TQRLabel;
QRLabel12: TQRLabel;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;
QRDBText4: TQRDBText;
QRDBTextS: TQRDBText;
QRDBText6: TQRDBText;
QRDBText7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
plotforsalereport: Tplotforsalereport;

implementation

uses unit45;

{$R *.dfm}

procedure Tplotforsalereport.FormCreate(Sender: TObject);
begin

end;

end.

207

unit Unit29;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
Tgardenforsalereport = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRLabel8: TQRLabel;
QRLabel9: TQRLabel;
QRLabellO: TQRLabel;
QRLabelll: TQRLabel;
QRLabel12: TQRLabel;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;
QRDBText4: TQRDBText;
QRDBTextS: TQRDBText;
QRDBText6: TQRDBText;
QRD8Text7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
gardenforsalereport: Tgardenforsalereport;

implementation

uses unit45;

{$R *.dfm}

procedure Tgardenforsalereport.FormCreate(Sender: TObject);

208

begin

end;

end.

unit Unit30;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
Tbuildingforsalereport = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
QRDBTextl: TQRDBText;
DetailBandl: TQRBand;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRLabel8: TQRLabel;
QRLabel9: TQRLabel;
QRLabellO: TQRLabel;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;
QRDBText4: TQRDBText;
QRDBTextS: TQRDBText;
QRLabelll: TQRLabel;
QRLabel12: TQRLabel;
QRDBText6: TQRDBText;
QRDBText7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
buildingforsalereport: Tbuildingforsalereport;

implementation

209

uses unit45;

{$R *.dfm}

procedure Tbuildingforsalereport.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit31;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
Tfieldforsalereport = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl:TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRLabel8: TQRLabel;
QRLabel9: TQRLabel;
QRLabellO: TQRLabel;
QRLabelll: TQRLabel;
QRLabel12: TQRLabel;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;
QRDBText4: TQRDBText;
QRDBTextS: TQRDBText;
QRD8Text6: TQRDBText;
QRDBText7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations}

end;

210

var
fieldforsalereport: Tfieldforsalereport;

implementation

uses unit45;

{SR *.dfm}

procedure Tfieldforsalereport.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit32;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
Tvillaforsalereport = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRLabel8: TQRLabel;
QRLabel9: TQRLabel;
QRLabellO: TQRLabel;
QRLabel11: TQRLabel;
QRLabel12: TQRLabel;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;
QRDBText4: TQRDBText;
QRDBTextS: TQRDBText;
QRDBText6: TQRDBText;
QRDBText7: TQRDBText;
procedure FormCreate(Sender: TObject);

private

211

{ Private declarations}
public
{ Public declarations}

end;

var
villaforsalereport: Tvillaforsalereport;

implementation

uses unit45;

{$R *.dfm}

procedure Tvillaforsalereport.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit33;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
Tfarmforsalereport = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRLabel8: TQRLabel;
QRLabel9: TQRLabel;
QRLabellO: TQRLabel;
QRLabelll: TQRLabel;
QRLabel12: TQRLabel;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;
QRDBText4: TQRDBText;

212

QRDBTextS: TQRDBText;
QRD8Text6: TQRDBText;
QRD8Text7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations}

end;

var
farmforsalereport: Tfarmforsalereport;

implementation

uses unit45;

{$R * .dfm}

procedure Tfarmforsalereport.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit34;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
TForm34 = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
ColumnHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRD8Text2: TQRDBText;
QRD8Text3: TQRDBText;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;

213

QRDBText4: TQRDBText;
QRDBTextS: TQRDBText;
QRDBText6: TQRDBText;
QRDBText7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
Form34: TForm34;

implementation

uses unit45;

{$R *.dfm}

procedure TForm34.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit35;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
TForm35 = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
ColumnHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;

214

QRLabel7: TQRLabel;
QRD8Text4: TQRDBText;
QRDBTextS: TQRDBText;
QRD8Text6: TQRDBText;
QRD8Text7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
Form35: TForm35;

implementation

uses unit45;

{$R * .dfm}

procedure TForm35.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit36;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
TForm36 = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
ColumnHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRD8Text2: TQRDBText;
QRD8Text3: TQRDBText;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;

215

QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRD8Text4: TQRDBText;
QRDBTextS: TQRDBText;
QRDBText6: TQRDBText;
QRD8Text7: TQRDBText;
procedure FormCreate{Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
Form36: TForm36;

implementation

uses unit45;

{$R * .dfm}

procedure TForm36.FormCreate{Sender: TObject);
begin

end;

end.

unit Unit37;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
TForm37 = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
ColumnHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRD8Text2: TQRDBText;
QRDBText3: TQRDBText;
QRLabel4: TQRLabel;

216

QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRDBText4: TQRDBText;
QRDBTextS: TQRDBText;
QRDBText6: TQRDBText;
QRDBText7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations}

end;

var
Form37: TForm37;

implementation

uses unit45;

{$R *.dfm}

procedure TForm37.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit38;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
TForm38 = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
ColumnHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;

217

QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRD8Text4: TQRDBText;
QRDBTextS: TQRDBText;
QRD8Text6: TQRDBText;
QRD8Text7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form38: TForm38;

implementation

uses unit45;

{$R *.dfm}

procedure TForm38.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit39;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
TForm39 = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
ColumnHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRD8Text2: TQRDBText;

218

QRDBText3: TQRDBText;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel7: TQRLabel;
QRDBText4: TQRDBText;
QRDBTextS: TQRDBText;
QRDBText7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
Form 39: TForm39;

implementation

uses unit45;

{$R * .dfm}

procedure TForm39.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit40;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
TForm40 = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl:TQRBand;
ColumnHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;

219

QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRDBText4: TQRDBText;
QRDBTextS: TQRDBText;
QRDBText6: TQRDBText;
QRDBText7: TQRDBText;
procedure FormCreate{Sender: TObject);

private
{ Private declarations}

public
{ Public declarations }

end;

var
Form40: TForm40;

implementation

uses unit45;

{$R *.dfm}

procedure TForm40.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit41;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
TForm41 = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl:TQRBand;
ColumnHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;
QRLabel4: TQRLabel;

220

QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRD8Text2: TQRDBText;
QRD8Text3: TQRDBText;
QRD8Text4: TQRDBText;
QRD8Text5: TQRDBText;
QRD8Text6: TQRDBText;
QRD8Text7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations}

end;

var
Form41: TForm41;

implementation

uses unit45;

{$R *.dfm}

procedure TForm41.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit42;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
TForm42 = class(TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
ColumnHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;
QRLabel3: TQRLabel;

221

QRD8Text2: TQRDBText;
QRD8Text3: TQRDBText;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRD8Text4: TQRDBText;
QRDBTextS: TQRDBText;
QRD8Text6: TQRDBText;
QRD8Text7: TQRDBText;
procedure FormCreate{Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
Form42: TForm42;

implementation

uses unit45;

{SR *.dfm}

procedure TForm42.FormCreate{Sender: TObject);
begin

end;

end.

unit Unit43;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, QRCtrls, QuickRpt, ExtCtrls;

type
TForm43 = class{TForm)
QuickRepl: TQuickRep;
PageHeaderBandl: TQRBand;
ColumnHeaderBandl: TQRBand;
DetailBandl: TQRBand;
QRDBTextl: TQRDBText;
QRLabell: TQRLabel;
QRLabel2: TQRLabel;

222

QRLabel3: TQRLabel;
QRDBText2: TQRDBText;
QRDBText3: TQRDBText;
QRLabel4: TQRLabel;
QRLabelS: TQRLabel;
QRLabel6: TQRLabel;
QRLabel7: TQRLabel;
QRDBText4: TQRDBText;
QRDBTextS: TQRDBText;
QRDBText6: TQRDBText;
QRDBText7: TQRDBText;
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
Form43: TForm43;

implementation

uses unit45;

{$R * .dfm}

procedure TForm43.FormCreate(Sender: TObject);
begin

end;

end.

unit Unit44;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, StdCtrls, Mask, DBCtrls;

type
Tinformations = class(TForm)
Labell: Habel;
Label2: Habel;
Label3: Habel;
Label4: Habel;
Labels: Habel;
Label6: Habel;

223

Label7: Tlabel;
Label8: TLabel;
Label9: TLabel;
LabellO: Tlabel;
Labelll: Tlabel;
Buttonl: TButton;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
DBEdit3: TDBEdit;
DBEdit4: TDBEdit;
DBEditS: TDBEdit;
DBEdit6: TDBEdit;
DBEdit7: TDBEdit;
DBEdit8: TDBEdit;
DBEdit9: TDBEdit;
DBEditlO: TDBEdit;
DBEditll: TDBEdit;
Bevell: TBevel;
procedure ButtonlClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
informations: Tinformations;

implementation

uses unit45;

{$R *.dfm}

procedure Tinformations.ButtonlClick(Sender: TObject);
begin
dm.Tablell.Edit;
dm.Tablell.Post;
end;

procedure Tinformations.FormCreate(Sender: TObject);
begin
i nformatio ns.Clie ntHe ight:=5 73;
informations.ClientWidth:=439;
end;

end.
unit Unit45;

interface

224

uses
SysUtils, Classes, DB, DBTables;

type
Tdm = class(TDataModule)
dkhouse: TDataSource;
dkshop: TDataSource;
dsbuilding: TDataSource;
dsvilla: TDataSource;
dshouse: TDataSource;
dsshop: TDataSource;
dsfield: TDataSource;
dsgarden: TDataSource;
dsplot: TDataSource;
dsfarm: TDataSource;
DataSourcell: TDataSource;
tkhouse: Tiable;
tkshop: Tiable;
tsbuilding: Tiable;
tsvilla: Tiable;
tshouse: Tiable;
tsshop: Tiable;
tsfield: Tiable;
tsgarden: Tiable;
tsplot: Tiable;
tsfarm: Tiable;
Tablell: Tiable;
procedure DataModuleCreate(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
dm: Tdm;

implementation

{SR* .dfm}

procedure Tdm.DataModuleCreate(Sender: TObject);
begin

end;

end.

unit Unit46;

225

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, StdCtrls, Mask, DBCtrls, DB, DBTables;

type
TForm46 = class(TForm)
Buttonl: TButton;
Labell: Tlabel;
Label2: Tlabel;
Bevell: TBevel;
Bevel2: TBevel;
Button2: TButton;
DataSourcel: TDataSource;
Queryl: TQuery;
Editl: TEdit;
Edit2: TEdit;
procedure ButtonlClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure EditlKeyPress(Sender: TObject; var Key: Char);
procedure Edit2KeyPress(Sender: TObject; var Key: Char);
procedure FormActivate(Sender: TObject);
procedure EditlEnter(Sender: TObject);
procedure Edit2Enter(Sender: TObject);
procedure Edit2Exit(Sender: TObject);
procedure EditlExit(Sender: TObject);

private
{ Private declarations}

public
{ Public declarations}

end;

var
Form46: TForm46;

implementation

uses Unitl;

{$R * .dfm}

function find(a :string;b:string): boolean;
begin
find:=false;
form46.queryl.first;
while not form46.queryl.eof do
if (a=form46.queryl.fields[O].asstring)and(b=form46.queryl.fields[l].asstring) then
begin
find :=true;

226

exit;
end
else
form46.queryl.next;
end;

procedure TForm46.Button1Click(Sender: TObject);
begin
if find(editl.text,edit2.Text) then
begin
forml.Show;
form46.Visible:=false;
end
else
application.MessageBox('please insert true UserName and Password','Warning',16);
end;

procedure TForm46.FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu,bimaximize,biminimize];
Form46.ClientHeight:=282;
Form46.ClientWidth:=355;
end;

procedure TForm46.Button2Click(Sender: TObject);
begin
form46.Close;
end;

procedure TForm46.Edit1KeyPress(Sender: TObject; var Key: Char);
begin
if(key=#l3)then Edit2 .Set Focus;
end;

procedure TForm46.Edit2KeyPress(Sender: TObject; var Key: Char);
begin
if(key=#l3)then Buttonl.SetFocus;
end;

procedure TForm46.FormActivate(Sender: TObject);
begin
editl.SetFocus;
end;

procedure TForm46.Edit1Enter(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMoneyGreen;
end;

procedure TForm46.Edit2Enter(Sender: TObject);
begin

227

if sender is tedit then tedit(sender).Color:=clMoneyGreen;
end;

procedure TForm46.Edit2Exit(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMenuBar;
end;

procedure TForm46.Edit1Exit(Sender: TObject);
begin
if sender is tedit then tedit(sender).Color:=clMenuBar;
end;

end.

unit Unit47;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, Buttons, ExtCtrls, Grids, DBGrids, DB,
DBTables, jpeg;

type
TForm47 = class(TForm)
Labell: TLabel;
Label2: TLabel;
DataSourcel: TDataSource;
Queryl: TQuery;
DBGridl: TDBGrid;
BitBtnl: TBitBtn;
BitBtn2: TBitBtn;
BitBtn3: TBitBtn;
BitBtn4: TBitBtn;
DBEditl: TDBEdit;
DBEdit2: TDBEdit;
BitBtnS: TBitBtn;
BitBtn6: TBitBtn;
Bevell: TBevel;
procedure BitBtnlClick(Sender: TObject);
procedure BitBtn2Click(Sender: TObject);
procedure BitBtn3Click(Sender: TObject);
procedure BitBtn4Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure BitBtnSClick(Sender: TObject);
procedure DBEditlKeyPress(Sender: TObject; var Key: Char);
procedure BitBtn6Click(Sender: TObject);

private
{ Private declarations}

228

public
{ Public declarations}

end;

var
Form47: TForm47;

implementation

uses unit46;

{$R *.dfm}

procedure TForm47.BitBtn1Click(Sender: TObject);
begin
Queryl.Edit;
DBEditl.SetFocus;
end;

procedure TForm47.BitBtn2Click(Sender: TObject);
begin
Queryl.Post;
end;

procedure TForm47.BitBtn3Click(Sender: TObject);
var
a:word;
begin
a:=Application.MessageBox('Are you sure?','Warning',36);
if(a=IDYES)then
begin
Queryl. Delete;
end;

end;

procedure TForm47.BitBtn4Click(Sender: TObject);
begin
Queryl.Cancel;
form47.Close;
end;

procedure TForm4 7 .FormCreate(Sender: TObject);
begin
borderlcons:=borderlcons-[bisystemmenu,bimaximize,biminimize];
DBEditl.Text:=";
dbedit2.Text:=";
Form4 7 .Cl ientHeight:=278;
Form47.ClientWidth:=365;

end;

229

procedure TForm47.BitBtn5Click(Sender: TObject);
begin
DBEditl.Text:=";
dbedit2.Text:=";
DBEditl.SetFocus;
Query1.lnsert;
end;

procedure TForm47.DBEdit1KeyPress(Sender: TObject; var Key: Char);
begin
if(key=#13)then DBEdit2.SetFocus;
end;

procedure TForm47.BitBtn6Click(Sender: TObject);
begin
DBEditl.Clear;
DBEdit2.Clear;
Query1.Cancel;
end;

end.

230

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering
	Department of Computer Engineering
	Stock Property by Using Delphi
	Graduation Project
	,1m1\~~II!

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENT

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENTS
	ACKNOWLEDGEMENT I
	ABSTRACT II
	TABLE OF CONTENTS III
	INTRODUCTION 1
	CHAPTER ONE : BASIC CONCEPT OF DELPHI
	CHAPTER TWO : THE RA VE REPORTING

	Images
	Image 1

	Page 5
	Titles
	CHAPTER THREE : STOCK PROPERTY BY USING DELPHI

	Page 6
	Titles
	CONCLUSION 129
	RE FE REN CES 130
	APPENDIX 140

	Page 7
	Titles
	INTRODUCTION
	1

	Page 8
	Titles
	CHAPTER ONE
	1 BASIC CONCEPT OF DELPHI
	1.1 Introduction to Delphi
	1.2 What is Delphi?
	2

	Page 9
	Page 10
	Page 11
	Titles
	5

	Page 12
	Page 13
	Titles
	1.3 Delphi 6 Editions

	Page 14
	Titles
	8

	Images
	Image 1

	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 16
	Titles
	1.4 A Tour of the Environment

	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Titles
	"~'

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 21
	Images
	Image 1

	Page 22
	Titles
	···li'.J E dit2
	.. r".:'I I ~holA

	Images
	Image 1
	Image 2

	Page 23
	Titles
	1.4.9 Debugging applications
	17

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 24
	Titles
	r

	Images
	Image 1
	Image 2

	Page 25
	Titles
	:A·;te~~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Tables
	Table 1

	Page 26
	Titles
	1.5 Programming with Delphi

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1
	Image 2
	Image 3

	Page 29
	Images
	Image 1
	Image 2

	Page 30
	Titles
	~ma

	Images
	Image 1
	Image 2
	Image 3

	Page 31
	Images
	Image 1
	Image 2

	Page 32
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 33
	Titles
	data-aware control dataset
	(Grid) ~ DataSource ~ (Table) ~ BDE ~
	database

	Images
	Image 1

	Page 34
	Titles
	CHAPTER TWO
	2 THE RA VE REPORTING
	2.1 Project Tree

	Images
	Image 1

	Page 35
	Titles
	2.2 Design Tools

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 36
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 37
	Titles
	I
	!2ss :zj !2ss :zj jo :zj !2s :zj

	Images
	Image 1
	Image 2
	Image 3

	Page 38
	Titles
	2.3 Reuse and Maintenance Tools

	Images
	Image 1
	Image 2

	Page 39
	Titles
	J~ ·.e/:=~=ary
	1:::;

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 40
	Titles
	2.4 Standard Components

	Images
	Image 1
	Image 2
	Image 3

	Page 41
	Titles
	2.5 Drawing Components
	2.6 Reporting Components

	Images
	Image 1
	Image 2
	Image 3

	Page 42
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 43
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 44
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 45
	Titles
	2. 7 Barcode Components
	2.8 Anchors

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 46
	Titles
	2.9 Code Based Reports

	Images
	Image 1
	Image 2
	Image 3

	Page 47
	Titles
	Welcome to Code Based Reporiing in Rave

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 48
	Images
	Image 1
	Image 2

	Page 49
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 50
	Images
	Image 1

	Page 51
	Titles
	2.10 Visually Designed Reports

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 52
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering
	Department of Computer Engineering
	Stock Property by Using Delphi
	Graduation Project
	,1m1\~~II!

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENT

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENTS
	ACKNOWLEDGEMENT I
	ABSTRACT II
	TABLE OF CONTENTS III
	INTRODUCTION 1
	CHAPTER ONE : BASIC CONCEPT OF DELPHI
	CHAPTER TWO : THE RA VE REPORTING

	Images
	Image 1

	Page 5
	Titles
	CHAPTER THREE : STOCK PROPERTY BY USING DELPHI

	Page 6
	Titles
	CONCLUSION 129
	RE FE REN CES 130
	APPENDIX 140

	Page 7
	Titles
	INTRODUCTION
	1

	Page 8
	Titles
	CHAPTER ONE
	1 BASIC CONCEPT OF DELPHI
	1.1 Introduction to Delphi
	1.2 What is Delphi?
	2

	Page 9
	Page 10
	Page 11
	Titles
	5

	Page 12
	Page 13
	Titles
	1.3 Delphi 6 Editions

	Page 14
	Titles
	8

	Images
	Image 1

	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 16
	Titles
	1.4 A Tour of the Environment

	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Titles
	"~'

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 21
	Images
	Image 1

	Page 22
	Titles
	···li'.J E dit2
	.. r".:'I I ~holA

	Images
	Image 1
	Image 2

	Page 23
	Titles
	1.4.9 Debugging applications
	17

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 24
	Titles
	r

	Images
	Image 1
	Image 2

	Page 25
	Titles
	:A·;te~~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Tables
	Table 1

	Page 26
	Titles
	1.5 Programming with Delphi

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1
	Image 2
	Image 3

	Page 29
	Images
	Image 1
	Image 2

	Page 30
	Titles
	~ma

	Images
	Image 1
	Image 2
	Image 3

	Page 31
	Images
	Image 1
	Image 2

	Page 32
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 33
	Titles
	data-aware control dataset
	(Grid) ~ DataSource ~ (Table) ~ BDE ~
	database

	Images
	Image 1

	Page 34
	Titles
	CHAPTER TWO
	2 THE RA VE REPORTING
	2.1 Project Tree

	Images
	Image 1

	Page 35
	Titles
	2.2 Design Tools

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 36
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 37
	Titles
	I
	!2ss :zj !2ss :zj jo :zj !2s :zj

	Images
	Image 1
	Image 2
	Image 3

	Page 38
	Titles
	2.3 Reuse and Maintenance Tools

	Images
	Image 1
	Image 2

	Page 39
	Titles
	J~ ·.e/:=~=ary
	1:::;

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 40
	Titles
	2.4 Standard Components

	Images
	Image 1
	Image 2
	Image 3

	Page 41
	Titles
	2.5 Drawing Components
	2.6 Reporting Components

	Images
	Image 1
	Image 2
	Image 3

	Page 42
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 43
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 44
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 45
	Titles
	2. 7 Barcode Components
	2.8 Anchors

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 46
	Titles
	2.9 Code Based Reports

	Images
	Image 1
	Image 2
	Image 3

	Page 47
	Titles
	Welcome to Code Based Reporiing in Rave

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 48
	Images
	Image 1
	Image 2

	Page 49
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 50
	Images
	Image 1

	Page 51
	Titles
	2.10 Visually Designed Reports

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 52
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 53
	Images
	Image 1
	Image 2
	Image 3

	Page 54
	Titles
	Welcorne to Rave Reports Visual Designer
	<

	Images
	Image 1
	Image 2
	Image 3

	Page 55
	Images
	Image 1
	Image 2

	Page 56
	Images
	Image 1

	Page 57
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 58
	Titles
	Introduction to Rave Reports
	<J
	Introduction to Rave Reports

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 59
	Titles
	introduction to Rave Reports

	Images
	Image 1

	Page 60
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 61
	Titles
	2.11 Data Aware Reports

	Images
	Image 1

	Page 62
	Titles
	:;,,-\ L. ~a~~:'

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 63
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 64
	Images
	Image 1

	Page 65
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 66
	Images
	Image 1
	Image 2

	Page 67
	Titles
	CHAPTER THREE
	3 STOCK PROPERTY BY USING DELPHI
	3.1 Database Connection Screen

	Images
	Image 1
	Image 2

	Page 68
	Images
	Image 1
	Image 2

	Page 69
	Titles
	3.2 Main Menu

	Images
	Image 1
	Image 2

	Page 70
	Titles
	3.3 House to Let Menu

	Images
	Image 1
	Image 2

	Page 71
	Images
	Image 1
	Image 2
	Image 3

	Page 72
	Images
	Image 1
	Image 2

	Page 73
	Images
	Image 1
	Image 2

	Page 74
	Titles
	ESER PROPERTY
	HOUSE TO LET

	Images
	Image 1
	Image 2

	Page 75
	Titles
	3.4 House for Sale Menu

	Images
	Image 1
	Image 2

	Page 76
	Images
	Image 1
	Image 2

	Page 77
	Images
	Image 1
	Image 2

	Page 78
	Images
	Image 1
	Image 2

	Page 79
	Titles
	ESER PROPERTY
	HO USE FOR SALE

	Images
	Image 1
	Image 2

	Page 80
	Titles
	3.5 Shop to Let Menu

	Images
	Image 1
	Image 2

	Page 81
	Images
	Image 1
	Image 2
	Image 3

	Page 82
	Titles
	>

	Images
	Image 1
	Image 2
	Image 3

	Page 83
	Images
	Image 1
	Image 2

	Page 84
	Titles
	ESER PROPERTY
	SHOP TO LET

	Images
	Image 1
	Image 2

	Page 85
	Images
	Image 1
	Image 2

	Page 86
	Images
	Image 1
	Image 2

	Page 87
	Titles
	3.6 Shop for Sale Menu

	Images
	Image 1
	Image 2

	Page 88
	Images
	Image 1
	Image 2

	Page 89
	Titles
	ESER PROPERTY
	SHOP FOR SALE

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 90
	Titles
	3. 7 Plot for Sale Menu

	Images
	Image 1
	Image 2

	Page 91
	Images
	Image 1
	Image 2

	Page 92
	Images
	Image 1
	Image 2

	Page 93
	Images
	Image 1
	Image 2

	Page 94
	Titles
	ESER PROPERTY
	PLOT FOR SALE

	Images
	Image 1
	Image 2
	Image 3

	Page 95
	Titles
	3.8 Garden for Sale Menu

	Images
	Image 1
	Image 2

	Page 96
	Images
	Image 1
	Image 2

	Page 97
	Images
	Image 1
	Image 2

	Page 98
	Images
	Image 1
	Image 2

	Page 99
	Titles
	GARDEN FOR SALE
	ESER PROPERTY

	Images
	Image 1
	Image 2

	Page 100
	Titles
	3.9 Building For Sale Menu

	Images
	Image 1
	Image 2

	Page 101
	Images
	Image 1
	Image 2
	Image 3

	Page 102
	Images
	Image 1
	Image 2

	Page 103
	Images
	Image 1
	Image 2

	Page 104
	Titles
	ESER PROPERTY
	BUILDING FOR SA LE

	Images
	Image 1
	Image 2

	Page 105
	Titles
	3.10 Farm for Sale Menu

	Images
	Image 1
	Image 2

	Page 106
	Images
	Image 1
	Image 2

	Page 107
	Images
	Image 1
	Image 2
	Image 3

	Page 108
	Images
	Image 1
	Image 2

	Page 109
	Titles
	FARM FOR SALE
	ESER PROPERTY

	Images
	Image 1
	Image 2
	Image 3

	Page 110
	Titles
	3.11 Villa for Sale Menu

	Images
	Image 1
	Image 2

	Page 111
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 112
	Images
	Image 1
	Image 2

	Page 113
	Images
	Image 1
	Image 2

	Page 114
	Titles
	ESER PROPERTY
	VILLA FOR SALE

	Images
	Image 1
	Image 2

	Page 115
	Titles
	3.12 Field for Sale Menu

	Images
	Image 1
	Image 2

	Page 116
	Images
	Image 1
	Image 2

	Page 117
	Images
	Image 1
	Image 2
	Image 3

	Page 118
	Images
	Image 1
	Image 2

	Page 119
	Titles
	ESER PROPERTY

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 120
	Titles
	3.13 Flier Print Menu

	Images
	Image 1
	Image 2

	Page 121
	Titles
	9999 999 99 99
	0000 000 00 00
	HOUSES TO LET
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2

	Page 122
	Titles
	9999 999 99 99
	0000 000 00 00
	ESER PROPERTY
	VILLAS FOR SALE
	TELEPHONE

	Images
	Image 1
	Image 2
	Image 3

	Page 123
	Titles
	9999 999 99 99
	0000 000 00 00
	ESER PROPERTY
	SHOPS TO LET
	TELEPHONE

	Images
	Image 1
	Image 2
	Image 3

	Page 124
	Titles
	0000 000 00 00 9999 999 99 99
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2
	Image 3

	Page 125
	Titles
	9999 999 99 99
	0000 000 00 00
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2
	Image 3

	Page 126
	Titles
	ESER PROPERTY

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 127
	Titles
	9999 999 99 99
	0000 000 00 00
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2

	Page 128
	Titles
	9999 999 99 99
	0000 000 00 00
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 129
	Titles
	9999 999 99 99
	0000 000 00 00
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2
	Image 3

	Page 130
	Titles
	0000 000 00 00 9999 999 99 99
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2

	Page 131
	Titles
	3.14 User Register Menu

	Images
	Image 1
	Image 2

	Page 132
	Titles
	3.15 About Menu

	Images
	Image 1
	Image 2

	Page 133
	Titles
	3.16 Informations Menu

	Images
	Image 1
	Image 2

	Page 134
	Titles
	3.17 Exit Menu

	Images
	Image 1
	Image 2

	Page 135
	Titles
	CONCLUSION

	Images
	Image 1

	Page 136
	Titles
	REFERENCES

	Images
	Image 1

	Page 137
	Titles
	APPENDIX

	Images
	Image 1

	Page 138
	Images
	Image 1

	Page 139
	Images
	Image 1

	Page 140
	Images
	Image 1

	Page 141
	Images
	Image 1

	Page 142
	Images
	Image 1

	Page 143
	Images
	Image 1

	Page 144
	Images
	Image 1

	Page 145
	Images
	Image 1

	Page 146
	Images
	Image 1

	Page 147
	Images
	Image 1

	Page 148
	Images
	Image 1

	Page 149
	Images
	Image 1

	Page 150
	Images
	Image 1

	Page 151
	Titles
	145

	Images
	Image 1

	Page 152
	Images
	Image 1

	Page 153
	Images
	Image 1

	Page 154
	Images
	Image 1

	Page 155
	Images
	Image 1

	Page 156
	Images
	Image 1

	Page 1
	Titles
	NEAR EAST UNIVERSITY
	Faculty of Engineering
	Department of Computer Engineering
	Stock Property by Using Delphi
	Graduation Project
	,1m1\~~II!

	Images
	Image 1

	Page 2
	Titles
	ACKNOWLEDGEMENT

	Images
	Image 1

	Page 3
	Titles
	ABSTRACT

	Images
	Image 1

	Page 4
	Titles
	TABLE OF CONTENTS
	ACKNOWLEDGEMENT I
	ABSTRACT II
	TABLE OF CONTENTS III
	INTRODUCTION 1
	CHAPTER ONE : BASIC CONCEPT OF DELPHI
	CHAPTER TWO : THE RA VE REPORTING

	Images
	Image 1

	Page 5
	Titles
	CHAPTER THREE : STOCK PROPERTY BY USING DELPHI

	Page 6
	Titles
	CONCLUSION 129
	RE FE REN CES 130
	APPENDIX 140

	Page 7
	Titles
	INTRODUCTION
	1

	Page 8
	Titles
	CHAPTER ONE
	1 BASIC CONCEPT OF DELPHI
	1.1 Introduction to Delphi
	1.2 What is Delphi?
	2

	Page 9
	Page 10
	Page 11
	Titles
	5

	Page 12
	Page 13
	Titles
	1.3 Delphi 6 Editions

	Page 14
	Titles
	8

	Images
	Image 1

	Page 15
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 16
	Titles
	1.4 A Tour of the Environment

	Images
	Image 1
	Image 2

	Page 17
	Images
	Image 1

	Page 18
	Images
	Image 1

	Page 19
	Images
	Image 1

	Page 20
	Titles
	"~'

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 21
	Images
	Image 1

	Page 22
	Titles
	···li'.J E dit2
	.. r".:'I I ~holA

	Images
	Image 1
	Image 2

	Page 23
	Titles
	1.4.9 Debugging applications
	17

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 24
	Titles
	r

	Images
	Image 1
	Image 2

	Page 25
	Titles
	:A·;te~~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7
	Image 8

	Tables
	Table 1

	Page 26
	Titles
	1.5 Programming with Delphi

	Page 27
	Images
	Image 1

	Page 28
	Images
	Image 1
	Image 2
	Image 3

	Page 29
	Images
	Image 1
	Image 2

	Page 30
	Titles
	~ma

	Images
	Image 1
	Image 2
	Image 3

	Page 31
	Images
	Image 1
	Image 2

	Page 32
	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1

	Page 33
	Titles
	data-aware control dataset
	(Grid) ~ DataSource ~ (Table) ~ BDE ~
	database

	Images
	Image 1

	Page 34
	Titles
	CHAPTER TWO
	2 THE RA VE REPORTING
	2.1 Project Tree

	Images
	Image 1

	Page 35
	Titles
	2.2 Design Tools

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 36
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 37
	Titles
	I
	!2ss :zj !2ss :zj jo :zj !2s :zj

	Images
	Image 1
	Image 2
	Image 3

	Page 38
	Titles
	2.3 Reuse and Maintenance Tools

	Images
	Image 1
	Image 2

	Page 39
	Titles
	J~ ·.e/:=~=ary
	1:::;

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 40
	Titles
	2.4 Standard Components

	Images
	Image 1
	Image 2
	Image 3

	Page 41
	Titles
	2.5 Drawing Components
	2.6 Reporting Components

	Images
	Image 1
	Image 2
	Image 3

	Page 42
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 43
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 44
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 45
	Titles
	2. 7 Barcode Components
	2.8 Anchors

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 46
	Titles
	2.9 Code Based Reports

	Images
	Image 1
	Image 2
	Image 3

	Page 47
	Titles
	Welcome to Code Based Reporiing in Rave

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 48
	Images
	Image 1
	Image 2

	Page 49
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 50
	Images
	Image 1

	Page 51
	Titles
	2.10 Visually Designed Reports

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 52
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 53
	Images
	Image 1
	Image 2
	Image 3

	Page 54
	Titles
	Welcorne to Rave Reports Visual Designer
	<

	Images
	Image 1
	Image 2
	Image 3

	Page 55
	Images
	Image 1
	Image 2

	Page 56
	Images
	Image 1

	Page 57
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 58
	Titles
	Introduction to Rave Reports
	<J
	Introduction to Rave Reports

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 59
	Titles
	introduction to Rave Reports

	Images
	Image 1

	Page 60
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 61
	Titles
	2.11 Data Aware Reports

	Images
	Image 1

	Page 62
	Titles
	:;,,-\ L. ~a~~:'

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 63
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 64
	Images
	Image 1

	Page 65
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 66
	Images
	Image 1
	Image 2

	Page 67
	Titles
	CHAPTER THREE
	3 STOCK PROPERTY BY USING DELPHI
	3.1 Database Connection Screen

	Images
	Image 1
	Image 2

	Page 68
	Images
	Image 1
	Image 2

	Page 69
	Titles
	3.2 Main Menu

	Images
	Image 1
	Image 2

	Page 70
	Titles
	3.3 House to Let Menu

	Images
	Image 1
	Image 2

	Page 71
	Images
	Image 1
	Image 2
	Image 3

	Page 72
	Images
	Image 1
	Image 2

	Page 73
	Images
	Image 1
	Image 2

	Page 74
	Titles
	ESER PROPERTY
	HOUSE TO LET

	Images
	Image 1
	Image 2

	Page 75
	Titles
	3.4 House for Sale Menu

	Images
	Image 1
	Image 2

	Page 76
	Images
	Image 1
	Image 2

	Page 77
	Images
	Image 1
	Image 2

	Page 78
	Images
	Image 1
	Image 2

	Page 79
	Titles
	ESER PROPERTY
	HO USE FOR SALE

	Images
	Image 1
	Image 2

	Page 80
	Titles
	3.5 Shop to Let Menu

	Images
	Image 1
	Image 2

	Page 81
	Images
	Image 1
	Image 2
	Image 3

	Page 82
	Titles
	>

	Images
	Image 1
	Image 2
	Image 3

	Page 83
	Images
	Image 1
	Image 2

	Page 84
	Titles
	ESER PROPERTY
	SHOP TO LET

	Images
	Image 1
	Image 2

	Page 85
	Images
	Image 1
	Image 2

	Page 86
	Images
	Image 1
	Image 2

	Page 87
	Titles
	3.6 Shop for Sale Menu

	Images
	Image 1
	Image 2

	Page 88
	Images
	Image 1
	Image 2

	Page 89
	Titles
	ESER PROPERTY
	SHOP FOR SALE

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 90
	Titles
	3. 7 Plot for Sale Menu

	Images
	Image 1
	Image 2

	Page 91
	Images
	Image 1
	Image 2

	Page 92
	Images
	Image 1
	Image 2

	Page 93
	Images
	Image 1
	Image 2

	Page 94
	Titles
	ESER PROPERTY
	PLOT FOR SALE

	Images
	Image 1
	Image 2
	Image 3

	Page 95
	Titles
	3.8 Garden for Sale Menu

	Images
	Image 1
	Image 2

	Page 96
	Images
	Image 1
	Image 2

	Page 97
	Images
	Image 1
	Image 2

	Page 98
	Images
	Image 1
	Image 2

	Page 99
	Titles
	GARDEN FOR SALE
	ESER PROPERTY

	Images
	Image 1
	Image 2

	Page 100
	Titles
	3.9 Building For Sale Menu

	Images
	Image 1
	Image 2

	Page 101
	Images
	Image 1
	Image 2
	Image 3

	Page 102
	Images
	Image 1
	Image 2

	Page 103
	Images
	Image 1
	Image 2

	Page 104
	Titles
	ESER PROPERTY
	BUILDING FOR SA LE

	Images
	Image 1
	Image 2

	Page 105
	Titles
	3.10 Farm for Sale Menu

	Images
	Image 1
	Image 2

	Page 106
	Images
	Image 1
	Image 2

	Page 107
	Images
	Image 1
	Image 2
	Image 3

	Page 108
	Images
	Image 1
	Image 2

	Page 109
	Titles
	FARM FOR SALE
	ESER PROPERTY

	Images
	Image 1
	Image 2
	Image 3

	Page 110
	Titles
	3.11 Villa for Sale Menu

	Images
	Image 1
	Image 2

	Page 111
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 112
	Images
	Image 1
	Image 2

	Page 113
	Images
	Image 1
	Image 2

	Page 114
	Titles
	ESER PROPERTY
	VILLA FOR SALE

	Images
	Image 1
	Image 2

	Page 115
	Titles
	3.12 Field for Sale Menu

	Images
	Image 1
	Image 2

	Page 116
	Images
	Image 1
	Image 2

	Page 117
	Images
	Image 1
	Image 2
	Image 3

	Page 118
	Images
	Image 1
	Image 2

	Page 119
	Titles
	ESER PROPERTY

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 120
	Titles
	3.13 Flier Print Menu

	Images
	Image 1
	Image 2

	Page 121
	Titles
	9999 999 99 99
	0000 000 00 00
	HOUSES TO LET
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2

	Page 122
	Titles
	9999 999 99 99
	0000 000 00 00
	ESER PROPERTY
	VILLAS FOR SALE
	TELEPHONE

	Images
	Image 1
	Image 2
	Image 3

	Page 123
	Titles
	9999 999 99 99
	0000 000 00 00
	ESER PROPERTY
	SHOPS TO LET
	TELEPHONE

	Images
	Image 1
	Image 2
	Image 3

	Page 124
	Titles
	0000 000 00 00 9999 999 99 99
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2
	Image 3

	Page 125
	Titles
	9999 999 99 99
	0000 000 00 00
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2
	Image 3

	Page 126
	Titles
	ESER PROPERTY

	Images
	Image 1
	Image 2

	Tables
	Table 1

	Page 127
	Titles
	9999 999 99 99
	0000 000 00 00
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2

	Page 128
	Titles
	9999 999 99 99
	0000 000 00 00
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 129
	Titles
	9999 999 99 99
	0000 000 00 00
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2
	Image 3

	Page 130
	Titles
	0000 000 00 00 9999 999 99 99
	ESER PROPERTY
	TELEPHONE

	Images
	Image 1
	Image 2

	Page 131
	Titles
	3.14 User Register Menu

	Images
	Image 1
	Image 2

	Page 132
	Titles
	3.15 About Menu

	Images
	Image 1
	Image 2

	Page 133
	Titles
	3.16 Informations Menu

	Images
	Image 1
	Image 2

	Page 134
	Titles
	3.17 Exit Menu

	Images
	Image 1
	Image 2

	Page 135
	Titles
	CONCLUSION

	Images
	Image 1

	Page 136
	Titles
	REFERENCES

	Images
	Image 1

	Page 137
	Titles
	APPENDIX

	Images
	Image 1

	Page 138
	Images
	Image 1

	Page 139
	Images
	Image 1

	Page 140
	Images
	Image 1

	Page 141
	Images
	Image 1

	Page 142
	Images
	Image 1

	Page 143
	Images
	Image 1

	Page 144
	Images
	Image 1

	Page 145
	Images
	Image 1

	Page 146
	Images
	Image 1

	Page 147
	Images
	Image 1

	Page 148
	Images
	Image 1

	Page 149
	Images
	Image 1

	Page 150
	Images
	Image 1

	Page 151
	Titles
	145

	Images
	Image 1

	Page 152
	Images
	Image 1

	Page 153
	Images
	Image 1

	Page 154
	Images
	Image 1

	Page 155
	Images
	Image 1

	Page 156
	Images
	Image 1

	Page 157
	Images
	Image 1

	Page 158
	Images
	Image 1

	Page 159
	Images
	Image 1

	Page 160
	Images
	Image 1

	Page 161
	Images
	Image 1

	Page 162
	Images
	Image 1

	Page 163
	Images
	Image 1

	Page 164
	Images
	Image 1

	Page 165
	Images
	Image 1

	Page 166
	Titles
	160

	Images
	Image 1

	Page 167
	Images
	Image 1

	Page 168
	Images
	Image 1

	Page 169
	Images
	Image 1

	Page 170
	Images
	Image 1

	Page 171
	Images
	Image 1

	Page 172
	Titles
	166

	Images
	Image 1

	Page 173
	Titles
	167

	Images
	Image 1

	Page 174
	Images
	Image 1

	Page 175
	Images
	Image 1

	Page 176
	Images
	Image 1

	Page 177
	Images
	Image 1

	Page 178
	Images
	Image 1

	Page 179
	Images
	Image 1

	Page 180
	Images
	Image 1

	Page 181
	Images
	Image 1

	Page 182
	Images
	Image 1

	Page 183
	Images
	Image 1

	Page 184
	Images
	Image 1

	Page 185
	Images
	Image 1

	Page 186
	Images
	Image 1
	Image 2

	Page 187
	Images
	Image 1
	Image 2

	Page 188
	Images
	Image 1

	Page 189
	Images
	Image 1

	Page 190
	Images
	Image 1
	Image 2

	Page 191
	Images
	Image 1
	Image 2

	Page 192
	Images
	Image 1

	Page 193
	Images
	Image 1
	Image 2

	Page 194
	Images
	Image 1

	Page 195
	Images
	Image 1

	Page 196
	Images
	Image 1

	Page 197
	Images
	Image 1

	Page 198
	Images
	Image 1

	Page 199
	Images
	Image 1

	Page 200
	Images
	Image 1

	Page 201
	Images
	Image 1

	Page 202
	Images
	Image 1

	Page 203
	Images
	Image 1

	Page 204
	Images
	Image 1

	Page 205
	Images
	Image 1

	Page 206
	Images
	Image 1

	Page 207
	Images
	Image 1

	Page 208
	Images
	Image 1

	Page 209
	Images
	Image 1

	Page 210
	Images
	Image 1

	Page 211
	Images
	Image 1

	Page 212
	Titles
	206

	Images
	Image 1

	Page 213
	Images
	Image 1

	Page 214
	Images
	Image 1

	Page 215
	Images
	Image 1

	Page 216
	Images
	Image 1

	Page 217
	Titles
	211

	Images
	Image 1

	Page 218
	Images
	Image 1

	Page 219
	Images
	Image 1

	Page 220
	Images
	Image 1
	Image 2

	Page 221
	Images
	Image 1
	Image 2

	Page 222
	Images
	Image 1
	Image 2

	Page 223
	Images
	Image 1
	Image 2

	Page 224
	Titles
	218

	Images
	Image 1
	Image 2

	Page 225
	Images
	Image 1
	Image 2

	Page 226
	Images
	Image 1

	Page 227
	Images
	Image 1

	Page 228
	Images
	Image 1

	Page 229
	Images
	Image 1
	Image 2
	Image 3

	Page 230
	Images
	Image 1
	Image 2

	Page 231
	Images
	Image 1

	Page 232
	Page 233
	Page 234
	Images
	Image 1
	Image 2
	Image 3

	Page 235
	Images
	Image 1

	Page 236
	Images
	Image 1
	Image 2

