PENALTY METHODS IN GENETIC ALGORITHM FOR SOLVING NUMERICAL CONSTRAINED OPTIMIZATION PROBLEMS
A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY
by

MAHMOUD K.M. ABURUB
In Partial Fulfillment of the Requirements for

the Degree of Master of Science
in

Computer Engineerıng

NICOSIA 2012
I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: MAHMOUD ABURUB
Signature:

Date:

ABSTRACT

Optimization is a computer based or mathematical based process used to find the best solution in complicated hyperspace. Optimization is an important theme that can be used to enhance a given result or, to prove it. However, it is proportional to the formulation of the problem in hand. Optimization is really simple for some sort of problems, but it will be more complicated in constrained hyperspace, where equality and inequality constraints exist.

Evolutionary Algorithms are one of the most powerful optimization methods used for many types of problems. Genetic algorithms, other strategies in use, are also powerful optimization tools, as they are not interfered with by the complexity of hyperspace. On the other hand, they only interfere with traits need to be optimized by mimicking natural selection and environmental adaptation like genetic developments process of any species.

Combining genetic algorithms with optimization in constraints hyperspace is only by applying penalty functions. If two types of constraints are on, equality, and inequality constraints; converting equality constraints to inequality format can be done by subtracting a constant from constraint value, often a rational number. The satisfaction of constraints is the basic condition for solution to be recognized as valid one. Nevertheless, not all formulated problems will be solved by using an optimization method, as they could suffer from a misunderstanding of the problem or the constraints violations.

This study focuses on applying genetic algorithms to constraints problems by applying penalty. Three types of algorithms are used, dynamic penalty, static penalty and stochastic ranking for constraints optimization. These methods were tested in twelve known and published benchmarked problem. We found that not all of them were completely successful in solving the suit of tested problems, which gives an additional support for No Free Lunch Theorem (Wolpert & Macready, 1996). In summary, it is not necessary for any two distinct algorithms to perform identically within the same search space.

Finally, stochastic ranking was the optimum solver for the tested suit. Some other methods do have a solution, but for some problems a solution could not be found. In fact, stochastic ranking mostly has a solution that could be enhanced to be the best; On the other hand, it provides additional proof for No Free Lunch Theorem and Lamarckian Theory.

Keywords: genetic algorithms, adaptive penalty, static penalty, stochastic ranking optimization with constrained hyperspace.

ÖZET
Optimizasyon (eniyileme) karm aşık hyperspace problemlerıne en iyi çözümü bulmak için kullanılan bilgisayar veya matematık bazlı işlemdir. Optimizasyon verilen sonucu genişletmek veya sağlamasını yapmak için kullanıabilem önemli bir temadır. Ayrıcaö söz konus problemin förmülasyonuyla doğru orantılıdır. Bir takım problemler için optimizasyon işlemi oldukça kolaydır ancak eşitlik ve eşitsizlik kısıtları (sabitleri) olan kısıtlı hyperspace konusunda daha karmaşıktır.
Evrimsel algoritmalar birçok problem için kullanılan en etikli optimizasyon yöntemlerinden birdir. Genetik Algoritmalar da, kullanılan digger stratejiler, hyperspace’in karışıklığından etkilenmeyen güçlü optimizasyon araçlarıdır. Bunun yanı sıra, genetik algorıtmalar herhangi bir türün genetik gelişim sadece süreci gibi taklit etmedeki doğal seçim ve çevresel adapasyon ile optimize edilmesi gereken tahditlerle engellenir.

Hyperspace kısıtlarında optimizasyon ile genetik algorıtmaların birleştirilmesi sadece programlama işlevleri uygulanarak yapılır. Eğer eşitlik ve eşitliksizlik kısıtları söz konusuysa eşitlik Kısıtları eşitliksizlik kısıtlerına dönüştürmek sabit genellikle değeri rasyonel sayı olan kısıtların diğernden çıkararak yapılabilir. Kısıtların tazmini sonucun geçerli olması için gerakli en temel koşuldur. Buna rağmen, formüle edilmiş her problem, problemin yanliş anaşılması veya kısıtların ihlal ihtimali olduğu için, optimizasyon yöntemi kullanarak çözolmeyecektir.

Bu çalişma kısıtlı problemlere program uygulayarak genetic algoritma yöntemlerinin kullanımasına odeklanmiştir. Kısıtler optimizasyon için üç çeşit program işlevi vardır; dinamik programlama, istatik programlama ve stokastic sıralama. Bu yöntemler bilinen ve yayınlana on iki problem kıstas alınarak test edildi. Her üç yöntem de problemlerin çözülmesinde başarılı olmayarak No Free Lunch Theroem’i destekledi. Özet olarak, iki farklı algorıtmanın aynı şeklide çalışması gerekmez.

Test edilen alanlard stokastık sıralmanın optimum çözüme ulşan yöntem olduğunu keşfettik. Diğer bazı yöntemleri kullanarak da çözüm alabilirsiniz ancak bazı programlerin çözüm bulunamaybilir ancak, stokastik sıralama kullanıdığında en iyi sonuç olarak genişletebileceğiniz çözüm ulaşmak daha mümkündür. Bir digger taraftan da No Free Lunch theorem va Lamarckian theorem için
Anahtar Kelimeler: genetik algoritmalar, adaptif ceza, static ceza kısıtlı hiperuzayda ile stokastik sıralama optimizasyonu.
ACKNOWLEDGMENTS

I want to thank my Prof. Dr. Adil Amirjanov, for his help during my working period, for the twinkling ideas he has had, and the courage he has given to me even when my way I several times, also, for his patience and hope which he inspired in me, to keep going and moving forward toward that small and thin light at the end of it all. I also send my regards to all the faculty stuff and jury members. To my mother and aunt, I send my deepest thanks and emotion, as they were always there to support me. Also to my special and unique brother, Rabah, for his harmony and warm heart and for his continued support. He provides me with the valuable advices and kept my degree on track, even when there appeared to be no hope.
Dedicated to sand of Palestine, mother, father, aunt, Rabah, my wife, my daughter (Shams), and brother…

CONTENTS

iiABSTRACT

iiiÖZET

ivACKNOWLEDGMENTS

viLIST OF FIGURES

vLIST OF TABLES

1CHAPTER1 INTRODUCTION

11.1.
What is optimization?

31.2.
Thesis Overview

4CHAPTER 2 GENETIC ALGORITHMS

42.1.
Overview

92.3.
Selection

92.3.1.
Roulette Wheel Selection

102.3.2.
Linear Ranking Selection

112.3.3.
Tournament Selection

132.4.
Crossover

142.5.
Mutation

152.6.
Population Replacement

152.7.
Search Termination

162.8.
Solution Evaluation

172.9.
Summary

18CHAPTER 3 CONSTRAINTS HANDLING METHODS

183.1.
Penalty Method

233.2.
Adaptive Penalty for Constraints Optimization

243.3.
Static Penalty for Constrained Optimization

273.4.
Stochastic Ranking for Constrained Optimization

273.4.1.
Stochastic Ranking using Bubble Sort like procedure

303.5.
Summary

31CHAPTER 4 SIMULATION

314.1.
System Environment

334.2.
Tested Problems

374.3.
Criteria for Assessment

404.4.
No Free Lunch Theorem

414.5. Summary

42CHAPTER 5 EXPERIMENTAL RESULTS AND ANALYSIS

425.1.
Overview

435.2.
Results Discussion

505.3.
Result Comparison

515.4.
Convergence Map

545.5.
Summary

55CHAPTER 6 CONCLUSION REMARKS

556.1.
Conclusions

566.2.
Future Work

57BIBLIOGRAPHY

59ÖZGEÇMİŞ

60APPENDIX

LIST OF FIGURES

10Figure 2.3.1.1 Roulette Wheel Selection Algorithms

12Figure 2.3.2.1 Linear ranking selection pseudo code

13Figure 2.3.3.1 Basic tournament selection pseudo codes

14Figure 2.4.1 Crossover (Recombination) algorithms

25Figure: 3.2.1 Adaptive Penalty Algorithms Pseudo Code

26Figure 3.2.2 Static Penalty Algorithm Pseudo Code

29Figure 3.4.1.1 Stochastic Ranking Using Bubble Sort like Procedure

32Figure 4.1.1 System execution diagram

38Figure 4.3.1 Upper constraint

39Figure 4.3.2 The function

39Figure 4.3.3 Lower constraint

52Figure 5.4.1 Adaptive Penalty Convergence Map

53Figure 5.4.2 Static Penalty Convergence Map

54Figure 5.4.3 Stochastic Ranking Convergence Map

LIST OF TABLES

22Table 3.1.1 Static vs. dynamic penalty

31Table 4.1.1 PC configurations

31Table 4.1.2 GA and System parameters

42Table 5.1.1 Number of variables and estimated ratio of feasible region

44Table 5.2.1 Adaptive Penalty testing result

46Table 5.2.2 Static Penalty testing result

48Table 5.2.3 Stochastic Ranking testing result

50Table 5.3.1 Algorithms Best Result Comparison

51Table 5.4.1 Error achieved when FES equal to 5000, 50000 and 50000

CHAPTER1 INTRODUCTION

1.1. What is optimization?

Our life is filled with problems; these problems are the driving force for our inventions, and environmental enhancement strategies. In computer science optimization is a computer process based process used to find solution to complex problems. For example, if we want to find the maximum peak for any function, then we need to formulize the precepts for a solution to be recognized as an optimum corresponding to our aim of finding either global optima, or local optima. Nevertheless, we may use constraint to push the algorithms to a feasible peak by suit of constraints, and if we want to make things more difficult we will use mixed constraint types, such as equality and inequality constraints. Finally, optimization can be defined as “optimization is to find an algorithm which solves a given class of problem” (Sivanandam & Deepa, 2008).

In mathematics we can use derivatives or differentiation to find an optima, but not all function are continuous and differentiable. In general, the non-linear programming is to find
[image: image1.wmf]x

r

 so as to optimize[image: image2.wmf])

(

x

f

r

,
[image: image3.wmf]n

n

x

x

x

x

Â

Î

=

)

,

,

,

(

2

1

L

r

, where
[image: image4.wmf]S

F

x

Í

Î

r

. The objective function
[image: image5.wmf])

(

x

f

r

 is defined in search space[image: image6.wmf]S

, the set
[image: image7.wmf]S

F

Î

define the feasible region, usually [image: image8.wmf]S

is defined in [image: image9.wmf]n

 dimensional space from the global space[image: image10.wmf]n

Â

. Every vector [image: image11.wmf]x

r

 has domain boundaries, where
[image: image12.wmf]n

i

i

u

x

i

l

i

£

£

£

£

1

),

(

)

(

, and the feasible region is defined by a set of constraints.

 Inequality constraints,
[image: image13.wmf]0

)

(

£

x

g

i

, and equality constraints
[image: image14.wmf]0

)

(

=

x

h

j

. Those inequality constraints could be equal to zero then they are called active; however, the equality constraints are always active and equal to zero in the entire of search space. Some researches were focused in local optima, where the point [image: image15.wmf]x

r

 is local optima [image: image16.wmf]Û

 there exist ε such that. For all [image: image17.wmf]0

x

r

in the ε neighborhood of [image: image18.wmf]0

x

r

in[image: image19.wmf]F

,
[image: image20.wmf])

(

)

(

0

x

f

x

f

r

r

>

. Finally, evolutionary algorithms are contrasting the mathematical derivatives to be a global optimizer method with complex objective functions when mathematics fails to give a sensible solution because of the complexity of the hyperspace or function discontinuity elsewhere (Michalewicz & Schoenauery, 1996).

Evolutionary computing is often used to solve such complicated problems, where the boundaries of the feasible region are so strict; whereas, genetic algorithms are an expert optimization method. Its chromosomal representation can be continuous or discreet. Genetic algorithms can be used for complex optimization problem; since, they are not attracted by the shape or the complexity of the objective function. By adding the constraints functions for the infeasible chromosome it can enforce those individuals to be feasible, or it may give them cost to be feasible. On the other hand, the feasible chromosomes have no addition or subtraction from their objective function value. This criterion will enhance the feasible solution and penalize infeasible no matter the shape of the function. Discontinuity is the second problem genetic algorithms can avoid; since, the value of constraints will avoid it.

By using penalty irrespective of its criterion, unreliable chromosomes will lose the undesired traits and they sometimes may suffer from killing penalty. In our study we have used the same standards of penalty, where individuals are fixed rather than killing penalty. We used the standard forms of static and dynamic penalty, where a specified value was added or deleted from the infeasible individuals. In contrast, stochastic ranking did not apply any kind of alternates for the objective function; only arranged individuals inside the population. In fact, that was equivalent to penalty, because the selection method will provide probability for individuals to participate in recombination. Result of this study showed static penalty was the best optimization method, because it always had a development opportunity to reach the global optimum. Finally, we showed that algorithms were competed in the same environment but with different strategies and they had different solutions. No Free Lunch Theorem was interesting, when it suggested a different result and algorithms performance.

Twelve benchmarks were tested in three different algorithms, adaptive penalty, static penalty, and stochastic ranking. Those three methods were able to solve the majority of the problems, but with three categories: solved according to the best value and number of constraints unsolved where some constraints are not satisfied and finally unsolved permanently. Static penalty had got the maximum number of problem solved, the best feasible rate, and standard deviation. It was so close to the identical distribution shape. On the other hand, stochastic was second in rank according to the same evaluation, but solved fewer problems. Finally, adaptive penalty proved worst according to the same evaluations. It had the same amount of problems solved like stochastic ranking. In fact it was 10 cases out of twelve. Those problems are chosen because they were complex in nature according to the number of variables and constraints. Many algorithms will be tested to view the reliability of those algorithms. All of those benchmarks are designed to have global optima solution with varied complexity and dimensions where it can make a worst hyperspace environment.

1.2. Thesis Overview

This thesis is organized in incremental method. Starting with simple and moving to more complicate declaration depending on the issues.

CHAPTER 2: Discusses Genetic Algorithms framework, structure, and it basic operation.

CHAPTER 3: Augmenting about constraints and different criteria has been used before to handle them. Meanwhile, we will discuss penalty method as core of our system to handle them. Discusses three types of penalty, adaptive, static and stochastic ranking.

CHAPTER 4: Describes simulation for tested problems and discusses how we assess and analyze for the result; It give pseudo code for the systems and the convergence map. Finally, there is a brief description of No Free Lunch theorem.

 CHAPTER 5: Discusses result after making testing on selected problems from more than 12 benchmarks. It’s illustrates diagrams for convergence graph.

CHAPTER 6: Conclusion depending on results achieved and future work.

CHAPTER 2 GENETIC ALGORITHMS
1.1. Overview

Genetic Algorithms (GA) is the primary branch of evolutionary computing. It is the best known and most widely used global search technique with its ability to explore and exploit a given search space using available performance measures (Sivanandam & Deepa, 2008). It is also the most popular stochastic optimization methodology used now a day. The basic idea of GA is Charles Darwin theory of “survival of the fittest”; where species must adapt to their environment to survive. Individual with fittest natural traits will have a greater ability and chance to survive. They will also have more priority for breeding and transforming their phenotype and genotype to future generations. GA basic building blocks are the chromosome that contains a set of genes. Where a single gene represent factor in phenotype. Factors have upper and lower bounds that represents the minimal and maximum adaptive (fitness) in phenotype for candidates. Genes can provide solutions or near solutions for the global problem. Meanwhile, gene length makes range of representing specific factor set; for example, if gene length is equal to
[image: image21.wmf]n

, then it can represent
[image: image22.wmf]1

2

-

n

 binary strings (Sivanandam & Deepa, 2008), those can be encoded for (length)
[image: image23.wmf]1

2

-

n

 (Reeves & Rowe, 2002). On the other hand, every gene has one or more alleles, those alleles will be stored in a single locus. The set of all alleles will represent a single individual. (Holland, 1975) introduced genetic algorithm for solving nonlinear problems. GA is problem dependent as there are many restrictions for individual representation (i.e., binary representation because our aim is to ensure that GA accurately and precisely represents all possible alleles for every point of the search space). These values for alleles will represent the genotype that makes direct reflection for phenotype where we will evaluate the solution according to their fitness. In general if a decision variable can tack values between
[image: image24.wmf]a

and
[image: image25.wmf]b

, and
[image: image26.wmf]a

b

>

, and if it’s mapped to binary string of length
[image: image27.wmf]L

, then the precision will be calculated in the next equation (Reeves & Rowe, 2002), where [image: image28.wmf]x

is best gene width.

[image: image29.wmf])

1

2

/(

)

(

-

-

=

l

x

a

b

Another method was addressed for binary representation of individuals, such as gray coding, where the hamming cliff is reduced to one rather than standard binary representation. The probability that at least one allele is presented at each locus can be defined in the next equation (Sharda & Voß, 2002).

[image: image30.wmf]l

N

p

)

)

2

1

(

1

(

1

-

-

=

 QUOTE [image: image31.png]=(1- (")

GA basic operations are selection, crossover (permutation), mutation, population replacement, and fitness evaluation. Figure 2.1.1 represents GA flowchart with those operations (Haupt & Haupt, 2004). Before we can continue in declaration, we must describe fitness, which is the most important part of search directing factor? It will be the criteria used to evaluate the solution, and it will be problem dependent, with respect to the definition of the problem. By decoding the value of genes from genotype into phenotype, we can construct the objective function. According to objective function, individual will be satisfied or dissatisfied with being selected for breeding. There are many different methods of evaluating objective function and selection criteria. They can be classified into ordinal based, such as linear ranking, or proportional base, such as roulette wheel selection.

1.2. Binary representation

The GA solution was firstly introduced by (Holland, 1975) was in binary, because it was mimicking the natural chromosomes gene representation and its simplicity of applying the GA basic operations. In the first test we use the basic binary to decimal convergence method. For example, to represent variable in decimal equal to 15 for a given problem, we start from 0 and start to give discrete values in range by increment by one. Then we calculate to represent number from 0
[image: image32.wmf]binary

)

0000

(

to 15
[image: image33.wmf]binary

)

1111

(

we need 4 bits. With this method the results were terrible. Basically three problems were highlighted.

A. Number of bit needed: every variable had its own domain
[image: image35.wmf]i

D

 , which has lower and upper bound; for example, problem (see page 34) let us tack sample of two variables
 [image: image38.wmf]1200

0

1

£

£

x

, here we have a problem of mapping variable domain in binary level, revealing to smooth binary bit corresponding to every variable. To represent, in trivial method we need 11 bit binary string to represent it. On the other hand

[image: image42.emf]Define cost function, cost, variables

Select GA parameters

Generate initial population

Decode chromosomes Find cost for each chromosome

Select mates

Mating (crossover)

Mutation Termination condition fulfilled

Done

Figure 2.1.1 Genetic Algorithms Flowchart
,

 QUOTE
 as it shows, we have many empty alleles, that can in total shift the search space for infeasible solution. If we have several successive recombination operations, either maximization or minimization problems all of them will be 0’s or 1’s after a specific number of iterations. And if we want to represent 200 in fewer number of bits depending on only full (on) bits, we will have a value less than 200, which is a loss of valuable data points in search space. Either way will be inefficient for an accurate solution, within this bad status of binary representation and domain satisfaction; still, we could construct a temporary solution. For instance, uniform crossover, where crossover probability is taken independently for every bit instead of chromosome. Somehow it’s alternating for mutation. Moreover we propose a methodology for constructing and retrieving values of variable with less complexity and more accurate results.

 QUOTE
 in binary

 how could be represented it in trivial method. This mapping issue has raised a problem which is defined as Big Jump. We want to make all variables into binary string that keeps them within boundaries. Sometimes there will be off bits internally, then how can we manage the domain concepts? For example, to represent
Suppose we are going to maximize or minimize function, such that
[image: image61.wmf]n

i

i

b

a

10

)

(

´

-

 , where [image: image59.wmf])

(

x

f

 with precisions, each domain should be constructed by [image: image57.wmf]i

i

b

a

<

 . If we want to optimize [image: image55.wmf]]

,

[

i

i

i

b

a

D

=

, where [image: image52.wmf]i

x

 , can tack value from domain[image: image50.wmf]R

R

i

Í

, each variable is the decimal precisions desired. Let us denote
[image: image64.wmf]i

m

 as the smallest boundaries integer then . For example, [image: image67.wmf]3

0

£

£

v

D

, then
[image: image69.wmf]]

0

,

3

[

=

v

D

. Suppose we need precisions with degree 2; then
 , to represent we need
[image: image73.wmf]9

bits which implies the inequality will be according to Equation (1). Finally; in order to represent predictions with variable boundaries elsewhere (Goldberg, 1989).
[image: image76.wmf]1

2

)

(

-

-

´

+

=

n

i

i

i

a

b

ng

binarystri

decimal

a

v

 (1)

B. Imagine a more complicated scenario where we have a variable with a huge number and another variable with a tiny domain. For example,
 the same problem (see page 34) where
[image: image79.wmf]55

.

0

55

.

0

3

£

£

-

x

, the question is how to represent variable domain that has negative range? Let us predict scenario, if we use probability to be positive; or negative for corresponding set of bit in chromosome, then that will be imagination. Still, if we design a control matrix for variable negative and positive value that will be initialized from the beginning by constructing variables in domain range and checkup they sign. By imaginary of fixed variable rage (i.e. fixed sign independent of search process operation, and predict it will be the same sign), both of them are terrible in implementation and mathematical proof. Another issue to consider is does all variables within the same number of bits, need to be shifted? The answerer is Yes, I should do, because making proportional number of bits will make the process more complicated mistakes. Another question is how to retrieve an objective function value from the chromosome? Here we need more than one standard method for retrieving variable values and of course we need more complicated mapping of bits to ratio or real values. Finally, variables are discreet and mostly the same for entire runs and search processes.

C. Re-construct binary string: after retrieving variables values and calculating objective function, we need to apply GA operation and penalty. The question is how to retrieve specific variable value from penalty function? Which methodology will use to construct binary string from its corresponding variables value? We have designed more than one solution, but all unsuitable. Mostly the left most binary string values almost zeroes; in contrast, numeric optimization method discussed before condition is to deal only with positive binary strings. Then we find the inverse of the given penalty function. And we have been trying it in simple method which is maximized [image: image81.wmf]]

31

,

0

[

Î

x

 . The produced objective function loses too many points out of the original function. The solution is to alter the value of penalized individual, corresponding to the same Equation (1).

1.3. Selection

Selection is the process of choosing two parents from the population for crossing. The set of questions needed to be answered are how many individuals will be selected? Are they going to make better traits! Whether or not a better (fitter) solution after breeding. The basic selection method is fully random, where individual objective functions are exchanged to be the probability of selection, this process is the spirit of roulette wheel selection. It’s quite simple and easy, but other issues will need to be answered. For example how many new copies these two selected elements from the population mating pool will copy themselves for the next generation. Briefly these are the basic problems of selection problem, and there was a complementary solution to avoid those disadvantages. Such as scaling of fitness, fitness pressure balancing, and elements rank depending on the nature of the problem, such as, linear ranking selection. Many other methods were invented to solve this problem, since, selection pressure, and other attributes of selection algorithm are going to play the basic role of convergence of the algorithm. There are two major types of selection proportional selection, where element fitness is ratio captured from overall population elements, such as, roulette wheel selection. On the other hand, ordinal based selection, where fitness depending on ranking (position) of element in population, and the first position reserved for the worst individual. In this study we have used binary tournament selection, because of its coherency, and ability to give chance for worst individuals to participate in selection process, where their priority is very low. On the other hand, we can consider stochastic ranking for constraints optimization as a selection method. However it can’t be recognized as a complete one, because of its shortness to select individuals from the mating pool. Another complimentary method need to be used that can make the decision of selection.

1.3.1. Roulette Wheel Selection

Roulette Wheel is the most familiar selection method bounded with GA. It starts by selecting elements linearly from the mating pool. However, cumulative element objective function is summed, and the average of fitness is calculated. By using the sum of fitness, individual’s fitness is divided sequentially with the total probability of one. Individuals are captured in the roulette space proportional to their fitness. Meanwhile, the number of times individual can be selected is proportional to the average of fitness. When comparing with other method this method has disadvantage. It’s hardly dependent on individual objective function, which allows the best individuals to manipulate the mating pool. On the other hand, it will encourage the algorithm for less exploration for infeasible search space from the beginning. However, those individuals may have a solution. Finally, scaling of fitness and other techniques are used to make less impact of fittest individuals for the search process. Figure 2.3.1.1 declares RWS algorithm pseudo code (Goldberg, 1989).
[image: image419.wmf]P

Figure 2.3.1.1 Roulette Wheel Selection Algorithms
1.3.2. Linear Ranking Selection

In contrast with proportion selection, linear ranking selection is based in position, where individual are sorted with respect to problem in hand. Meanwhile the first position will be reserved for the worst element. The positions of the population will have constant probability to be selected with respect to the Equation (2) (Blickle & Thiele, 1997), where linear function will be constructed. The probability of worst individual to be selected will be
[image: image82.wmf]N

-

h

 (Blickle & Thiele, 1997), and the best will be
[image: image83.wmf]N

+

h

 (Blickle & Thiele, 1997). The value of
[image: image84.wmf]-

h

 must be in between [0,1]; on the other hand, the value of
[image: image85.wmf]+

h

 will be calculated by
[image: image86.wmf]-

+

-

=

h

h

2

 (Blickle & Thiele, 1997), where
[image: image87.wmf]-

h

 value will determine the probability of worst individual to participate in selection process and[image: image89.png]

[image: image90.wmf]N

 is population size and
[image: image91.wmf]i

is the index of element. Figure 2.3.2.1 is illustrates the pseudo code for linear ranking selection algorithm (Blickle & Thiele, 1997).

[image: image92.wmf](

)

÷

ø

ö

ç

è

æ

-

-

-

+

=

-

+

+

1

1

1

N

i

N

p

i

h

h

h

 (2)

1.3.3. Tournament Selection

Unlike linear ranking selection, tournament selection has a sensitive selection pressure, population are isolated into two subsets
[image: image93.wmf]}

,

{

upper

lower

T

T

N

=

 (Sharda & Voß, 2002), where
[image: image94.wmf]T

 is the tour length. Those elements in the upper subset will be compared with average fitness
[image: image95.wmf]T

 times until selection
[image: image96.wmf]N

 individuals for parent pool. However the most popular disadvantage of tournament implies that every time a best individual is compared absolutely, it will be selected, if we use hard tournament selection pressure. Meanwhile “the chance of the median string being chosen is the probability that the remaining strings in its set are all worst

[image: image97.wmf]1

2

1

-

÷

ø

ö

ç

è

æ

t

 QUOTE [image: image98.png](0.5)*1

 (Sharda & Voß, 2002), where is the tour lengthand selection pressure,
[image: image100.wmf]1

2

=

-

F

t

 (Sharda & Voß, 2002). Figure 3.2.3.1 shows the basic tournament selection pseudo code (Blickle & Thiele, 1997).

[image: image420.wmf]*

P

Figure 2.3.2.1 Linear ranking selection pseudo code

[image: image421.wmf]1

¬

i

Figure 2.3.3.1 Basic tournament selection pseudo codes
1.4. Crossover

Crossover is the production method that uses exploitation to shift the search process for better region of the search space. It can hopefully produce new individuals that are better than their parents by sending their traits into new offspring’s. It can only clone ancestor’s traits without any production of new traits. For every individual GA are going to assign probability for crossover, depending on every individual, those elements will be send into the mating pool. The typical probability of crossover
[image: image101.wmf]c

P

will be constant for the entire of the process and equal to (0.5-1.0) (Goldberg, 1989), where a uniform random generator will keep producing random values; every time, for selected new individual selected the value will be compared with
[image: image102.wmf]c

P

, in order to send element into the mating pool. Many types of crossover exist, such as single point crossover, multipoint crossover, uniform crossover, and three parent crossovers. In this study we use single point crossover, where two parent’s contents are exchanged according to random choose point. The primary disadvantage of single point crossover is that the heads of the parents are kept the same. Where they are separated but they may contain solution for the problem. In contrast, multiple points’ crossover uses more than one uniform random generated crossover points, where they can split the parent and pass their values into new offspring. This takes precedence over single point crossover. Uniform crossover uses a single point probability for every different allele, which produce a higher probability for locus values to be swapped. For example, for binary representation, if locus value is 1 the first individual contents are sent to second, and vice versa if zero is found. Figure 2.4.1 shows the single crossover pseudo code (Goldberg, 1989).
[image: image422.wmf]n

i

¹

Figure 2.4.1 Crossover (Recombination) algorithms
1.5. Mutation

It’s the background operation that prevents algorithms from being trapped with local minimum, because it explores the entire search space. For example; if we want to maximize function [image: image104.wmf]x

x

f

=

)

(

 in constrained interval [0, 7]. Then the initial population won’t be the best. By mutating locus we may shift some chromosomes into value close to
[image: image105.wmf]binary

)

111

(

, by iteration. Probability of mutation is applied for every allele, which is contradicting crossover; however, it rarely happens because of its negligible value. There are many types of mutation which directly depend on representation. For instance, if we use real data or integer then mutation criteria will be different with binary representation. If data are discreet and individuals are represented in binary base, then mutation will be a bitwise by exchanging 0 to 1, and vice versa. Finally, probability of mutation,
[image: image106.wmf]n

P

m

1

=

 (Sharda & Voß, 2002), where [image: image108.wmf]n

 is chromosome length. Sometimes,
[image: image109.wmf]m

P

 may be fixed, but the typical
[image: image110.wmf]m

P

 (0.05-0.5) (Goldberg, 1989), in our system we use the same values.

1.6. Population Replacement

There are many options for population replacement, but to summarize, we are going to describe two types:

1. After GA basic operations select only the best individuals with some preceding methods, where the entire parents and offspring’s are sharing the same probability to be selected.

2. Select only from the new created offspring and kill the entire parents, in another word, replacement method, where offspring inherits their parent.
1.7. Search Termination

There are many criteria which have been constructed for search termination. Because of the stochastic nature of GA it can run for infinity, but it needs to be stopped at any given time because evaluation of the solution is needed. We can classify stopping condition into three types, time dependent, iteration dependent and fitness dependent.

1. Maximum generation: if we reach the maximum number of allowed iteration we need to stop the algorithms. Sometimes we need to predict the specific number of needed iterations depending on the complexity of the problem. For instance, our maximum function evaluation strategy (FES) is equal to 500000. Number of iterations is the most important and widely used criteria; it will be the primary stopping condition.
2. Elapse time: starting time to end time sometimes can be used as a secondary stopping condition. Problems are varied in complexity; sometimes, we can predict interval for stopping algorithm runs. Meanwhile if the maximum generation number is reached then it must stop.
3. Minimal diversity: measuring difference between traits and fitness internally is a crucial operation. Because traits are preserved and the solution will retain its value even after recombination process. Then algorithms need to be stopped. Sometimes, this criteria tack more priority over number of iterations.
4. Best Individuals: if the minimum of fitness in the population dropped under the convergence value. This will bring the search process to faster conclusions that guarantee at least one good solution (Sivanandam & Deepa, 2008).
5. Worst Individuals: the minimum fitness value for the worst individual can be less than convergence criteria. In this case convergence value may not be obtained (Sivanandam & Deepa, 2008).

6. Sum of Fitness: the search considered to have satisfaction converged when the sum of fitness in the entire population is less than or equal to the convergence value on the population record. This guarantees that logically all elements are in the same range (Sivanandam & Deepa, 2008)
1.8. Solution Evaluation

In very iteration, GA is going to enhance and delete some traits. Those we need to clarify the meaning of best. The best declaration is fuzzy for most cases, but in the final generation we need to obtain a solution. This solution may or may not be the desired solution. Then we could make another prediction to the number of iteration, or we may use the best to be enhanced. Finally, the feasible region may be a constrained one, such as our tested cases. We will see in Chapter 3, how we formulize the best to be not the minimum, but it must satisfy even all the constraints to be recognized as a solution.
1.9. Summary

Our study focusing only in standard GA operation, we have been chose single point crossover, bitwise mutation, binary tournament and population replacement by the new offspring’s. But evaluation where done harsh, because we will evaluate solution not only by their fitness, instead; we are going to add number of constraints satisfies to be the critical evaluation strategy.
CHAPTER 3 CONSTRAINTS HANDLING METHODS

1.1. Penalty Method

Evolutionary Algorithms (EA), have introduce a penalty method to cope with the dilemma of constraints handling technique. Since we have a set of constraints that is going to direct and drive the search process. EA can change constraints problem
[image: image111.wmf]A

 into unconstrained one
[image: image112.wmf]*

A

 by introducing penalty. However, changing is achieved in particular by adding or subtracting values from objective function based on the number of constraints violation (Coello, 2000). Evolutionary Computing uses two kinds of search directive, exterior or interior (Coello, 2000). Where the exterior search process starts from an infeasible region and continues to have most individual’s inside a feasible one. But the interior search process starts with random small values within the boundaries of a feasible region, and uses constraints to retain its boundaries. Moreover, exterior have critical advantages over interior. That is, initial solution generated randomly has no obligation to be optimum. In this study we have been used exterior for its simplicity. Since, we relied on the algorithm to give the solution in such complicated search space. The general formula for exterior penalty is shown in Equation (3) (Davis, 1987), where
[image: image113.wmf])

(

x

f

the new objective function value, Where [image: image114.wmf])

(

x

f

 is the objective function before applying penalty and it will be calculated according to the problem percepts,

[image: image115.wmf]ú

û

ù

ê

ë

é

´

+

´

±

=

å

å

=

=

p

j

j

j

n

i

i

i

L

c

G

r

x

f

x

1

1

)

(

)

(

f

 (3)

,
[image: image116.wmf]i

G

is inequality constraints.
[image: image117.wmf]j

L

is the equality constraints,
[image: image118.wmf]i

r

and
[image: image119.wmf]j

c

 are penalty coefficients respectively. For every equality constraints it should be exchanged to the form of inequality by introducing tolerance factor
[image: image120.wmf]0001

.

0

=

e

; where
[image: image121.wmf]0

|

)

(

|

£

-

e

x

h

i

 (Liang, et al., 2006), where the value of
[image: image122.wmf]b

)]

(

,

0

max[

x

g

G

i

i

=

(Coello, 2002), where individuals that’s satisfy the summation will not be penalized and their value will be retained. On the other hand,
[image: image123.wmf])

(

x

h

L

j

j

=

 (Coello, 2000). The absolute value is calculated, and by extracting the tolerance value, we can classify the constraint satisfaction. Finally, the value of β is normally 1 or 2 (Coello, 2000).

After introducing the main formula for penalty function, some problems is highlighted. For example, what is the best value for penalty factors? To answer this question we need to predict the scenarios for chosen values. For instance, if we choose a penalty factor that’s too high, then like GA search process it will be pushed immediately for the feasible region, which makes for a fast solution with less of consistency, Because algorithms will not be able to exploit a more infeasible individuals. They could hold an optimum solution. In contrast, if we choose too small penalty factors, then algorithm will explore more infeasible solution and mostly will not trapped by local minimum. The dilemma of convergence time will be long, neither high, nor negligible will be optimum. This issue has been addresses many times during previous research and conferences.

An interesting solution stochastic ranking with bubble sort like procedure has been used. This will discuss in details later. However the main idea is how to balance objective and penalty functions. The better penalty coefficients will optimize more individuals to the given problem, and will allow them to enter the mating pool. Many methods are studying how to treat individuals proportional for their state (i.e., if they were inside or outside the feasible region). Let us imagine the new scenario for individuals. Firstly, it can be settled in feasible region, how are we going to treat it? How much pressure are we going to apply on it? Secondly, individuals can be residing outside the feasible region, what’s the best penalty factor to fix them and make them feasible.

Coello have been introduced some guide lines for heuristic on design penalty function (Richardson, Palmer, G., & M., 1989) and he was giving some recommendations, like;

1. Distance based penalty functions achieved better performance over constraints dependent.

2. If numbers of constraints are limited then numbers of feasible regions are limited too, which implies algorithms frequently will not have a solution. This was the case in study for case 1 and 10.

3. Penalized fitness function should be close to feasible region.

Many studies have been previously carried out. All of them may be categorized into one of these basic methods, static penalty and dynamic penalty.

· Static Penalty: as expected we retain penalty function attributes and penalty coefficient constant for the entire iterations, without any feedback from the population. It Maybe according to previous statistical data collected, or it could be raw guess. In my point of view, the trivial drawback for this method will be in the final stages of the search process. But we couldn’t use penalty coefficient that preventing algorithm from reaching the global optimum like probability of mutation for simple GA. Fixing penalty coefficient without any prior information about the problem, or feasible search space could provide a good solution, but mostly it will be trapped with local minimum depending on the problem complexity. (Homaifar, Lai, & Qi, 1994), propose an approach in which the user defines several level of violation, and a penalty coefficient is chosen for each in such a way that the penalty coefficient increases as we reach higher level of violation. Equation (4) shows the individuals evaluation (Michalewcz, 1996), where [image: image124.wmf]i

k

,

 is penalty coefficients, [image: image125.wmf]m

 is the total number of constraints, and
[image: image126.wmf][

]

2

)

(

,

0

max

x

g

i

are the quadratic penalty function.

[image: image127.wmf][

]

(

)

å

=

´

+

=

m

i

i

k

i

x

g

R

x

f

x

fitness

1

2

,

)

(

,

0

max

)

(

)

(

 (4)

The fitness(x) is the objective function after applying penalty.
[image: image128.wmf][

]

N

k

,

,

1

L

L

=

, where [image: image129.wmf]N

is the number of violation (satisfy) pre-defined by user. The main drawback for this method is like mutation in GA; however, the number of violations levels will make more complexity for the algorithm to find the optimum. Penalty should be calculated according to Equation (5) (Morales & Quezada, 1998) , where [image: image130.wmf]s

 is number of constraints satisfied, and [image: image131.wmf]m

 is the total number of constraints.

[image: image132.wmf]ï

î

ï

í

ì

ç

ç

è

æ

÷

ø

ö

-

=

å

=

s

i

otherwise

m

K

K

feasible

is

solution

the

if

x

f

x

fitness

1

)

(

)

(

(5)

Finally, [image: image133.wmf]K

 is a large number as it was set to
[image: image134.wmf]9

10

1

´

 (Morales & Quezada, 1998). The trivial drawback of this method is that it does not use any information about constraints violation that could hopefully direct the search algorithms to better region.

· Dynamic Penalty: its contradictions for the previous method where information about current iteration is used in evaluation process. Joines and Houck, introduced formula for evaluating individuals dynamically according to the generation number (Joines & Houck, 1994).

[image: image135.wmf](

)

)

,

(

)

(

)

(

x

SVC

t

C

x

f

x

fitness

b

a

´

´

+

=

(6)

Where
[image: image136.wmf]b

,

C

and
[image: image137.wmf]a

 are predefined constants, and SVC function is calculated depending on constraints violation according to (Joines & Houck, 1994)

[image: image138.wmf]å

å

=

=

+

=

p

j

j

n

i

i

x

D

x

D

x

SVC

1

1

)

(

)

(

)

,

(

b

b

(7)

The value of
[image: image139.wmf])

(

x

D

i

b

, and
[image: image140.wmf])

(

x

D

j

is calculated according to the next equation (Joines & Houck, 1994).

[image: image141.wmf]n

i

otherwise

x

g

x

g

x

D

i

i

i

£

£

î

í

ì

£

=

1

),

(

0

)

(

,

0

)

(

(8)

[image: image142.wmf]p

j

otherwise

x

h

x

h

x

D

j

j

j

£

£

ï

î

ï

í

ì

£

£

-

=

1

,

)

(

)

(

,

0

)

(

e

e

(9)

By using those equations penalty values will be reduced dramatically when it reaches more iteration.

Because normal exterior penalty starts from an infeasible solution, we need to ensure that we are starting with minimum penalty factor to enforce EA for exploiting more infeasible solution. Dynamic penalty is such a massive umbrella that has many other optimization problem techniques; such as, Dynamic Simulation Annealing and Adaptive Penalty.

From the previous section we can summarize the differences between static and dynamic penalty:

Table 3.1.1 Static vs. dynamic penalty

	Static Penalty
	Dynamic Penalty

	Penalty function is constant
	Penalty function and coefficient are in dynamic changing depending on current iteration

	Need priori information about number of constraints violation probability
	Need to assign user defined values such as beta and alpha accurately

	Less accuracy
	More accuracy

	Hard to define penalty factor
	Hard to define penalty function

· Adaptive Penalty: it’s a flavor from dynamic penalty, where information about current population is taken to ensure a more accurate penalty value applied for individuals. Meanwhile, it will dramatically shift the search to the direction of feasible region, by getting feedback from the population. Adaptive penalty allows us to neglect the problem of hill climbing with GA, where some solutions will make the algorithms go backward to previous stage in hill climbing function. On the other hand; adaptive penalty never go back to a previous region. Equation (10) show the new fitness after applying penalty (Hadj-Alouane & Bean, 1997), where
[image: image143.wmf])

(

t

l

 is feedback from population. It used to update penalty

[image: image144.wmf]ú

û

ù

ê

ë

é

+

+

=

å

å

=

=

p

j

j

n

i

i

x

h

x

g

t

x

f

x

fitness

1

1

2

)

(

)

(

)

(

)

(

)

(

l

(10)

function with respect to the current population number. The value of
[image: image145.wmf])

(

t

l

 is updated adaptively in every iteration by Equation (11) (Hadj-Alouane & Bean, 1997).

[image: image146.wmf]ï

ï

ï

þ

ï

ï

ï

ý

ü

ï

ï

ï

î

ï

ï

ï

í

ì

´

´

÷

÷

ø

ö

ç

ç

è

æ

=

+

otherwise

t

case

if

t

case

if

t

t

)

(

2

)

(

1

)

(

1

)

1

(

2

1

l

l

b

l

b

l

 (11)

The value of
[image: image147.wmf]1

b

and
[image: image148.wmf]2

b

are both greater than 1; although, they must be not equals to avoid cycling (Coello, 2000). CASE1, if the best individual from the previous population is in the feasible region. CASE2, if the best individual is not in the feasible region (Coello, 2000). Finally, the value of
[image: image149.wmf])

(

t

l

 will have no change, if the best is not feasible, nor infeasible. Although in CASE 1, penalty factor will be small enough to keep the search process within feasible region boundaries. In contrast, it will be high in CASE 2; since, the search process needs to shift out infeasible region.

There are two basic disadvantages of adaptive penalty. Firstly, how do we define the value of
[image: image150.wmf]k

. Secondly, how do we define
[image: image151.wmf]1

b

and
[image: image152.wmf]2

b

values? Since, a misunderstanding of the attributes of the problem, will absolutely guide to inapplicable values of them, which implies unfair penalty for individuals.

1.2. Adaptive Penalty for Constraints Optimization

Changing constraints problem into unconstraint one by applying penalty is the basic technique we have used to control the search process, in order to retain in the feasible region. Adaptive penalty is a flavor of dynamic penalty, where information about current population and individuals, is retrieved to apply accurate and dependent penalty factor. All problems have domain constraints values, the search process must be within boundaries of it, or it must be pushed coherently for the feasible region. Let us declare what has been applied according to adaptive penalty general Equation (11), where three different states could be. Firstly, if we have a feasible solution in the population, then the value of
[image: image153.wmf])

(

t

l

 will be close to zero; then,
[image: image154.wmf]1

b

will control the new penalty function , and the entire population will be penalized at the same value which is close to zero [0,1[. Secondly; if infeasible solutions are found and we don’t have in hand a feasible one, then the penalty will be according to
[image: image155.wmf]2

b

, where it value will be real number greater than 1. We want to ensure that search process will be pushed more often to the feasible region. Finally, when feasible and infeasible individuals exist within the same population, then we need to keep the value of
[image: image156.wmf])

(

t

l

, where it has been derived from the previous iteration. The clue is; since, we have feasible and infeasible, this implies we are shifting individuals roughly to the desired region and can fix the value of
[image: image157.wmf])

(

t

l

. Now there is a sensible reason for the third state? This will be summarized. If we reach the value of penalty function accidentally then it may balance its value, then we must use it. Finally; the result tables in chapter 4 will show, that the adaptive is not the best, and then we will calculate that stochastic ranking precedes other algorithms. It gives a higher priority for penalty function instead, of objective function. Now, let us declare a critical point of view, suppose we are using the phenotype. Then making the decision if individuals are feasible, or not will be in phenotypes, at the same time, individuals are encoded in genotype space. We know that, every left most bit will be equivalent to the entire right most minus one. Here hamming cliff will be our problem with adaptive penalty. To summarize, if we apply any measurement for genotype we will suffer from hamming cliff; in contrast, if we apply it for phenotype, then how many iteration will we need to exchange an undesired phenotype to an applicable one. Figure 3.2.1 illustrates the pseudo code for adaptive penalty.

1.3. Static Penalty for Constrained Optimization

In contrast with adaptive penalty, static penalty starts with a sequence of predefined penalty factors, where those factors are random or derived from searching a process with raw data to guess the accurate factors. Those factors could shift the search process to infeasible; or keep with the optimal region. For example, suppose we have 0.5 penalty factor, meanwhile, we are in the feasible region. By applying this factor according to the static penalty equation, we will drag the solution to a less feasible region. Adaptive penalty where the penalty coefficient is varied and dependent on the current population could drag the algorithm to a local minimum. On the other hand, with optimization in constraints problems hyperspace we can only choose penalty for infeasible individuals, and leave the feasible individuals as they are.
[image: image423.wmf])

,

(

)

,

(

1

t

b

f

t

b

f

n

i

i

i

å

=

Figure: 3.2.1 Adaptive Penalty Algorithms Pseudo Code
Hopefully, after a combination of the two brands, we may get a better solution, with respect to what we had. Still, we have the same unanswered question, what is the best value for penalty factors? To summarize, it is logically that we can’t guess the optimum and the accurate value unless we make several runs. In result section we will
[image: image424.wmf]1

+

¬

i

i

Figure 3.2.2 Static Penalty Algorithm Pseudo Code
show that static penalty behaves better than adaptive penalty. Even, with the short falls we have been describing, it achieved better optimum and mostly it wasn’t trapped by local optimum. Finally, it achieved greater more number of constraints satisfied for the majority of tested problems, unlike both the adaptive and stochastic methods. Figure 3.2.2 illustrates static penalty pseudo code. Finally, in our study we have been used the value of penalty value to be according to Equation (5), for equality and inequality constraints.

1.4. Stochastic Ranking for Constrained Optimization

In the previous section we were discussed the dilemma of choosing a best penalty coefficient. We need to drive the process for feasible region without neglecting the rule of infeasible ones, because they could have a solution. We need to control the convergence speed, because if algorithms move towards to specified region it will not be able to go backwards to an infeasible region, since penalized objective functions must be within the boundaries of the current region. Stochastic ranking tries to balance between objective and penalty functions. In this study we followed this style for ranking and selecting individuals by binary tournament selection. Since it has a particular property for which individuals will be selected in average of feasibility. Stochastic ranking has to make the ranking individuals. Still, any other selection methods can be used, like roulette wheel selection. But it will be a trivial drawback, how many times feasible individual will be selected? And what is the specification for infeasible individuals. The answer to this issue will be another problem, which is mating pool domination by the best individuals. Ranking is the best known solution is in use to solve it. For example; GA use linear ranking for selection and introducing selection pressure will affect the overall search process. In contrast; this will not be used for constraints handling until we apply a prior method for balancing the value of penalty factor.

1.4.1. Stochastic Ranking using Bubble Sort like procedure

This method was invented and developed by (Runarsson & Yao, 2000), for penalty constraints optimization criteria, where penalty coefficient
[image: image158.wmf]g

r

is hard to recognize as an optimal value in ether previous cases. However, there were disagreement about balancing between objective function and penalty function, which could reveals a better penalty function value. Elements need to be arranged in ascending or descending order, depending on the problem itself. By constructing a relationship between adjacent individuals, as the ability to be feasible and winning the computation, they developed a more sophisticated idea. If we make
[image: image159.wmf]~

i

r

be the critical penalty coefficient, there are three options for it. Firstly, individuals are arranged according to objective function and dominance for it. Secondly, they are arranged by penalty function and dominance for it. Finally, if
[image: image160.wmf]0

~

=

i

r

and no dominance for either one of them. Because of all these issues stochastic ranking with bubble sort flavor tries to balance between two sides of inequality. The probability of an adjacent individual winning the comparison is given by, where
[image: image161.wmf]w

P

is the probability of winning according to

[image: image162.wmf](

)

f

w

f

fw

w

P

P

P

P

P

-

+

=

F

1

objectives function, and
[image: image163.wmf]w

P

F

is the probability of winning according to penalty function. If both of adjacent individuals are feasible then
[image: image164.wmf]fw

w

P

P

=

.in our testing problems, we have managed the probability of feasible to be manually initialized, because we would like to share between objective and penalty function, to play the same rule in the next population production. It was sited to 0.475, since
[image: image165.wmf]w

P

= 0.5 →
[image: image166.wmf]f

P

 = 0.5, as this implies that, neither objective; nor penalty, are manipulating the comparison. If we want to clarify the relationship between winning and losing either method in a given number of comparisons, then we can construct the next equation, where n is the total number of comparisons, and
[image: image167.wmf]'

K

 is the total number of wins, elsewhere (Runarsson & Yao, 2000).

[image: image168.wmf](

)

2

'

k

n

K

+

=

Bubble sort like procedure follows the same strategy of natural bubble sort sorting algorithms, where execution time complexity belongs to
[image: image169.wmf]n

T

2

=

. Figure 3.4.1.1 shows its pseudo code (Runarsson & Yao, 2000). Later on we will construct another method, where comparison of performance in one algorithm compared to another can be constructed according to a different strategy, where the domain of objective function and points play the critical rule for performance measurement. In addition, another issue with this algorithm is the disability to cut the needed population element and shift them to the new one, as it can’t make a local selection and needs any other selection method to recover it. This drawback can be solved by any complementary selection method. However, in this study we used binary tournament selection, to give a fairer selection pressure, and to allow the infeasible candidate to participate in next the generation.
[image: image425.wmf]t

b

select

i

,

Figure 3.4.1.1 Stochastic Ranking Using Bubble Sort like Procedure

Runarsson and Yao constructed this algorithm, and they were used it for maximization, but in fact they were solving minimization problems by tacking the complement. They suggested a value of U to be in between (0, 1), and to be generated via a uniform distribution random generator. However, in this study we do not have to worry about uniformity; since, java virtual machine always has a uniform distribution random generator. Runarsson and Yao also used a fixed value of
[image: image170.wmf]f

P

, which they suggested as 0.475, as they found it more applicable to solve given problems suit. As such we used the same problems to test our algorithms.

1.5. Summary

Exchanging constraints problem into unconstraint one was the core of penalty method. We have been discussed dynamic and static penalty, however; adaptive penalty is a flavor of dynamic. The main difference between those penalty methods and stochastic ranking is they both add or subtract value from objective function, but stochastic ranking are doing complementary method like them only by ranking individuals. Those methods are competitors and we will see that they are going to behave in different manner.
In next chapter, we are going to show the difference between the three algorithms, we will find that each method was have its own drawback and experts; meanwhile, all of them give solution, but with different records, and different number of constraints. In No Free Lunch theorem section, we will see that every algorithm will behave in different manner comparing to another one, in the same search space.

CHAPTER 4 SIMULATION

1.6. System Environment

The three algorithms were tested in the same machine, with the same parameters. Nevertheless, they were varied in result. We will see that the algorithms need to have the same parameters in order to make fair a comparison. Table 4.1.1 illustrates the machine properties. The system was developed in pyramidal shape, where the GA is the base of it. Figure 4.1.1 shows the system diagram.

Table 4.1.1 PC configurations

	System: Microsoft Windows
	CPU: Intel(R) Atom ™ CPU N270 @1.6 GHz 1.6 GHz

	RAM: (1) GB
	Language: Java

	Algorithms: Genetic Algorithm with Adaptive Penalty, Static Penalty and Stochastic Ranking methods for Constrained Optimization.
	

The code was developed in Java, where complex data structures are used; hence, constant pointers were used instead of user defined ones, as these are the only ones that

Table 4.1.2 GA and System parameters
	GA parameters
	System Parameters

	Representation
	Binary
	Number of iterations
	5000

	Selection
	Binary tournament selection
	Number of individuals
	100

	Crossover
	Single point

[image: image171.wmf]c

P

(0.0-1.0)
	Individuals number of bits
	Proportional to the problem

	Mutation
	Bitwise mutation
[image: image172.wmf]m

P

(0.05-0.5)
	𝜺 value
	0.0001

	Replacement
	Offspring’s inherits their parents
	Independent runs
	30

exists in Java. Figure 4.1.1 illustrates the overall system execution criteria, where every method has its own function, but the rest will remain the same.

The system has a fixed number of individuals, which was fixed to be 100; meanwhile, the maximum FES was 500000. The number of runs is 30 independent runs for each problem. Three checkpoints were constructed in 5000, 50000, and 500000. Those checkpoints were constructed to show the dynamics of the system (Liang, et al., 2006), where statistical functions are applied to given data such as, mean, median, and standard deviation. Finally, Table 4.1.1.2 shows the GA parameters and the system overall overview.

[image: image173.emf]Define cost function, cost, variables

Select GA parameters

Generate initial population

Decode chromosomes Find cost for each chromosome

Select mates

Mating (crossover)

Mutation Termination condition fulfilled

Done

Figure 4.1.1 System execution diagram
1.7. Tested Problems

1. (Floundas & Pardalos, 1987) Minimize
[image: image174.wmf]å

å

å

=

=

=

-

-

=

13

5

4

1

4

1

2

1

5

5

i

i

i

i

i

i

x

x

x

G

Subject to:

1.
[image: image175.wmf]0

10

2

2

)

(

11

10

2

1

1

£

-

+

+

+

=

x

x

x

x

x

g

2.
[image: image176.wmf]0

10

2

2

)

(

12

10

3

1

2

£

-

+

+

+

=

x

x

x

x

x

g

3.
[image: image177.wmf]0

10

2

2

)

(

12

11

3

2

3

£

-

+

+

+

=

x

x

x

x

x

g

4.
[image: image178.wmf]0

8

)

(

10

1

4

£

+

-

=

x

x

x

g

5.
[image: image179.wmf]0

8

)

(

11

2

5

£

+

-

=

x

x

x

g

6.
[image: image180.wmf]0

8

)

(

12

3

6

£

+

-

=

x

x

x

g

7.
[image: image181.wmf]0

2

)

(

10

5

4

7

£

+

-

-

=

x

x

x

x

g

8.
[image: image182.wmf]0

2

)

(

11

7

6

8

£

+

-

-

=

x

x

x

x

g

9.
[image: image183.wmf]0

2

)

(

12

9

8

9

£

+

-

-

=

x

x

x

x

g

where:

a.
[image: image184.wmf]13

,

9

,

8

,

7

,

6

,

5

,

4

,

3

,

2

,

1

1

0

=

£

£

i

x

i

b.
[image: image185.wmf]12

,

11

,

10

100

0

=

£

£

i

x

i

with six constraints are active (
[image: image186.wmf]9

8

7

3

2

1

,

,

,

,

g

and

g

g

g

g

g

).

2. (Koziel & Michalcwicz, 1999)Minimize
[image: image187.wmf]å

å

Õ

=

=

=

-

=

n

i

i

n

i

n

i

i

i

x

i

x

x

G

1

2

1

1

2

4

2

)

(

)

(

cos

2

)

(

cos

Subject to:

1.
[image: image188.wmf]0

75

.

0

1

1

£

-

=

Õ

=

n

i

i

x

g

2.
[image: image189.wmf]0

075

.

1

2

£

-

=

å

=

n

x

g

n

i

i

where:

a.
[image: image190.wmf]n

i

x

and

n

i

,

,

2

,

1

10

0

20

L

=

£

<

=

constraint
[image: image191.wmf]1

g

is closed to be active.

3. (Michalcwicz, Nazhiyath, & Michalcwicz, 1996) Minimize
[image: image192.wmf](

)

Õ

=

-

=

n

i

i

n

x

n

G

1

3

Subject to:

1.
[image: image193.wmf]å

=

=

-

=

n

i

i

x

h

1

2

1

0

1

where:

a.
[image: image194.wmf]n

i

x

and

n

i

,

,

2

,

1

1

0

10

L

=

£

£

=

4. (Himmelblau, 1972) Minimize
[image: image195.wmf]141

.

40792

293239

.

37

8356891

.

0

3578547

.

5

1

5

1

2

3

4

-

+

+

=

x

x

x

x

G

Subject to:

1.
[image: image196.wmf]0

92

0022053

.

0

0006262

.

0

0056858

.

0

334407

.

85

5

3

4

1

5

2

1

£

-

-

+

+

=

x

x

x

x

x

x

g

2.
[image: image197.wmf]0

0022053

.

0

0006262

.

0

0056858

.

0

334407

.

85

5

3

4

1

5

2

2

£

+

-

-

-

=

x

x

x

x

x

x

g

3.
[image: image198.wmf]0

110

0021813

.

0

0029955

.

0

0071317

.

0

51249

.

80

2

3

2

1

5

2

3

£

-

+

+

+

=

x

x

x

x

x

g

4.
[image: image199.wmf]0

90

0021813

.

0

0029955

.

0

0071317

.

0

51249

.

80

4

2

3

2

1

5

2

£

+

-

-

-

-

=

x

x

x

x

x

g

5.
[image: image200.wmf]0

25

0019085

.

0

0012547

.

0

0047026

.

0

300961

.

9

4

3

3

1

5

3

5

£

-

+

+

+

=

x

x

x

x

x

x

g

6.
[image: image201.wmf]0

20

0019085

.

0

0012547

.

0

0047026

.

0

300961

.

9

4

3

3

1

5

3

6

£

+

-

+

-

-

=

x

x

x

x

x

x

g

where:

a.
[image: image202.wmf]102

78

1

£

£

x

b.
[image: image203.wmf]45

33

2

£

£

x

c.
[image: image204.wmf]5

,

4

,

3

45

27

=

£

£

i

x

i

two constraints are active (
[image: image205.wmf]6

1

g

and

g

).
5. (Hock & Schittkowski, 1981) Minimize
[image: image206.wmf](

)

3

2

2

3

1

1

5

3

000002

.

0

2

000001

.

0

3

x

x

x

x

G

+

+

+

=

Subject to:

1.
[image: image207.wmf]0

55

.

0

3

4

1

£

-

+

-

=

x

x

g

2.
[image: image208.wmf]0

55

.

0

4

3

1

£

-

+

-

=

x

x

g

3.
[image: image209.wmf](

)

0

8

.

894

)

25

.

0

sin(

1000

25

.

0

sin

1000

1

4

3

1

=

-

+

-

-

+

-

-

=

x

x

x

h

4.
[image: image210.wmf](

)

0

8

.

894

)

25

.

0

sin(

1000

25

.

0

sin

1000

2

4

3

3

2

=

-

+

-

-

+

-

=

x

x

x

x

h

5.
[image: image211.wmf](

)

0

8

.

1294

)

25

.

0

sin(

1000

25

.

0

sin

1000

3

4

4

3

=

+

-

-

+

-

=

x

x

x

h

where:

a.
[image: image212.wmf]1200

0

1

£

£

x

b.
[image: image213.wmf]1200

0

2

£

£

x

c.
[image: image214.wmf]55

.

0

55

.

0

3

£

£

-

x

d.
[image: image215.wmf]55

.

0

55

.

0

4

£

£

-

x

6. (Floundas & Pardalos, 1987) Minimize
[image: image216.wmf](

)

(

)

3

2

3

1

6

20

10

-

+

-

=

x

x

G

Subject to:

1.
[image: image217.wmf](

)

(

)

0

100

5

5

2

2

2

1

1

£

+

-

-

-

-

=

x

x

g

2.
[image: image218.wmf](

)

(

)

0

81

.

82

5

6

2

2

2

1

2

£

-

-

-

-

=

x

x

g

where:

a.
[image: image219.wmf]100

13

1

£

£

x

b.
[image: image220.wmf]100

0

2

£

£

x

Both constraints are active

7. (Hock & Schittkowski, 1981) Minimize
[image: image221.wmf]45

)

7

(

)

10

(

2

)

11

(

7

5

)

1

(

2

)

3

(

)

5

(

4

)

10

(

16

14

2

10

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

1

2

1

2

2

2

1

7

+

-

+

-

+

-

+

+

-

+

-

+

-

+

-

+

-

-

+

+

=

x

x

x

x

x

x

x

x

x

x

x

x

x

x

G

Subject to:

1.
[image: image222.wmf]0

9

3

5

4

105

8

7

2

1

1

£

+

-

+

+

-

=

x

x

x

x

g

2.
[image: image223.wmf]0

2

17

8

10

8

7

2

1

2

£

+

-

-

=

x

x

x

x

g

3.
[image: image224.wmf]0

12

2

5

2

8

10

9

2

1

3

£

-

-

+

+

-

=

x

x

x

x

g

4.
[image: image225.wmf]0

120

7

2

)

3

(

4

)

2

(

3

4

2

3

2

2

2

1

4

£

-

-

+

-

+

-

=

x

x

x

x

g

5.
[image: image226.wmf]0

40

2

)

6

(

8

5

4

2

3

2

2

1

5

£

-

-

-

+

+

=

x

x

x

x

g

6.
[image: image227.wmf]0

6

14

2

)

2

(

2

6

5

2

1

2

2

2

1

6

£

-

+

-

-

+

=

x

x

x

x

x

x

g

7.
[image: image228.wmf]0

30

3

)

4

(

2

)

8

(

5

.

0

6

2

5

2

2

2

1

7

£

-

-

+

-

+

-

=

x

x

x

x

g

8.
[image: image229.wmf]0

7

)

8

(

12

6

3

10

2

9

2

1

8

£

-

-

+

+

-

=

x

x

x

x

g

where:

a.
[image: image230.wmf]10

,

,

2

,

1

10

10

L

=

£

£

-

i

x

i

six constraints are active (
[image: image231.wmf]6

5

4

3

2

1

,

,

,

,

g

and

g

g

g

g

g

).
8. (Koziel & Michalcwicz, 1999) Minimize
[image: image232.wmf])

(

)

2

sin(

)

2

(

sin

2

1

3

1

2

1

3

8

x

x

x

x

x

G

+

=

p

p

Subject to:

1.
[image: image233.wmf]0

1

2

2

1

1

£

+

-

=

x

x

g

2.
[image: image234.wmf]0

)

4

(

1

2

2

1

2

£

-

+

-

=

x

x

g

where:

a.
[image: image235.wmf]10

0

1

£

£

x

b.
[image: image236.wmf]10

0

2

£

£

x

9. (Hock & Schittkowski, 1981) Minimize
[image: image237.wmf]7

6

7

6

4

7

2

6

6

5

2

4

4

3

2

2

2

1

9

8

10

4

7

10

)

11

(

3

)

12

(

5

)

10

(

x

x

x

x

x

x

x

x

x

x

x

G

-

-

-

+

+

+

-

+

+

-

+

-

=

Subject to:

1.
[image: image238.wmf]0

5

4

3

2

127

5

2

4

3

4

2

2

1

1

£

+

+

+

+

+

-

=

x

x

x

x

x

g

2.
[image: image239.wmf]0

10

3

7

282

5

4

2

3

2

1

2

£

-

+

+

+

+

-

=

x

x

x

x

x

g

3.
[image: image240.wmf]0

8

6

23

196

7

2

6

2

2

1

3

£

-

+

+

+

-

=

x

x

x

g

4.
[image: image241.wmf]0

11

5

2

3

4

7

6

2

3

2

1

2

2

2

1

4

£

-

+

+

-

+

=

x

x

x

x

x

x

x

g

where:

a.
[image: image242.wmf]7

,

,

2

,

1

10

10

L

=

£

£

-

i

x

i

10. (Hock & Schittkowski, 1981) Minimize
[image: image243.wmf]3

2

1

10

x

x

x

G

+

+

=

Subject to:

1.
[image: image244.wmf]0

)

(

0025

.

0

1

6

4

1

£

+

+

-

=

x

x

g

2.
[image: image245.wmf]0

)

(

0025

.

0

1

4

7

5

2

£

-

+

+

-

=

x

x

x

g

3.
[image: image246.wmf]0

)

(

01

.

0

1

5

8

3

£

-

+

-

=

x

x

g

4.
[image: image247.wmf]0

333

.

83333

100

33252

.

833

1

4

6

1

4

£

-

+

+

-

=

x

x

x

x

g

5.
[image: image248.wmf]0

1250

1250

4

4

2

5

7

2

5

£

-

+

+

-

=

x

x

x

x

x

x

g

6.
[image: image249.wmf]0

2500

1250000

5

5

3

8

3

6

£

-

+

+

-

=

x

x

x

x

x

g

where:

a.
[image: image250.wmf]10000

100

1

£

£

x

b.
[image: image251.wmf]3

,

2

10000

1000

=

£

£

i

x

i

c.
[image: image252.wmf]8

,

,

5

,

4

1000

10

L

=

£

£

i

x

i

all constraints are active (
[image: image253.wmf]3

2

1

,

g

and

g

g

).

11. (Koziel & Michalcwicz, 1999) Minimize
[image: image254.wmf]2

2

2

1

11

)

1

(

-

+

=

x

x

G

Subject to:

1.
[image: image255.wmf]0

2

1

2

1

=

-

=

x

x

h

where:

a.
[image: image256.wmf]1

1

1

£

£

-

x

b.
[image: image257.wmf]1

1

2

£

£

-

x

12. (Hock & Schittkowski, 1981) Minimize
[image: image258.wmf]5

4

3

2

1

12

x

x

x

x

x

e

G

=

Subject to:

1.
[image: image259.wmf]0

10

)

(

2

5

2

4

2

3

2

2

2

1

1

=

-

+

+

+

+

=

x

x

x

x

x

x

h

2.
[image: image260.wmf]0

5

5

4

3

2

2

=

+

=

x

x

x

x

h

3.
[image: image261.wmf]0

1

)

(

3

2

3

1

1

=

+

+

=

x

x

x

h

Where:

a.
[image: image262.wmf]2

,

1

3

.

2

3

.

2

=

£

£

-

i

x

i

b.
[image: image263.wmf]5

,

4

,

3

2

.

3

2

.

3

=

£

£

-

i

x

i

1.8. Criteria for Assessment

· Constraints violation: Sometimes the feasible region are slightly small, and the constraints drawn in such a complex hyperspace. Even though, we have set a primary condition in order to determine whether the solution is able to satisfy all the constraints. In fact, it was difficult condition comparing to another study, when they accepted some constraints not be satisfied. This condition reveals a more consistent result. For example, some of them give a fixed value to evaluation the constraints satisfied, they gave three conditions:
1. Constraints values greater than one.

2. Constraints values greater than 0.01

3. Finally constraints values greater than 0.0001

Overall they give more chances for algorithms to do well, but on another hand they give a poor solution.

Some problems have a spherical shape of constraints, where applying one could reveal for applying the second one. Still, it’s proportional to how much that element is far away from the origin of the sphere. Problem six shows a clear example of this. Figure 4.3.1 to 4.3.3 is show graphs in 3D for the function and its constraints. Figure 4.3.1 shows the upper constraint, Figure 4.3.2 shows the function, and Figure 4.3.3 is shows the lower constraints. Because they are arranged in the same order graphical order, the other problem with constraints to deal with is hyperspace. Some problems has 20 or more dimensions, the question is how do we know what is the limit for a given constraints in order to evaluate it as a satisfied one. Another critical problem is that currently there is no software that can draw more than 3D; also, its shows the constraints combined to the function.

[image: image264.jpg]lower constraint g(x)=-(a-5)"2-(b-5)*2+100

2000

2000
-4000
6000
-8000
-10000
-12000
-14000
-16000]

-18000

10

Figure 4.3.1 Upper constraint

[image: image265.png]*x1-10)% + x2-20)°

Figure 4.3.2 The function

[image: image266.jpg]lower constraint g(x)=(a-6)"2+(b-5)"2-82.81

18000
16000
14000
12000
10000
8000
6000
4000
2000
o

2000}

10

Figure 4.3.3 Lower constraint
From these graphs we can imagine how complicated problem it will be, if we have a new variable or if we have more than 3D problems.

· Feasible rate:
[image: image267.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

runs

total

runs

feasible

rate

feasible

#

 (Liang, et al., 2006). It’s the classifier that we can rely on to make the preference between two distinct algorithms. In our study, we figure it out that not all problems were solved with high consistency feasible rate and it was varied between algorithms.

· Quality of result: its definition is varied according to the desired result need to be achieved by the pioneers. In our study we focus only in the minimum value achieved by the algorithm and the number of constraints.
1.9. No Free Lunch Theorem
In last few decades many optimization algorithms have been introduced those are black boxes, such evaluation computing, neural network etc. Those algorithms can exploit the search space with little knowledge concerning the optimization problem on which they are run.

Evolutionary algorithms are one of those black boxes that mimic the process of natural selection. It is important to analyze the relationship between the algorithm and the optimization problem and the optimization community used to adopt an oracle based analysis, where the assessment of the function is stated in terms of number of function evaluation to achieve the solution. On the other hand, this method has disadvantages. Such as, not all functions are non- revisiting algorithms, where some point is visited over and over, because functions do not memorize where they were in the previous point. These wasteful functions can be enhanced; simply by making they remember what and where they have already searched.

The amount of revisiting is complicated for algorithms and optimization problem that will reveals for complicated situation, where analysis or filtering will be difficult in mathematics. The definition of NFL (No free lunch) theorem is to restrict the attention to combinatorial optimization in which the search space
[image: image268.wmf]X

is large and finite and the space of the cost value
[image: image269.wmf]Y

. However, the objective function
[image: image270.wmf]Y

X

f

¬

:

is the space of all possible problems, and then [image: image271.wmf]f

will be dependent in time and with size
[image: image272.wmf]|

|

Y

X

.

Let and
[image: image273.wmf]B

 be any distinct algorithm. Then on average
[image: image274.wmf]A

 could perform
[image: image275.wmf]B

even if
[image: image276.wmf]B

 sometimes out performs
[image: image277.wmf]A

. NFL was developed to analyze algorithms not only by the number of iteration needed to have a solution.

If function is applied to given problem and the performance is investigated by machine learning instead of optimization. Optimization is algorithm dependent; however, NFL can evaluate performance of algorithm
[image: image278.wmf]A

 in a class of problem. For instance, suppose we built a simulation annealing function to minimize; or, maximize

[image: image279.wmf])

(

x

f

 QUOTE [image: image280.png]f(x)

 , according to oracle-based optimization performance measurement. Then we will evaluate this function according to execution time exactly; since, we are counting down every piece of code. The good of NFL is to construct such a classifier that maps input to the output, and then makes a generalization for given algorithm performance in class of problems. To summarize, NFL will predict whether algorithm will be more or less accurate compared to
[image: image282.wmf]B

, and maybe with a better performance, in the same class of problem. It will not promise to be so for all classes.

Wolpert and Macready (Wolpert and Macready, 1996) circumvented the problem by comparing the algorithms according to the number of distinct function evaluations they have perform, they calculated only the number of distinct calls to oracle base. However, oracle base has many criteria. For example, in minimization problem the criteria might be the lowest value of cost function in order to derive the better performance function. Finally, they introduced a sample which is time ordered set. Such that,
[image: image283.wmf]m

”sample” denoted by
[image: image284.wmf]}

{

)

(

),

(

,

),

1

(

),

1

(

m

d

m

d

d

d

d

y

m

x

m

y

m

x

m

m

L

=

, where those point are representing the time when the algorithm generate the pair of appoint and cost.

Optimization algorithm is represented as mapping from the previous visited set of points to a single new point. The connection between the algorithms and their cost function is the core of NFL theorem. It emphasized that if the algorithm performed well in one class of problem, then it will performs more poorly in the rest of problem classes elsewhere (Wolpert and Macready, 1996).
4.5. Summary
In fact, we have been constructing the base for our system and the parameters for it; we have done it to get more comfort with our result. We have been mentions the criteria for assessment we follow to get hopefully more reliable solution. Finally; we have been supporting our submission by No Free lunch theorem, we will see it recover us in comparison between the set of algorithm.

CHAPTER 5 EXPERIMENTAL RESULTS AND ANALYSIS

1.10. Overview

Twelve problems were tested in the same environment. Those problems were tested in three flavors: adaptive penalty, static penalty, and stochastic ranking. All of them started with a stochastic population, and continue the search according to a corresponding method.

Table 5.1.1 Number of variables and estimated ratio of feasible region
	Problem

	n
	optimum
	
[image: image285.wmf]|

|

/

|

|

S

F

=

r

	
[image: image286.wmf]1

G

	13
	-15.0000
	0.0111%

	
[image: image287.wmf]2

G

	20
	-0.8036
	99.9971%

	
[image: image288.wmf]3

G

	10
	-1.0005
	0.0000%

	
[image: image289.wmf]4

G

	5
	-30665.5386
	52.1230%

	
[image: image290.wmf]5

G

	4
	5126.4967
	0.0000%

	
[image: image291.wmf]6

G

	2
	-6961.8138
	0.0066%

	
[image: image292.wmf]7

G

	10
	24.3062
	0.0003%

	
[image: image293.wmf]8

G

	2
	-0.0958
	0.8560%

	
[image: image294.wmf]9

G

	7
	680.6300
	0.5121%

	
[image: image295.wmf]10

G

	8
	7049.2480
	0.0010%

	
[image: image296.wmf]11

G

	2
	0.7499
	0.0000%

	
[image: image297.wmf]12

G

	5
	0.0539
	0.0000%

The fitness function is the calculation of objective and penalty function for the two penalty method, but for stochastic ranking we don’t add or subtract any value from the solution fitness, the objective function and penalty function were only used for sorting only. As fare, the objective function is calculated according to bench mark and the penalty function is the value of constraints chronic with the problem constraint. Table 5.1.1 is shows the suit of function and them feasible region ratio. Where ρ is the estimated ratio between feasible region and search space,
[image: image298.wmf]F

is the feasible region,
[image: image299.wmf]S

is the search space and
[image: image300.wmf]n

is the number of dimensions (Liang, et al., 2006).

1.11. Results Discussion

Let us start with an anatomical discussion to three penalty methods. If we scan the method we will recognize that they are three different types from a theory point of view. Statistical penalty is classified to be static, but adaptive is a flavor of dynamics penalty. However, stochastic ranking similarly to penalty via evaluates ranking of individuals. Therefore, those three methods where sited in the same environment with the same parameters. We fixed the number of individuals in population to be 100 for all testing and number of iterations to be 5000. In total there were twelve problems. They were “published” in many studies, where they discussed optimization problems. Those problems can be classified into three classes according to our testing results solved, inapplicable, and needs different parameters to get the desired solution. Problem number
[image: image302.wmf]7

G

 suffered from shortness of parameters and values satisfy. Those problems were got solution, may or may not be infeasible. The set of all other cases somehow achieved a solution, but varied, or were close in value in three methods. Those methods contain equality and inequality constraints. Equality constraints were transformed to the format of inequality constraints, by subtracting tolerance factor
[image: image303.wmf]0001

.

0

=

e

 (Liang, et al., 2006). On the other hand, the value of them is changed to be
[image: image305.wmf]0

)

(

£

-

e

x

h

i

 ; instead, of their standard format. Those constraints were involved in penalty as absolute value; but inequality constraints where raised to power two, with maximum zero. For every case we made 30 runs; and have been tacking three check points to see the dynamics of algorithms runs. Sample tables will be shown in the next section. Those problems were solved by combining GA as the base of the system, and appending it with the three methods. For every FES we took the optimum solution, worst, standard deviation, mean, median and feasible rate. For some problems there is a big standard deviation but they have a solution; therefore, it may be caused by GA encoding strategy.

Table 5.2.1 shows adaptive penalty testing result. Problems
[image: image307.wmf]2

G

,
[image: image308.wmf]7

G

,
[image: image309.wmf]8

G

,
[image: image310.wmf]10

G

and
[image: image311.wmf]12

G

 were had an infeasible solution. On the other hand, problems
[image: image312.wmf]11

G

 achieved good results.

Compared to the static algorithm problem
[image: image313.wmf]1

G

 achieved the best -7.404016358, but static was achieved -9.275285357. Problem
[image: image314.wmf]4

G

 had all constraints satisfied, but it didn’t reach the best known optimum, it was -30281.26967, but it had a greater standard deviation compared to the static algorithm. With two active constraints (i.e. they could be equal to zero). Problem
[image: image315.wmf]11

G

 was excellent it was reached 0.7514802, and it was the same with static algorithm.; however, it had a good dynamics. The mean was 0.755743176 and the Standard Deviation (STD) was 0.003979412, and the feasible rate was equal to 100%. Problem number
[image: image316.wmf]1

G

,
[image: image317.wmf]3

G

,
[image: image318.wmf]4

G

,
[image: image319.wmf]5

G

,
[image: image320.wmf]6

G

 and
[image: image321.wmf]9

G

had a solution, but it is greater the optimum known to those problems.

In conclusion adaptive penalty had two unsolved problems, but achieved a high feasible rate for problems it was able to solve, but only problem
[image: image322.wmf]9

G

with low feasible

Table 5.2.1 Adaptive Penalty testing result

	
	
[image: image323.wmf]1

G

	
[image: image324.wmf]2

G

	
[image: image325.wmf]3

G

	
[image: image326.wmf]4

G

	best
	-7.404016358
	Infeasible
	-0.931253421
	-30281.26967

	median
	-6.297534029
	Infeasible
	-0.842859046
	-30005.56388

	mean
	-6.363586238
	Infeasible
	-0.841116058
	-30021.59748

	STD
	0.399727213
	Infeasible
	0.036221653
	144.5448427

	worst
	-5.633156321
	Infeasible
	-0.779364494
	-29661.57945

	feasible rate
	100.0000%
	Infeasible
	100.0000%
	100.0000%

	
[image: image327.wmf]x

r

	0.921259843,

0.11023622,

0.787401575,

0.921259843,

1,

1,

0.866141732,

0.921259843,

0.937007874,

2.67960691,

0,

0,

0
	
	0.322834646,

0.385826772,

0.149606299,

0.251968504,

0.527559055,

0.31496063,

0.31496063,

0.125984252,

0.267716535,

0.283464567
	79.5483871,

33.8,

31.06451613,

43.83870968,

35.70967742

	
	
[image: image328.wmf]5

G

	
[image: image329.wmf]6

G

	
[image: image330.wmf]7

G

	
[image: image331.wmf]8

G

	best
	5556.480063
	-6182.583956
	Infeasible
	Infeasible

	median
	6280.456975
	-4691.12557
	Infeasible
	Infeasible

	mean
	6233.58929
	-4452.394377
	Infeasible
	Infeasible

	STD
	341.3571198
	1634.529669
	Infeasible
	Infeasible

	worst
	6762.328196
	-1671.319568
	Infeasible
	Infeasible

	feasible rate
	100.0000%
	100.0000%
	Infeasible
	Infeasible

	
[image: image332.wmf]x

r

	880.7531796,

884.6899772,

0.004330709,

-0.480708661
	14.39663065,

1.562595373
	
	

	
	
[image: image333.wmf]9

G

	
[image: image334.wmf]10

G

	
[image: image335.wmf]11

G

	
[image: image336.wmf]12

G

	best
	1080.145469
	Infeasible
	0.7514802
	Infeasible

	median
	112767.8806
	Infeasible
	0.755755479
	Infeasible

	mean
	1043658.872
	Infeasible
	0.755743176
	Infeasible

	STD
	2293734.51
	Infeasible
	0.003979412
	Infeasible

	worst
	8526739.99
	Infeasible
	0.763475586
	Infeasible

	feasible rate
	76.6667%
	Infeasible
	100.0000%
	Infeasible

	
[image: image337.wmf]x

r

	1.587689301,

1.450903762,

0.24914509,

1.783097215,

0.356619443
,

-4.626282364,

0.190522716
	
	-0.717647059,

0.51372549
	

rate equal to 76.6667%, that could be for some factor that could influence the search process. In Table 5.2.2 we will calculate some of this problem was solved, which assess No Free Lunch Theorem.

Table 5.2.2 shows static penalty testing result. From the table we can see that problems
[image: image338.wmf]2

G

,
[image: image339.wmf]8

G

and
[image: image340.wmf]12

G

 achieved infeasible solution. Many studies were argued about problem
[image: image341.wmf]7

G

to be infeasible, but they did not show any evidence.
[image: image342.wmf]11

G

 result was had good solution like adaptive penalty.
Compared to table 5.2.1 problem
[image: image343.wmf]1

G

 achieved better value rather than adaptive penalty; however, it is still not the best known result. It was -9.275285357. Problem
[image: image344.wmf]4

G

 had value less than adaptive solution, the result was -30214.60354. Problem
[image: image345.wmf]11

G

 reached the same value with adaptive 0.7514802, but with more accurate mean 0.7514802 and median 0.7514802; the standard deviation was enhancement too, where it was 4.51681E-16. Problems
[image: image346.wmf]7

G

and
[image: image347.wmf]10

G

was solved with static penalty, but with a poor result and low feasible rate.
In conclusions problem
[image: image348.wmf]7

G

 are unsolved yet because of it’ feasible region is very small see table 5.2.1. Static penalty out performs adaptive penalty, and stochastic ranking; since, it has the maximum number of methods solved compared to table 5.2.1 and table 5.2.3, which describe adaptive penalty and stochastic ranking method respectively. Finally, it achieved better solutions with better dynamics compared to both algorithms.

Table 5.2.3 describes stochastic ranking algorithm result. From the table we can see that problems
[image: image349.wmf]2

G

,
[image: image350.wmf]7

G

,
[image: image351.wmf]8

G

,
[image: image352.wmf]10

G

and
[image: image353.wmf]12

G

 have an infeasible solution where all the constraints are not satisfied like all previous methods. Problem
[image: image354.wmf]11

G

 was have a good solution

Table 5.2.2 Static Penalty testing result

	
	
[image: image355.wmf]1

G

	
[image: image356.wmf]2

G

	
[image: image357.wmf]3

G

	
[image: image358.wmf]4

G

	best
	-9.275285357
	Infeasible
	-0.933743404
	-30214.60354

	median
	-6.593175853
	Infeasible
	-0.908843579
	-30214.32218

	mean
	-6.598004029
	Infeasible
	-0.910669567
	-30212.26356

	STD
	0.995000984
	Infeasible
	0.008940373
	11.32879254

	worst
	-4.11792712
	Infeasible
	-0.893903685
	-30152.28217

	feasible rate
	100.0000%
	Infeasible
	100.0000%
	100.0000%

	
[image: image359.wmf]x

r

	0.480314961,

0.535433071,

1,

0.976377953,

0.88976378,

0.732283465,

0.511811024,

0.866141732,

0.937007874,

1.94103644,

1.562595373,

1.57480315,

0.25984252
	
	0.118110236,

0.212598425,

0.330708661,

0.385826772,

0.212598425,

0.149606299,

0.456692913,

0.346456693,

0.42519685,

0.31496063
	29.90322581,

40.93548387,

36.87096774

	
	
[image: image360.wmf]5

G

	
[image: image361.wmf]6

G

	
[image: image362.wmf]7

G

	
[image: image363.wmf]8

G

	best
	5189.629255
	-6335.307512
	3299.438956
	Infeasible

	median
	5576.881075
	-5394.596871
	3299.438956
	Infeasible

	mean
	5560.748445
	-5690.293922
	3299.438956
	Infeasible

	STD
	207.4249675
	443.5371583
	0
	Infeasible

	worst
	5965.711937
	-5359.73563
	3299.438956
	Infeasible

	feasible rate
	100.0000%
	100.0000%
	3.3333%
	Infeasible

	
[image: image364.wmf]x

r

	725.9180139,

990.6264544,

0.090944882,

-0.411417323

	14.35945797,

1.416102057
	2.467024915,

1.890571568,

4.880312653,

8.983878847,

-0.835368832,

2.144601856,

7.997068881,

-9.198827553,

6.980947728,

5.017098192
	

	
	
[image: image365.wmf]9

G

	
[image: image366.wmf]10

G

	
[image: image367.wmf]11

G

	
[image: image368.wmf]12

G

	best
	733.3841424
	12673.14241
	0.7514802
	Infeasible

	median
	835.4437699
	20123.15371
	0.7514802
	Infeasible

	mean
	841.6365757
	19184.00428
	0.7514802
	Infeasible

	STD
	60.64115782
	4519.533281
	4.51681E-16
	Infeasible

	worst
	974.1190833
	28414.08512
	0.7514802
	Infeasible

	feasible rate
	100.0000%
	63.3333%
	100.0000%
	Infeasible

	
[image: image369.wmf]x

r

	0.620420127,

2.046897899,

-0.434782609,

4.352711285,

-1.157791891,

0.053737176,

0.786516854
	2070.24705,

1360.274658,

9242.6207,

202.8396823,

243.3321635,

159.6431705,

317.020775,
342.7770445
	-0.717647059,

0.51372549
	

Compared to the table 5.2.1 and 5.2.2 stochastic ranking solve
[image: image370.wmf]11

G

 with less dynamics, but with the same feasible rate. As far, stochastic ranking where behave poorly comparing to precedence methods, but it may be enhanced by using deferent parameters or representation. Problem
[image: image371.wmf]1

G

 has the worst value comparing with the previous two methods. Problems
[image: image372.wmf]4

G

,
[image: image373.wmf]5

G

 and
[image: image374.wmf]9

G

 followed the same pattern like
[image: image375.wmf]1

G

. Problem
[image: image376.wmf]5

G

 was having poor feasible rate value equal to 6.6667%.

In conclusion we have notice two basic problems with stochastic ranking method, first it poorness with respect to STD. Secondly, its success rate was low compared to the other methods. Therefore, it was give an enhancement over the two algorithms because of eliminating of the penalty factors and using only complementary criteria.

Table 5.2.3 Stochastic Ranking testing result

	
	
[image: image377.wmf]1

G

	
[image: image378.wmf]2

G

	
[image: image379.wmf]3

G

	
[image: image380.wmf]4

G

	best
	-2.191417933
	Infeasible
	-0.931253421
	-30178.98389

	median
	-1.069096014
	Infeasible
	-0.796794371
	-29639.23488

	mean
	-1.157421311
	Infeasible
	-0.800529345
	-29608.7686

	STD
	0.429445372
	Infeasible
	0.049871505
	318.0689861

	worst
	-0.503937008
	Infeasible
	-0.722094899
	-28714.93996

	feasible rate
	100.0000%
	Infeasible
	100.0000%
	86.6667%

	
[image: image381.wmf]x

r

	0,

0.125984252,

0.125984252,

0.015748031,

0.519685039,

0,

0.503937008,

0.346456693,

0.503937008,

0,

0.219739974,

0.097662211,

0
	
	0.330708661,

0.236220472,

0.464566929,

0.385826772,

0.283464567,

0.220472441,

0.165354331,

0.31496063,

0.440944882,

0.102362205

	81.09677419,

33,

31.64516129,

43.25806452,

32.80645161

	
	
[image: image382.wmf]5

G

	
[image: image383.wmf]6

G

	
[image: image384.wmf]7

G

	
[image: image385.wmf]8

G

	best
	6475.340174
	-6182.275629
	Infeasible
	Infeasible

	median
	6790.845141
	-6181.034864
	Infeasible
	Infeasible

	mean
	452.7230094
	-5053.570525
	Infeasible
	Infeasible

	STD
	446.1914042
	1892.998669
	Infeasible
	Infeasible

	worst
	7106.350109
	-1400.92641
	Infeasible
	Infeasible

	feasible rate
	6.6667%
	23.3333%
	Infeasible
	Infeasible

	
[image: image386.wmf]x

r

	972.9841078,

992.1187753
,

0.030314961,

-0.532677165
	14.40194104,

1.562595373
	
	

	
	
[image: image387.wmf]9

G

	
[image: image388.wmf]10

G

	
[image: image389.wmf]11

G

	
[image: image390.wmf]12

G

	best
	1774.973383
	Infeasible
	0.751910804
	Infeasible

	median
	109144.2174
	Infeasible
	0.783098808
	Infeasible

	mean
	1291656.182
	Infeasible
	0.792522876
	Infeasible

	STD
	2335055.026
	Infeasible
	0.033428282
	Infeasible

	worst
	7782401.812
	Infeasible
	0.885890042
	Infeasible

	feasible rate
	43.3333%
	Infeasible
	100.0000%
	Infeasible

	
[image: image391.wmf]x

r

	0.004885198,

0.043966781,

-1.871030777,

0.200293112,

0.083048363,

0.004885198,

5.026868588
	
	-0.733333333,

0.537254902
	

1.12. Result Comparison

Table 5.3.1 shows the set of algorithms and there best values, we can recognize from the table that, problems
[image: image392.wmf]2

G

,
[image: image393.wmf]7

G

,
[image: image394.wmf]8

G

,
[image: image395.wmf]10

G

and
[image: image396.wmf]12

G

 where not solved by adaptive penalty and stochastic ranking.
Table 5.3.1 Algorithms Best Result Comparison

	Function
	Optimum value
	Best values

	
	
	Adaptive Penalty Method
	Static Penalty Method
	Stochastic Ranking Algorithm

	
[image: image397.wmf]1

G

	-15.0000
	-7.404016358
	-9.275285357
	-2.191417933

	
[image: image398.wmf]2

G

	-0.8036
	Infeasible
	Infeasible
	Infeasible

	
[image: image399.wmf]3

G

	-1.0005
	-0.931253421
	-0.933743404
	-0.931253421

	
[image: image400.wmf]4

G

	-30665.5386
	-30281.26967
	-30214.60354
	-30178.98389

	
[image: image401.wmf]5

G

	5126.4967
	5556.480063
	5189.629255
	6475.340174

	
[image: image402.wmf]6

G

	-6961.8138
	-6182.583956
	-6335.307512
	-6182.275629

	
[image: image403.wmf]7

G

	24.3062
	Infeasible
	3299.438956
	Infeasible

	
[image: image404.wmf]8

G

	-0.0958
	Infeasible
	Infeasible
	Infeasible

	
[image: image405.wmf]9

G

	680.6300
	1080.145469
	733.3841424
	1774.973383

	
[image: image406.wmf]10

G

	7049.2480
	Infeasible
	12673.14241
	Infeasible

	
[image: image407.wmf]11

G

	0.7499
	0.7514802
	0.7514802
	0.751910804

	
[image: image408.wmf]12

G

	0.0539
	Infeasible
	Infeasible
	Infeasible

From table 5.3.1 shows that static penalty was having the maximum number of solved problem with high consistency. Adaptive penalty and stochastic ranking were has two unsolved problems. From the table we can see that no method is capable to solve any problem, and no problem can be solved by every algorithm. Finally; those method were compete and has them own best solution corresponding to the problem itself.

In conclusion, this comparison is enhancing the No Free Lunch theorem, when it says no algorithm is professional for all problems.

1.13. Convergence Map
We constructed three check points in 5000, 50000 and 500000 which is the maximum number of FES. Logically, all cases run will follow the same pattern of convergence for two reasons. Firstly, we are starting with a population stochastically,

Table 5.4.1 Error achieved when FES equal to 5000, 50000 and 50000

	
	
	adaptive
	static
	stochastic

	FES
	
	
[image: image409.wmf]11

G

	
[image: image410.wmf]11

G

	
[image: image411.wmf]11

G

	5 x 10³
	best
	0.7514802
	0.7514802
	0.751910804

	
	median
	0.755755479
	0.758431373
	0.783098808

	
	c
	0
	0
	0

	
	v
	1
	1
	1

	
	mean
	0.755743176
	0.758423171
	0.793156478

	
	STD
	0.003979412
	0.006491864
	0.033036578

	
	worst
	0.763475586
	0.781930027
	0.885890042

	5 x 10⁴
	best
	0.7514802
	0.7514802
	0.751910804

	
	median
	0.755755479
	0.751910804
	0.783098808

	
	c
	0
	0
	0

	
	v
	1
	1
	1

	
	mean
	0.755743176
	0.752134307
	0.792522876

	
	STD
	0.003979412
	0.001196255
	0.033428282

	
	worst
	0.763475586
	0.756278354
	0.885890042

	5 x 10⁵
	best
	0.7514802
	0.7514802
	0.751910804

	
	median
	0.755755479
	0.7514802
	0.783098808

	
	c
	0
	0
	0

	
	v
	1
	1
	1

	
	mean
	0.755743176
	0.7514802
	0.792522876

	
	STD
	0.003979412
	4.51681E-16
	0.033428282

	
	worst
	0.763475586
	0.7514802
	0.885890042

and starting to make corresponding method operations, and then we will get enhancement for the given solution; or at least it will retain the best known solution we have in hand. Secondly, according to No Free lunch Theorem, we will have some algorithms that have the ability to solve a given class of problem; however, the given algorithm will behave the same for this set.

Table 5.4.1 is describing the error rate with respect to individual FES records for problem
[image: image412.wmf]11

G

, where C is the number of violated constraints and V is the mean value of violation

We can recognize distinct differences in the result between. On the other hand, they were varied in standard deviation.

From our set of problems we have chosen problem
[image: image413.wmf]11

G

, where only 1 constraints need to be satisfied in order to recognize that the solution is feasible. Meanwhile, the set of three algorithms used behaved approximately the same, and all of them gave a feasible solution. Table 5.4.1 shows the error value achieved when FES is equal to 5000, 50000 and 500000 (Liang, et al., 2006). Those check points were designed to investigate the dynamics of the algorithms, and to navigate through the algorithms internally and try to find how they were converged.

From the table we can see that static penalty got the best value, with respect to the number of constraints, it reached 0.7514802 in the first check point, and retain the value until the maximum FES. It also had the best values for mean, median, and the worst record, and a enhanced standard deviation equal to4.51681E-16. In contrast, stochastic ranking got the maximum value of best; but worst standard deviation. Finally, adaptive penalty was in between by decreasing standard deviation. It was starts with 0.003979412 with respect to the first check point, and retains it to 500000 FES.

The standard deviation provides us with information about the convergence of algorithms, and the ability of the algorithm to solve the problem coherently. However,

[image: image414.png]24

22-

20-

G o
iteration

Iy

Figure 5.4.1 Adaptive Penalty Convergence Map

having an enhanced standard deviation makes sure that the algorithm was excellent and the dynamics are developed to retain in the feasible region. Figures 5.4.1, 5.4.2 and 5.4.3 is illustrates the convergence map, where the best is represented to clarify the development of the algorithm and the objective function reached with respect to iterations.

[image: image415.png]0o

o8-

20

25

a0

as
iteration

40

a5

50 85 oo

Figure 5.4.2 Static Penalty Convergence Map
Figure 5.4.1 is illustrating the convergence of adaptive penalty, from the figure we can see that it was converged to the best in the 18th generation. However, it was having not followed the virtual shape of logarithmic function in it convergence. It was had the same best comparing to static penalty. Figure 5.4.2 are describing the static penalty convergence graph, it was got the best in the 24th iterations with better logarithmic shape of function, meanwhile it was have the minimum value of best. Finally, Figure 5.4.3 is describing stochastic ranking convergence graph, it was the best corresponding to the shape of virtual function similarity, meanwhile it was converged in the 4th iterations.
In conclusions we can see that stochastic ranking was the best according to shape of the function and number of iteration, but it was the worst corresponding to the best value.
[image: image416.png])

o087

oea

085

084

083

082

o1

080

20

25
iteration

a0

a5

40

Figure 5.4.3 Stochastic Ranking Convergence Map
1.14. Summary

From the previous section we can generalize one important issue, that for any penalty method we use there is no complete method static, dynamic or stochastic ranking. There is no complete method each method has its own strength and weakness. If we scan the results we found totally static penalty was able to solve 9 problems, and adaptive and stochastic method solved 7 problems, but each with a different sequence. Ranking individuals were got a fantastic impact on the search process with enhancement for some problems such as problem
[image: image417.wmf]5

G

. It was interesting to find this equivalent effect with penalty. Another important issue to mention here is that this algorithm was fully applied by GA, and the individuals were encoded in binary string representation. The variation of result was absolutely not a shortage of GA itself, but it may be due to of two factors. Firstly, those problems were complicated enough to be trivially solved; since, the feasible region is small in huge search space. The shape of hyperspace was complicated with different variables range; for example, problem
[image: image418.wmf]5

G

 had variables ranged from 0 to 1200; meanwhile, with the same problem there were some variable that ranged from (- 0.5 to 0.5). Secondly, every algorithm has its own criteria which reveals for different results achieved. No Free Lunch Theorem supports these findings.
CHAPTER 6 CONCLUSION REMARKS

1.15. Conclusions

In the real world, objects have three dimensions, but in mathematics, there can be an infinite number of dimensions. For example, if we want to track the motion of the moon with respect to the motion of the earth, using the sun as a central point, then there are a total number of nine dimensions. In mathematics, it will be extremely difficult to find a local or global optimum for minimization or maximization.

In mathematics, concavity and derivatives is the main clues; meanwhile, it will be an extensive time consuming methodology. On the other hand, GA purpose is to be used for maximization problem only, either GA; or calculus can reveal a complete constraints problem resolver.

Penalty method is a third party problem solver, but as with any evolutionary strategy technique. The aim of this study was comparing three method of penalty by combined GA with penalty and to make optimization for a set of problems, where constraints are sensitive and dimensions are immense. GA as the core of the system obtained quite good results and solved the majority of problems.

Applying GA with binary representation for the first time with stochastic is a new technique which has never been done before. It provides new perspectives for GA with binary representation to be a constraints optimizer technique. Applying both static and dynamic penalties for the same set of problems could provide further understanding of given algorithms. A free back from the current population could be better than a fixed ratio of penalty, compared to a more consistent result, as though by the majority of pioneers. However, this was the case as we obtain more reliable result with static penalty rather than adaptive. By comparing adaptive penalty and static penalty algorithms with such a simple technique, where only ranking of individuals with Simi-Bubble sort like procedure gives an incredible result, without having to guesses the penalty factor to be applied and eliminating the more complicated nature of static and dynamic penalties.

1.16. Future Work

Future work will focus on two basic fields:

· Applying optimization to new sets of problems by using the same penalty methods discussed previously in this study, with the same technique.

· Applying new optimization methodology for the same set of problems with GA flavor, such as ant-colony and other techniques.

BIBLIOGRAPHY
Bean, J., & Hadj-Alouane, A. (1992). A dual genetic algorithm for bounded integer programs. Technical Report TR 92-53, Department of Industrial and Operations Engineering. The University of Michigan.

Blickle, T., & Thiele, L. (1997). A comparison of selection schemes used in genetic algorithms. Evolutionary Computation, 4(4), 361-394.

Coello, C. A. (2000). Theoretical and numerical constraint-handling technoques used with evaluationary algorithms. Computer Methods in Applied Mechanics and Engineering, 191(11-12), pp. 1245-1287.

Davis, L. (1987). Genetic Algorithms and Simulation Annealing. London: Pitman Publishing.

Floudas, C. A., & Pardalos, P. M. (1990). A Collection of Test Problems for Constrained Global Optimization Algorithms. New York: Springer-Verlag.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading.

Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithms. Hoboken, New Jersey: John Wiley & Sons.

Himmelblau, D. M. (1972). Applied nonlinear programming. New York: McGraw-Hill.

Hock, W., & Schittkowski, K. (1980). Test examples for nonlinear programming codes. Journal of Optimization Theory and Applications, 3(1), pp. 127-129.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Harbor: University of Michigan Press.

Homaifar, A., Lai, S., & Qi, X. (1994). Constrained optimization via genetic algorithms. Simulation 64 (4), 242-254.

Joines, J., & Houck, C. (1994). On the use of non-stationary penalty functions to solve non-linear constrained optimization problems with GAs. Proceedings of the First IEEE International Conference on Evolutionary Computation (pp. 579-584). Orlando FL: IEEE Press.

Koziel, S., & Michalcwicz, Z. (1999). Evaluationary algorithns, homorphase mapping, and constrained parameter optimization. Evolutionary Computation, 7(1), pp. 19-44.

Liang, J. J., Runarsson, T. P., Mezura-Montes, E., Clerc, M., Suganthan, P. N., Coello, C. A., et al. (2006). Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization,Technical Report . Nanyang Technological University, Singapore.

Michalcwicz, Z., Nazhiyath, G., & Michalcwicz, M. (1996). A note on usefulness of geometrical crossover for numerical optimization problems. In P. A. In L.J. Fogel (Ed.), Proceedings of the Fifth Annual Conference on Evolutionary Programming, In P. J. Angeline & T. Bäck (Eds.) (pp. 305-312). Cambridge: MA: MIT Press.

Michalewcz, Z. (1996). Genetic Algorithms + Data Structure = Evoluationary Programs (3 ed.). Berlin: Springer.

Michalewicz, Z., & Schoenauery, M. (1996). Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 4(1), 1-32.

Morales, A. K., & Quezada, C. V. (1998). A universal election genetic algorithms for constrained optimization. Proceeding s of the 6th European Congress on Intellegent Techniques and Soft Computing (pp. 518-522). Aechen, Germany: Verlag Mainz.

Reeves, C. R., & Rowe, J. E. (2002). Genetic Algorithms Prenciples and Perspective. Kluwer Acadimic Publishers.

Richardson, J. T., Palmer, M., G., L., & M., H. (1989). Some guidelines for genetic algorithms with penalty functions. In J.D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms (pp. 191-197). George Mason University, Morgan Kaufmann, Reading, MA.

Runarsson, T. P., & Yao, X. (2000). Stochastic ranking for constrainted evolutionary optimization. IEEE Transactions on Evolutionary Computation, 4(3), pp. 284-294.

Sivanandam, S., & Deepa, S. (2008). Introduction to Genetic Algorithms. Berlin: Springer-Verlag.

Wolpert, D. H., & Macready, W. G. (1996). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1, pp. 67-82.

ÖZGEÇMİŞ
Adı Soyadı: MAHMOUD ABURUB

Doğum Tarihi: 15 Ekim 1978

Öğrenim Durumu:
	Derece
	Bölüm/Program
	Üniversite
	Yıl

	Lisans
	Computer Informatıon Technology
	Arab American Üniversitesi
	2007

Ödüller :

Son iki yılda verdiği lisans ve lisansüstü düzeydeki dersler (Açılmışsa, yaz döneminde verilen dersler de tabloya ilave edilecektir):

	Akademik Yıl
	Dönem
	Dersin Adı
	Haftalık Saati
	Öğrenci Sayısı

	
	
	
	Teorik
	Uygulama
	

	2010-2011
	İlkbahar
	FUZZY LOGIC
	 YES
	YES
	5

	
	
	SOFT COMPUTING
	 YES
	YES
	5

	
	
	DATA AND COMPUTER COMUNICATION
	YES
	YES
	6

	
	Güz
	EXPERT SYSTEM
	 YES
	 YES
	6

	
	
	GENETIC ALGORITHNS
	YES
	YES
	6

	
	
	PATTERN RECOGNITION
	YES
	YES
	7

	2011-2012
	İlkbahar
	ADVANCE SOFTWARE ENGINEERING
	YES
	 YES
	7

	
	
	
	
	
	

	
	
	
	
	
	

APPENDIX

Penalty Methods In Genetic Algorithm For Solving Numerical Constrained Optimization Problems:CD
Algorithm: roulette wheel selection

Input: the population � EMBED Equation.3 ���

Output: population after selection � EMBED Equation.3 ���

X= random]0,1[

�while � do

If i<m & x < � EMBED Equation.3 ��� then

�

� EMBED Equation.3 ���

		fi

	od

Return � EMBED Equation.3 ���

Algorithm: Linear Ranking Selection

Input: the population P (τ) and the production rate of worst individual � EMBED Equation.3 ���

Output: the population after selection� EMBED Equation.3 ���

Linear ranking� EMBED Equation.3 ���

� EMBED Equation.3 ��� ← sorted population according to fitness with worst individual at

the first position

� EMBED Equation.3 ���

For � EMBED Equation.3 ��� to N do

	� EMBED Equation.3 ��� ,where � EMBED Equation.3 ��� value is calculated in equation(2)

od

For � EMBED Equation.3 ��� to N do

� EMBED Equation.3 ���

� EMBED Equation.3 ���, such that � EMBED Equation.3 ���

	Od

Return � EMBED Equation.3 ���

Algorithm: Tournament Selection

Input: the population � EMBED Equation.3 ��� the tournament size � EMBED Equation.3 ���

Output: population after Selection

Tournament� EMBED Equation.3 ���

�for � EMBED Equation.3 ��� to N do

 � EMBED Equation.3 ��� best individual out of τ randomly picked individuals from

od

Return � EMBED Equation.3 ���

Algorithm: Single Point Crossover

Input: two individuals randomly picked from mating pool

Output: new explored offspring’s

Position= random �

For � EMBED Equation.3 ���to position do

Child 1[i] = parent 1[i]

Child 2[i] = parent 2[i]

end

For � EMBED Equation.3 ��� to N do

Child 1[i] = parent 2[i]

Child 2[i] = parent 1[i]

end

Algorithm Adaptive Penalty

Input: population P before applying penalty, initial values of � EMBED Equation.3 ���,� EMBED Equation.3 ���and � EMBED Equation.3 ���

Output: population after applying adaptive penalty

	While population has more elements �do

		� EMBED Equation.3 ���=split Chromosome (next Element)

		attributes=retrieve attributes (n variables)

		�=function x (attributes)

		Calculate constraints values

	� EMBED Equation.3 ���(10)

		Apply the inverse equation

		�=inverse equation for �

		Convert �to binary format

		Add new chromosome into temp population � EMBED Equation.3 ���

	od

Return � EMBED Equation.3 ���

Algorithm: Static Penalty

Input: the population P, � EMBED Equation.3 ���and� EMBED Equation.3 ���

Output: penalized population � EMBED Equation.3 ���

Static Penalty � EMBED Equation.3 ���

While population has more elements do

			� EMBED Equation.3 ���=split current chromosome

			Attributes = retrieve attributes (List)

			�=function X (variable)

			Calculate constraints values

			 � EMBED Equation.3 ���(5)

			�=inverse equation

			Convert � to binary format

			Add new individual into � EMBED Equation.3 ���

od

Return � EMBED Equation.3 ���

Algorithm: Stochastic Ranking using bubble sort like procedure

Input: Population � EMBED Equation.3 ���

Output: Population � EMBED Equation.3 ���

Stochastic Ranking � EMBED Equation.3 ���

� EMBED Equation.3 ���

For � EMBED Equation.3 ��� to N do

For j=1 to �do

Sample u � U (0, 1)

If� EMBED Equation.3 ���or � EMBED Equation.3 ��� then

If � EMBED Equation.3 ���then

Swap (� EMBED Equation.3 ���)

fi

Else

If � EMBED Equation.3 ��� then

Swap � EMBED Equation.3 ���

fi

fi

od

od

PAGE
52

[image: image426.wmf]*

P

[image: image427.wmf][

1

,

0

[

Î

-

h

[image: image428.wmf](

)

'

t

P

[image: image429.wmf])

,

,

,

(

1

n

J

J

L

L

-

h

[image: image430.wmf]-

J

[image: image431.wmf]0

0

¬

S

[image: image432.wmf]1

¬

i

[image: image433.wmf]i

i

i

P

S

S

+

¬

-

1

[image: image434.wmf]i

P

[image: image435.wmf]1

¬

i

[image: image436.wmf]]

,

0

[

n

S

random

r

¬

[image: image437.wmf]-

¬

J

J

i

'

[image: image438.wmf]s

s

i

i

r

£

£

-

1

[image: image439.wmf]{

}

'

'

1

,

,

N

J

J

L

L

[image: image440.wmf])

(

t

P

[image: image441.wmf]{

}

N

t

,

,

2

,

1

L

L

Î

[image: image442.wmf])

,

,

,

(

1

N

J

J

t

L

L

[image: image443.wmf][image: image444.wmf]1

¬

i

[image: image445.wmf]¬

'

j

J

[image: image446.wmf]{

}

'

'

1

,

,

N

J

J

L

L

[image: image447.wmf]{

}

N

,

,

1

L

[image: image448.wmf]1

¬

i

[image: image449.wmf]1

+

¬

position

i

[image: image450.wmf])

(

t

l

[image: image451.wmf]1

b

[image: image452.wmf]2

b

[image: image453.wmf][image: image454.wmf]i

x

[image: image455.wmf])

(

x

f

[image: image456.wmf]ú

û

ù

ê

ë

é

+

+

=

å

å

=

=

p

j

j

n

i

i

x

h

x

g

t

x

f

x

fitness

1

1

2

)

(

)

(

)

(

)

(

)

(

l

[image: image457.wmf])

(

x

p

[image: image458.wmf])

(

x

f

[image: image459.wmf])

(

x

f

[image: image460.wmf]'

P

[image: image461.wmf]'

P

[image: image462.wmf]i

r

[image: image463.wmf]j

c

[image: image464.wmf]'

P

[image: image465.wmf])

,

,

(

j

i

c

r

P

[image: image466.wmf]i

x

[image: image467.wmf])

(

x

f

[image: image468.wmf]ï

î

ï

í

ì

ç

ç

è

æ

÷

ø

ö

-

=

å

=

s

i

otherwise

m

K

K

feasible

is

solution

the

if

x

f

x

fitness

1

)

(

)

(

[image: image469.wmf])

(

x

p

[image: image470.wmf])

(

x

p

[image: image471.wmf]'

P

[image: image472.wmf]'

P

[image: image473.wmf]f

P

P

,

[image: image474.wmf]'

P

[image: image475.wmf])

,

(

f

P

P

[image: image476.wmf]{

}

N

j

I

j

,

,

1

L

L

Î

"

[image: image477.wmf]1

¬

i

[image: image478.wmf]1

-

l

[image: image479.wmf]Î

[image: image480.wmf]0

))

(

)

(

(

1

=

F

=

F

+

j

j

I

I

[image: image481.wmf]f

P

u

<

[image: image482.wmf])

(

)

(

(

1

+

>

j

j

I

f

I

f

[image: image483.wmf]1

,

+

j

j

I

I

[image: image484.wmf])

(

)

(

(

1

+

F

>

F

j

j

I

I

[image: image485.wmf])

,

(

1

+

j

j

I

I

_1397213071.unknown

_1397540313.unknown

_1398436213.unknown

_1398496366.unknown

_1398593300.unknown

_1398593355.unknown

_1398598878.unknown

_1398610073.unknown

_1398610097.unknown

_1398610174.unknown

_1398599187.unknown

_1398598534.unknown

_1398598810.unknown

_1398593384.unknown

_1398593338.unknown

_1398593348.unknown

_1398593330.unknown

_1398501349.unknown

_1398592981.unknown

_1398593030.unknown

_1398538586.unknown

_1398496415.unknown

_1398496606.unknown

_1398499280.unknown

_1398499287.unknown

_1398496615.unknown

_1398496593.unknown

_1398496400.unknown

_1398496406.unknown

_1398496390.unknown

_1398496370.unknown

_1398496158.unknown

_1398496306.unknown

_1398496324.unknown

_1398496331.unknown

_1398496309.unknown

_1398496287.unknown

_1398496299.unknown

_1398496168.unknown

_1398496183.unknown

_1398496161.unknown

_1398437800.unknown

_1398438043.unknown

_1398439647.unknown

_1398496095.unknown

_1398439600.unknown

_1398437846.unknown

_1398436891.unknown

_1398437782.unknown

_1398436876.unknown

_1398433459.unknown

_1398433565.unknown

_1398435774.unknown

_1398436196.unknown

_1398433569.unknown

_1398433504.unknown

_1398433551.unknown

_1398433562.unknown

_1398433485.unknown

_1398422441.unknown

_1398432972.unknown

_1398433325.unknown

_1398433361.unknown

_1398433435.unknown

_1398433337.unknown

_1398432994.unknown

_1398433295.unknown

_1398432861.unknown

_1398432957.unknown

_1398432942.unknown

_1398422678.unknown

_1398432757.unknown

_1398422657.unknown

_1398422663.unknown

_1398415377.unknown

_1398419877.unknown

_1398422402.unknown

_1398419072.unknown

_1398413693.unknown

_1398414018.unknown

_1398195036.unknown

_1398195115.unknown

_1397738312.unknown

_1397737719.unknown

_1397234875.unknown

_1397239201.unknown

_1397417548.unknown

_1397495057.unknown

_1397499469.unknown

_1397504449.unknown

_1397505455.unknown

_1397505491.unknown

_1397506067.unknown

_1397504984.unknown

_1397499650.unknown

_1397499126.unknown

_1397499158.unknown

_1397495162.unknown

_1397417550.unknown

_1397417551.unknown

_1397417549.unknown

_1397417416.unknown

_1397417545.unknown

_1397417546.unknown

_1397417543.unknown

_1397417544.unknown

_1397417429.unknown

_1397417350.unknown

_1397417400.unknown

_1397239240.unknown

_1397236019.unknown

_1397236915.unknown

_1397237796.unknown

_1397239196.unknown

_1397236929.unknown

_1397236187.unknown

_1397236904.unknown

_1397236888.unknown

_1397236046.unknown

_1397235724.unknown

_1397235858.unknown

_1397235898.unknown

_1397235787.unknown

_1397235054.unknown

_1397235188.unknown

_1397235025.unknown

_1397213072.unknown

_1397213073.unknown

_1397139345.unknown

_1397153437.unknown

_1397155166.unknown

_1397212860.unknown

_1397212942.unknown

_1397212970.unknown

_1397212983.unknown

_1397213070.unknown

_1397212957.unknown

_1397212912.unknown

_1397212923.unknown

_1397212896.unknown

_1397155201.unknown

_1397200977.vsd
Define cost function, cost, variables
Select GA parameters

Generate initial population

Decode chromosomes

Find cost for each chromosome

Select mates

Mating (crossover)

Mutation

Termination condition fulfilled

Done

_1397155209.unknown

_1397155184.unknown

_1397155193.unknown

_1397155175.unknown

_1397155120.unknown

_1397155139.unknown

_1397155159.unknown

_1397155129.unknown

_1397155050.unknown

_1397155108.unknown

_1397154841.unknown

_1397141680.unknown

_1397142584.unknown

_1397152930.unknown

_1397153066.unknown

_1397153183.unknown

_1397153258.unknown

_1397153388.unknown

_1397153109.unknown

_1397152953.unknown

_1397142718.unknown

_1397151875.unknown

_1397142617.unknown

_1397141849.unknown

_1397141917.unknown

_1397141938.unknown

_1397141892.unknown

_1397141760.unknown

_1397141841.unknown

_1397141739.unknown

_1397139660.unknown

_1397141290.unknown

_1397141350.unknown

_1397141627.unknown

_1397141636.unknown

_1397141386.unknown

_1397141323.unknown

_1397139807.unknown

_1397139808.unknown

_1397139787.unknown

_1397139700.unknown

_1397139522.unknown

_1397139601.unknown

_1397139629.unknown

_1397139579.unknown

_1397139594.unknown

_1397139457.unknown

_1397139498.unknown

_1397139377.unknown

_1397074616.unknown

_1397138025.unknown

_1397139029.unknown

_1397139226.unknown

_1397139287.unknown

_1397139307.unknown

_1397139254.unknown

_1397139107.unknown

_1397139170.unknown

_1397139060.unknown

_1397138835.unknown

_1397138997.unknown

_1397139012.unknown

_1397138983.unknown

_1397138589.unknown

_1397138811.unknown

_1397138272.unknown

_1397138289.unknown

_1397138205.unknown

_1397138226.unknown

_1397136656.unknown

_1397137221.unknown

_1397137626.unknown

_1397137812.unknown

_1397137919.unknown

_1397137958.unknown

_1397137752.unknown

_1397137377.unknown

_1397136928.unknown

_1397137139.unknown

_1397137033.unknown

_1397137093.unknown

_1397136823.unknown

_1397136064.unknown

_1397136168.unknown

_1397136194.unknown

_1397136584.unknown

_1397136108.unknown

_1397136123.unknown

_1397136087.unknown

_1397075390.unknown

_1397135896.unknown

_1397135978.unknown

_1397135825.unknown

_1397075351.unknown

_1397075210.unknown

_1393146869.unknown

_1396378943.unknown

_1396554754.unknown

_1396554797.unknown

_1397074583.unknown

_1396556230.unknown

_1396554783.unknown

_1396538674.unknown

_1396538725.unknown

_1396554679.unknown

_1396538600.unknown

_1396454834.unknown

_1393147654.unknown

_1393738684.unknown

_1396330912.unknown

_1396331228.unknown

_1396022873.unknown

_1393147656.unknown

_1393147722.unknown

_1393147727.unknown

_1393147717.unknown

_1393147655.unknown

_1393147246.unknown

_1393147274.unknown

_1393147203.unknown

_1393146877.unknown

_1393146363.unknown

_1393146835.unknown

_1393146858.unknown

_1393146865.unknown

_1393146849.unknown

_1393146579.unknown

_1393146829.unknown

_1393146387.unknown

_1393144579.unknown

_1393144633.unknown

_1393145999.unknown

_1393144610.unknown

_1393144517.unknown

_1393144552.unknown

_1393144202.unknown

_1393144492.unknown

_1393144199.unknown

