DECLARATION

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name:

Youssef Kassem

Signature:

Date:

ABSTRACT

Airfoils have become a combined aspect of human flight as it has evolved over the last century. As the design of each airfoil determines many aspects of its use in the real world, all significant characteristics must be analyzed prior to implementation. The aerodynamic effects of pressure, drag, lift, and pitching moment were used to evaluate the behavior of the airfoil. In this work, pressure distribution and velocity distribution were recorded over the upper and lower surfaces of the airfoil and compared to theoretical values created by Aerofoil, a computer simulation package.

The airfoil shape is expressed analytically as a function of some design parameters. The NACA 4 digits are used with design parameters that control the camber and the thickness of the airfoil.

The work had been performed using symmetrical and nonsymmetrical airfoils. A NACA 0012 symmetrical airfoil with a 12% thickness to a chord ratio was analyzed to determine the lift, drag forces. A NACA 2412, NACA 4415 and NACA 9608 are nonsymmetrical airfoils. NACA 2412 airfoil have a maximum thickness of 12% with a camber of 2% located 40% back from the airfoil leading edge. NACA 4415 airfoil has a maximum thickness of 15% with a camber of 4% located 40% back from the airfoil leading edge. NACA 9608 airfoil has a maximum thickness of 8% with a camber of 9% located 60% back from the airfoil leading edge. All calculations were taken at a velocity 4 m/s.

The purpose of this work was to determine the velocity distribution, pressure coefficient, lift and drag characteristics of airfoils.

Keyword: Airfoils, pressure distribution, velocity distribution, lift, drag

ACKNOWLEDGEMENTS

Firstly, I would like to present my special appreciation to my supervisor Assist. Prof. Dr. Ing. Hüseyin Çamur, without whom it was not possible for me to complete the project. His trust in my work and me and his priceless awareness of the project has made me do my work with full interest. His friendly behavior toward me and his words of encouragement kept me going in my project.

Secondly, I offer special thanks to my parents, who encouraged me in every field of life and try to help whenever I needed. They enhanced my confidence in myself to make me able to face every difficulty easily. I am also grateful to my mother whose prayers and my father whose words for me had made this day comes true. In addition, because of them I am able to complete my work.

Last but not the least, Assist. Prof. Dr. Ali Evcil and Assist. Prof. Dr. Cemal Gövsa and Assist. Prof. Dr. Lida E. Vafaei and Mr. Engin Esenel they help me during my studies in the last six years providing me with the knowledge that helped me to complete my project and knowledge that it will stay with me throughout my engineering life. Dedicated to my family who have been with me through it all . . .

CONTENTS

DECLARATION	i
ABSTRACT	
ACKNOWLEDGMENTS	iii
DEDICTION	iv
CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF SYMBOLS USED	Х
CHAPTER 1	1
INTRODUCTION	1
CHAPTER 2	3
AIRFOIL THEORY	3
2.1 Airfoil Geometry Parameters	3
2.1.1 Airfoil-Section Nomenclature	3
2.1.2 Leading-Edge (LE) and Chord Line	4
2.1.3 Mean Camber Line	5
2.1.4 Maximum Thickness and Thickness Distribution	5
2.1.5 Trailing-Edge Angle (TE)	6
2.2 NACA Airfoil	
2.2.1 Four-digit Series	6
2.2.2 Five-digit Series	8
2.3 Vortex Filament	10
2.4 Helmholt's Vortex Theorems	10
2.5 Vortex Sheet or vortex surface	11
2.5.1 Kutta Condition	13
2.5.2 Inclined Flat Plate	14
2.6 Flat Plate at an Angle of Attack	19

2.7 Aerodynamic Force	22
2.7.1 Lift and Drag Force on Airfoil	23
2.7.2 Drag Coefficient	24
2.7.3 Lift Coefficient	27
2.7.4 Kutta-Joukowsky Lift Theorem	29
2.7.5 Magnitude and Formation of Circulation	32
2.8 Pitching moment	34
2.8.1 Aerodynamic centre	36
2.8.2 Centre of pressure	37
2.8 Very Thin Profiles (Skeleton Theory)	39
2.9 Computation of the mean camber line from the distribution of circulation	42
2.10 Computation of the aerodynamic coefficients	46
2.11 Velocity distribution and pressure distribution	49
2.11.1 Computation the velocity distribution on the skeleton line	49
2.11.2 Pressure distribution for given lift coefficient and moment coefficient	50
CHAPTER 3	52
NUMERICAL ANALYSIS OF PROFIL THEORY	52
3.1 Estimation of lift and drag coefficients from pressure coefficient	52
3.2 Numerical evaluation of the profile theory	55
CHAPTER 4	59
RESULTS AND DISCUSSIONS	59
4.1 General Design Layout	59
4.2 Forces analysis during the rotation of the blades	61
4.3 Flowchart for the calculation of the Forces and Torques of Wind Car	66
CHAPTER 5	81
CONCLUSIONS AND FUTER WORKS	81
REFERENCES	82
APPENDICES	85

LIST OF TABLES

2.1	Drag coefficient data for selected objects	27
2.2	Compilation of formulas for the aerodynamic coefficients of cambered profiles of	48
	finite thickness.	
2.3	Coefficient A, B, C, D, E, F for the computation of the aerodynamic coefficient of	49
	table 2-1 for N=12	
3.1	Coefficients a_n, b_n, c_n to calculate the velocity distribution on the contour profile	56
	according to Eq. 3.15 for $N = 12$	
3.2	Coefficients A_{nm} , C_{nm} , H_{nm} to calculate the velocity distribution on the profile	57
	contour of Eq. 3.15 for $N = 12$	
4.1	Velocity distribution data for both surfaces of the NACA 0012 airfoil at 2° angle of attack	69
4.2	Pressure coefficient data for both surfaces of the NACA 0012 airfoil at 2° angle of attack	70
4.3	Lift coefficient (CL) of NACA 0012 airfoil at varying angle of attack	71
4.4	Lift coefficient for three types of airfoils	73
4.5	Velocity distribution data for both surfaces of the NACA 4415 airfoil at 2° angle of attack	74
4.6	Pressure coefficient data for both surfaces of the NACA 4415 airfoil at 2° angle of attack	75
4.7	Velocity distribution data for both surfaces of the NACA 2412 airfoil at 2° angle of attack	76
4.8	Pressure coefficient data for both surfaces of the NACA 2412 airfoil at 2° angle of attack	77
4.9	Velocity distribution data for both surfaces of the NACA 9608 airfoil at 2° angle of attack	78
4.10	Pressure coefficient data for both surfaces of the NACA 9608 airfoil at 2° angle of attack	79
4.11	Lift coefficient (C _L) of NACA airfoils at 2° angle of attack	80

LIST OF FIGURES

2.1	Airfoil-section geometry and it is nomenclature	4
2.2	Geometric terminology of lifting wing profiles	9
2.3	Flow around an airfoil for various values of circulation	15
2.4	Flow about an inclined flat plate	16
2.5	Velocity induced by a 2-D vortex	19
2.6	Forces in vortex sheet	20
2.7	Forces on airfoil	23
2.8	Drag breakdowns on nonlifting and lifting bodies	26
2.8	Flow around an airfoil profile with lift L, Γ = circulation of the airfoil	30
2.9	Notations for the computation of lift from the pressure distribution on the airfoil	30
2.10	Development of circulation during setting in motion of a wing	34
2.11	pitching moment on a wing	35
2.12	Forces on the aerofoil	38
2.13	The skeleton theory	39
2.15	The first and the second normal distributions; circulation distribution by	45
2.15	The function h_0 and h_1 for pressure distribution on the chord at given lift and	51
	moment coefficient	
3.1	Normal pressure force on an element of aerofoil surface	53
4.1	Three dimension of wind car	60
4.2	Rotaion of the blade	60
4.3	Steering	61
4.4	Bevel gear	61
4.5	Schematic diagram of three-blade rotor	62
4.6	Forces anlaysis for the blades during the rotation	62
4.7	Relation between the angle of rotation (γ) and the forces of the profiles	65
4.8	The coordinate of upper and lower surfaces for different types of airfoils	68
4.9	Velocity distribution plot for both surfaces of the NACA 0012 airfoil at 2° angle of	69

attack

4.10	Pressure coefficient plot for both surfaces of the NACA 0012 airfoil at 2° angle of	70
	attack	
4.11	Skin friction drag force for one blade plot of the NACA 0012 airfoil	71
4.12	Pressure drag force for one blade plot of the NACA 0012 airfoil	71
4.13	Drag force for one blade plot of the NACA 0012 airfoil	72
4.14	lift force for one blade plot of the NACA 0012 airfoil	72
4.15	total skin friction forces for one blade plot of the NACA 0012 airfoil	72
4.16	Torque plot of the NACA 0012 airfoil	73
4.17	Velocity distribution plot for both surfaces of the NACA 4415 airfoil at 2° angle of	74
	attack	
4.18	Pressure distribution plot for both surfaces of the NACA 4415 airfoil at 2°angle of	75
	attack	
4.19	Velocity distribution plot for both surfaces of the NACA 2412 airfoil at 2°angle of	76
	attack	
4.20	Pressure distribution plot for both surfaces of the NACA 2412 airfoil at 2°angle of	77
	attack	
4.21	Velocity distribution plot for both surfaces of the NACA 9608 airfoil at 2° angle of	78
	attack	
4.22	Pressure distribution plot for both surfaces of the NACA 9608 airfoil at 2°angle of	79
	attack	
4.23	Torque plot of the NACA 2412 airfoil	80

LIST OF SYMBOLS USED

FLOW QUANTITY

P_{∞} pressure in the free stream P_L Pressure lower airfoil surface P_u Pressure upper airfoil surface P_u Pressure upper airfoil surface U_{∞} Free stream velocity u_{∞} Free stream velocity in x-direction u velocity distribution on the plate $u(x,z)$ the velocity components in the rectangular coordinate in x-axi v_{∞} Free stream velocity in y-direction w_{∞} Free stream velocity in z-direction W_{∞} relative velocity of the airflow $w(x,z)$ the velocity components in the rectangular coordinate in z-axi ΔW velocities on the upper and lower surfaces of the airfoil q_{∞} dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distributionGEOMETIC QUANTITY	ρ	density of air
P_L Pressure lower airfoil surface P_u Pressure upper airfoil surface U_{∞} Free stream velocity u_{∞} Free stream velocity in x-direction u velocity distribution on the plate $u(x,z)$ the velocity components in the rectangular coordinate in x-axi v_{∞} Free stream velocity in y-direction w_{∞} Free stream velocity in z-direction w_{∞} relative velocity of the airflow $w(x,z)$ the velocity components in the rectangular coordinate in z-axi ΔW velocities on the upper and lower surfaces of the airfoil q_{∞} dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distributionGEOMETITY	P_{∞}	pressure in the free stream
P_u Pressure upper airfoil surface U_∞ Free stream velocity u_∞ Free stream velocity in x-direction u velocity distribution on the plate $u(x,z)$ the velocity components in the rectangular coordinate in x-axi v_∞ Free stream velocity in y-direction w_∞ Free stream velocity in z-direction W_∞ relative velocity of the airflow $w(x,z)$ the velocity components in the rectangular coordinate in z-axi ΔW velocities on the upper and lower surfaces of the airfoil q_∞ dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distribution	P_L	Pressure lower airfoil surface
U_{∞} Free stream velocity u_{∞} Free stream velocity in x-direction u velocity distribution on the plate $u(x,z)$ the velocity components in the rectangular coordinate in x-axi v_{∞} Free stream velocity in y-direction w_{∞} Free stream velocity in z-direction W_{∞} relative velocity of the airflow $w(x,z)$ the velocity components in the rectangular coordinate in z-axi ΔW velocities on the upper and lower surfaces of the airfoil q_{∞} dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distributionGEOMETIC QUANTITY	P_u	Pressure upper airfoil surface
u_{∞} Free stream velocity in x-direction u velocity distribution on the plate $u(x,z)$ the velocity components in the rectangular coordinate in x-axi v_{∞} Free stream velocity in y-direction w_{∞} Free stream velocity in z-direction W_{∞} relative velocity of the airflow $w(x,z)$ the velocity components in the rectangular coordinate in z-axi ΔW velocities on the upper and lower surfaces of the airfoil q_{∞} dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distributionGEOMETRIC QUANTITY	U_{∞}	Free stream velocity
u velocity distribution on the plate $u(x,z)$ the velocity components in the rectangular coordinate in x-axi v_{∞} Free stream velocity in y-direction w_{∞} Free stream velocity in z-direction W_{∞} relative velocity of the airflow $w(x,z)$ the velocity components in the rectangular coordinate in z-axi ΔW velocities on the upper and lower surfaces of the airfoil q_{∞} dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distributionGEOMETRIC QUANTITY	u_{∞}	Free stream velocity in x-direction
$u(x,z)$ the velocity components in the rectangular coordinate in x-axis v_{∞} Free stream velocity in y-direction w_{∞} Free stream velocity in z-direction W_{∞} relative velocity of the airflow $w(x,z)$ the velocity components in the rectangular coordinate in z-axis ΔW velocities on the upper and lower surfaces of the airfoil q_{∞} dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distributionGEOMETITY	и	velocity distribution on the plate
v_{∞} Free stream velocity in y-direction w_{∞} Free stream velocity in z-direction W_{∞} relative velocity of the airflow $w(x,z)$ the velocity components in the rectangular coordinate in z-axi ΔW velocities on the upper and lower surfaces of the airfoil q_{∞} dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distributionGEOMETTEY	u(x,z)	the velocity components in the rectangular coordinate in $x\hbox{-}axis$
w_{∞} Free stream velocity in z-direction W_{∞} relative velocity of the airflow $w(x,z)$ the velocity components in the rectangular coordinate in z-axi ΔW velocities on the upper and lower surfaces of the airfoil q_{∞} dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distributionGEOMETRUS	\mathcal{v}_{∞}	Free stream velocity in y-direction
W_{∞} relative velocity of the airflow $w(x,z)$ the velocity components in the rectangular coordinate in z-axi ΔW velocities on the upper and lower surfaces of the airfoil q_{∞} dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distributionGEOMETRUS	W_{∞}	Free stream velocity in z-direction
$w(x,z)$ the velocity components in the rectangular coordinate in z-axi ΔW velocities on the upper and lower surfaces of the airfoil q_{∞} dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distributionGEOMETRIC QUANTITY	W_{∞}	relative velocity of the airflow
ΔW velocities on the upper and lower surfaces of the airfoil q_{∞} dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distributionGEOMETRIC QUANTITY	w(x,z)	the velocity components in the rectangular coordinate in $z\text{-}ax\text{i}s$
q_{∞} dynamic pressure of undisturbed flow Γ circulation k vortex density (vortex strength per unit length) or the circulation distributionGEOMETRUE QUANTITY	ΔW	velocities on the upper and lower surfaces of the airfoil
 Γ circulation k vortex density (vortex strength per unit length) or the circulation distribution GEOMETRIC QUANTITY	q_∞	dynamic pressure of undisturbed flow
k vortex density (vortex strength per unit length) or the circulation distribution GEOMETRIC QUANTITY	Γ	circulation
distribution GEOMETRIC QUANTITY	k	vortex density (vortex strength per unit length) or the circulation
GEOMETRIC QUANTITY		distribution
GEOMETRIC QUANTITY		

- - area of the airfoil Α
 - plan form area A_{p}
 - Radius of circular cylinder а
 - wingspan or is the distance from one wingtip to the other wingtip of the b airplane
 - chord length С
 - Profile chamber h
 - relative camber (camber ratio) h/c

r _N	Nose radius
r _N /c	relative nose radius
t	maximum thickness
t/c	relative thickness (thickness ratio)
х	position along the chord from 0 to c
\mathbf{x}_{L}	x coordinate of the lower airfoil surface
$\mathbf{x}_{\mathbf{h}}$	Maximum camber position
x _h /c	relative camber position
x _u	x coordinate of the upper airfoil surface
\mathbf{x}_{t}	Maximum thickness position
x _t /c	relative thickness position
Z	Rectangular coordinate: z =vertical axis
Z_{L}	z coordinate of the lower airfoil surface
Zu	z coordinate of the upper airfoil surface
Zs	Mean camber line coordinate
Zt	Teardrop profile coordinate

AERODYNAMIC QUANTITY

ζ	Joukowsky transformation function
α	angle of attack
2τ	trailing edge angle
F(z)	complex stream function of the flow
$\overline{w}(z)$	Stream function
A_0	Fourier series coefficient
A_1	Fourier series coefficient
A_n	Fourier series coefficient
ar	aspect ratio
С	is constant obtained by the integration of mean camber line
D	drag force
h _o	Fourier series coefficient
h ₁	Fourier series coefficient

k ₁	is first standard distribution of the circulation
k ₁₁	is the first normal distribution of the circulation
L	lifting force
Ma	pitching moment about a point distance a from the leading edge
M_{AC}	pitching moment of the aerodynamic centre
M_{LE}	pitching moment about the leading edge
$M_{\mathbf{x}}$	pitching moment about a different point, distance x behind the leading edge
Х	the location of the vortex element producing the velocity
X ₀	the location where induced velocity is produced
X _{AC}	position of the aerodynamic centre be a distance \mathbf{x} behind the leading edge
х '	Location of vortex strength at any point on chord
C_D	drag Coefficient
C _{D,0}	drag coefficient at zero lift
$C_{D,i}$	induced drag
C_L	lift Coefficient
C _{Ma}	pitching moment coefficient about a point distance a from the leading edge
C_{MAC}	pitching moment coefficient of the aerodynamic centre
C_{MLE}	pitching moment coefficient about the leading edge
C _{MX}	pitching moment coefficient about a different point, distance x behind the
	leading edge
C_p	pressure coefficient
C_{pl}	pressure coefficients on the lower surface
C_{pu}	pressure coefficients on the upper surface
C_X	force coefficients in the X directions
C_{z}	force coefficients in the Z directions
K _{CP}	Fraction of the centre of pressure