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ABSTRACT

This thesis is meant to examine the study of Bessel functions, their properties and applications,
as they relate to solutions of Schrédinger time independent equation, in accordance with their
polar coordinates. Bessel functions in general have vast applications in practical life situations
and posses interesting properties, which make them, served as basic tools for studying applied
science like mathematical physics and engineering. Due to interest and time constraint, we
shall dissect the Laplace equation in each coordinates of cylindrical and spherical system, in
order to uncover some special types of differential equation, whose solution are obtain to be
those of Bessel functions in each of the coordinates, via the Frobenius method of series
solutions. We shall show that these solutions relates with those of Schrodinger time
independent equation of a zero and infinite potentials in cylindrical and spherical well.

The properties and behaviours of these solutions are further examine together with their
boundary conditions to reveal the usefulness of zeros of Bessel functions, in order to
normalized the solutions of these special type of differential equation and to show that the

energy of the systems can easily be computed separately.

Furthermore the numerical solution of estimated errors, of the first and second order accuracy

difference schemes was calculated.

Keywords: Cylindrical well; Spherical well; Schrédinger equation; Bessel functions; Laplace

equation.



OZET

Bu tez, kutupsal koordinatlarina gére Schrodinger zaman bagimsiz denkleminin ¢oziimleriyle
ilgili olduklar1 Bessel fonksiyonlarmin incelenmesi, dzellikleri ve uygulamalar1 incelenecektir.
Bessel fonksiyonlarinin genel olarak pratik yasam kosullarinda genis uygulamalar1 vardir ve
ilging Ozelliklere sahiptir ve bunlar1 matematiksel fizik ve miihendislik gibi uygulamali bilim
egitimi i¢cin temel ara¢ olarak kullanirlar. Faiz ve zaman kisitlamasi nedeniyle ¢oziimii,
koordinatlarin her birinde Bessel fonksiyonlarmin elde ettigi baz1 6zel diferansiyel denklem
tiplerini ortaya ¢ikarmak icin, silindirik ve kiiresel sistemin her bir koordinatinda Laplace
denklemini inceleyecegiz. Seri ¢oziimlerin Frobenius yontemi. Bu ¢oziimlerin, sifir ve sonsuz
potansiyellerin Schrédinger zamandan bagimsiz denklemiyle silikon ve kiresel olarak iyi

iligkili oldugunu gosterecegiz.

Bu ¢6ziimlerin 6zellikleri ve davranislari, bu 6zel tip diferansiyel denklemlerin ¢éziimlerinin
normallestirilmesi ve sistemlerin enerjisinin kolayca bulunabilecegini gdéstermek icin sinir
kosullariyla birlikte Bessel fonksiyonlarinin sifirlarmin kullanighligimi ortaya koymak igin

birlikte incelenir Ayr1 olarak hesaplanmustir.

Ayrica, birinci ve ikinci dereceden dogruluk farki diizenlerinin tahmini hatalarinin sayisal

¢Ozlimii hesaplanmistir.

Anahtar Kelimeler: Silindirik kuyu; Kuiresel kuyu; Schrodinger denklemi; Bessel

fonksiyonlar1; Laplace denklemi.
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CHAPTER ONE
INTRODUCTION

In this section we present the background of our study, present a brief literature on the topic,

highlight the problem and analyze some definitions and theorems as they relates to the topic.

The concept of Bessel’s function was first presented by Euler, Lagrange and Bernoulli in
1732. Daniel Bernoulli made the first to attempt to use Bessel’s function of zero order, as a
solution to examine the situation of an oscillating chain hanging at one end. However, Leonard
Euler in 1764 also used Bessel’s function of zero order and integral order to analyze the
vibration in a stretched membrane. The work was re-investigated and modified by Lord
Rayleigh in 1878, where he defined Bessel’s solution to be a special case arising from Laplace

wave equation.

Although Bessel’s functions are named after Friedrich .W. Bessel, in 1839, he did not
explored the concept until in 1817, where he uses them as a solution of Kepler problem, to
examined the mutual gravity of three bodies moving in motion. In 1824 he later presented
Bessel’s functions as the solution to a planetary perturbation problem, which appears to be a
sort of expansion of coefficient of series of a direct perturbation planet, where the movement
of the sun is caused by the perturbation of the particle.

The notation ], (z) were first used to denotes Bessel’s functions, (Hansan, 1843). Schlomilch,
(1857) also adopted the same notation to denote Bessel’s functions. The notations J,(z) were
later modified to J,,(2z) (Watson, 1922).

Bessel functions are found to appear in practical problems of real situation and are extensively
investigated by many scholars in many diverse applications to a real life situation, where they
surface more frequently. For instance Bessel functions surface in practical applications such as
in electricity, hydrodynamics and diffraction (Yasar and Ozarslan, 2016).

However Bessel’s equations and Bessel’s functions are uncovered to be solution of problems
that occur from solving the Laplace equation and Helmholtz equation in polar coordinate
system (i.e. in cylindrical symmetry and spherical symmetry), (Watson, 1922). They are also
discovered when solving some problem in physics for instance, the aging spring problem,

heavy chain problem, the lengthen pendulum problem e.tc, by employing a suitable change of



variable to transforme these equations into a special kind of equation called the Bessel’s
differential equations and there after obtain special types of solution known to be Bessel
functions.

Bessel’s functions are found to be some special kind of functions that have vast applications in
sciences and engineering. For instance, they occurred in the study of heat conduction,
oscillations problems, vibrations problems and electrostatics potential (Yasar and
Ozarslan,2016). Basically, when problems are solved in the cylindrical coordinates the
solutions obtained are found to be Bessel’s functions of integer order, which occurred in many
practical problems of real situations, while problems that are handled at spherical coordinate
systems are found to be Bessel functions of half or semi integer order. The spherical Bessel’s
function can also be presented in form of trigonometric function, due to the behavior of the
series solution obtained. The Bessel spherical function of semi integer order, have vast
application in mathematical physics for instance, in quantum mechanics, they revealed the
solution of radial Schrédinger equation of particle with zero potentials, scattering of
electromagnetic radiation, frequency dependent friction, dynamical systems of floating bodies
e.tc (Yasar and Ozarslan,2016).

Erwin Schrodinger in 1926, in a bit to examine the De-Broglie hypothesis, uncovered an
equation, which in a way exhibits same properties, with that of the particle of an electron.
Although the equation uncovered, was later named after him as Schrédinger equation and was

presented in Laplace equation form as
(—%VZ + V(r, t)) y(r,t) = ih(r,t), (1.1

where m is defined as the mass of the particle/body, V(r,t) as the potential energy, and y(r,t)
as the wave function of the particle, (Griffith, 1995).

The electromagnetic wave equation and some basic properties of Einstein’s theory like
relativity plays a central idea in understanding the nature and concept of Schrddinger equation,
has it stands now, Schrédinger equation is the most remarkable and essential equation in the
studies of modern physics, because of its vast applications. Equation (1.1) is described as the
Schrddinger time dependent equation, from which the Schrédinger time independent equation
is derived. For the purpose of this thesis, the Schrédinger time independent equation for a free

particle shall be our reference point, which we shall derive later.



However, this thesis is meant to study the Bessel functions, their properties and applications,
as they relate to solution of Schrddinger equation in polar coordinates. Bessel functions in
general have large applications in real situations and posses interesting properties, which make
them, served as basic tools for studying natural sciences like mathematical physics and
engineering. Due to interest and time constraint, we shall dissect the Laplace equation in their
in two polar coordinates of cylindrical and spherical systems, in order to uncover some special
types of differential equation, whose solution are those of Bessel functions in two seperate
coordinates, obtained via the Frobenius method of series solutions, we shall show that these
solutions are those of Schrddinger equation of a free particle in both cylindrical and spherical
well.

The properties and nature of these solutions are further examine together with their boundary
conditions to reveal the usefulness of zeros of Bessel functions, in order to normalize the
solutions of these special type of differential equation and to compute the energy of this
systems.

In our work, we shall consider one problem, which will be examined in their respective
coordinates of cylindrical and spherical systems.

The problem is as follows: Suppose we place a particle of mass m, in a two dimensional
potential well, with zero and infinite radius, inside and outside the box respectively, (Griffith,
1995).

Their respective Laplace equation is represented in their polar coordinates as

2 _ 10 ( oy 1 0%y(r,9)
Viy(r,¢) = ror (I‘ or ) + +r2 a¢9* (1.2)
Similarly,
2p_ L0 (200 1 o L gony . 1 (o
VF = rZ or (I‘ ar) + rZ sin(0) 90 (Smeae) + r2sin?(0) (0@2) (1.3)

In our work, we shall examine equations (1.2) and (1.3), in their respective coordinates, by
employing mathematical method of separating their variables to suit the nature of their
solution. Furthermore, we wish to examine the above equations together with the problem
stated above, in their respective coordinates, in order to analyze the nature of the solution
when the boundary conditions are applied to their general solutions and uncover the

uniqueness of zeros of Bessel functions in the entire process.



1.1 Some Fundamental Definitions
Definition 1.1.1 Convergence, Zill, (2005).

The power series of the form}._,(z — z,)", converges at a finite value of z, when the partial
sum (s, (z)) converges. Implying,

lim,_,, sp(z) = Ya-o(z — z¢)™, exist. Otherwise, the series diverged.

Definition 1.1.2 Analytic function, Arnold, (2005).

At a point z,, a function f is analytic, when a series of the form y(z) = Yn_o(z — zo)" ,

converges for all point of z, in the interval containing z,.

Definition 1.1.3 Differential Equation of Order Two, Zill, (2005).

Given the a differential equation of the form,
2
2,(2) 37 + 2@y +a@y (1.4)

where a,(z), a;(z), and a,(z) are function of z and we can express equation (1.4), in another

form as
2
T+ P@Y +Q@y =0 (1.5)
Where P(z) = 4@ ond Q) = 20(2)

az(z) az(z)

1.1.4 Ordinary and Singular Point: Zill, (2005).

If P(z) and Q(z) in equation (1.4) are differentiable and continuous at a point z,, then z, , is
an ordinary point, else a point which is not an ordinary point, is a singular point of equation
(1.5).

1.1.5 Regular and Irregular Point: Zill, (2005).

If p(z) = (z — z4)P(2) and q(z) = (z— 2z,)?Q(z) are differentiable and continuous at z, ,

then z, , is a regular singular point of equation (1.4) , else an irregular point z,.



1.1.6 Recurrence formulae: Borelli and Coleman, (1998).
A recurrence formulae for coefficients of c,, is a relation for which each c, is evaluated in
terms of ¢y, cy, Cy, ..., Cy_q; If the differential equation in equation (1.4), is evaluated then such

formulae can be obtain and is express in terms of power seriesat z = z, .

1.1.7 Gamma Function: Brenson, (1973).

For any positive real number p, let denote I'(p) to be gamma function, then we have

I'(p) = fgo zP~le %dz (1.6)
Thus, the equation of gamma function is

I'(p+ 1) =pI'(p)
It is important to note that factorial function (which is given for nonnegative integers) is a
general case of gamma function. We can write factorial as I'(n + 1) = n!
Forexample: T(p+2)=(p+DI'(p+1),I(p+3)=((p+2)'(p+2)

=(p+2)P+DI(p+1)

1.2 Some Important Theorems

1.2.1 Frobenius’ Theorem: Zill, (2005).

Suppose in equation (1.4), z = z, is a regular singular point, then at least one solution exist in

the form

v(z2) = (2= 20)? X2 ocn(z— zo)" = X2 cu(z — zo)"H0 (1.7)
where n and @, are the indexes and @ is to be computed as the roots of the series. Thus, the

series will converge around the region of 0 < |z—z,| < R.

1.2.2 Power Series Existence: Simmon, (1972).

In equation (1.5), if the ordinary point is z = z,, then the series with centre at z,, is linearly

independent. i.e.

y(z) = Xh=0n(z — 20",



where, at the interval| z — z,| < R the series solution converges, implying that R is the

distance from z, to the closest singular point.

Theorem 1.2.3: Zill, (2005).

Suppose in equation (1.4), z, is a regular singular point, where d, and d, are the roots of
equation (1.4), at z,. Note that both 9, and d,, are real, then
Case I: suppose that d; — d, = 0 then two linearly independent solutions of equation (1.4),
exists in the form
{ y1(2) = Th_ocn(z — 2o)"*%
y2(2) = Yp_gcnlz — 2p)"*02 '

Case Il: suppose the difference of the indicial roots (9, — d,) yields a positive integer, the

wherecy, # 0 (1.8)

two linearly independent solutions of equation (1.4), exists in the form

{ v1(2) = X2 ocn(z— 2o)" %1 , wherec, # 0 (1.9)
y2(2) = Ay1(2) In(z) + Yo cn(z — 2o)"* .
Case Ill: suppose the difference of the indicial roots d,and d, are equal then, the two
linearly independent solutions of equation (1.4), exists and are of the form
y1(2) = X2 ocn(z— 2o)"%1 , wherec, # 0
g (110)
y2(z) =y1(2)Inz + XT_ocq(z — zo)"*72



CHAPTER TWO
NOTION OF BESSEL’S EQUATION AND THEIR PROPERTIES

In this section, we shall present the notion of Bessel’s equation as a special kind of differential
equation and also present their special solution as Bessel functions of different kinds and their

properties.

2.1 Bessel’s Differential Equation

We consider a special type of differential equation as, Gupta, (2010)

2293 4 7% 4 (22— Ky =0 (2.1)
In equation (2.1), k can be positive or negative integer, and can also be fraction or real
numbers.
The complete solution of equation (2.1) can be presented as

y(@) = CJk(@) + CYi(2), (2.2)
where C, and C, are constants of the equation, which can be obtain, using certain boundary
conditions, also [ (z) and Y (z), respectively are Bessel’s function of first and second kind.

we divide both sides of equation (2.1) by z2, yielding

d?y 1dy k2 _
E ;a +(1— Z—Z)y— 0. (23)
we compare equation (2.1.3) to equation (1.5), as
y"(z) + P(2)y’ + Q(z)y = 0. (2.4)
Thus, P(z) = i and Q(z) =1 —:—z , it reveals that at some point, both P(z)and Q(z) will be

analytic, and equation (2.4) is a singular point at z = 0.
We now, evaluate the series solution of equation (2.1), by applying the Frobenius method,

before that, we need to examine the behavior of the coefficients of equation (2.4), as
let zP(z) = Z(i) =1
also,

2 — _k_z 2 — 52 _ 1,2 — Cin
Z Q(z)-(l Z)2 =1 k? = Finite value



Hence, the regular singular point is at z = 0 , we can now evaluate equation (2.1), via the

Frobenius method.

2.2: Series solution of Bessel’s Differential Equation

Let,

y(z) = Xi-ocaz*?, (2.5)
where nand 0 are the indexes, note that the index 0 is to be evaluated as the roots of the
recurrence formulae of the series solution of equation (2.1).

Now, we differentiate equation (2.5), as

y(z) = % = %(Zﬁ:o cpz™t a) = Y* ,(n+ 9)cyz+ 91, (2.6)
also, we differentiate equation (2.6), further yields
y(z) = 2732' = % (Xr_o(n+ d)cyz™*971)
=Y* ,(n+d)(n+0d—1)c,z" 92, (2.7)

Putting equations (2.5), (2.6) and (2.7) into the Bessel’s equation in (2.1), we obtain
22y (n+3)(n+0—1)cyz" 92 +2¥%_(n+ d)cyz" T 91

+(z2 —k?)X®_ocpz"t 2 = 0. (2.8)

Now, equation (2.8), becomes

2 om+)M+0—1)cz" 0+ 32 ozt —k2YX jcz™ T 9+

2 oo

® 0Cnz?t 9 =0,

VA
It means that,

z° n=0 Cn[(n +d)(n+0—-1)+(n+29) — kZ]Zn + 79 © CnZn+2 =0

In the above equation, we apply change of base at the last term, by puttingn=2=n=n—

2, then we have

X o+ (n+0—-1)+Mm+0)—K2]z"+ X7 _,chz" =0 (2.9)



equating the of coefficients of z° to zero in equation (2.9), yields
(02 — k?)cp, =0, >0 = tk (2.10)

Also, equating the coefficients of first power of z to zero, in equation (2.9), we obtain

[(1 + 6)2 - kz]Cl = 0, = C = 0.

Similarly, we collect the coefficient of n™-powers of z and equate to zero, we obtain

[(n +0)? — Kk?]c, + c,_, = 0. (2.11)
solving equation (2.2.7) , for c,, gives
1
Ch = for n > 2. (2.12)

" +0)2— k2]
Hence, equation (2.12), is called the recurrence formulae, with c, s, as the coefficients, that
depends on each other, since c; = 0, then the odd coefficients are equal to zero, leaving us with

the only even coefficients.

2.3 Bessel Function of Different Kind

2.3.1 First kind of Bessel function For Integer Order k
From the recurrence formulae in equation (2.12), we obtain

1
o = T (n+0)2— k2] Cph—p, for n =2

Putting d; = +k in the equation above, we obtain

1

Ch = —m Cn_z,fOF n = 2, (213)
Now, we evaluate forn=2,4,6....... , equation (2.13)
Forn=2 forn=4

€2 = 22.11.(k+1) Co, Ca = 24.21(k+2)(k+1) -Co
For n =6 setn=2m
— 1 — (_1\m 1

C6 = 26.31(k+3)(k+2) (k+1) Cosvee /Com = (=1) 22M mi(k+m)..., (k+2)(k+1) Co

Hence,
— (_1\m 1
Com = (1) 22M mi(k+m).., (k+2)(k+1) Co, (2.14)



Substituting (2.14) in the form solution in equation (2.5), yields

_ e _1\m 1 2m+k
y(2) = o Lm=o(=1) 22m mi(k+1)(k+2)(k+3)..,  (m+k) -z (2.15)

Forcy, =0, letcy = ﬁ such that equation (2.15), becomes

w m 1 7 2m+k
y(Z) - Zm:O(_l) m!(m+Kk)! (E) (216)
Recall, the definition of gamma as I'(p+2) =(p+ DI'(p+1), equation (2.16)
becomes
w m 1 2\ 2m+K
k(@) = Xin=o(=1) I'(m+1)T (k+m+1) (5) (2.17)

Bessel function of First kind integer order

Figure 2.3.1: Integer Order, Bessel Function of First Kind.

2.3.2 Semi Integer Order k (for k =)

Suppose, we put k = i%, in equation (2.17), we obtain
0 1 Z 2m i%
Ii%(Z) = mzo(—l)m m (E) . (218)

We can expand the summation in equation (2.18) for k =% and k = -4, separately, as

3 i . N\ 2m+1/2
J1/2(z) = Y=o (—1) m! T(m+3/2) (5)

10



]% (z) =\/g sinz, (2.19)

for, z > 0.
Similarly,

2m-1/2
—§o (_qym__ 1  (z
]_% (z) = Ym=o(—1) m!T(m-1/2) ( )

2

J1(2) = \/g cosz, (2.20)

for,z>0.

Hence, equation (2.19) and (2.20), are Bessel’s functions, for semi integer order k.

2.3.3 Second kind of Bessel’s function

For the case of 0, = —k

Since k, in the Bessel’s equation is in the form k2, satisfying the series solution in equation
(2.17), then —k must also satisfy the same series solution if the gamma functions is redefined.
If —k is not an integer, then the Bessel’s function ]J_y(z), is the second solution of the Bessel’s

differential equation of order k. Equation (2.17), becomes

J@) =3 - (f)zm_k 2.21)

© _1\m
m=0(~1) r(m+1)r(-k+m+1) \2

Hence, J_x(z) is unbounded at the origin and contains the negative powers of z and J(z) on
the hand is bounded and finite. Since —k, is not an integer, then J_,(z) and Ji(z) are two
linearly independent solutions of the Bessel’s equation of order k, hence, a general solution of
Bessel’s differential equation, if k is a non-integer is

y(z) = CiJk(z) + C)_(2). (2.22)
If k is an integer, then equation (2.11), differs by an integer (0, — 9, = 2k) , the first

solution is

v1(z) = 2m=o C2m22m+k' (2.23)
also, Bessel’s function of second kind, is of the form

v,(z) = Y(z) = CeIn(z) + z7' Y2 ,D,z"*k (2.24)

And the second solution of equation (2.23), becomes

11



w 1 7 2m-k
y2(2) = Jk(2) = m=0(—1)mm (E) ) (2.25)
But the expression I'(m —k+ 1) = I'(m —k)!, since I'(m—k+ 1) is an integer, the

equation (2.25), becomes

w m 1 2\ 2m-K
v2(2) =Jk(@) = Xh=o(—1) M (m—k+1) (E) . (2.26)
If m = 0 then J_, = 0, since —k is not define, then it is either+o or — oo, let set m = k , so

that the limit of the summation changes to

1 7 2m-—k
Y2 (Z) = ]—k(Z) = ;=k(_1)mm (E) (2.27)
Putting (m — k) = v, then J_,(z), becomes

1

V2(@) = 1) = Timo D s 2

2v+k
3

= (=1¥(z), fork=1(1)n. (2.28)
Now,
v,(2) = J_x(2) = (=¥ (2), it shows, that k is integer, and then J,(z) and J_.(z) are
linearly independent. Hence, equation (2.23) cannot be the general solution of the Bessel’s
equation.
It is easy to take the linear combination of ], (z) and J_,(z), by Wronskian determinant, in

order to yield a second independent solution, instead of the second solution of J_y(z), as

__ cos(@k)Jk(z)—]_x(2)
Y (2) = sin(k) 229

Equation (2.29) is called Bessel’s function of second kind (Neumann function), integer order
k.

12



Bessel function of Second kind integer order

Figure 2.3.2: Integer Order Bessel Function of Second Kind.

Hence the general solution of the Bessel’s differential equation in (2.1) is

y(@) = CJk(@) + CYx(2) (2.30)
If we put k = v in equation (2.29), we obtain
limyy (Y, (2)) = limy, (°°S(“V)Sli;((?v') ) (2.31)

Equation (2.31), can be presented in its general form as

1v(2) = Jo(2){0g(2) — $x(@)} — o W@ 5o DTy

m=0 (y_m)mizv-m m(v+m)

where,

sn(2) = ( 1+ % + §+, ,+%),implying so(0) = 0. (2.32)

2.3.4 Bessel’s Function of Third Kind

The Bessel function of third kind is given as the combination of the Bessel’s function of first
kind and second kind i.e. Jx(z)and Yy (z), the third kind of Bessel function is also called the

Hankel function, is of the form

HY (2) = k(@) + iYi(2), (2:33)
HP (2) = (@) — iY(2), (2.34)

Where Hl((l) (z) and H]((Z) (z), stands as Hankel function of first and second kind respectively.

13



2.4 Bessel’s modified function

Suppose the Bessel’s differential equation in (2.1) can be written as

2 &%y dy 2 2V, —
2t +z (z+ k*)y=0 (2.35)

If we replace z to be iz, then equation (2.17), the modified Bessel’s function can be written as

L@ = Timo o (5

n!T'(ntk) \2

)Zn 1k (236)

Equation (2.4.2), is integer order modified Bessel function of first kind.

Modified Bessel function of first kind Integer Order k

Figure 2.4.1: Integer Order First Kind, Modified Bessel Function
The general solution can be expressed as
Yi(2) = C1x(2) — C,1x(2). (2.37)
C, and C,, can be evaluated using the boundary conditions.

Similarly, if k is not an integer, the second linearly independent solution can be expressed as

_n (L@@
Ky (z) = 2.(—Sin(nk) ) (2.38)

Since limit as k = neZ, exist.

Equation (2.38), is integer order Bessel’s modified function of second kind.

14



Modified Bessel function of second kind Integer Order k
4
T I I I T

modified Bessel Function

Figure 2.4.2: Integer Order Modified Bessel Function second kind.

2.5 Recurrence Relation of Bessel’s Polynomial

As defined in 1.1.6, we present the basic recurrence formulae, required for further operation in

Bessel’s function
{ 2)1(2) = Kk (2) — 2J41(2)
7)1 (2) = K (2) + 7)1 (2)
The recurrence formulae in (2.39), are derived as a result of differentiating equation (2.17),

(2.39)

with respect to z.
Also,
Je-1(2) = 2J1(2) + ZJys1(2)
{Zz—k]k(z) = Ji-1(2) + Ji11(2)
Equations (2.40), follow directly from, equation (2.39)

(2.40)

Note that recurrence formulae, can be expressed in compact form as

= [29%@)] = 22 @), (241)

From equation (2.17), we can show the validity of equation (2.41) as

(-»)m 2\ 2m+k " ) ) )
Jx(2z) = —_— (—) , substituting Ji (z), in equation (2.41), yields

m=1 m!T(m+k+1)

( 1)m 2m+k ( 1)m 2(m+k)
dz [ m L miT(m+k+1) (_) ] [Zm I mir(m+k+1) ( ) ]
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dy _ oo 2(m+k) (-nm (5)20n+k)—1 Sy (—1)m (_)mn+k

dx  “m=1 " 3 "mim+k)(m+k) \2 mM=1 ) ir(m+k-1+1)

=25 (2) .

2.6 Generating Function

We present the generating in this section, which are inter-related to the Bessel’s function of
integral order. Ji(x) is Bessel’s polynomial, which can be presented as the coefficients of
powers of z", in the expansion of series of special function as g(z,x), called the generating

function in term of z™.

Now, let
gz = % = Ti_, Ja (2" (242)
we shall prove equation (2.42), as follows
e" xe 2z = [ a= 0( [Zcﬁ o(=1)° (Zz) ;!]‘ (2.43)
implying that,
_1\b a+b
g(z,%) = oo Nicg o (5) 2270 (2.44)
Now, putting n = r — s, then n = o0 and must be independent of b
_ ( 1)b n+2b
8% = e Zieo () 6) ™ (2.45)
Hence,
b n+2b
89 = Bie [T o (B) |77 = Zae a2, (246)

2.7 Bessel’s Function integral Representation: Boas,(1983).

Bessel’s integral representation is of the form

J,(x) = if: cos(nd — xsin0) dd = 0, (2.47)
Recall, in equation (2.42),
g x) = e = Ti__, o (92",

Now, putting z = e'®, such that the LHS, becomes

X, L X i0_—i0 . .. ;
e2*7 = e2® ~° ) = cos(xsin 0) + isin(xsin 0), (2.48)
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from,
FeoJn (02" = Tz Jn (0 (€°)" = T Jn () [cos(n6) + i sin(nb)].
Expanding the above equation, yields
o n(X)z™ = Jo (%) + 2], (%) cos(20) + 2],(x) cos(40) + ---,
+i[2], (%) sin(0) + 2J5(x) sin(30) + ---]. (2.49)
Putting equation (2.49), in compact form
2 Jn(OZM = Jo () + 2 T, i () cos(2k)0
+2i Y51 Jok—1 (%) sin(2k — 1)6. (2.50)
Equating equation (2.48) and (2.50), we obtain
cos(xsinB) + isin(xsin0) = Jo(x) + 2 Y- Jox (%) cos(2Kk) 6

+2i Y51 Jok—1 () sin(2k — 1)6. (2.51)
Equating real and imaginary part of equations (2.51), as follows
cos(xsin0) = Jo(x) + 2 Y- k(%) cos(2Kk) 6, (2.52)
Similarly,
sin(xsin0) = 2i Y-, Jox—1 (%) sin(2k — 1)#, (2.53)

Since the series in equations (2.52) and (2.53), are Fourier series of the other side of the
equation, then we multiply equation (2.52) by cos(n0®) equation (2.53) by sin(n6), and
integrate with respect to 6, for 0 < 6 < x.
Recall that,

f; cos(m0) cos(nb) do = f; sin(m0) sin(nf) d® = 0, when m # n

f; cos?(m0) = f: sin?(mo) =§ m=n

(2.54)

Now, by equation (2.52),
f; cos(n0) cos(xsin0) do = J,(x) f(;t cos(n0) do +
2 Yoy ) () [ cos(2k) 0 cos(nd) do (2.55)
When we, integrate, the first term vanishes for all values of n, and we have
f; cos(nf)dod = 0
From RHS, the integral vanishes to 0, if n # 2k, so if n = 2k, then
f; cos(nd) cos(nb) do = g; for n = 2k : even,

Hence,
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f; cos(nb) (xsin0) d6 = {ng?(x) ; rrll::eov;(;l (2.56)

and equation (2.53), becomes
f; sin(n0) sin(xsin 0) d0 = 2i X p_; Jok—1 (%) f(;t sin(2k — 1)0sin 6 d6, (2.57)
implying that,

T . . _ (nJ,(x); n:odd
J, sin(n6) sin(x sin 6) d6 = {0; n: even, (2.58)
adding and dividing equations (2.56) and (2.58) by r, yields
Jn() = = J;[cos(nd — xsin ) + sin(n6) sin(x sin 6)] do. (2.59)

By using cosine formulae, we have

J,(x) = if;cos(ne —xsinf)dd =0, forn=0,1,2,...
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CHAPTER THREE
NOTION OF BESSEL SPHERICAL FUNCTIONS AND SCHRODINGER EQUATION
DERIVED.

In this chapter we present the concept of Bessel’s spherical function and derived the
Schrodinger time independent equation. Further, describe the zero potential of a particle in
spherical coordinate.

3.1 Bessel’s Spherical Function

The Bessel’s spherical function occurs in the radial part of the Helmholtz equation, as a result
of solving the Laplace equation in the spherical coordinate.

We now, consider the Bessel’s spherical equation, of the form, Boas, (1983).

2 8 d2R LR R _|_ (k2r2 — p(p + D)R(T) = 0, (3.1)

where the parameter k, originate from the Helmholtz equation and p(p+1) is a separation
constant.
Now, by variable change method, equation (3.1) can be transformed as follows

we set z = kr, so that

R _ R _ R
x oK =2y (3.2)
also,
&R d’R
1‘2? = ZZQ . (33)
Putting equations (3.2) and (3.3) into equation (3.1), and rearranging we obtain
2
29428 4 (2- (p+))R@ =0, G4
Equation (3.4), is Bessel spherical equation of order (p + %), where is an integer.
Dividing equation (3.4) by z?, yields
2
#R . 1d p+s
T+ (1 ( Z;) )R(Z) = 0. (3.5)
Equation (3.3), can be compared to the standard form of equation (1.5), as
y'(2) + P(2)y + Q(2)y = 0. (3.6)
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Implying that, P(z) = - and Qlzr)=1- ® 22) it means that at point both P(z)and Q(z) are

analytic, and equation (3.5) is a singular point at z = 0.
Now, to obtain the series solution of equation (3.4), we apply the Frobenius’ method, let us

first analyze the behavior of the coefficients P(z) and Q(z), as follows
Let, zP(z) = z( ) =1,

also,
2?Q(z) = ( ——2> 7> = 722 — k* = Finite value, where k = p +2

Hence at z =0, it is a regular singular point, and we use power series method at z =0, in

order to obtain the solution.

3.2 Series Solution via Frobenius Method

By Frobenius method, the series solution of equation (3.4), can be obtain, which we have seen
in the previous chapter.

However, if by replacing k with (p + %), in equation (2.17), we obtain

1
. _ - (_l)n E 21’1+p+§
JP+%(Z) - 4n=0 n!(n+p+%)! (2) ’ (37)
Now, by applying Legendre duplication formulae in equation (3.7), that is
n!(n+ ) =2"""Va(n+ 1), (3.8)
we obtain,

2n4+2p+1 2n+p+l 2n+2p+1
(Z) _ \/72 (G2)) P (n+p)' (2) — 2p pz (-1 (n+P)'(Z)2n. (39)

n=0 \/—(2n+2p+1)'n' n=0 " \/z(2n+2p+1)n!
Implying that,
Np+1(z) = (—I)P“J_p_l(z) , and by equation (2.17), we have
2 2

1
w (=D (2\PTP:
L@ =S s () (3.10)

n O(H—p—j)!n! 2

From equation (2.29), we can deduce that, cos(p + %)n = 0, then equation (3.10), becomes

2 \/— o ( l)n 2n—p—l
N = 0 S () an

By equations (3.10) and (3.11), we obtain
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j,(@) = \EJP%(Z), (3.12)

T
n,(z) = \/2:th+%(2). (3.13)
Hence, the general solution of equation (3.1), can be presented as
y(@) = C,j,(@) + Gon (2). (3.14)

where jp(z) and n, (z), are spherical Bessel function and Neumann spherical Bessel function or

(regular and irregular functions) respectively, the constant €, and C, are evaluated, by

applying the boundary conditions.

Bessel Spherical function of first kind

spherical function

s | | | | | |

Figure 3.2.1: Spherical Bessel function of First kind
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Bessel Spherical function of Second kind

spherical function

Figure 3.2.2: Spherical Bessel function of Second Kind

Similarly, we can express the spherical Hankel Bessel functions of first and second kind as

follows

) _ 1 ) . .

h;’(2) —\/;Hp%(z) = Jp(z)+1np(z), (3.15)
Also,

h1§2> (z) = \/ngi)% (z) = J (2) —in, (2). (3.16)

3.3 Derivation of Schrodinger Time Independent Equation: Griffrth, (1995).

We consider a particle moving in the x-coordinate with a velocity and mass m, momentum P,,
and energy E, by assuming that the wave particle is represented by a complex variable

y(x,t) we first derive the one-dimensional time dependent Schrédinger equation, with the
speed of the particle smaller to the speed of light. The total energy is the Kinetic energy (;—m)
and the potential energy V(x).
Implying that,

E=2+ V), (3.17)

Since the wave function is y(x, t), multiplying equation (3.17) by the wave function, we obtain
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Ey(x,t) = ZPT;W(X' t) + VX)y(x,t), (3.18)

where,
Yx 1) = Ao, (3.19)
We differentiate equation (3.19), partially twice with respect to x, yields the following
oy(x, i i Py — i
\va(x 0 _ (Z) P Ao E) = (Z) Poy(x, 1), (3.20)
also,

azgg,t) _ (é) P, 6\va(z,t), but % _ (é) Py(x, 0,

i . 62 X, . . —1
implying, % = (é) P,. (é) P.y(x,t) = ?Piw(x, t)

We obtain

2 X
PRy (x,t) = —?> LX) (3.21)

oxz '’

similarly, we can differentiate equation (3.19), partially, with respect to t, then we obtain

- () e = - ()t

Transposing the above equation, we obtain

__ho¥Y(xD
ot

Putting equations (3.23) and (3.22), into equation (3.18), yields

= Ey(x,1). (3.22)

2 (x X
— L2 L V((x 1) = — (2) 222, (3.23)

2m  9x2 i/ ot
Hence, equation (3.23) is the time-dependent Schrodinger equation.
Equation (3.23), can be separated into the time dependent part and time independent part,
keeping E as a constant and the V(x) is treated as a function of x only.
Let,

v(x,t) = UX)G(1), (3.24)
Where U(x) and G(t), are the time dependent and time independent functions, respectively.
We differentiate equation (3.24) partially with respect to x twice as

y(xp) _ d*U®X)

ay(xt) — dU(x) G(t), also, =

ax dx
Similarly, we differentiate with respect to t as

G(®. (3.25)

w(xd) _ 4G
(D) _ 400 15, (3.26)
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Putting equations (3.24), (3.25) and (3.26) into equation (3.23), we obtain,

_h dU(x)
e

G(®) + VERURGH) = - 22y ().

We multiply both sides by —— TG )G() , yields
h_ U _ __h_d60
T 2mURx)  dx2 V() = iG(H) dt (3-27)

Clearly, equation (3.27) is separated into the function with partial variable x and the time
function respectively.
Substituting equation (3.25), into equation (3.22) yields

Ey(x,t) = —2UX) 2, but y(x, ) = UR)G(),

implying that,

EU(X)G(t) = ——U( )dG(t) we multiply through by —— T )G( 5 giving
_h 46

E=-—- .
iG(t) dt

(3.28)

inserting equation (3.28) into equation (3.27), we obtain

_h dU
2mU(x) dx?

+VX) = E,

multiplying by @ we have

dZU(x)
dx’ 2

[E V(x)]U®X) = 0. (3.29)

Hence, equation (3.29), is the Schrédinger time independent equation.

3.4 Particle of Zero (0) Potential Described

We now, consider a Schrédinger equation of a zero potential i.e. V(x) =0, of the form

h2
[—EVZ + E] vy () =0 (3.30)
with,
0,0<r<a
V() = {oo' N (3.31)
Suppose the solution of equation (3.30), is a wave function of the form
vk 05) = Vi Ym0, 6) (3:32)

Then we have
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[—z’l—zar +1 Dy Eﬁm] Vi () =0, (3.33)

22 22

it means, that E = h— > 0, we substitute E = h— in equation(3.33) and then multiply through

by — % then we obtain

02 -2 4 @) v =0, (3.34)
we substituter,E(r) =j,(kr), to be the solution of equation (3.34), then we now let a new

variable x = kr, we obtain

& m+1)
dx?

+ 1] xj, () = 0. (3.35)

Substituting equation (3.31), into equation (3.35), two solutions exists for small r,

(l.e. asr — 0), which are regular and irregular solution respectively

j ) =x"and ny(x) = x~, (3.36)
similarly, the general solution as r - o, is
1
j ) = " (sin(x + B)), (3.37)
for some B, putting f;(x) = j,(x),n¢(x), in equation (3.35), we obtain
2
Sis— “’ij”] f(x) = 0. (3.38)

Hence, sin(x + B) can be express as a solution of equation (3.35), in the form of an infinite
power series as

j, () = t'y(x?), implying that, y(x*) = X_;c,x*", (3.39)
The coefficient of the expansion, can be evaluated by putting equation (3.39) into equation

(3.35), where y in equation (3.39) is depending upon x? , which follows from

d dy(x
a[x“ly(x)] = %.x“l + (L + Dyx).

Also,

F[EE 1+ (0 Dy = : S X (04 DxL 2D o+ Dxy() +

(C+ Dx'. 28 = & D4 0+ 122 (e + Dxy ().

Comparing the above equatlon with equation (3.35), we have
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4 (¢ 1)2 44 x)=0 3.40
0 + L+ < dx +1|y(x) =0, (3.40)
we introduce an independent variable as u = x?, then

1d d & & d
;&—25,3.'30 @—411@4‘25
Putting the above into equation (3.40), and evaluating we obtain

2
[“ TR LA 41] y(u) = 0. (3.41)

d? ' 2u du
Putting y(x*) = X7, c,x*", into equation (3.41) and u = x?, we have
2 olean(n — Dur=2 + 220+ 3)cu™ ! + j—‘cnu“‘l] =0,
Changing the base of the first term, will yield
Yo olcnsin(n — 1) + 220 + 3y + 1eJur = 0.

If u»~! # 0, we obtain the recurrence formulae of the form:

1 Cn

Cntl = T3 D ne2t43) (3:42)
Forn=0,1,2.. and £ = 0,1,2, .., respectively.
Forn =0, Forn=1, Forn =2,
=_1_ N S _ 1 o
1= T T C2 = aaen) s O3 = T S ) 2+5) 2T
We choose
L
X
€ = 35,000 (343)
Then,
. _ x _ x2/2 (x2/2)? .
JE(X) T 135.,020+]) [1 11(20+43) + 21(2043) (20+5) + ]’ (3:44)
Similarly,
_135.QueD [, X2 /2%
T x) = xltl 11(2043)  21(2043)(2L+5) T ] (3.45)

Hence, equations (3.44) and (3.45) are regular and irregular spherical Bessel functions
respectively.

We can express equations (3.44) and (3.45) further in factorial form as an infinite sum as;
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Recall the definition of factorial in chapter one as

%%% ., (C+1), implying that T(€ + 1) = V.

we can express equation (3.45) as

3
2

1 5
50 (04D

. _ 1 (ix/2)? (ix/2)* . ]
j () = L3.(t+) [1 + 1204 + 21204+3)(20+) S
from the above we can deduce that

: VE (g Gx/2)%

00 = E(8) w2 (46

=0 P+ 14+0+)

Similarly, we can write equation (3.45) as

=2 1 (ix/2)* (ix/2)*
Butt= ¢+, and since T(OT'(1—10) = Si: - implying that T(¢ + %) = (=) r(;l)’ and we
" 2
can write equation (3.47) as
n,(x) = (=)™ 26 (1 Gy (ix/2)* N
€ 2| r(3-0)  r(z-0G-t)  2ar(-0G-0E-y) |
Hence,
+1 oo
— (1 \+1 YT (2 w (ix/2)
n,(0 = (-1 (2) T (3.48)

3.5 Relationship of Spherical Bessel’s Functions

Before discussing the relationship in spherical Bessel function we take a look the reason why
we have two independent solutions of equation (3.35), via the Wronskian method which

follows from equations (3.44) and (3.45), as
W (§,00,m(0) =, (0 £ ) = £, GIne (). (349)
Lety, and y,, be the solution of equation (3.35), then we have

2
d _td 0(e+1)
w2 T raYie T Yip Ty

By the identity of the above equation we can write

%W(Y1'Y2) = —EW(YI,YZ) = %ln(W) = iln(xiz) = (W) = S

x2
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Where A is constant for cases of y =j,(x) andy, = n(x), which is evaluated via the
expansion of equations (3.44) and (3.45) and putting A = 1, we obtain

W (jE (x), n (x)) == (3.50)
Since the Wronskian of the regular and irregular solution is not equal to zero, it means that the
two solution of equation (3.35) are linearly independent.
In equation (3.38) the function f, (x) can be written in its simplest form as

fi(x) = Fy41(x) , implying that

d 1 d 1
+ fx) = ﬁ&FH%(X) _EFH%(X) :

we obtain
& 1 ¢ 1 d 3
d? (fg (X)) = ﬁd?F“'%(X) - ﬁd_fo‘%(X) + mFE+%(X)' (351)
Evaluating equation (3.51), lead to
& 1d K
@+I&—X—2+ I]Fk(X) =0, (3.52)

Where k = ¢ +% , hence the solution equation (3.52) can be written as

k : 2n
—_ (X 0 (ix/2)
() = (2) =0 yIr(n+k+1)" (3.53)

Equation (3.53), is a regular Bessel function, which is obtain via the power series expansion
similar to that of equation (3.44). From the above equation it is easy to deduce that J, (x) and

J_x(x) are linearly independent since k = € + %

Now,
W (JHL(X),J_g_l(X)) = (-1, (3.54)
2 2 198
relating J,,1(x) and J_,_:(x) to the solution in equations (3.46 and (3.47), we obtain
2 2
j ) = \/%JH%(X). (3.55)
060 = (D 21 . (3:56)

From equation (3.55) and (3.56), we can obtain the Hankel spherical Bessel function of first

and second kind, which is also a solution of equation (3.35), and are of the form
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20 = [EHOD 6o 67

27 45
from equations (3.38) and (3.56), we can obtain the Bessel regular function as
500 = 1/, (i GO + 0 (). (3.58)
we can also deduce that, that equation (3.56) also a relationship with the irregular spherical
Bessel function as

n(x) = (=1)t! E(H{(H%)(x) +H' o (x)). (3.59)
Since H(_l(’al)(x) = ii(—l)ngﬁ) (x), and by equation (3.58), the above equation becomes
2 2
hy () = j, (%) + in(x), (3.60)
similarly,
Hi(x) =j,X) + in (). (3.61)
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CHAPTER FOUR
APPLICATION OF BESSEL FUNCTIONS

In this section, we now dissect the Laplace wave equation, in their respective coordinates of
cylindrical and spherical systems and compare them to Schrodinger time independent

equation, in order to relate their general solutions.

4.1 Application In Cylindrical Well.

We now consider, a particle moving in two dimensions with mass m and potentials of zero
inside the box and infinite potential outside the box, the Laplace equation in (1.2) represent
this problem in the cylindrical coordinates. Relating equation (1.2) with the Schrédinger time

independent equation, we have

Pl o(.0 162
b5 (5 +255] = Bvwo). (@1)
Assume the solution of equation (4.1) is
y(r,0) = RO T(p). (4.2)

we differentiate equation (4.2), partially by each dependent variable and then fix the result in

equation (4.1) as

dR(1) d* T( )
[ ( ) %o R(1) 6r( drr ) T3 12 RO (p ER(I‘)T(([))
we multiply the above equation byR( STw and — zh—? and rearranging we obtain
10 ( dR() I &°T(p) _ _ 2mE
rR(r) ar( dr ) T(er2 do> (4.3)
Putting k* = Z;n—zE and we multiply equation (4.3) by r?, we obtain
T d dR(r) 2 2 1 dzT((P) _
R(r) dr( dr ) +kr T((p) do? =0. (44)

we can split equation (4.4), into their respective depend variables of r and ¢, and introduce the

constant of separation as +p?, we obtain

1 d*T(g) )
L 4T _ 2 4.5
T(p) do? (4.5)
similarly,
(RO 22 o2
R(r)dr(r dr ) +kr i
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We multiply by R(r) and rearrange, and get

2
%rz + ri—]:+(k2r2 — 1>)R(r) = 0. (4.6)
Equation (4.5), is also known as the harmonic oscillator. Solving and normalizing the solution

gives

T(p) = \/ZT—neW , 4.7
Equation (4.6), is also known as the radial part of equation (4.1), and is the same type of
equation with equation (2.1), whose are those of Bessel functions of different kinds.

The general solution is

R(r) = CJ, (k) + N, (ko). (4.8)

C, and C, in equation (4.1.8) are constanst, which are evaluated via application of boundary
conditions J,(kr) and N, (kr) are integer order, first kind and Neumann Bessel function
respectively in cylindrical coordinates.

We now apply the given conditions of the problem, to equation (4.8), that is when the potential
inside the box is i.e. r = 0, then Ju(kr), is finite and when the potential outside the box is
infinite i.e. r = oo, then Nu(kr), is infinite at the origin, which shows that C, = 0, and we have
equation (4.8), reduces to

R(1) = C,J, (k). 4.9
Also, if the radius inside the box R(r) = 0, then J, (kr) = 0, which implies that kr, is the zeros

of Bessel functions. We can put kr; = Bm, which enables us to calculate their respective
zeros, y, is the order of the Bessel function and n is the corresponding zero. From this we can
evaluate the individual energy of the system by putting k in place of B“,n, that is k = 21;_215 and
then evaluating further to have

B

B, = 2. (4.10)

wi 2mry

Thus, the general solution of equation (4.4), is

ipng

wgmm=thﬁ)ie. (4.11)

1 2n

Evaluating equation (4.11), in a closed form is difficult, however, by a way of example to

show the important of zeros of Bessel function, in the role of the above equation, assume that
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order of the function p = 2 and the correspond zero n = 1 to be r; = 5.13562 (from table of
Bessel function), which serves as the radius of the box, we re-write equation (4.11) as an

individual solution in the form

ipg
Bty |1
v, (1, 0) = Cuuls (2—1‘) \/Z—ne : (4.12)

The constant D ,, can be evaluated via normalization and applying the boundary condition in

s

order to obtain their numerical solution by the help of a mathematical software.

4.2 Application in Spherical Well

If we relate equation (1.3) along with the problem

_ {0, ifr<a
V() = {Oo’ G (4.13)

Equation (1.3), can be express as Schrddinger time independent equation as

_2h_m [:2 ;r (r2 ‘Z_‘i’) + 51:1(9) = (sm(@) 0\|1) zsmlz(e) ( )] +V(@®)y(1,0,9) =

Ey (1,6, ¢). (4.14)
We assume the solution of equation (4.14) to be
y(1,0,0) =RMOY(O,0). (4.15)

We differentiate equation (4.15), with respect to their respective dependent variables of r, 6,

and ¢, and putting the result of differentiation along with equation (4.15), in equation (4.14),

WY d/ OR R @ R [0%Y
——|s= (r ) (sm(@) —) ,
2m|r2ar\" ar) ' 12sin(0) 30 rzsmz (0) \ 0¢?

+V(@R@Y(O,0) = ER@)Y(0,0).

we obtain

2
We multiply the above equation by, and — zhizr and rearranging we obtain

1
R(DY(6,9)

i (OF) + i (53] =

The above equation can be split into functions in order of their dependent variable, and then

10 2dR 2mr2
o (PT) T (VO -BR+

introduce €(£ + 1) as the constant of separation, we obtain

2 (D) - 27 (V(r) — E)R = 0(€ + 1). (4.16)

Similarly,
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tma (ROF) + 5 (5)] =~ o, (417)
Again we can split equation (4.17), into two separate functions according to their dependent
variable of 6 and ¢ , by assuming the solution of (4.17) as

Y(0,¢) = 0(0)o(e). (4.18)
We differentiate equation (4.18), with respect to their respective dependent variable of 6, and
o, and putting the result of differentiation along with equation (4.18), in equation (4.17), we

obtain two separate functions as

<oy 20=0 (4.19)
d([)2 “‘ ) .
also,
sin(0) o (sin(0) 52) + £(L + Dsin’ ()6 = 0. (4.20)

Solving equation (4.19), we get

8(0) = \f o, 421)

where A = \g is evaluated via normalization method.

Similarly, we have the solution of equation (4.20), as the Legendre function as
@} o« P (cos(0)) , where the range —¢, ..., £ is restricted by p, and we obtain

P“(X) — (- X)abs(p.)( )abS(u)

, (4.22)
where P} (x), is the Legendre function in equation (4.22).

We combine the functions in equations (4.21) and (4.22), to the spherical harmonic function as

1
e+ (t-abs(w))2 ;
YH(0,9) = (W) OB (cos(6)). (4.23)
Now, inserting U(r) = rR(r), in equation (4.16), we obtain
2 2
L4 (V( )+ ““”) U() = BU(), (424)

Equation (4.24), is the radial equation similar to one dimensional Schrédinger time
independent equation, with effective potential as

Ve = V() + " =D (4.25)

Substituting r = 0, in equation (4.24), y(r,0) = 0, but if r < a, we obtain
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= (2 -K)uw = Eu), (4.26)

By putting k = /MTE then we present the general solution of equation (4.26), as

U() = Cij, (kr) + Cyny(kr). (4.27)

L.
jok) = (2" (5) =2 w26)

(k) = —(=2)" (14) =2,

z

where

For small values of r in equation (4.27), the Bessel spherical function (j, (kr)) is finite at the
origin and Neumann spherical function (n, (kr)), is infinite at the origin, it means C, = 0, the
equation (4.27) reduces to

U() = Cij, (kr). (4.29)
Since, U(a) = 0, then iR (kr) = 0, which also implies the zeros of a Bessel function. By putting
krp =B, where B is the n™, zero of spherical Bessel function of the ¢™order, means for

each order £, we have the corresponding zero of the function as n.

Now, we can put k = B:—“ and recall that k = —Z;E by this assertion, the individuals zeros and
1

energies of the function can be evaluated from the relation

2 42
E — Bf,nh
Ln 2mr%' )

(4.30)
Hence, the general solution of the function is

Brar
Womu(r,0,0) = Ciule (*—) Y (6,9), (4.31)

r
where C,,, is a constant, which can be evaluated by normalization of the function, by using

particular examples of the zeros of the spherical Bessel function.
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CHAPTER FIVE
NUMERICAL RESULTS

In this section, we shall present the numerical solutions, for a mixed problem of a Schrédinger
equation. This is necessary when the analytic solution becomes too problematic to obtain.
Numerical solution means, in simple terms to present the approximate solution of a problem.

Numerical solution plays very important role in the world of applied mathematics and
engineering. We shall use the modified Gauss elimination method, to present the approximate
solution for the mixed problem of Schrodinger equation, via the use of Matlab programming
language to realize our computations. The approximate solution of the first and second order

accuracy difference scheme shall be presented.

5.1. Mixed Problem For a Schrodinger Equation
We now consider the mixed problem for the Schrédinger equation

iu, (t,X) + X°u (t, X) + xu, (t,x) + (x° —%)u(t, X) +u(t,x) =0,

0<t<7z0<x<m,

u(0,x) = \/%sin(x),o <x<ur,

u(t,0)=u(t,7)=0,0<t< .

(5.1)

Solving problem (5.1) partially, by separation of variables, we obtain the analytic solution for

the problem as

u(t,x) = eit\/g sin(x). (5.2)

For numerical solution of (5.1), we consider the first order accuracy difference scheme

k k-1 k k k k k
.u-—u 2u’ ., —2u° +U u ., —u 3
j—n n +X§ n+1 2n n_l-i-Xn n+1 n—l+(X§+_

T h 2h 4

0<k<N,x,=nhl<n<m-1mh=z,Nz=r,

ul = ,/i sin(x),x, =nh,1<n<m,
X

us =uf =0,0<k <N.

Jul =0,

(5.3)

we can express the above system in (5.3) in it matrix form as
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(5.4)

U+ B, +C Uy = D)/n,ls n<m-1
us =u =0,

here,
_ 00 _
0 0
0 a 0 0
A.=
0 0O a
o600 . . .0 CY PR
1 0 0 0 0 O]
c d 0 0 0 O
c d 0 0 O
B.=
0 0 O 0 c d
_0 0 O ' ) 0 C_(N+1)><(N+l)
0 0 0 0 0 O]
0O b O 0 0O
0 b 0 0O
C.=
0 0O
—0 co . .0 b_(N+1)><(N+1)
2 - - 2 2
where a:ﬁ+ﬁ;czl;d =l_2X2n +xn2+§;b=x—g—ﬁ
h® 2h T r h 4 h® 2h
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- o]
’n
7,1 y =01<k<N,
n n
2N 1y 2 2sin(x)x—x |
. V0= | SNOX =,
_7/n dnsya

The identity matrix D = Iy, ,

u. = ,S=n-1nn+1.

[ 7S N+t

The system in (5.4), will be evaluated to obtain the approximate solution, via the modified
Gauss elimination method. The solution of the matrix can be presented as
u,=a, U, +45,..,n=m-1..,21u =0.

Where u, =u, =0, o,(j=1,..,m— 1), are square matrices of (N+1) x (N+1) and B, (j =

l,..,m—1),is (N + 1) x 1 column matrix and

Q= (Bn +Cn05n+1)71
a, = QA,
ﬂn :Q(Dnyn_cnﬂm—l) (5 5)

The error of the system can be computed by

1
EN = max;een-1 (Z45H ulti, x,) — uk|*h)? (5.6)
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implying that u(t,, x,) is the exact solution of the problem and uX is the numerical solution of

the problem at u(ty, x,) and the numerical result is as follows

Table 5.1: Error result for first order of accuracy difference scheme.

Difference schemes m=N=20 | m=N=40 | m=N=80

First order numerical result | 0.1831 0.0893 0.0419

From the numerical result presented in Table5.1, when we doubled the value of N and m, the

error obtained is decrease by a factor of approximately Y2, for the first order accuracy

difference scheme.
Similarly, for the numerical solution of the mixed problem in (5.1), we consider the second of

order accuracy difference scheme

k k-1 k k k k k
.u'—u 1 u ,—2u° +u u .. —u 3
j—n n +—(X§ n+1 2n n-1 + Xn n+1 n-1 +(X§ +_)url:
T 2 h 2h 4
k-1 k-1 k-1 k-1 k-1
u' s —2u. " +u u s —u 3.
+X§ n+l r12 n-1 n+l n-1 + (Xﬁ + _)ulr: l) _ 0,
h 2h 4
0<k<N,x. =nh,1<n<m-1mh=7x,N7=r, 5.7
n

u = /i sin(x),x, =nh,1<n<m,
X

ug =uf =0,0<k <N.

Equation (5.7) can be represented in its matrix form of (5.4)

where,
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0 0

el e2
0 e

€.
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(N+1)x(N+1)

(N+1)x(N+1)



0 0 0

g, g, ©

° g, G,
C.=

0 0 0

0 0 0

_ _ _ X% Xn-f_f
e_el_e2_2h2+E’ L]

X2 X

00,20, 3 i

where

Applying (5.5), we can obtain the approximate solution, via the modified Gauss elimination

method.

0O 0 O
0 0 0
0O 0 O
g, 9, 0
0 g 1 g 2_J(N+1)x(N+1)
i x2 x2 3
—_ n _n+_1
f2 h> 2 8

The error of the system can be computed, using (5.6), the solution is as follows

Table 5.2: Error result for second order of accuracy difference scheme.

Difference schemes

m=6,N=108

m=12,N=300

m=24,N=1200

Second order numerical

result

0.0646

0.0144

0.0037

From the numerical result above, when we doubled the value of m and increased the value of

N, the error obtained is decrease by a factor of approximately %4, for the second order accuracy

difference scheme.
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5.2 Conclusion

In this thesis, we examined a study of Bessel functions and applications to the solution of
Schrodinger time independent equation in cylindrical and spherical well. We dissects the
Laplace Equation in their respective coordinates and then relate them with Schrddinger time
independent equation and presents their solutions and also discussed the nature of their zero
potentials inside and infinite potential outside the box.

We presented the behavior of their solutions as they relates to Schrddinger time independent
equation, along these regions. This revealed that the individual zeros and energies of the
function can be evaluated due to the interrelation of their solutions inside and outside the box.
Furthermore, we presented the numerical solution, for mixed problem of a Schrddinger
equation, for but first and second order accuracy scheme, in which the error analysis is

decreased by an estimated factor in each case.
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APPENDICES

APPENDIX 1: MATLAB IMPLEMENTATION CODE FOR FIRST ORDER
ACCURACY DIFFERENCE SCHEME

%first order

N=80;

M=80;

tau=pi/N;

h=pi/M;
A=zeros(N+1,N+1,M+1);
C=zeros(N+1,N+1,M+1);
B=zeros(N+1,N+1,M+1);

for n=1:M+1;

for i=2:N+1,;
x=(n-1)*h;
A(i,i,n)=((x"2)/(h"2))+(x/(2*h));
end;
A
end
for n=1:M+1,

for i=2:N+1;
x=(n-1)*h;
C(i,i,n)=((x"2)/(h"2))-(x/(2*h));
end;
G
end
for n=1:M+1,
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for j=2:N+1 ;
x=(n-1)*h;

B(j,j-1,n)=(complex(0,-1))/(tau);
B(j,j,n)=((complex(0,1))/(tau))-(2*(x"2)/(h"2))+(x"2)+(3/4);
end;

B(1,1,n)=1;

B;
end
D=eye(N+1,N+1);
fii=zeros(N+1,N+1);

for n=2:M+1

x=(n-1)*h;
for k=2:N;

fii(k,n) =0;
fii(1,n) =((2/(pi*x))(1/2))*sin(x);
end;
end
fii(1,1) =0;
alpha{1}=zeros(N+1,N+1);
betha{1}=zeros(N+1,1);

for j=2:M;

Q=inv(B(:,:j)*+C(:,2.j)*alpha{j-1});

alpha{j}=-Q*A(:,.));

betha{j}=Q*(D*(fii(:,j))-C(:,:,j)*betha{j-1});

end;

U=zeros(N+1,M+1);

for j=M:-1:1
U(:,j)=alpha{j}*U(:,j+1)+betha{j};
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end

'EXACT SOLUTION OF THIS PROBLEM';
for j=2:M+1 ;

for k=1:N+1 ;

es(k,j) =exp((complex(0,1))*(k-1)*tau)*((2/(pi*(j-1)*h))*(1/2))*sin((j-1)*h);
end;

end;

%figure ;
%m(1,1)=min(min(U))-0.01;
%m(2,2)=nan;

%surf(m);

%hold;

%surf(es) ; rotate3d ;axis tight;
%title(EXACT SOLUTIONY;
%figure ;

%surf(m);

%hold;

%surf(U) ; rotate3d ;axis tight;
%title('FIRST ORDERY);

% .ERROR ANALYSIS;
maxes=max(max(abs(es))) ;
maxerror=max(max(abs(es-U)));
relativeerror=maxerror/maxes;

cevapl = [maxerror,relativeerror]
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APPENDIX 2: MATLAB IMPLEMENTATION CODE FOR SECOND ORDER
ACCURACY DIFFERENCE SCHEME

%Second order

N=80;

M=80;

tau=pi/N;

h=pi/M;
A=zeros(N+1,N+1,M+1);
C=zeros(N+1,N+1,M+1);
B=zeros(N+1,N+1,M+1);

for n=1:M+1;

for i=2:N+1;
x=(n-1)*h;
A(1i-1,m)=(1/2)*((x"2)/(h"2))+(x/(2*h)));
A(11,m)=(1/2)*(((x*2)/(h"2))+(x/(2*N)));

end;

A

end

for n=1:M+1,

for i=2:N+1;
x=(n-1)*h ;
C(i,1,n)=(1/2)*(((x"2)/(h"2))-(x/(2*N)));
C(i,i-1,n)=(1/2)*((x"2)/(h"2))-(x/(2*N)));
end;
G
end
for n=1:M+1,
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for j=2:N+1 ;
x=(n-1)*h;
B(j,j,n)=((complex(0,1))/(tau))-(1/2)*((2*(x"2)/(h"2))-(x"2)-(3/4));
B(j,j-1,n)=-((complex(0,1))/(tau))-(1/2)*((2*(x"2)/(h"2))-(x"2)-(3/4));
end;
B(1,1,n)=1;
B;
end
D=eye(N+1,N+1);
fii=zeros(N+1,N+1);
for n=2:M+1
x=(n-1)*h;
for k=2:N;
fii(k,n) =0;
fii(1,n) =((2/(pi*x))"(1/2))*sin(x);
end;
end
fii(1,1) =0;
alpha{1}=zeros(N+1,N+1);
betha{1}=zeros(N+1,1);

for j=2:M;

Q=inv(B(:,:j)*+C(:,2.j)*alpha{j-1});

alpha{j}=-Q*A(:,.));

betha{j}=Q*(D*(fii(:,j))-C(:,:,j) *betha{j-1});

end;

U=zeros(N+1,M+1);

for j=M:-1:1
U(:,j)=alpha{j}*U(:,j+1)+betha{j};

end
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'EXACT SOLUTION OF THIS PROBLEM',;
for j=2:M+1 ;

for k=1:N+1 ;

es(k,j) =exp((complex(0,1))*(k-1)*tau)*((2/(pi*(j-1)*h))*(1/2))*sin((j-1)*h);
es(k,1)=0;

end;

end;

%figure ;
%m(1,1)=min(min(U))-0.01;
%m(2,2)=nan;

%surf(m);

%hold;

%surf(es) ; rotate3d ;axis tight;
%title(EXACT SOLUTIONY;
%figure ;

%surf(m);

%hold;

%surf(U) ; rotate3d ;axis tight;
%title('FIRST ORDERY);

% .ERROR ANALYSIS;
maxes=max(max(abs(es))) ;
maxerror=max(max(abs(es-U)));
relativeerror=maxerror/maxes;

cevapl = [maxerror,relativeerror]
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