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ABSTRACT

A constructive method for 5 and 9 point approximate solution of Laplace’s and second

order general linear elliptic equations with nonlocal integral boundary condition is proposed

and justified. In this method, the approximate solution is defined as a solution of the

classical Dirichlet problem by using special method to seek a function instead of the

nonlocal boundary value.

Furthermore, a novel estimation for the convergence of the fourth order finite difference

scheme for the second order general elliptic equation containing first order partial derivatives

with variable coefficients is obtained.

The uniform estimate of the error of approximate solution for Laplace’s equation and the

second order general elliptic equations obtained by the proposed method is of order O(h2)

and O(h4), when 5-point and 9-point scheme are used, respectively. These estimations are

proved when the exact solutions are from the Hölder classes Ck,λ, 0 < λ < 1, on the closed

solution domain. It is verified that the order O(h2) and O(h4) are obtained for Laplace’s

equation when k = 2 and k = 4, respectively. For the general elliptic equation the same

estimations are obtained when k = 4 and k = 6, respectively. Numerical experiments are

given to support the obtained theoretical analysis.

Keywords: Laplace’s equation; second order linear elliptic equation; Dirichlet problem;

nonlocal integral condition; finite difference scheme; uniform estimation
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ÖZET

Yerel olmayan integral sınır şartlı Laplace ve ikinci mertebeden genel doğrusal elliptik

denklemlerin 5 ve 9 nokta yaklaşık çözümleri için yapısal bir yöntem önerilir ve doğrulanır.

Bu yöntemde yaklaşık çözüm, yerel olmayan sınır şartı yerine özel yöntemle bir fonksiyon

bulunarak klasik Dirichlet probleminin bir çözümü olarak tanımlanır.

Ayrıca, değişken katsayılı birinci mertebeden kısmi türevleri içeren ikinci mertebeden genel

elliptik denkleminin, dördüncü mertebeden sonlu farklar şemasının yakınsaklığı için yeni bir

tahmin elde edilir.

5 nokta ve 9 nokta planı kullanılarak, Laplace ve ikinci mertebeden genel elliptik denklemleri

için yaklaşık çözümün hatasının düzgün tahmini sırası ile O(h2) ve O(h4) mertebesindendir.

Bu tahminler, kesin çözümler kapalı çözüm alanında Ck,λ, 0 < λ < 1, Hölder sınıfından

olduğunda ispatlanır. Sırası ile k = 2 ve k = 4 olduğunda, Laplace denklemi için O(h2) ve

O(h4) mertebelerin elde edildiği ispatanlanır. Ikinci mertebeden genel elliptik denklemleri

için, sırası ile k = 4 ve k = 6 olduğunda aynı tahminler elde edilir. Elde edilen teorik

sonuçları desteklemek için sayısal deneyimler verilir.

Anahtar Kelimeler: Laplace denklemi; ikinci mertebeden doğrusal elliptik denklem;

Dirichlet problem; yerel olmayan integral şartı; sonlu farklar şeması; düzgün tahmin
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CHAPTER 1

INTRODUCTION

Bitsadze and Samarskii (1969) stated the nonlocal boundary value problem of finding a

harmonic function on an open rectangle for the given continuous functions on three sides

and on the fourth side of the rectangle is given by using the solution at as the middle of the

rectangle which is parallel to this side (one level nonlocal boundary value problem).

The multilevel nonlocal boundary value problems which are the generalizations of the

nonlocal Bitsadze-Samarskii type problem were studied by many authors (see in Gurbanov

& Dosiyev, 1984; Il’in & Moiseev, 1990; Sapagovas, 2002; Gordeziani et all, 2005;

Skubachevskii, 2008; Ashyralyev & Ozturk, 2012; Ashyralyev & Ozturk, 2013). Il’in and

Moiseev (1990) verified that if the fourth derivatives of the solutions of the multilevel

nonlocal boundary value problem are continuous on the closed rectangular domain, the

error bound in the uniform metric and in the difference metric W2
2 has a second order

accuracy.

Another important generalization of the Bitsadze-Samarskii problem is the one with integral

boundary condition. These type of problems have many applications in different engineering

problems. (see Jack et all, 1975 and references given therein).

Different type of finite difference problem for Laplace’s equation as an approximation of

the nonlocal problem with integral boundary condition has been studied by many authors

(see Sapagovas, 2008; Zhou et all, 2018 and references given therein). They all basically

focused on the following two difficulties in the existence of the quadrature approximation of

the integral condition on the side of the domain where nonlocal condition was given: (i)

finding an approximate solution by solving the obtained system of equations which are

non-band matrices, (ii) determining the rate of convergence of the approximate solution by

appropriate smoothness conditions on the given data. In (Sapagovas, 2008), the system of

finite difference equations in the case of integral boundary condition for Poisson equation

has been studied for the spectrum of the matrix to apply an iterative method. Moreover, the

author obtained some conditions for which this system has a unique solution. In
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(Berikelashvili, 2001) and (Berikelashvili & Khomeriki, 2012), for the error of approximate

solution, order of estimation O(h2) in the difference W1
2 metric is obtained, where h is the

mesh step. In (Zhou et all, 2018), a finite-difference approximation for the problem with

integral boundary conditions is constructed by pre-reducing of the given problem to the

problem with nonlocal conditions containing derivatives. The authors proved that when the

fourth order partial derivatives of the exact solution are continuous on the closed solution

domain, the uniform estimate is of order O(h2 |ln h|).

Many researchers have been studied on the general elliptic equation with integral boundary

condition (see Wang, 2002; Avalishvili et all, 2010; Sajavicius, 2014; Sapagovas et all, 2016

and given references therein). Wang (2002) investigated eigenvalue problems, existence and

dynamic behavior of solutions of the elliptic equation with integral nonlocal condition by

using comparison principle and a semigroup approach. Avalishvili and Gordeziani (2010)

proved the uniqueness of the elliptic equation with two integral boundary conditions and

obtained a new prior estimates. In (Sajavicius, 2014), the radial basis function collocation

technique is used to find an approximate solution of elliptic equation with nonlocal integral

boundary condition. Sapagovas, Stikoniene, Ciupalia and Joksiene (2016) focused on how

convergence of iterative methods for the system of difference equations, approximating the

elliptic two dimensional equation with integral nonlocal condition depends on the structure

of spectrum for difference operator.

Research of the nonlocal boundary value problem for different type parabolic and

hyperbolic equations with integral boundary condition and its finite difference scheme are

conducted by numerous mathematician (see in Mesloub & Bouziani, 1999; Pul’kina, 2002;

Dehghan & Tatari, 2007; Sapagovas & Jakubelience, 2011 and references given therein).

Pul’kina (2002) proved the unique solvability of a hyperbolic equation with integral

boundary condition in the function class W2
2 . Dehghan and Tatari (2007) used a radial basis

function to find an approximation of the solution for the one-dimensional parabolic

equation with integral boundary condition. They gave numerical results to show efficiency

of the given method to compare with other type finite-difference method. Sapagovas and

Jakubelience (2011) solved a two-dimensional parabolic equation with nonlocal integral

2



condition by alternating direction method and they studied on the spectrum of the matrix

obtained by the system of finite difference equations.

A new method for the solution of the Poisson equation with nonlocal boundary condition

was given and the problem was defined as the sum of two classical local Dirichlet problems.

(Volkov et all, 2013) By applying the contraction mapping principle, the uniqueness and

existence of the classical solutions and approximate solutions of the multilevel nonlocal

boundary value problem were proved with more general restriction for the coefficients in

nonlocal condition. (Volkov, 2013; Volkov & Dosiyev, 2016).

In Chapter 2 at the first section, the 5-point approximation on a square grid with step size h

of the nonlocal boundary value problem for Laplace’s equation with integral boundary

condition are proposed and justified by using the new constructive method given by Volkov

and Dosiyev (2016). By applying trapezoidal rule for the integral boundary condition, the

approximate problem is defined as the multilevel nonlocal boundary value problem that is

given as the sum of two 5-point Dirichlet problem. In the first Dirichlet problem, the

nonlocal condition is modified with zero. In the second Dirichlet problem, the local

boundary condition is replaced by zeros values and the boundary value where nonlocal

condition is given is defined as a function by using n-th iteration of the convergent fixed

point iterations for nonlinear system of equations. It is verified that when the boundary

functions are from the Hölder classes C2,λ, 0 < λ < 1, continuous and vanish at the enpoints,

the uniform estimate of the error of the approximate solution is order of O(h2), h is the step

mesh.

At the second section in Chapter 2, we propose and justify the method given in Section 1 to

solve the system of nonlocal 9-point finite difference problem for the Laplace equation with

the integral boundary condition. The solution of this nonlocal difference problem is defined

as a solution of the 9-point Dirichlet problem by constructing the approximate values of

the solution on the side where the integral condition was given. Therefore, the approximate

solution is obtained by solving a system with 9 diagonal matrices, for the realization of which

proposed many fast algorithms. (see in Samarskii & Nikolaev, 1989, Vol 1-2). Moreover,

the uniform estimate of the error of approximate solution is of order O(h4), when the given

3



boundary functions on the sides belong to the Hölder classes C4,λ, 0 < λ < 1, and 2m − th

order of derivatives vanish at the endpoints for m = 0, 1, 2.

In Chapter 3 at the first section, the second order general elliptic operator containing first

order partial derivatives with variable coefficients in 2-dimensions is introduced in the form

Lu = ∆u + a
∂u
∂x

+ b
∂u
∂y

+ cu (1.1)

where ∆ ≡ ∂2/∂x2 + ∂2/∂x2, a, b and c are functions of (x, y). We construct the 5-point

difference scheme for the approximation of the nonlocal problem with integral condition

for the second order linear elliptic equation. The solution of the problem is defined as the

sum of two 5-point Dirichlet problems which are given as multilevel problems by using the

method given in Chapter 2. It is proved that when the boundary functions are from the class

C4,λ, 0 < λ < 1, the uniform estimate of the error of the approximate solution is order of

O(h2).

At the second section in Chapter 3, the fourth order finite difference scheme for the solution

the nonlocal boundary value problem of the second order elliptic equation with integral

boundary condition is investigated. In (Dennis & Hudson, 1979;1980), the elliptic equation

(1.1)is expressed as following two equations

∂2u
∂x2 + a

∂u
∂x

+ cu = r(x, y) (1.2)

∂2u
∂y2 + b

∂u
∂y

= −r(x, y) (1.3)

to obtain a different type approximations which is diagonally dominant for certain significant

cases by using difference correction method of Fox (1947). Gupta (1983) presented a fourth

order finite difference scheme for a general class of second order elliptic equation on nine

node points by using local power series representations. Karaa (2005) proposes a fourth-

order difference scheme for the two dimensional elliptic equation on a regular hexagon over

a seven point stencil. They all give the fourth order finite difference scheme deficiency from

its convergence. However Dennis, Hudson (1979;1980) and the researcher (Gupta, 1983;

Karaa, 2005 and references given therein) studying on fourth order finite difference scheme

4



for the second order elliptic equation are focus on numerical results without proving the

convergence of the finite difference scheme. In this section, we justified the fourth-order

convergence of Dennis-Hudson’s finite difference scheme under an assumption for the step

size h as hK ≤ 2, for some calculable positive constant K depending on the coefficients of

the equation (1.1) . After demonstrating the convergence of the finite difference scheme, the

method given in first section for the approximation of the second order elliptic equation with

nonlocal integral condition is proposed and justified. The solution of this nonlocal difference

problem is defined as a solution of the 9-point Dirichlet problem. The uniform estimate of

the error of approximate solution is of order O(h4), when the given boundary functions are

from the Hölder classes C6,λ, 0 < λ < 1.

In Chapter 4, numerical experiments are given to support the obtained theoretical results.

Additionally, the CPU times are illustrated to show efficiency of proposed method.

The results of Chapter 2 in this dissertation are published in (Dosiyev & Reis, 2018;2019).
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CHAPTER 2

DIFFERENCE DIRICHLET PROBLEM FOR THE APPROXIMATE SOLUTION

OF LAPLACE’S EQUATION WITH NONLOCAL INTEGRAL CONDITION

2.1 SECOND ORDER ACCURACY FOR THE LAPLACE EQUATION WITH

INTEGRAL BOUNDARY CONDITION

2.1.1 Overview

In this section, the 5-point approximation of the nonlocal boundary value problem of

Laplace’s equation with integral boundary condition is proposed and justified by using the

new constructive method that Volkov and Dosiyev used (see in Volkov & Dosiyev, 2016).

By applying trapezoidal rule for the integral boundary condition, the problem is defined as

the multilevel nonlocal boundary value problem that is given as the sum of two 5-point

Dirichlet problems. It is verified that when the boundary functions are from the class

C2,λ, 0 < λ < 1, the uniform estimate of the error of the approximate solution is order of

O(h2), h is the step mesh.

2.1.2 Nonlocal boundary value problem

Let

R = {(x, y) : 0 < x < a, 0 < y < b} (2.1)

be an open rectangle, γm,m = 1, 2, 3, 4, be its sides including the endpoints, numbered in the

clockwise direction, beginning with the side lying on the y-axis and let γ = ∪4
m=1γ

m be the

boundary of R.

Let C0 denote the linear space of continuous functions of one variable x on the interval [0, a]

of x-axis, and vanish at the points x = 0 and x = a. For the function f ∈ C0, we define the

norm

‖ f ‖C0 = max
0≤x≤a

| f (x)| . (2.2)

It is clear that the space C0 with this norm is complete.

6



Consider the following nonlocal boundary value problem

4u = 0 on R, u = 0 on γ1 ∪ γ3, u = τ on γ2, (2.3)

u(x, 0) = α

∫ b

ξ

u(x, y)dy + µ(x), 0 < x < a, 0 < ξ < b, (2.4)

where ∆ ≡ ∂2/∂x2 + ∂2/∂x2 is the Laplacian, τ = τ(x) ∈ C0 and µ = µ(x) are given functions

and α is a given constant which holds |α| < 1
b−ξ . By replacing the integral condition (2.4)

with its approximation using trapezoidal rule, we have

u(xi, 0) = α

M∑
k=1

ρku(xi, ηk) + µi, i = 1, 2, ...,N − 1, (2.5)

where ρ1 = ρM = h
2 , ρ j = h for j = 1, 2, ...,M − 1, η j = ξ + ( j − 1)h, j = 1, 2, ...,M, h = a

N ,

(M − 1)h + ξ = b and ξ

h is an integer.

It follows that

|α|

M∑
k=1

ρk = q0 < 1. (2.6)

We consider the following multilevel nonlocal boundary value problem on R :

4U = 0 on R, U = τ on γ2, U = 0 on γ1 ∪ γ3 , (2.7)

U(x, 0) = α

M∑
k=1

ρkU(x, ηk) + µ(x), 0 ≤ x ≤ a. (2.8)

Let V be a solution of the Dirichlet problem,

4V = 0 on R, V = τ on γ2, V = 0 on γ/γ2. (2.9)

We denote

ϕk(x) = V(x, ηk) for k = 1, 2, ...,M, (2.10)

and

ϕ = α

M∑
k=1

ρkϕk. (2.11)

7



We consider the Dirichlet problem

4W = 0 on R, W = 0 on γ/γ4, W = f on γ4, (2.12)

where f be an unknown function from C0.

We define the operator Bi : C0 → C0 as

Bi f (x) = W(x, ηi) ∈ C0, i = 1, 2, ...,M. (2.13)

Let

W1(x, y) =
1
b
‖ f ‖C0 (b − y) , (x, y) ∈ R.

We put

ω
+
− = W1

+
−W on R.

Since W and W1 are harmonic functions on R, we construct the following boundary value

problem

4ω
+
− = 0 on R, ω

+
− =

1
b
‖ f ‖C0 (b − y) on γm,m = 1, 3, (2.14)

ω
+
− = 0 on γ2, ω

+
− = ‖ f ‖C0

+
− f on γ4.

The following estimate satisfies

ω
+
− ≥ 0 on γ.

By maximum principle, it follows that

ω
+
− ≥ 0 on R,

which yields

|W(x, y)| ≤
1
b
‖ f ‖C0 (b − y) on R.

Therefore, we find that

|Bi| < 1 − ξ+(i−1)h

b
, i = 1, 2, ...,M, (2.15)

8



and

0 < |BM | < |BM−1| < ... < |B1| < 1. (2.16)

Then the following inequality holds

|B1| q0 = q < 1, (2.17)

where q0 is defined in (2.6).

It is obvious that,

U(x, 0) = f (x), 0 ≤ x ≤ a. (2.18)

Since U = V + W, we have

U(x, ηk) = V(x, ηk) + W(x, ηk).

Then

f = α

M∑
k=1

ρk (V(x, ηk) + W(x, ηk)) + µ(x). (2.19)

Relying on (2.10), (2.11), (2.13) and (2.19) , the function f satisfies the following relation

f = ϕ + µ + α

M∑
k=1

ρkBk f . (2.20)

Existence of f :

Let

ψ0
i = 0, ψn

i = Bi

ϕ + µ + α

M∑
k=1

ρkψ
n−1
k

 ,
i = 1, 2, ...,M; n = 1, 2, .... (2.21)

Then, for the positive integers m and n with m > n, we write

ψm
i − ψ

n
i = Bi

α M∑
k=1

ρk

(
ψm−1

k − ψn−1
k

) , i = 1, 2, ...,M.

By using the inequalites (2.16) and (2.17) , we get∥∥∥ψm
i − ψ

n
i

∥∥∥
C0 ≤ q

∥∥∥ψm−1
i − ψn−1

i

∥∥∥
C0 , (2.22)

9



where q is defined by (2.17). In a similar way with (2.22), we reach∥∥∥ψm
i − ψ

n
i

∥∥∥
C0 ≤ qn+1 1 − qm−n

1 − q
(
‖ϕ‖C0 + ‖µ‖C0

)
.

From this, we conclude that the sequences of functions (2.21) are fundamental. Therefore,

there are limits

lim
n→∞

ψn
i = ψi ∈ C0, i = 1, 2, ...,M. (2.23)

The following limits also exist:

lim
n→∞

Bkψ
n
i = Bkψi ∈ C0, i, k = 1, 2, ...,M. (2.24)

By taking limit of (2.21) as n→ ∞, we obtain

ψi = Bi

ϕ + µ + α

M∑
k=1

ρkψk

 , i = 1, 2, ...,M. (2.25)

Therefore we conclude that

ϕ + µ + α

M∑
i=1

ρiψi = ϕ + µ + α

M∑
i=1

ρiBi

ϕ + µ + α

M∑
k=1

ρkψk

 . (2.26)

In the view of the relations (2.20) and (2.26), we obtain

f = ϕ + µ + α

M∑
k=1

ρkψk. (2.27)

Uniqueness of f :

Let f P ∈ C0, p = 1, 2, be two functions satisfying the relation (2.20). That is

f P = ϕ + µ + α

m∑
k=1

ρkBk f P, p = 1, 2.

Then we reach the inequality

∥∥∥ f 1 − f 2
∥∥∥

C0 =

∥∥∥∥∥∥∥α
m∑

k=1

ρkBk

(
f 1 − f 2

)∥∥∥∥∥∥∥
C0

≤ q
∥∥∥ f 1 − f 2

∥∥∥
C0 ,

which satisfies if f 1 = f 2.
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2.1.3 Approximate solution of the nonlocal problem by the finite difference method

We say that F ∈ Ck,λ(E), if F has k-th derivatives on E satisfying the Hölder condition with

exponent λ.

We assume that τ(x) ∈ C2,λ
(
γ2

)
, µ(x) ∈ C2,λ

(
γ4

)
in (2.3) and (2.4), respectively.

On the basis of Lemma 1 and Lemma 2 (Volkov & Dosiyev, 2016) it follows that the function

ϕ defined by (2.11) and the functions ψi, i = 1, 2, ...,M, in (2.25) obtained as the limits of the

sequences (2.21) belong to C2,λ, 0 < λ < 1, on the interval 0 ≤ x ≤ a.

We define a square mesh with the mesh size h = a
N = b

M∗ , N,M∗ > 2 are integers, constructed

with the lines x, y = h, 2h, ....Let Dh be the set of nodes of this square grid, Rh = R ∩ Dh, and

Rh = R ∩ Dh, where R is the rectangle (2.1), and γm
h = γm ∩ Dh,m = 1, 2, 3, 4.

Let

[0, a]h =

{
x = xi, xi = ih, i = 0, 1, ...,N, h =

a
N

}
be the set of points divided by the step size h on [0, a] .

Let C0
h be the linear space of grid functions defined on [0, a]h that vanish at x = 0 and x = a.

The norm of a function fh ∈ C0
h is defined as

‖ fh‖C0
h

= max
x∈[0,a]h

| fh| .

Let Ah be the operator as follows:

Ahuh ≡ (uh(x + h, y) + uh(x − h, y) + uh(x, y + h) + uh(x, y − h)) /4.

Consider the system of grid equations

vh = Ahvh on Rh, vh = τh on γ2
h, vh = 0 on γh/γ

2
h, (2.28)

where τh is the trace of τ on γ2
h and we define

ϕ̃i,h(x) = vh(x, ηi), i = 1, 2, ...,M. (2.29)

Let wh be a solution of the finite difference problem

wh = Ahwh on Rh, wh = 0 on γh/γ
4
h, wh = f̃h on γ4

h, (2.30)
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where f̃h ∈ C0
h, is an arbitrary function.

Let Bh
i be a linear operator from C0

h to C0
h as follows:

Bh
i f̃h(x) = wh (x, ηi) , i = 1, 2, ...,M, (2.31)

where wh is the solution of the problem (2.30).

By Theorem 1.1 (Volkov, 1979), we have

max
(x,y)∈Rh

|vh − Vh| ≤ c1h2, (2.32)

where vh is a solution of the problem (2.28), Vh is the trace of the solution of (2.9) on R and

c1 is a constant independent of h.

Let

wh(x, y) =
1
b

∥∥∥∥ f̃h

∥∥∥∥
C0

h

(b − y) , (x, y) ∈ R.

Then we have,

wh ≤ wh on γh.

Additionally we get,

4hwh = 0.

It follows that,

4h (wh − wh) = 0.

By maximum principle, it yields that

|wh(x, y)| ≤
1
b

∥∥∥∥ f̃h

∥∥∥∥
C0

h

(b − y) on R.

Therefore, the following inequality holds in a similar thought of the estimate (2.15)∥∥∥∥Bh
i f̃h(x)

∥∥∥∥
C0

h

≤

∥∥∥∥ f̃h

∥∥∥∥
C0

h

(
1 − ξ+(i−1)h

b

)
, i = 1, 2, ...,M. (2.33)

Define

ϕ̃h = α

M∑
k=1

ρkϕ̃k,h(x), x ∈ [0, a]h , (2.34)

12



where ϕ̃k,h is function (2.29).

By (2.11), (2.32) and (2.34), we obtain

‖ϕ̃h − ϕh‖C0
h
≤ c2h2, (2.35)

where ϕh is the trace of the function ϕ defined by (2.11) on [0, a]h and c2 is a constant

independent of h.

In a similar thought with the relation (2.20) we have

f̃h = ϕ̃h + µh + α

M∑
k=1

ρkBh
k f̃h, on γ4

h, (2.36)

where µh is the trace of the function µ defined by (2.4) on [0, a]h .

Consider the following sequences in C0
h :

ψ̃0
i,h = 0, ψ̃n

i,h = Bh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃
n−1
k,h

 ,
i = 1, 2, ...,M; n = 1, 2, .... (2.37)

By using the inequality (2.33), the sequence
{
ψ̃n

i,h

}∞
n=0

defined by (2.37) converges to the

unique solution which is denoted by ψ̃i,h, i = 1, 2, ...,M. It follows that

ψ̃i,h = Bh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃k,h

 , i = 1, 2, ...,M. (2.38)

On the basis of (2.36) and (2.38), we have

f̃h = ϕ̃h + µh + α

M∑
k=1

ρkψ̃k,h. (2.39)

Let ψn
i,h, ϕh and (Biϕ)h be the trace of ψn

i , ϕ and Biϕ on [0, a]h , respectively.

By using (2.21) and (2.37) we have, for all i = 1, 2, ...,M,∥∥∥ψ̃0
i,h − ψ

0
i,h

∥∥∥
C0

h
= 0. (2.40)

Then, ∥∥∥ψ̃1
i,h − ψ

1
i,h

∥∥∥
C0

h
≤

∥∥∥Bh
i (ϕ̃h − ϕh)

∥∥∥
C0

h

+
∥∥∥Bh

i (ϕh + µh) − (Bi (ϕ + µ))h

∥∥∥
C0

h
. (2.41)
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Applying (2.33) and (2.35) it follows that∥∥∥Bh
i (ϕ̃h − ϕh)

∥∥∥
C0

h
≤

(
1 − ξ+(i−1)h

b

)
c2h2, i = 1, 2, ...,M. (2.42)

Since ϕ and µ are in the class C2,λ, 0 < λ < 1, on the interval 0 ≤ x ≤ a, by Theorem 1.1 in

(Volkov, 1979) and similarity to the estimate (2.35), the following inequality holds.∥∥∥Bh
i (ϕh + µh) − (Bi (ϕ + µ))h

∥∥∥
C0

h
≤ c3h2, (2.43)

where c3 is a constant independent of h.

From the relations (2.41)-(2.43), we have∥∥∥ψ̃1
i,h − ψ

1
i,h

∥∥∥
C0

h
≤ c4h2, (2.44)

where c4 is a constant independent of h.

For n ≥ 2, we have∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
=

∥∥∥∥∥∥∥Bh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃
n−1
k,h


−

Bi

ϕ + µ + α

M∑
k=1

ρkψ
n−1
k


h

∥∥∥∥∥∥∥
C0

h

. (2.45)

Then, ∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤

∥∥∥Bh
i (ϕ̃h + µh) − (Bi (ϕ + µ))h

∥∥∥
C0

h

+

∥∥∥∥∥∥∥Bh
i

α M∑
k=1

ρkψ̃
n−1
k,h − α

M∑
k=1

ρkψ
n−1
k


∥∥∥∥∥∥∥

C0
h

+

∥∥∥∥∥∥∥Bh
i

α M∑
k=1

ρkψ
n−1
k

 − Bi

α M∑
k=1

ρkψ
n−1
k


h

∥∥∥∥∥∥∥
C0

h

i = 1, 2, ...,M. (2.46)

The difficulties of the inequality (2.46) comes from third term of the right side which is

needed much effort to obtain an estimation.

By (2.13) , (2.15) and (2.21) we have∥∥∥ψn
i

∥∥∥
C0 ≤ ‖Bi (ϕ + µ)‖C0 +

∥∥∥∥∥∥∥Bi

α M∑
k=1

ρkψ
n−1
k


∥∥∥∥∥∥∥

C0

(2.47)

≤

(
1 − ξ+(i−1)h

2

)
‖ϕ + µ‖C0 +

(
1 − ξ+(i−1)h

2

)
C0

max
1≤i≤M

∥∥∥ψn−1
i

∥∥∥ α M∑
k=1

|ρk|

 ,
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for any n, 1 ≤ n < ∞,

max
1≤i≤M

∥∥∥ψn
i

∥∥∥
C0 ≤ q1

(
‖ϕ + µ‖C0 + max

1≤i≤M

∥∥∥ψn−1
i

∥∥∥) ≤ q1

1 − q1
‖ϕ + µ‖C0 , (2.48)

where

q1 =

{
1 −

ξ

b

}
(2.49)

Therefore,

sup
0≤n<∞

∥∥∥∥∥∥∥ϕ + µ + α

M∑
k=1

ρkψ
n
k

∥∥∥∥∥∥∥ ≤
1 +

q1

1 − q1
α

M∑
k=1

|ρk|

 ‖ϕ + µ‖C0 . (2.50)

The function ψn−1
i = Bi

(
ϕ + µ + α

M∑
k=1
ρkψ

n−2
k

)
, n ≥ 2, is the trace of a solution of the

following problem

4Vn = 0 on R, Vn = 0 on γm, m = 1, 2, 3,

Vn = ϕ + µ + α

M∑
k=1

ρkψ
n−2
k on γ4,

on the line segments η j = ξ + ( j − 1)h, j = 1, 2, ...,M. In the view of (2.50) , maximum

principle and Lemma 3 in (Mikhailov, 1978), we have,for 0 ≤ x ≤ a and i = 1, 2, ...,M :

max
0≤x≤1

∣∣∣∣∣∣dsψn−1
i

dxs

∣∣∣∣∣∣ ≤ c0
s,i ‖ϕ + µ‖C0 , n ≥ 2, s ≥ 4,

where c0
s,i are constants independent of n. Then ψn−1

i (x) ∈ C4,λ, 0 < λ < 1, on 0 ≤ x ≤ a.

Since Vn = 0 on γm,m = 1, 3, the derivatives d2rψn−1
i /dx2r = 0, r = 0, 1, 2, at x = 0 and x = a.

Then, from Theorem 3.1 in (Volkov, 1965), the solution zn
i , i = 1, 2, ...,M, of the following

problems

4zn
i = 0 on R, zn

i = 0 on γm,m = 1, 2, 3, zn
i = ψn−1

i , (2.51)

are from C4,λ
(
R
)
, 0 < λ < 1. So, the following inequality holds from (Samarskii, 2001),

max
Rh

∣∣∣zn
i,h − zn

i

∣∣∣ ≤ c0
5h2, (2.52)

where zn
i,h is the 5-point finite difference solutions and c0

5 is constant independent of h and n.
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By (2.52), we have∥∥∥∥∥∥∥Bh
i

α M∑
k=1

ρkψ
n−1
k

 − Bi

α M∑
k=1

ρkψ
n−1
k


h

∥∥∥∥∥∥∥
C0

h

≤

M∑
k=1

|αρk|

∥∥∥∥Bh
i ψ

n−1
k,h −

(
Biψ

n−1
k

)
h

∥∥∥∥
C0

h

≤ c5h2, i = 1, 2, ...,M, (2.53)

where c5 is a constant independent of h.

In the view of (2.6), (2.33), (2.44) and (2.53) yield∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤ c6h2 + q0

∥∥∥ψ̃n−1
i,h − ψ

n−1
i,h

∥∥∥
C0

h
, (2.54)

where q0 is defined by (2.6) and c6 = c4 + c5 is a constant independent of h. By induction, on

the basis of (2.40) (2.44) and (2.54), we have∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤ c6h2 (2.55)

From (2.21) and by analogy of the estimation (48) in (Volkov and Dosiyev, 2016), we have∥∥∥ψn
i − ψi

∥∥∥
C0 ≤

qn+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (2.56)

where ϕ and µ are defined by (2.11) and (2.4), respectively and q1 = 1 − ξ

b .

According to estimates (2.55) and (2.56), we find that

max
1≤i≤m

∥∥∥ψ̃n
i,h − ψi,h

∥∥∥
C0

h
≤ c6h2 +

qn+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (2.57)

where ψi,h is the trace of the function ψi on [0, a]h .

Define

f̃ n
h = ϕ̃h + µh + α

M∑
k=1

ρkψ̃
n
k,h, (2.58)

where f̃ n
h is an approximation of f defined by (2.27).

Combining estimates (2.35) and (2.57), we obtain∥∥∥∥ f̃ n
h − fh

∥∥∥∥
C0
≤ c7h2 + q0

qn+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (2.59)
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where f̃ n
h is computed function (2.58), fh is the trace of f defined by (2.27), q0 is the number

given by (2.6), c7 = c2 + q0c6 is a constant independent of h.

Let Uh(x, t) be the solution of the system

Uh = AhUh on Rh, Uh = τ on γ2
h, Uh = 0 on γ1

h ∪ γ
3
h, (2.60)

Uh = f on γ4
h, (2.61)

which approximates the problem (2.7),(2.8) with f defined by (2.27).

Since τ, µ, ϕ and ψi, i = 1, 2, ...,m, belong to C2,λ, 0 < λ < 1, on the interval 0 ≤ x ≤ a, By

Theorem 1.1 in (Volkov, 1979), we have

max
(x,y)∈Rh

|Uh − U | ≤ c8h2, (2.62)

where U is the solution of the problem (2.7),(2.8) and c8 is a constant independent of h.

Consider the actual finite difference problem

ũn
h = Ahũn

h on Rh, ũn
h = τh on γ2

h, ũn
h = 0 on γ1

h ∪ γ
3
h, (2.63)

ũn
h = f̃ n

h on γ4
h, (2.64)

where f̃ n
h is computed function which approximates to f .

In the view of the inequality (2.59) and the grid maximum principle, we obtain

max
(x,y)∈Rh

∣∣∣̃un
h − Uh

∣∣∣ ≤ c7h2 + q0
qn+1

1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
. (2.65)

Consequently, according to estimates (2.62) and (2.65), the following inequality holds.

max
(x,y)∈Rh

∣∣∣̃un
h − U

∣∣∣ ≤ c9h2 + q0
qn+1

1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (2.66)

where ũn
h is a solution of problem (2.63), (2.64), U is the solution of the problem (2.7),(2.8)

and c9 = c7 + c8 is a constant independent of h.

Using estimate (2.66) and by error estimate of trapezoidal rule, we derive final estimate

max
(x,y)∈Rh

∣∣∣̃un
h − u

∣∣∣ ≤ c10h2 + q0
qn+1

1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (2.67)

where u is the solution of problem (2.3),(2.4) and c10 is a constant independent of h. Here

right-hand side is O
(
h2

)
for

n = max
{[

ln h−2(1 − q1)−1

ln q−1
1

]
, 1

}
, (2.68)

where [a] is the integer part of a.
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Remark. The estimation (2.67) holds for nonlocal problem with integral boundary condition

of Poisson’s equation 4u = F if F ∈ C2,λ(R), 0 < λ < 1 with F(0, 0) = F(a, 0) = 0,

F(0, b) = τ′′(0) and F(a, b) = τ′′(a) by replacing the equations 4v = F, ṽn
h = Ah̃vn

h − h2F/4

and ũn
h = Ahũn

h−h2F/4 instead of the equations 4v = 0, ṽn
h = Ah̃vn

h and ũn
h = Ahũn

h, respectively.

2.2 FOURTH ORDER ACCURACY FOR THE LAPLACE EQUATION WITH

INTEGRAL BOUNDARY CONDITION

2.2.1 Overview

In this section, we propose and justify the method given in Section 2.1 to solve the system

of nonlocal 9-point finite difference problem for the Laplace equation with the integral

boundary condition. The solution of this nonlocal difference problem is defined as a

solution of the 9-point Dirichlet problem by constructing the approximate values of the

solution on the side where the integral condition was given. Therefore, the approximate

solution is obtained by solving a system with 9 diagonal matrices, for the realization of

which proposed many fast algorithms. (see in Samarskii, 1989). Moreover, the uniform

estimate of the error of approximate solution is of order O(h4), when the given boundary

functions on the sides belong to the Hölder classes C4,λ, 0 < λ < 1.

2.2.2 Nonlocal boundary value problem

Let

R = {(x, y) : 0 < x < a, 0 < y < b}

be an open rectangle, γm, m = 1, 2, 3, 4, be its sides including the endpoints, numbered in

the clockwise direction, beginning with the side lying on the y-axis and let γ = ∪4
m=1γ

m be

the boundary of R and R = R ∪ γ. Let C0 denote the linear space of continuous functions of

one variable x on the interval [0, a] of x-axis, and vanish at the points x = 0 and x = a. For

the function f ∈ C0 we define the norm

‖ f ‖C0 = max
0≤x≤a

| f (x)| .

It is clear that the space C0 which is defined with this norm is complete.
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Consider the following nonlocal boundary value problem

4u = 0 on R, u = 0 on γ1 ∪ γ3, u = τ on γ2, (2.69)

u(x, 0) = α

∫ b

ξ

u(x, y)dy + µ(x), 0 < x < a, 0 < ξ < b, (2.70)

where ∆ ≡ ∂2/∂x2 +∂2/∂x2 is the Laplacian, τ = τ(x) and µ = µ(x) are given functions which

belong to C0 and α is a given constant which holds the following inequality:

|α| <
1

b − ξ
. (2.71)

2.2.3 Nonlocal finite-difference problem and its reduction to the Dirichlet problem

We define a square mesh with the mesh size h = a
N = b

M∗ , N,M∗ > 2 are integers, constructed

with the lines x, y = h, 2h, ... . Let Dh be the set of nodes of this square grid and let Rh =

R ∩ Dh, Rh = R ∩ Dh. We put γm
h = γm ∩ Dh,m = 1, 2, 3, 4, and γh = ∪4

m=1γ
m
h .

Let

[0, a]h =

{
x = xi, xi = ih, i = 0, 1, ...,N, h =

a
N

}
be the set of points divided by the step size h on [0, a] .

Let C0
h be the linear space of grid functions defined on [0, a]h that vanish at x = 0 and x = a.

The norm of a function fh ∈ C0
h is defined as

‖ fh‖C0
h

= max
x∈[0,a]h

| fh| .

We introduce the operator Bh,

Buh(x, y) ≡ (u(x + h, y) + u(x − h, y) + u(x, y + h) + u(x, y − h)) /5 (2.72)

+(u(x + h, y + h) + u(x + h, y − h) + (2.73)

+u(x − h, y + h) + u(x − h, y − h))/20.

For the approximate solution of the nonlocal problem (2.69) , (2.70) , we consider a solution

of the following system of the difference equations (see in Sapagovas, 2008)

uh = Buh on Rh, uh = 0 on γ1
h ∪ γ

3
h, uh = τh on γ2

h, (2.74)

uh(x, 0) = α

M∑
k=1

ρkuh(x, ηk) + µh on γ4
h, (2.75)
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where the equation (2.75) is obtained by approximating the integral in (2.70) and using

Simpson’s rule with ρ1 = ρM = h
3 , ρ j = h

3

(
3 + (−1) j

)
for j = 2, 3, ...,M − 1, η j = ξ + ( j− 1)h,

j = 1, 2, ...,M, h = a
N , (M − 1)h + ξ = b, µh is the trace of µ on γ4

h and ξ

h is an integer.

We reduce a solution of the nonlocal differential problem to the solution of the local Dirichlet

problem.

Let vh be the solution of the finite difference Dirichlet problem

vh = Bvh on Rh, vh = τh on γ2
h, vh = 0 on γh/γ

2
h, (2.76)

and we put

ϕ̃i,h(x) = vh(x, ηi), i = 1, 2, ...,M, (2.77)

where τh is the trace of τ on γ2
h.

Let wh be a solution of the following finite difference Dirichlet problem

wh = Bwh on Rh, wh = 0 on γh/γ
4
h, wh = f̃h on γ4

h, (2.78)

where f̃h ∈ C0
h, is an arbitrary function.

We define a linear operator Bh
i from C0

h to C0
h as follows:

Bh
i f̃h(x) = wh (x, ηi) , i = 1, 2, ...,M, (2.79)

where wh is the solution of the problem (2.78).

Let

w∗h(x, y) =
1
b

∥∥∥∥ f̃h

∥∥∥∥
C0

h

(b − y) on Rh.

We have

|wh (x, y)| ≤ w∗h(x, y), (x, y) ∈ γh. (2.80)

Since

Lhw∗h = 0 (2.81)
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From (2.79)-(2.81) and by comparison theorem (see in Chapter 4 (Samarskii, 2001)), we

have

‖wh‖C0
h
≤

1
b

∥∥∥∥ f̃h

∥∥∥∥
C0

h

(b − y) on Rh.

Therefore,∥∥∥∥Bh
i f̃h

∥∥∥∥
C0

h

≤

∥∥∥∥ f̃h

∥∥∥∥
C0

h

(
1 − ξ+(i−1)h

b

)
, i = 1, 2, ...,M, (2.82)

and then for the norm of operator Bh
i , we get∣∣∣Bh

i

∣∣∣ < 1, i = 1, 2, ...,M. (2.83)

Let

ϕ̃h = α

M∑
k=1

ρkϕ̃k,h(x), x ∈ [0, a]h , (2.84)

where ϕ̃k,h(x) is the function (2.77).

In the view of the inequality (2.71), we have

|α|

M∑
k=1

ρk = q0 < 1. (2.85)

The inequalities (2.83) and (2.85) yield that

q0

∣∣∣Bh
1

∣∣∣ = q < 1. (2.86)

Lemma 2.2.1. A solution of the finite difference problem (2.74) , (2.75) can be represented

as

uh = vh + wh, (2.87)

where vh is the solution of problem (2.76) , wh is the solution of problem (2.78) with f̃h which

is a solution of the following nonlinear equation

f̃h = ϕ̃h + µh + α

M∑
k=1

ρkBh
k f̃h, on γ4

h. (2.88)
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Proof. According to (2.74) , (2.76) and (2.78) , the relation (2.87) holds on Rh and the

boundary sides γm
h , m = 1, 2, 3.

From (2.84) and (2.88) , it follows that

f̃h = µh + α

M∑
k=1

ρk

[
ϕ̃k,h(x) + Bh

k f̃h

]
on γ4

h.

Relying on (2.77) and (2.79), we have

f̃h = µh + α

M∑
k=1

ρk
[
vh(x, ηi) + wh (x, ηi)

]
on γ4

h.

By virtue of (2.76) and (2.78) , we obtain

vh(x, 0) + wh (x, 0) = µh + α

M∑
k=1

ρk
[
vh(x, ηi) + wh (x, ηi)

]
on γ4

h.

From (2.75) , it shows that the relation (2.87) is also satisfied on γ4
h. �

Thus, the unknown function on γ4
h in problem (2.78) is a solution of the nonlinear equation

(2.88).

Theorem 2.2.2. There exists a unique solution f̃h of the nonlinear equation (2.88).

Proof. Consider the following sequences in C0
h :

ψ̃0
i,h = 0, ψ̃n

i,h = Bh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃
n−1
k,h

 ,
i = 1, 2, ...,M; n = 1, 2, ... . (2.89)

From this, for the positive integers m and n with m > n, we get

ψ̃m
i,h − ψ̃

n
i,h = Bh

i

α M∑
k=1

ρk

(
ψ̃m−1

k,h − ψ̃
n−1
k,h

) , i = 1, 2, ...,M.

Applying the inequality (2.82), we reach∥∥∥ψ̃m
i,h − ψ̃

n
i,h

∥∥∥
C0

h
≤ q

∥∥∥ψ̃m−1
i,h − ψ̃

n−1
i,h

∥∥∥
C0

h
(2.90)

where q is defined by (2.86). In a similar way with (2.90), we obtain∥∥∥ψ̃m
i,h − ψ̃

n
i,h

∥∥∥
C0

h
≤ qn+1 1 − qm−n

1 − q

(
‖ϕ̃h‖C0

h
+ ‖µh‖C0

h

)
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which shows that the sequences (2.89) are Cauchy sequences. Since C0
h is complete, there

are limits

lim
n→∞

ψ̃n
i,h = ψ̃i,h ∈ C0

h, i = 1, 2, ...,M.

By using (2.82) and (2.86),

lim
n→∞

Bh
kψ̃

n
i,h = Bh

kψ̃i,h ∈ C0
h, i, k = 1, 2, ...,M. (2.91)

Using (2.91) and taking limit of (2.89) as n→ ∞, we have

ψ̃i,h = Bh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃k,h

 , i = 1, 2, ...,M. (2.92)

We multiply both of side of the equation (2.92) by αρi and summing for i = 1, 2, ...,M, we

have

ϕ̃h + µh + α

M∑
i=1

ρiψ̃i,h = ϕ̃h + µh + α

M∑
i=1

ρiBh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃k,h

 (2.93)

In the view of the relations (2.88) and (2.93), we obtain a solution of the nonlinear equation

(2.88) as

f̃h = ϕ̃h + µh + α

M∑
k=1

ρkψ̃k,h.

To show the uniqueness, let f̃h,p ∈ C0
h, p = 1, 2, be two functions satisfying the relation

(2.88). Then, we obtain the following inequality

∥∥∥∥ f̃h,1 − f̃h,2

∥∥∥∥
C0

h

=

∥∥∥∥∥∥∥α
m∑

k=1

ρkBh
k

(
f̃h,1 − f̃h,2

)∥∥∥∥∥∥∥
C0

h

≤ q
∥∥∥∥ f̃h,1 − f̃h,2

∥∥∥∥
C0

h

where 0 < q < 1 is defined by (2.86). Hence f̃h,1 = f̃h,2. �

2.2.4 Convergence of the finite difference problem

We say that F ∈ Ck,λ(E), if F has k-th derivatives on E satisfying the Hölder condition with

exponent λ. We assume that τ(x) and µ(x) in (2.69) and (2.70) are from C4,λ, 0 < λ < 1, on
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γ2 and γ4, respectively and τ(2m) (0) = τ(2m) (a) = 0, µ(2m) (0) = µ(2m) (a) = 0, m = 0, 1, 2. By

using the n − th iteration ψ̃n
i,h, n ≥ 1 of (2.89), we define the function

f̃ n
h = ϕ̃h + µh + α

M∑
k=1

ρkψ̃
n
k,h. (2.94)

Hence, for the approximate solution of the nonlocal problem (2.69), (2.70), we define the

following difference problem

ũn
h = Bhũn

h on Rh, ũn
h = τh on γ2

h, ũn
h = 0 on γ1

h ∪ γ
3
h, (2.95)

ũn
h = f̃ n

h on γ4
h. (2.96)

Theorem 2.2.3. The estimation holds

max
(x,y)∈Rh

∣∣∣̃un
h − u

∣∣∣ ≤ c1h4 + q0

q
n+1
1

1 − q1
c∗, (2.97)

where ũn
h is a solution of problem (2.95), (2.96), u is the exact solution of nonlocal boundary

value problem (2.69) , (2.70), c1 and c∗ are constants independent of h, q0 is defined by (2.85)

and q1 = 1 − ξ

b .

Proof. Let U be the exact solution of system of the following problem

4U = 0 on R, U = τ on γ2, U = 0 on γ1 ∪ γ3, (2.98)

U(x, 0) = α

M∑
k=1

ρkU(x, ηk) + µ(x) , 0 ≤ x ≤ a. (2.99)

Let V be a solution of the Dirichlet problem,

4V = 0 on R, V = τ on γ2, V = 0 on γ/γ2, (2.100)

and denote by

ϕk(x) = V(x, ηk) for k = 1, 2, ...,M, (2.101)

where ηk = ξ + (k − 1)h, k = 1, 2, ...,M. We define the function

ϕ = α

M∑
k=1

ρkϕk. (2.102)
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Consider the Dirichlet problem

4W = 0 on R, W = 0 on γ/γ4, W = f on γ4, (2.103)

where f be an unknown function from C0. The linear operator Bi : C0 → C0 is defined as

Bi f (x) = W(x, ηi) ∈ C0, i = 1, 2, ...,M. (2.104)

Then following inequality holds for the norm |Bi|

|Bi| <
(
1 − ξ+(i−1)h

b

)
, i = 1, 2, ...,M. (2.105)

By analogy with the results in (Volkov, 2013), it is shown that a solution U of problem

(2.98) , (2.99) can be represented as U = V + W where V and W are the solutions of problem

(2.100) and (2.103) respectively, when f defined by

f = ϕ + µ + α

M∑
k=1

ρkψk. (2.106)

Here the functions ψ1, ψ2, ..., ψM are from C0, and are defined as the solution of the nonlinear

equations

ψi = Bi

ϕ + µ + α

M∑
k=1

ρkψk

 , i = 1, 2, ...,M. (2.107)

Therefore, the nonlocal problem (2.98), (2.99) is reduced to the following Dirichlet problem

4U = 0 on R, U = τ on γ2, U = 0 on γ1 ∪ γ3, (2.108)

U(x, 0) = f , 0 ≤ x ≤ a, (2.109)

where f is defined by (2.106) . The solution ψi, i = 1, 2, ...,M, of system (2.107) is found as

a limit of the infinite sequence of functions
{
ψn

i

}∞
n=0

in C0 defined by

ψ0
i = 0, ψn

i = Bi

ϕ + µ + α

M∑
k=1

ρkψ
n−1
k

 ,
i = 1, 2, ...,M; n = 1, 2, ... . (2.110)
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Since τ(x) in (2.100) belongs to C4,λ
(
γ2

)
and τ(2m) (0) = τ(2m) (a) = 0, m = 0, 1, 2, it follows

from (Dosiyev, 2003) that

max
(x,y)∈Rh

|vh − Vh| ≤ c2h4, (2.111)

where vh is a solution of the problem (2.76), Vh is the trace of the solution of (2.100) on

Rh and c2 is a constant independent of h. Let ϕh, ψi,h and ψn
i,h be the trace of ϕ, ψi and ψn

i

on [0, a]h , respectively and let (Bi (F))h be the trace of Bi (F) on [0, a]h for any function

F ∈ C4,λ [0, a] . By (2.77) , (2.84), (2.101) , (2.102) and ( 2.111), we obtain

‖ϕ̃h − ϕh‖C0
h
≤ c3h4, (2.112)

where c3 is a constant independent of h. By using (2.89) and ( 2.110), we have, for all

i = 1, 2, ...,M,

∥∥∥ψ̃1
i,h − ψ

1
i,h

∥∥∥
C0

h
≤

∥∥∥Bh
i (ϕ̃h − ϕh)

∥∥∥
C0

h

+
∥∥∥Bh

i (ϕh + µh) − (Bi (ϕ + µ))h

∥∥∥
C0

h
. (2.113)

Applying (2.82) and (2.112), it follows that

∥∥∥Bh
i (ϕ̃h − ϕh)

∥∥∥
C0

h
≤ c4h4, i = 1, 2, ...,M, (2.114)

where c4 is a constant independent of h. Similar to the inequality (2.111) , we have

∥∥∥Bh
i (ϕh + µh) − (Bi (ϕ + µ))h

∥∥∥
C0

h
≤ c5h4, (2.115)

where c5 is a constant independent of h. From the relations (2.113)-(2.115), we have

∥∥∥ψ̃1
i,h − ψ

1
i,h

∥∥∥
C0

h
≤ c6h4, (2.116)

where c6 is a constant independent of h. For n ≥ 2, we have

∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
=

∥∥∥∥∥∥∥Bh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃
n−1
k,h


−

Bi

ϕ + µ + α

M∑
k=1

ρkψ
n−1
k


h

∥∥∥∥∥∥∥
C0

h

.
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Then,

∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤

∥∥∥Bh
i (ϕ̃h + µh) − (Bi (ϕ + µ))h

∥∥∥
C0

h

+

∥∥∥∥∥∥∥Bh
i

α M∑
k=1

ρkψ̃
n−1
k,h − α

M∑
k=1

ρkψ
n−1
k


∥∥∥∥∥∥∥

C0
h

+

∥∥∥∥∥∥∥Bh
i

α M∑
k=1

ρkψ
n−1
k

 − Bi

α M∑
k=1

ρkψ
n−1
k


h

∥∥∥∥∥∥∥
C0

h

,

i = 1, 2, ...,M. (2.117)

From (2.104) , (2.105) and (2.110)i it yields that

∥∥∥ψn
i

∥∥∥
C0 ≤ ‖Bi (ϕ + µ)‖C0 +

∥∥∥∥∥∥∥Bi

α M∑
k=1

ρkψ
n−1
k


∥∥∥∥∥∥∥

C0

(2.118)

≤

(
1 − ξ+(i−1)h

b

)
‖ϕ + µ‖C0 +

(
1 − ξ+(i−1)h

b

)
max
1≤i≤M

∥∥∥ψn−1
i

∥∥∥ α M∑
k=1

|ρk|

 .
For any n, 1 ≤ n < ∞,

max
1≤i≤M

∥∥∥ψn
i

∥∥∥
C0 ≤ q1

(
‖ϕ + µ‖C0 + max

1≤i≤M

∥∥∥ψn−1
i

∥∥∥) ≤ q1

1 − q1
‖ϕ + µ‖C0 ,

where

q1 = 1 −
ξ

b
.

So,

sup
0≤n<∞

∥∥∥∥∥∥∥ϕ + µ +

M∑
k=1

ρkψ
n
k

∥∥∥∥∥∥∥ ≤
1 +

q1

1 − q1

M∑
k=1

|ρk|

 ‖ϕ + µ‖C0 . (2.119)

The function ψn−1
i = Bi

(
ϕ + µ + α

M∑
k=1
ρkψ

n−2
k

)
, n ≥ 2, is the trace of a solution of the

following problem

4Vn = 0 on R, Vn = 0 on γm, m = 1, 2, 3, (2.120)

Vn = ϕ + µ + α

M∑
k=1

ρkψ
n−2
k on γ4,
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on the line segments η j = ξ + ( j − 1)h, j = 1, 2, ...,M. In the view of (2.119) , maximum

principle and Lemma 3 in (Mikhailov, 1978), we have, for 0 ≤ x ≤ a and i = 1, 2, ...,M :

max
0≤x≤a

∣∣∣∣∣∣dsψn−1
i

dxs

∣∣∣∣∣∣ ≤ c0
s,i ‖ϕ + µ‖C0 , n ≥ 2, s ≥ 6,

where c0
s,i are constants independent of n.Then, ψn−1

i (x) ∈ C6,λ, 0 < λ < 1, on 0 ≤ x ≤ a,

and dsψn−1
i (0)
dxs =

dsψn−1
i (a)
dxs = 0, s = 0, 2, 4, 6. Since Vn = 0 on γm,m = 1, 3, the derivatives

d2rψn−1
i /dx2r = 0, r = 0, 1, 2, at x = 0 and x = a. Then, from Theorem 3.1 in (Volkov, 1965),

the solution zn
i , i = 1, 2, ...,M, of the following problems

4zn
i = 0 on R, zn

i = 0 on γm,m = 1, 2, 3, zn
i = ψn−1

i , (2.121)

are from C6,λ
(
R
)
, 0 < λ < 1. So, the following inequality holds from (Samarskii, 2001),

max
Rh

∣∣∣zn
i,h − zn

i

∣∣∣ ≤ c7h4, (2.122)

where zn
i,h is the 9-point finite difference solutions and c7 is constant independent of h and n.

By (2.122), we have∥∥∥∥∥∥∥Bh
i

α M∑
k=1

ρkψ
n−1
k

 − Bi

α M∑
k=1

ρkψ
n−1
k


h

∥∥∥∥∥∥∥
C0

h

≤

M∑
k=1

|αρk|

∥∥∥∥Bh
i ψ

n−1
k,h −

(
Biψ

n−1
k

)
h

∥∥∥∥
C0

h

≤ c8h4, i = 1, 2, ...,M. (2.123)

where c8 is a constant independent of h.

In the view of (2.82), (2.85), (2.115), (2.117) and (2.123 ), yields∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤ c9h4 + q0

∥∥∥ψ̃n−1
i,h − ψ

n−1
i,h

∥∥∥
C0

h
, (2.124)

where q0 is defined by (2.85) and c9 is a constant independent of h. By virtue of (2.116),

(2.124), we have∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤ c10h4

(
1 + q0 + q2

0 + ... + qn−1
0

)
≤ c11h4, (2.125)

where c10, c11 are constants independent of h. According to (2.110), it follows that∥∥∥ψ1
i

∥∥∥
C0 ≤

(
1 −

ξ

b

) (
‖ϕ‖C0 + ‖µ‖C0

)
, (2.126)
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∥∥∥ψn
i − ψ

n−1
i

∥∥∥
C0 ≤ |Bi| |α|

M∑
k=1

|ρk|
∥∥∥ψn−1

i − ψn−2
i

∥∥∥
C0 , i = 1, 2, ...,M, (2.127)

where ϕ is defined by (2.102). From (2.126) and (2.127 ), we have

∥∥∥ψn
i − ψ

n−1
i

∥∥∥
C0 ≤ q

n

1
(
‖ϕ‖C0 + ‖µ‖C0

)
, i = 1, 2, ...,M,

where q1 = 1 − ξ

b . Moreover, for any m = 1, 2, ..., we obtain

∥∥∥ψn+m
i − ψn

i

∥∥∥
C0 ≤ q

n+1

1

 1−q
m
1

1 − q1

 (‖ϕ‖C0 + ‖µ‖C0
)
, i = 1, 2, ...,M. (2.128)

Since

∥∥∥ψn
i − ψi

∥∥∥
C0 ≤

∥∥∥ψn+m
i − ψn

i

∥∥∥
C0 +

∥∥∥ψn+m
i − ψi

∥∥∥
C0 , i = 1, 2, ...,M, (2.129)

by taking limit as m→ ∞, from (2.128) and (2.129 ), it follows that

∥∥∥ψn
i − ψi

∥∥∥
C0 ≤

q
n+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, i = 1, 2, ...,M. (2.130)

From (2.125) and (2.130), we have

∥∥∥ψ̃n
i,h − ψi,h

∥∥∥
C0

h
≤ c11h4 +

q
n+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, i = 1, 2, ...,M. (2.131)

Let Uh(x, y) be the solution of the system of grid equations

Uh = BhUh on Rh, Uh = τ on γ2
h, Uh = 0 on γ1

h ∪ γ
3
h, (2.132)

Uh = fh on γ4
h, (2.133)

which approximates problem (2.108), (2.109) when fh is the trace of f on [0, a]h. Since

τ, µ, ϕ and ψi, i = 1, 2, ...,M, belong to C4,λ, 0 < λ < 1, on the interval 0 ≤ x ≤ a, and

2m− th order of derivatives vanish at the endpoints for m = 0, 1, 2 (see in Dosiyev, 2018), by

(Dosiyev, 2003), we have

max
(x,y)∈Rh

|Uh − U | ≤ c12h4, (2.134)
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where U is the solution of problem (2.98),(2.99) and c12 is a constant independent of h. In

the view of the inequalities (2.112) and (2.131), we obtain

∥∥∥∥ f̃ n
h − fh

∥∥∥∥
C0

h

≤ c13h4 + q0

q
n+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (2.135)

where q0 is defined by (2.85) and c13 is a constant independent of h. By the grid maximum

principle and from (2.135) we have

max
(x,y)∈Rh

∣∣∣̃un
h − Uh

∣∣∣ ≤ c13h4 + q0

q
n+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (2.136)

where ũn
h is the solution of problem (2.95) , (2.96) and Uh is the solution of problem ( 2.132),

(2.133). According to estimates (2.134) and (2.136), the following inequality holds.

max
(x,y)∈Rh

∣∣∣̃un
h − U

∣∣∣ ≤ c14h4 + q0

q
n+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (2.137)

where U is the solution of the problem (2.98), (2.99) and c14 is a constant independent of h.

Using the estimate (2.137) and by the maximum principle for the Laplace equation with the

truncation error of Simpson’s rule which is order of O(h4), we obtain the final estimate

max
(x,y)∈Rh

∣∣∣̃un
h − u

∣∣∣ ≤ max
(x,y)∈Rh

∣∣∣̃un
h − U

∣∣∣ + max
(x,y)∈Rh

|U − u|

≤ c1h4 + q0

q
n+1
1

1 − q1
c∗, (2.138)

where u is the solution of problem (2.69),(2.70) and c1 is a constant independent of h and

c∗ = ‖ϕ‖C0 + ‖µ‖C0 . �

Remark. In (2.138) the right-hand side is O
(
h4

)
, when

qn+1
1

1 − q1
≈ h4.

It follows that

n = max
{[

ln h4(1 − q1)
ln q1

]
, 1

}
,

where [a] is the integer part of a.

30



CHAPTER 3

DIFFERENCE DIRICHLET PROBLEM FOR THE APPROXIMATE SOLUTION

OF THE GENERAL SECOND ORDER LINEAR ELLIPTIC EQUATION WITH

NONLOCAL INTEGRAL BOUNDARY CONDITION

3.1 SECOND ORDER ACCURACY FOR THE SECOND ORDER ELLIPTIC

EQUATION WITH INTEGRAL BOUNDARY CONDITION

3.1.1 Overview

In this section, the method given by Chapter 2 for the general second-order linear elliptic

equation with nonlocal integral boundary condition is proposed and justifed. The solution of

this nonlocal problem is defined as 5-point classical Dirichlet problem by finding a function

isntead of boundary value where the nonlocal condition was given. The approximate solution

is obtained by using 5-diagonal matrices which are determined from the system of finite

difference equations. It is proved that the uniform estimate of the error of the approximate

solution is order of O(h2), h is the step mesh, when the boundary functions have a fourth

derivative satisfying a Hölder condition.

3.1.2 Nonlocal boundary value problem

Let

R = {(x, y) : 0 < x < β1, 0 < y < β2} (3.1)

be an open rectangle, γm,m = 1, 2, 3, 4, be its sides including the endpoints, numbered in the

clockwise direction, beginning with the side lying on the y-axis and let γ = ∪4
m=1γ

m be the

boundary of R.

Let C0 denote the linear space of continuos functions of one variable x on the interval
[
0, β1

]
of x-axis, and vanish at the points x = 0 and x = β1. For the function f ∈ C0 we define the

norm

‖ f ‖C0 = max
0≤x≤β1

| f (x)| . (3.2)

It is obvious that, the space C0 is complete by normed with this way.
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The second order elliptic operator is given in the form

Lu = ∆u + a
∂u
∂x

+ b
∂u
∂y

+ cu, (3.3)

where ∆ ≡ ∂2/∂x2 + ∂2/∂x2 is the Laplacian, a, b and c are functions of (x, y) which we

suppose to be continuous with c(x, y) ≤ 0.

Consider the following nonlocal boundary value problem

Lu = 0 on R, u = 0 on γ1 ∪ γ3, u = τ on γ2, (3.4)

u(x, 0) = α

∫ β2

ξ

u(x, y)dy + µ(x), 0 < x < β1, 0 < ξ < β2, (3.5)

where τ = τ(x) ∈ C0 is a given function and α is a given constant satisfying the inequality

|α| < 1
β2−ξ

.

We consider the following multilevel nonlocal boundary value problem on R in the similar

thought of replacing (2.4) to (2.5) in Chapter 2 by using trapezoidal rule,

LU = 0 on R, U = τ on γ2, U = 0 on γ1 ∪ γ3 , (3.6)

U(x, 0) = α

M∑
k=1

ρkU(x, ηk) + µ(x), 0 ≤ x ≤ β1. (3.7)

where ρ1 = ρM = h
2 , ρ j = h for j = 1, 2, ...,M − 1, η j = ξ + ( j − 1)h, j = 1, 2, ...,M, h =

β1
N ,

(M − 1)h + ξ = β2 and ξ

h is an integer.

Therefore,

q0 = |α|

M∑
k=1

ρk < 1. (3.8)

We consider the Dirichlet problem,

LV = 0 on R, V = τ on γ2, V = 0 on γ/γ2. (3.9)

Let us put

ϕk(x) = V(x, ηk) for k = 1, 2, ...,M, (3.10)
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and

ϕ = α

M∑
k=1

ρkϕk. (3.11)

Let W be a solution of the Dirichlet problem,

LW = 0 on R, W = 0 on γ/γ4, W = f on γ4, (3.12)

where f be an unknown function from C0.

Lemma 3.1.1. Assume that

b(x, y) ≥ 0.

Then the following inequality holds

|W(x, y)| ≤ W(x, y) on R,

where b is defined by (3.3) and W(x, y) = 1
β2
‖ f ‖C0 (β2 − y) , (x, y) ∈ R

Proof. From (3.12) , we have

|W(x, y)| ≤ W(x, y) on γ.

Since ∆W + a(x, y)∂u
∂x = 0,we have

LW = −
1
β2

b(x, y) ‖ f ‖C0 + c(x, y) ‖ f ‖C0 (β2 − y) (3.13)

≤ −
1
β2

b(x, y) ‖ f ‖C0 .

By assumption, we get

LW ≤ 0.

Since W −W ≤ 0 on γ and L(W −W) = −LW ≥ 0 on R, by the maximum principle (see Bers

et all, 1964), the function W −W takes its positive maximum on γ. Then,

W ≤ W on R.
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If we replace W with −W, we obtain in a similar way,

−W ≤ W on R.

Therefore,

|W | ≤ W on R.

�

We introduce the operator Bi : C0 → C0 as

Bi f (x) = W(x, ηi) ∈ C0, i = 1, 2, ...,M. (3.14)

By Lemma 3.1.1, it follows that

‖Bi f ‖C0 <

(
1 −

ξ + (i−)h
β2

)
‖ f ‖C0 , i = 1, 2, ...,M (3.15)

and

0 < |BM | < |BM−1| < ... < |B1| < 1. (3.16)

Then the following inequality remains true

|B1| q0 = q < 1, (3.17)

where q0 is defined in (3.8).

By the facts U(x, 0) = f (x), 0 ≤ x ≤ β1, and U = V + W with combining (3.10),(3.11) and

(3.14) we have,

f = ϕ + µ + α

M∑
k=1

ρkBk f . (3.18)

Consider an infinite sequence of functions ψn
i (x) on 0 ≤ x ≤ β1,

ψ0
i = 0, ψn

i = Bi

ϕ + µ + α

M∑
k=1

ρkψ
n−1
k

 ,
i = 1, 2, ...,M; n = 1, 2, .... (3.19)

We assume that ψn
k(x) ∈ C4,λ, 0 < λ < 1, k = 1, 2, ...,M, on 0 ≤ x ≤ β1.

The first aim is to prove existence and uniqueness of the function f . To achieve this, we

prove next Lemma.
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Lemma 3.1.2. The infinite sequence of functions defined by (3.19) is fundamental.

Proof. By virtue of (3.19) ,

ψm
i − ψ

n
i = Bi

α M∑
k=1

ρk

(
ψm−1

k − ψn−1
k

) , i = 1, 2, ...,M.

By using the inequalities (3.15) and (3.17)we get∥∥∥ψm
i − ψ

n
i

∥∥∥
C0 ≤ q

∥∥∥ψm−1
i − ψn−1

i

∥∥∥
C0 (3.20)

where q is defined by (3.17). In a similar way with (3.20), we reach∥∥∥ψm
i − ψ

n
i

∥∥∥
C0 ≤ qn+1 1 − qm−n

1 − q
(
‖ϕ‖C0 + ‖µ‖C0

)
From this, we conclude that the sequences of functions (3.19) are fundamental. �

By Lemma 3.2.1, there are limits

lim
n→∞

ψn
i = ψi ∈ C0, i = 1, 2, ...,M. (3.21)

Then

lim
n→∞

Bkψ
n
i = Bkψi ∈ C0, i, k = 1, 2, ...,M. (3.22)

By taking limit of (3.19) as n→ ∞, we het

ψi = Bi

ϕ + µ + α

M∑
k=1

ρkψk

 , i = 1, 2, ...,M. (3.23)

We multiply the relation (3.23) by ρi, for each i = 1, 2, ...,M and sum M number of equation.

Then we multiply the existing relation by α and we add ϕ + µ to both sides. Then,

ϕ + µ + α

M∑
i=1

ρiψi = ϕ + µ + α

M∑
i=1

ρiBi

ϕ + µ + α

M∑
k=1

ρkψk

 (3.24)

From the relations (3.18) and (3.24), we obtain

f = ϕ + µ + α

M∑
k=1

ρkψk. (3.25)

Uniqueness of f :
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Let f P ∈ C0, p = 1, 2, be two functions satisfying the relation (3.18). That is

f P = ϕ + µ + α

m∑
k=1

ρkBk f P, p = 1, 2.

Then we reach the inequality

∥∥∥ f 1 − f 2
∥∥∥

C0 =

∥∥∥∥∥∥∥α
m∑

k=1

ρkBk

(
f 1 − f 2

)∥∥∥∥∥∥∥
C0

≤ q
∥∥∥ f 1 − f 2

∥∥∥
C0

which satisfies if f 1 = f 2.

3.1.3 Finite difference method for the approximate solution of the nonlocal boundary

value problem

We say that F ∈ Ck,λ(E), if F has k-th derivatives on E satisfying the Hölder condition with

exponent λ.

We assume that τ(x) ∈ C4,λ
(
γ2

)
, µ(x) ∈ C4,λ

(
γ4

)
in (3.4) and (3.5), respectively.

On the basis of Lemma 1 and Lemma 2 (Dosiyev, 2018) it follows that the function ϕ defined

by (3.11) and the functions ψi, i = 1, 2, ...,m, in (3.23) obtained as the limits of the sequences

(3.19) belong to C4,λ, 0 < λ < 1, on the interval 0 ≤ x ≤ β1.

We define a square mesh with the mesh size h =
β1
N , N > 2 is an integer, constructed with

the lines x, y = h, 2h, ....Let Dh be the set of nodes of this square grid, Rh = R ∩ Dh, and

Rh = R ∩ Dh, where R is the rectangle (3.1), and γm
h = γm ∩ Dh,m = 1, 2, 3, 4.

Let

[
0, β1

]
h =

{
x = xi, xi = ih, i = 0, 1, ...,N, h =

β1

N

}
be the set of points divided by the step size h on

[
0, β1

]
.

Let C0
h be the linear space of grid functions defined on [0, β1]h that vanish at x = 0 and x = β1.

The norm of a function fh ∈ C0
h is defined as

‖ fh‖C0
h

= max
x∈[0,β1]h

| fh| .
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We approximate the operator L by finite difference operator as

Lhuh ≡
1
h2

(uh(x + h, y) + uh(x − h, y) + uh(x, y + h) + uh(x, y − h) − 4uh(x, y)) (3.26)

a(x, y)
uh(x + h, y) − uh(x − h, y)

2h
+ b(x, y)

uh(x, y + h) − uh(x, y − h)
2h

(3.27)

+c(x, y)uh(x, y) = 0

It is assumed that h is so small and then the maximum principle holds for functions u under

the following assumption

hK ≤ 1,

where K = max (|a| + |b|). This is achieved from the positivity of the coefficients of h-

neighbors u(x, y) (see Bers et all, 1964).

Let vh be a solution of following the system of grid equations

Lhvh = 0 on Rh, vh = τh on γ2
h, vh = 0 on γh/γ

2
h, (3.28)

where τh is the trace of τ on γ2
h and we define

ϕ̃i,h(x) = vh(x, ηi), i = 1, 2, ...,M. (3.29)

Let wh be a solution of the finite difference problem

Lhwh = 0 on Rh, wh = 0 on γh/γ
4
h, wh = f̃h on γ4

h, (3.30)

where f̃h ∈ C0
h, is an arbitrary function.

Let Bh
i be a linear operator from C0

h to C0
h as follows:

Bh
i f̃h(x) = wh (x, ηi) , i = 1, 2, ...,M (3.31)

where wh is the solution of the problem (3.30).

Let

Wh(xi, y j) =
1
β2

∥∥∥∥ f̃h

∥∥∥∥
C0

h

(
β2 − y j

)
, i = 1, 2, ...,N, j = 1, 2, ...,M.

37



Then we have,

LhWh =
1
2

∥∥∥∥ f̃h

∥∥∥∥
C0

h

[
−β2b + c(β2 − y)

]
≤ 0

Therefore, the following inequality holds in a similar thought of the estimate (3.15)∥∥∥∥Bh
i f̃h(x)

∥∥∥∥
C0

h

≤

∥∥∥∥ f̃h

∥∥∥∥
C0

h

(
1 −

ξ+(i−1)h

β2

)
, i = 1, 2, ...,M. (3.32)

Define

ϕ̃h = α

M∑
k=1

ρkϕ̃k,h(x), x ∈
[
0, β1

]
h , (3.33)

where ϕ̃k,h is function (3.29).

By (see in Bers et all, 1964), we have

max
(x,y)∈Rh

|vh − Vh| ≤ c1h2, (3.34)

where vh is a solution of the problem (3.28), Vh is the trace of the solution of (3.9) on R and

c1 is a constant independent of h.

Combining (3.11), (3.33) and (3.34), the following inequality holds true

‖ϕ̃h − ϕh‖C0
h
≤ c2h2, (3.35)

where ϕh is the trace of the function ϕ defined by (3.11) on
[
0, β1

]
h and c2 is a constant

independent of h.

By analogy of (3.18) we get,

f̃h = ϕ̃h + µh + α

M∑
k=1

ρkBh
k f̃h, on γ4

h, (3.36)

where µh is the trace of the function µ defined by (3.5) on
[
0, β1

]
h .

Consider the following sequences in C0
h :

ψ̃0
i,h = 0, ψ̃n

i,h = Bh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃
n−1
k,h

 ,
i = 1, 2, ...,M; n = 1, 2, ... . (3.37)

For the following Lemma, let us denote (Biϕ)has the trace of Biϕ on
[
0, β1

]
h .
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Lemma 3.1.3. The following inequality is true

∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤ c3h2

where ψ̃n
i,h defined by (3.37), ψn

i,h be the trace of ψn
i on

[
0, β1

]
h and c3 is a constant independent

of h.

Proof. The sequence
{
ψ̃n

i,h

}∞
n=0

defined by (3.37) is Cauchy sequence. Therefore, it converges

to the unique solution ψ̃i,h ∈ C0
h, i = 1, 2, ...,M. By taking limit of both side of (3.37) we have,

ψ̃i,h = Bh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃k,h

 , i = 1, 2, ...,M. (3.38)

From (3.36) and (3.38), it follows that

f̃h = ϕ̃h + µh + α

M∑
k=1

ρkψ̃k,h. (3.39)

By virtue of (3.19) and (3.37) we have,

∥∥∥ψ̃0
i,h − ψ

0
i,h

∥∥∥
C0

h
= 0, for all i = 1, 2, ...,M, (3.40)

The estimations (3.32) and (3.35) yields that

∥∥∥Bh
i (ϕ̃h − ϕh)

∥∥∥
C0

h
≤

(
1 − ξ+(i−1)h

β2

)
c2h2, i = 1, 2, ...,M. (3.41)

Since ϕ and µ are in the class C4,λ, 0 < λ < 1, on the interval 0 ≤ x ≤ β1, by (see Bers et all,

1964) and similarity to the estimate (3.35), we have

∥∥∥Bh
i (ϕh + µh) − (Bi (ϕ + µ))h

∥∥∥
C0

h
≤ c4h2 (3.42)

where c4 is a constant independent of h.

Then, by (3.41) and (3.42), we obtain

∥∥∥ψ̃1
i,h − ψ

1
i,h

∥∥∥
C0

h
≤

∥∥∥Bh
i (ϕ̃h − ϕh)

∥∥∥
C0

h
+

∥∥∥Bh
i (ϕh + µh) − (Bi (ϕ + µ))h

∥∥∥
C0

h

≤ c5h2, (3.43)

where c5 is a constant independent of h.
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For n ≥ 2, we have∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
=

∥∥∥∥∥∥∥Bh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃
n−1
k,h


−

Bi

ϕ + µ + α

M∑
k=1

ρkψ
n−1
k


h

∥∥∥∥∥∥∥
C0

h

(3.44)

From this,∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤

∥∥∥Bh
i (ϕ̃h + µh) − (Bi (ϕ + µ))h

∥∥∥
C0

h

+

∥∥∥∥∥∥∥Bh
i

α M∑
k=1

ρkψ̃
n−1
k,h − α

M∑
k=1

ρkψ
n−1
k


∥∥∥∥∥∥∥

C0
h

+

∥∥∥∥∥∥∥Bh
i

α M∑
k=1

ρkψ
n−1
k

 − Bi

α M∑
k=1

ρkψ
n−1
k


h

∥∥∥∥∥∥∥
C0

h

i = 1, 2, ...,M. (3.45)

The difficulties of the inequality (3.45) is to achieve the estimation O(h2) are occurred by

third term. By analogy of the estimation (32) in (Volkov & Dosiyev, 2016), we estimate the

third term on the right side of (3.45) by (Bers et all, 1964):∥∥∥∥∥∥∥Bh
i

α M∑
k=1

ρkψ
n−1
k

 − Bi

α M∑
k=1

ρkψ
n−1
k


h

∥∥∥∥∥∥∥
C0

h

≤ c0
5h2, i = 1, 2, ...,M. (3.46)

where c0
5 is a constant independent of h.

By combining (3.8), (3.32), (3.42) and (3.46),∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤ c6h2 + q0

∥∥∥ψ̃n−1
i,h − ψ

n−1
i,h

∥∥∥
C0

h
, (3.47)

where q0 is defined by (3.8) and c6 is a constant independent of h.

By induction, (3.40) (3.43) and (3.47) yield∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤ c7h2, (3.48)

where c7 is a constant independent of h. �

Lemma 3.1.4. The next estimation remains true∥∥∥ψn
i − ψi

∥∥∥
C0 ≤

qn+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
(3.49)

where ψn
i , ϕ and µ are defined by (3.19) ,(3.11) and (3.5), respectively and q1 = 1 − ξ

β2
.
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Proof. In the view of (3.19) , for positive integer m, n ≥ 0,∥∥∥ψn+m
i − ψn

i

∥∥∥
C0 ≤ qn+1 1 − qm

1 − q
(
‖ϕ‖C0 + ‖µ‖C0

)
. (3.50)

By using triangle inequality,∥∥∥ψn
i − ψi

∥∥∥
C0 ≤

∥∥∥ψn+m
i − ψn

i

∥∥∥
C0 +

∥∥∥ψn+m
i − ψi

∥∥∥
C0 . (3.51)

Taking limit of (3.51) as m → ∞, the second term of the right side vanishes. Therefore, by

(3.50) , the proof is completed. �

According to the estimate (3.48) and Lemma 3.1.4, we find that

max
1≤i≤m

∥∥∥ψ̃n
i,h − ψi,h

∥∥∥
C0

h
≤ c7h2 +

qn+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (3.52)

where ψi,h is the trace of the function ψi on
[
0, β1

]
h .

Define

f̃ n
h = ϕ̃h + µh + α

M∑
k=1

ρkψ̃
n
k,h. (3.53)

where f̃ n
h is an approximation of f defined by (3.25).

By (3.35), (3.52) and (3.53)we reach∥∥∥∥ f̃ n
h − fh

∥∥∥∥
C0
≤ c8h2 + q0

qn+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (3.54)

where f̃ n
h is computed function (3.53), fh is the trace of f defined by (3.25), q0 is the number

given by (3.8), c8 is a constant independent of h.

Consider the actual finite difference problem

Lũn
h = 0 on Rh, ũn

h = τh on γ2
h, ũn

h = 0 on γ1
h ∪ γ

3
h, (3.55)

ũn
h = f̃ n

h on γ4
h, (3.56)

where f̃ n
h is computed function which approximates to f and τh is the trace of τ on

[
0, β1

]
h .

Theorem 3.1.5. The next estimation holds

max
(x,y)∈Rh

∣∣∣̃un
h − u

∣∣∣ ≤ c9h2 + q0
qn+1

1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
,

where u is the solution of problem (3.4),(3.5) and c9 is a constant independent of h.
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Proof. Let Uh(x, t) be the solution of the system

LUh = 0 on Rh, Uh = τ on γ2
h, Uh = 0 on γ1

h ∪ γ
3
h, (3.57)

Uh = f on γ4
h, (3.58)

which approximates the problem (3.6),(3.7) with f defined by (3.25).

Since τ, µ, ϕ and ψi, i = 1, 2, ...,m, are from C4,λ, 0 < λ < 1, on
[
0, β1

]
, By (see in Bers et al.,

1964) we have

max
(x,y)∈Rh

|Uh − U | ≤ c10h2, (3.59)

where U is the solution of the problem (3.6),(3.7) and c10 is a constant independent of h.

By virtue of (3.54) and the grid maximum principle, it follows that

max
(x,y)∈Rh

∣∣∣̃un
h − Uh

∣∣∣ ≤ c8h2 + q0
qn+1

1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
. (3.60)

Then, in the view of (3.59) and (3.60), we obtain

max
(x,y)∈Rh

∣∣∣̃un
h − U

∣∣∣ ≤ c11h2 + q0
qn+1

1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (3.61)

where ũn
h is a solution of problem (3.55), (3.56), U is the solution of the problem (3.6),(3.7)

and c11 is a constant independent of h.

The estimate (3.61) and error estimate of trapezoidal rule yield that

max
(x,y)∈Rh

∣∣∣̃un
h − u

∣∣∣ ≤ c9h2 + q0
qn+1

1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
. (3.62)

�

The right-hand side of (3.62) is order of O
(
h2

)
for

n = max
{[

ln h−2(1 − q1)−1

ln q−1
1

]
, 1

}
. (3.63)

where [a] is the integer part of a.
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3.2 FOURTH ORDER ACCURACY FOR THE SECOND ORDER ELLIPTIC

EQUATION WITH INTEGRAL BOUNDARY CONDITION

3.2.1 Overview

In this section, the second-order elliptic equation with nonlocal integral condition and its

finite difference scheme which is related to Dennis-Hudson finite difference scheme (Dennis

& Hudson, 1979;1980) are justified and proposed.

The researcher studying fourth order difference scheme of second order elliptic equation for

local problem focus on finite difference scheme and its numerical results without giving the

convergence of the finite difference scheme. In this section, after analyzing Dennis-Hudson

finite difference scheme, it s proved the convergence of the fourth order difference scheme

of the general second order elliptic equation for local problem under some restriction on step

size h, when the solution of the elliptic equation have a sixth derivative satisfying a Hölder

condition.

Additionally, the constructive method for the approximation of the second order elliptic

equation with integral condition is justified by using Dennis-Hudson finite difference

scheme. It is verified that the uniform estimate of the error of the approximate solution is

order of O(h4), h is the step mesh, when the boundary functions have a sixth derivative

satisfying a Hölder condition.

3.2.2 Nonlocal boundary value problem

Let

R = {(x, y) : 0 < x < β1, 0 < y < β2}

be an open rectangle, γm, m = 1, 2, 3, 4, be its sides including the endpoints, numbered in

the clockwise direction, beginning with the side lying on the y-axis and let γ = ∪4
m=1γ

m be

the boundary of R and R = R ∪ γ. Let C0 denote the linear space of continuos functions of

one variable x on the interval
[
0, β1

]
of x-axis, and vanish at the points x = 0 and x = β1. For

the function f ∈ C0 we define the norm

‖ f ‖C0 = max
0≤x≤β1

| f (x)| .
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Consider the following operator

Lu = ∆u + a(x, y)
∂u
∂x

+ b(x, y)
∂u
∂y

+ c(x, y)u, (3.64)

where ∆ ≡ ∂2/∂x2 + ∂2/∂x2 is the Laplacian, a, b and c are functions with b(x, y) ≥ 0 and

c(x, y) ≤ 0.

Consider the nonlocal boundary value problem on R

Lu = 0 on R, u = 0 on γ1 ∪ γ3, u = τ on γ2 (3.65)

u(x, 0) = α

∫ β2

ξ

u(x, y)dy + µ(x), 0 < x < β1, 0 < ξ < β2, (3.66)

where τ = τ(x) and µ = µ(x) are given functions from C0 and α is a given constant with

satisfy the inequality given below |α| < 1
β2−ξ

.

We consider the following multilevel nonlocal boundary value problem to solve the problem

(3.65) and (3.66) by using Simpson’s rule for the boundary condition (3.66) ,

LU = 0 on R, U = τ on γ2, U = 0 on γ1 ∪ γ3 (3.67)

U(x, 0) = α

M∑
k=1

ρkU(x, ηk) + µ(x), 0 ≤ x ≤ β1, (3.68)

where ρ1 = ρM = h
3 , ρ j = h

3

(
3 + (−1) j

)
for j = 2, 3, ...,M−1, η j = ξ+ ( j−1)h, j = 1, 2, ...,M,

h =
β1
N , (M − 1)h + ξ = β2 and ξ

h is an integer.

This yields

q0 = |α|

M∑
k=1

ρk < 1. (3.69)

The solution U of problem (3.67), (3.68) is defined as a sum of two functions (see in Section

3.1)

U(x, y) = V(x, y) + W(x, y)

where V is the solution of the problem

LV = 0 on R, V = τ on γ2, V = 0 on γ/γ2, (3.70)
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and W is the solution of the problem

LW = 0 on R, W = 0 on γ/γ4, W = f on γ4. (3.71)

with f be an unknown function from C0.

We define the operator Bi from C0 to C0 as follows

Bi f (x) = W(x, ηi), i = 1, 2, ...,M. (3.72)

It is verified

‖Bi f ‖C0 <

(
1 −

ξ + (i − 1)h
β2

)
‖ f ‖C0 , i = 1, 2, ...,M (3.73)

and

0 < |BM | < |BM−1| < ... < |B1| < 1. (3.74)

Therefore, we put

q = |B1| q0 < 1. (3.75)

We set

ϕk(x) = V(x, ηk) for k = 1, 2, ...,M (3.76)

and

ϕ = α

M∑
k=1

ρkϕk. (3.77)

Consider the sequences in C0

ψ0
i = 0, ψn

i = Bi

ϕ + µ + α

M∑
k=1

ρkψ
n−1
k


i = 1, 2, ...,M; n = 1, 2, .... (3.78)

where ψn
i ∈ C6,λ, 0 < λ < 1, i = 1, 2, ...,M, on 0 ≤ x ≤ β1.
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The limit of the sequence is found as a solution of the following nonlinear equations

ψi = Bi

ϕ + µ + α

M∑
k=1

ρkψk

 , i = 1, 2, ...,M. (3.79)

Therefore, the function f in (3.72) is denoted by

f = ϕ + µ + α

M∑
k=1

ρkψk (3.80)

The existence and uniqueness of the functions f is proved in Section 3.1.

3.2.3 Convergence of Dennis-Hudson finite difference-scheme

We define a square mesh with the mesh size h =
β1
N =

β2
M∗ , N,M∗ > 2 are integers, constructed

with the lines x, y = h, 2h, ....Let Dh be the set of nodes of this square grid, Rh = R ∩ Dh, and

Rh = R ∩ Dh, and γm
h = γm ∩ Dh,m = 1, 2, 3, 4.

Let

[
0, β1

]
h =

{
x = xi, xi = ih, i = 0, 1, ...,N, h =

β1

N

}
be the set of points divided by the step size h on

[
0, β1

]
.

The values of u(x, y) at (x0, y0), (x0 +h, y0), (x0, y0 +h), (x0−h, y0) and (x0, y0−h) are denoted

by u0, u1, u2, u3 and u4, respectively. For other type functions, the identical notations are

utilized.

Special type approximations can be obtained by describing (3.64) as the two equations

∂2u
∂x2 + a

∂u
∂x

+ cu = r(x, y) (3.81)

and

∂2u
∂y2 + b

∂u
∂y

= −r(x, y). (3.82)

The finite-difference approximations to (3.81) and (3.82) are(
1 +

1
2

ha(x, y)
)

u(x + h, y) +

(
1 −

1
2

ha(x, y)
)

u(x − h, y)

+
(
2 − h2c(x, y)

)
u(x, y) = h2r(x, y), (3.83)
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(
1 +

1
2

hb(x, y)
)

u(x, y + h) +

(
1 −

1
2

hb(x, y)
)

u(x, y − h)

−2u(x, y) = h2r(x, y). (3.84)

The method (Dennis, 1960) is to reduced (3.83) and (3.84) along y = y0 and x = x0 by

replacing

u = φe−
h(x,y0)

and u = %e−
g(x0 ,y)

, (3.85)

where

h(x, y0) =
1
2

∫ x

x0

a(z, y0)dz and g(x0, y) =
1
2

∫ y

y0

b(x0, z)dz. (3.86)

Therefore, the equations (3.81) and (3.82) are written as

∂2φ

∂x2 −

(
1
2
∂a
∂x

+
1
4

a2 − c
)
φ − reh = 0 (3.87)

and

∂2%

∂y2 −

(
1
2
∂b
∂y

+
1
4

b2%

)
+ reg = 0, (3.88)

respectively.

By approximating the derivatives and putting x = x0, y = y0 in (3.87) and (3.88) , the

following finite-difference equation at (x0, y0) is obtained ( see in Dennis & Hudson, 1979)

u1eh1 + u2eg2 + u3eh3 + u4eg4 −
(
4 + h2φ0

)
u0 + Cϑ0 + C

′

δ0 = 0, (3.89)

where

Cϑ0 = −
1

12
h2

[
(F1u1 + r1) eh1 − 2 (F0u0 + r0)

+ (F3u3 + r3) eh3
]

+ O(h6), (3.90)

C
′

δ0 = −
1

12
h2

[
(G2u2 − r2) ehG2 − 2 (G0u0 − r0)

+ (G4u4 − r4) eg4] + O(h6) (3.91)
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and

F =
1
2
∂a
∂x

+
1
4

a2 − c and G =
1
2
∂b
∂y

+
1
4

b2, (3.92)

φ(x, y) =
1
2

[
∂a
∂x

+
∂b
∂y

]
+

1
4

(
a2 + b2

)
− c. (3.93)

The last two terms of (3.89) represents finite difference correction and contains terms of

O
(
h4

)
and higher (see in Dennis & Hudson, 1979). Using three point numerical method for

integrations in (3.86) is recommended. By using Taylor expansion about the point (x0, y0)

for the function a(x, y0), we have

h1 =
1
2

ha0 +
1
4

h2
(
∂a
∂x

)
0

+
1

12
h3

(
∂2a
∂x2

)
0

+
1

48
h4

(
∂3a
∂x3

)
0

+
1

240
h5

(
∂4a
∂x4

)
0

+ .... (3.94)

Then by putting (3.94) into the series expansion of eh1 , we get

eh1 = 1 +
1
2

ha0 +
1
4

h2
[(
∂a
∂x

)
0

+
1
2

a2
0

]
+

1
4

h3
[

1
12

a3
0 +

1
2

a0

(
∂a
∂x

)
0

+
1
3

(
∂2a
∂x2

)
0

]
+

1
8

h4

 1
48

a4
0 +

1
4

a2
0

(
∂a
∂x

)
0

+
1
4

(
∂a
∂x

)2

0
+

1
3

a0

(
∂2a
∂x2

)
0

+
1
6

(
∂3a
∂x3

)
0


1

16
h5

 1
240

a5
0 +

1
12

a3
0

(
∂a
∂x

)
0

+
1
6

a2
0

(
∂2a
∂x2

)
0

+
1
4

a0

(
∂a
∂x

)2

+
1
6

a0

(
∂3a
∂x3

)
0

+
1
3

(
∂a
∂x

)
0

(
∂2a
∂x2

)
0

+
1

15

(
∂4a
∂x4

)
0

]
+ O(h6). (3.95)

Expanding eh3 in Taylor series in a similar way with (3.95) yields that

eh1 + eh3 = 2 + h2
[
1
2

(
∂a
∂x

)
0

+
1
4

a2
0

]
+ h4λ0 + O(h6), (3.96)

where

λ(x, y) =
1
4

 1
48

a4 +
1
4

a2
(
∂a
∂x

)
+

1
4

(
∂a
∂x

)2

+
1
3

a
(
∂2a
∂x2

)
+

1
6

(
∂3a
∂x3

) . (3.97)

Similarly, by using Taylor expansion about the point (x0, y0) for the function b(x0, y),we have

g2 =
1
2

hb0 +
1
4

h2
(
∂b
∂y

)
0

+
1

12
h3

(
∂2b
∂y2

)
0

+
1

48
h4

(
∂3b
∂y3

)
0

(3.98)

+
1

240
h5

(
∂4b
∂y4

)
0

+ ....
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Then,

eg2 = 1 +
1
2

hb0 +
1
4

h2
[(
∂b
∂y

)
0

+
1
2

b2
0

]
+

1
4

h3
[

1
12

b3
0 +

1
2

b0

(
∂b
∂y

)
0

+
1
3

(
∂2b
∂y2

)
0

]
+

1
8

h4

 1
48

b4
0 +

1
4

b2
0

(
∂b
∂y

)
0

+
1
4

(
∂b
∂y

)2

0
+

1
3

b0

(
∂2b
∂y2

)
0

+
1
6

(
∂3b
∂y3

)
0


1

16
h5

 1
240

b5
0 +

1
12

b3
0

(
∂b
∂y

)
0

+
1
6

b2
0

(
∂2b
∂y2

)
0

+
1
4

b0

(
∂b
∂y

)2

(3.99)

+
1
6

b0

(
∂3b
∂y3

)
0

+
1
3

(
∂b
∂y

)
0

(
∂2b
∂y2

)
0

+
1

15

(
∂4b
∂y4

)
0

]
+ O(h6). (3.100)

If we use Taylor expansion for eg4 , we obtain

eg2 + eg4 = 2 + h2
[
1
2

(
∂b
∂y

)
0

+
1
4

b2
0

]
+ h4µ0 + O(h6), (3.101)

where

µ(x, y) =
1
4

 1
48

b4 +
1
4

b2
(
∂b
∂y

)
+

1
4

(
∂b
∂y

)2

+
1
3

b
(
∂2b
∂y2

)
+

1
6

(
∂3b
∂y3

) . (3.102)

We add (3.96) and (3.101) .Therefore,

eh1 + eg2 + eh3 + eg4 = 4 + h2
(
φ0 + c0

)
+ h4(λ + µ) + O(h6). (3.103)

where φ, λ and µ defined by (3.93), (3.97) and (3.102) .

From (3.89) and (3.103) , by eliminating φ0 and ignoring all term of O
(
h4

)
and higher, the

second orde finite difference is obtained as follows:

u1eh1 + u2eg2 + u3eh3 + u4eg4 −
(
eh1 + eg2 + eh3 + eg4 − h2c0

)
u0 = 0. (3.104)

We evaluate r0, r1, r2, r3, r4 by (3.83) and (3.84) for (3.90) , (3.91). Then, for obtaining a

similar finite difference correction, the equation (3.104) is expressed in the form

u1eh1 + u2eg2 + u3eh3 + u4eg4 −
(
eh1 + eg2 + eh3 + eg4 − h2c0

)
u0 + Dϑ0 + D

′

δ0 = 0, (3.105)

where

Dϑ0 = Cϑ0 + h4λ0u0 + O(h6) (3.106)
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and

D
′

δ0 = C
′

δ0 + h4µ0u0 + O(h6). (3.107)

We put

E(x, y) = F(x, y) + c(x, y). (3.108)

Expanding E(x, y) and using (3.95), it follows that

E1eh1 + E3eh3 − 2E0 = h2
[

1
16

a4
0 +

3
4

a2
0

(
∂a
∂x

)
0

+
3
4

(
∂a
∂x

)2

0
+ a0

(
∂2a
∂x2

)
+

1
2

(
∂3a
∂x3

)
0

 + O(h4). (3.109)

In a similar way, we obtain

G2eg2 + G4eg4 − 2G0 = h2
[

1
16

b4
0 +

3
4

a2
0

(
∂b
∂y

)
0

+
3
4

(
∂b
∂y

)2

0
+ a0

(
∂2b
∂y2

)
+

1
2

(
∂3b
∂y3

)
0

 + O(h4). (3.110)

In the view of (3.97) , (3.102) , (3.109) and (3.110) , we have,

h4λ0 =
h2

12

[
E1eh1 + E3eh3 − 2E0

]
+ O(h6) (3.111)

and

h4µ0 =
h2

12
[G2eg2 + G4eg4 − 2G0] + O(h6). (3.112)

By ignoring the term of O(h6) and higher, we get the corrections (3.106) and (3.107) as

follows:

Dϑ0 = −
1

12
h2

[
(F1u1 − E1u0 + r1) eh1

−2 (F0u0 − E0u0 + r0) + (F3u3 − E3u0 + r3) eh3
]

(3.113)

and

D
′

δ0 = −
1

12
h2

[
(G2u2 −G2u0 − r2) ehG2 + 2r0

+ (G4u4 −G4u0 − r4) eg4] . (3.114)
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By combining (3.83), (3.84), (3.92), (3.105) , (3.108) (3.113) and (3.114) , the final finite-

difference equation is written in the form

Lhu ≡ e f1

[
5
6
−

1
12

h2
(
1
2

(
∂a
∂x

)
1

+
1
4

a2
1 − c1

)]
u(x + h, y)

+eg2

[
5
6
−

1
12

h2
(
1
2

(
∂b
∂y

)
2

+
1
4

b2
2 − c2

)]
u(x, y + h)

+e f3

[
5
6
−

1
12

h2
(
1
2

(
∂a
∂x

)
3

+
1
4

a2
3 − c3

)]
u(x − h, y)

+eg4

[
5
6
−

1
12

h2
(
1
2

(
∂b
∂y

)
4

+
1
4

b2
4 − c4

)]
u(x, y − h)

+
1

12

[
e f1

(
1 −

hb1

2

)
+ eg4

(
1 +

ha4

2

)]
u(x + h, y − h)

+
1

12

[
e f3

(
1 +

hb3

2

)
+ eg2

(
1 −

ha2

2

)]
u(x − h, y + h)

+
1

12

[
e f3

(
1 −

hb3

2

)
+ eg4

(
1 −

ha4

2

)]
u(x − h, y − h)

+
1

12

[
e f1

(
1 +

hb1

2

)
+ eg2

(
1 +

ha2

2

)]
u(x + h, y + h)

−

[
e f1

(
1 −

1
12

h2
(
1
2

(
∂a
∂x

)
1

+
1
4

a2
1

))
+eg2

(
1 −

1
12

h2
(
1
2

(
∂b
∂y

)
2

+
1
4

b2
2

))
+e f3

(
1 −

1
12

h2
(
1
2

(
∂a
∂x

)
3

+
1
4

a2
3

))
+eg4

(
1 −

1
12

h2
(
1
2

(
∂b
∂y

)
4

+
1
4

b2
4

))
−

5
6

h2c0

]
u(x, y)

= 0. (3.115)

The restriction for the step size h is given by

hK ≤ 2,

where K = max
{
max (|a| + |b|) ,max

(√
1
2
∂a
∂x + a2 − c +

√
1
2

(
∂b
∂y

)
+ b2 − c

)
,max

( 1
2
∂b
∂y +b2−c

b

)}
.

Everywhere, for all estimations, the all constants that we define are independent of h as

C1,C2,C3, ... .

The following all Lemmas and Theorems in present Section are proved whenever at least

one of following conditions satisfy:
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C1) If all a, b, c are arbitrary constants.

C2) If a and b are single variable functions depends on y and x, respectively.

Lemma 3.2.1. If υ is any function defined on Rh, then

max
Rh
|υ| ≤ max

γh
|υ| +

(
β2

1 + β2
2

)
max

Rh

∣∣∣Lhυ
∣∣∣ (3.116)

where Lhυ = h−2Lhυ, r2 = β2
1 + β2

2 and A is a constant with A > 0.

Proof. We define the function φi j asφi j = A
(
r2 − y2

i

)
.

Then,

Lhφi j =
A
12

h2(r2 − y2)
(
c1eh1 + c3eh3 + c2eg2 + c4eg4

)
+ A

5
6

hc0(r2 − y2)

−Ah2
(
5
6
−

1
12

h2
(
1
2

(
∂b
∂y

)
2

+
1
4

b2
2 − c2

))
eg2

−Ah2
(
5
6
−

1
12

h2
(
1
2

(
∂b
∂y

)
4

+
1
4

b2
4 − c4

))
eg4

−A
h2

6

(
eh1 + eh3 + eg2 + eg4

)
− A

h
3

y
(
eh1 + eh3

)
+2yhA

(
5
6
−

1
12

h2
(
1
2

(
∂b
∂y

)
4

+
1
4

b2
4 − c4

))
eg4

−2yhA
(
5
6
−

1
12

h2
(
1
2

(
∂b
∂y

)
2

+
1
4

b2
2 − c2

))
eg2

−A
h2

6

(
b1eh1 + b3eh3

)
.

It follows that,

Lhφi j ≤ Ah2
[
c
(
r2 − y2

)
−

1
3

]
,

where c = max {c0, c1, c2, c3, c4} .

Since c(x, y) ≤ 0 and by picking A = 3, we have

Lhφi j ≤ −h2.

From this,

Lhφi j ≤ −1. (3.117)
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Now, we define the functions ω+ and ω− by

ω+ = υ + Nφ and ω− = −υ + Nφ,

where N = max
∣∣∣Lhν

∣∣∣ .
Therefore,

Lhω
± = Lh

[
±υ + Nφ

]
.

In the view of (3.117) ,

Lhω
± ≤ ±Lh [υ] − N ≤ 0.

By maximum principle, we have

max
Rh

(
ω±

)
≤ max

γh

(
ω
±
)

≤ max
γh

(±υ) + 3
(
β2

1 + β2
2

)
N. (3.118)

Since ω±i j = ±υi j + Nφi j and Nφi j ≥ 0, we get

±υi j ≤ ω
±
i j for all

(
xi, y j

)
∈ Rh.

Hence, the inequality (3.118) yields that

max
Rh

(±υ) ≤ max
γh

(±υ) + 3
(
β2

1 + β2
2

)
N,

which completes the proof �

We take

υ = vh − Vh

where vh are solution of the problem (3.122), Vh is the trace of the solution of (3.70) on Rh.

Then from Lemma 3.2.1 we have,

max
Rh
|vh − Vh| ≤ max

γh
|vh − Vh| + A

(
β2

1 + β2
2

)
max

Rh

∣∣∣Lh (vh − Vh)
∣∣∣ . (3.119)
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By (Dennis & Hudson, 1980) we have,

max
Rh
|Lh (vh − Vh)| ≤ C1h6.

It yields that

max
Rh

∣∣∣Lh (vh − Vh)
∣∣∣ ≤ C1h4. (3.120)

By using (3.119) and (3.120), it follows that

max
(x,y)∈Rh

|vh − Vh| ≤ C1h4. (3.121)

3.2.4 Approximate solution of the nonlocal boundary value problem by

Dennis-Hudson’s finite-difference scheme

We say that F ∈ Ck,λ(E), if F has k-th derivatives on E satisfying the Hölder condition with

exponent λ.

We assume that τ(x) ∈ C6,λ
(
γ2

)
, µ(x) ∈ C6,λ

(
γ4

)
in (3.65) and (3.66), respectively.

Let C0
h be the linear space of grid functions defined on [0, β1]h that vanish at x = 0 and x = β1.

The norm of a function fh ∈ C0
h is defined as

‖ fh‖C0
h

= max
x∈[0,β1]h

| fh|

Let vh be a solution of following the system of grid equations

Lhvh = 0 on Rh, vh = τh on γ2
h, vh = 0 on γh/γ

2
h, (3.122)

where τh is the trace of τ on γ2
h and we define

ϕ̃i,h(x) = vh(x, ηi), i = 1, 2, ...,M. (3.123)

Let wh be a solution of the finite difference problem

Lhwh = 0 on Rh, wh = 0 on γh/γ
4
h, wh = f̃h on γ4

h, (3.124)

where fh ∈ C0
h, is an arbitrary function.

Let Bh
i be a linear operator from C0

h to C0
h as follows:

Bh
i fh(x) = wh (x, ηi) , i = 1, 2, ...,M, (3.125)

where wh is the solution of the problem (3.124).
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Lemma 3.2.2. The following estimate holds∥∥∥Bh
i fh(x)

∥∥∥
C0

h
≤ ‖ fh‖C0

h

(
1 −

ξ+(i−1)h

β2

)
, i = 1, 2, ...,M. (3.126)

Proof. We put

wh(xi, yi) =
1
β2
‖ fh‖C0

h
(β2 − yi) , i = 1, 2, ...,M, j = 1, 2, ...,N.

It yields the following inequality on γh:

|wh(xi, yi)| ≤ wh(xi, yi)

By substitute wh(xi, yi) in Lhwh we have,

Lhwh =
‖ fh‖C0

h

2

[
e f1

12

(
−h2b1 + h2c1(2 − y)

)
+

e f3

12

(
−h2b3 + h2c3(2 − y)

)
+eg2

(
−h +

h3

12

(
1
2

(
∂b
∂y

)
2

+
1
4

b2
2 − c2

)
+

1
12

h2c2(2 − y)
)

+eg4

(
h −

h3

12

(
1
2

(
∂b
∂y

)
4

+
1
4

b2
4 − c4

)
+

1
12

h2c4(2 − y)
)]

Under the restriction hK ≤ 2 , it follows that

Lhwh ≤ 0

Then we get,

wh(xi, yi) ≤ wh(xi, yi) on Rh.

Therefore we have the following inequalities

wh − wh ≤ 0 on γh and L(wh − wh) ≥ 0 on Rh.

In the view of the maximum principle (see in Bers et all, 1964),

wh ≤ wh on R.

By replacing −wh with wh, we obtain

−wh ≤ wh on R.
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Consequently, we can reach the inequality

|wh| ≤ wh on R.

Hence, the proof is completed. �

Define

ϕ̃h = α

M∑
k=1

ρkϕ̃k,h(x), x ∈
[
0, β1

]
h , (3.127)

where ϕ̃k,h(x) is the function (3.123).

We define the function f̃h with similar analogy of (3.39)

f̃h = ϕ̃h + µh + α

M∑
k=1

ρkψ̃k,h. (3.128)

where µh is the trace of µ defined in (3.66) on
[
0, β1

]
h and ψ̃k,h ∈ C0

h, k = 1, 2, ...,M, are the

solution of the system of the equations

ψ̃i,h = Bh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃k,h

 , i = 1, 2, ...,M. (3.129)

The solution of the system (3.129) are sought by using the fixed point iteration below:

ψ̃0
i,h = 0, ψ̃n

i,h = Bh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃
n−1
k,h

 ,
i = 1, 2, ...,M; n = 1, 2, ... . (3.130)

By using the n − th iteration ψ̃n
i,h, n ≥ 1 of (3.130), we define the function

f̃ n
h = ϕ̃h + µh + α

M∑
k=1

ρkψ̃
n
k,h. (3.131)

Let ϕh, ψi,h and ψn
i,h be the trace of ϕ, ψi and ψn

i on
[
0, β1

]
h , respectively and . In the view of

(3.76) , (3.77), (3.123) , (3.121) and ( 3.127), we have

‖ϕ̃h − ϕh‖C0
h
≤ C2h4, (3.132)

where ϕh be the trace of ϕ defined by (3.77) on
[
0, β1

]
h .
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From (3.78) and ( 3.130), it follows that, for all i = 1, 2, ...,M,

∥∥∥ψ̃1
i,h − ψ

1
i,h

∥∥∥
C0

h
≤

∥∥∥Bh
i (ϕ̃h − ϕh)

∥∥∥
C0

h

+
∥∥∥Bh

i (ϕh + µh) − (Bi (ϕ + µ))h

∥∥∥
C0

h
. (3.133)

By using (3.126) and (3.132), we have

∥∥∥Bh
i (ϕ̃h − ϕh)

∥∥∥
C0

h
≤ C3h4, i = 1, 2, ...,M, (3.134)

Let (Bi (F))h be the trace of Bi (F) on
[
0, β1

]
h for any function F ∈ C6,λ [0, β1

]
. Then,

∥∥∥Bh
i (ϕh + µh) − (Bi (ϕ + µ))h

∥∥∥
C0

h
≤ C4h4, (3.135)

By combining (3.133), (3.132) and (3.134), we reach

∥∥∥ψ̃1
i,h − ψ

1
i,h

∥∥∥
C0

h
≤ C5h4, (3.136)

For n ≥ 2, we have

∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
=

∥∥∥∥∥∥∥Bh
i

ϕ̃h + µh + α

M∑
k=1

ρkψ̃
n−1
k,h


−

Bi

ϕ + µ + α

M∑
k=1

ρkψ
n−1
k


h

∥∥∥∥∥∥∥
C0

h

.

Then,

∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤

∥∥∥Bh
i (ϕ̃h + µh) − (Bi (ϕ + µ))h

∥∥∥
C0

h

+

∥∥∥∥∥∥∥Bh
i

α M∑
k=1

ρkψ̃
n−1
k,h − α

M∑
k=1

ρkψ
n−1
k


∥∥∥∥∥∥∥

C0
h

+

∥∥∥∥∥∥∥Bh
i

α M∑
k=1

ρkψ
n−1
k

 − Bi

α M∑
k=1

ρkψ
n−1
k


h

∥∥∥∥∥∥∥
C0

h

,

i = 1, 2, ...,M. (3.137)
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By analogy of (54) in (Dosiyev, 2018) and the convergence of Dennis-Hudson’s finite

difference scheme which is proved in (3.121) the following estimate holds

max
1≤k≤M

∥∥∥∥Bh
i ψ

n−1
k −

(
Biψ

n−1
k

)
h

∥∥∥∥
C0

h

≤ C6h4,

Therefore, we get∥∥∥∥∥∥∥Bh
i

α M∑
k=1

ρkψ
n−1
k

 − Bi

α M∑
k=1

ρkψ
n−1
k


h

∥∥∥∥∥∥∥
C0

h

≤

M∑
k=1

|αρk|

∥∥∥∥Bh
i ψ

n−1
k −

(
Biψ

n−1
k

)
h

∥∥∥∥
C0

h

≤ C7h4, (3.138)

By combining (3.126), (3.135), (3.137) and (3.138), we have∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤ C8h4 + q0

∥∥∥ψ̃n−1
i,h − ψ

n−1
i,h

∥∥∥
C0

h
, (3.139)

From the estimations (3.136), (3.139), it yields∥∥∥ψ̃n
i,h − ψ

n
i,h

∥∥∥
C0

h
≤ C9h4

(
1 + q0 + q2

0 + ... + qn−1
0

)
≤ C10h4, (3.140)

The relation (3.78) yields that∥∥∥ψ1
i

∥∥∥
C0 ≤

(
1 −

ξ

β2

) (
‖ϕ‖C0 + ‖µ‖C0

)
, (3.141)

and ∥∥∥ψn
i − ψ

n−1
i

∥∥∥
C0 ≤ |Bi| |α|

M∑
k=1

|ρk|
∥∥∥ψn−1

i − ψn−2
i

∥∥∥
C0 , i = 1, 2, ...,M, (3.142)

where ϕ is defined by (3.77). By using (3.73), (3.75) , (3.141) and (3.142), we have∥∥∥ψn
i − ψ

n−1
i

∥∥∥
C0 ≤ q

n

1
(
‖ϕ‖C0 + ‖µ‖C0

)
, i = 1, 2, ...,M,

where q1 = 1 − ξ

β2
. Moreover, for any m = 1, 2, ..., we find that

∥∥∥ψn+m
i − ψn

i

∥∥∥
C0 ≤ q

n+1

1

 1−q
m
1

1 − q1

 (‖ϕ‖C0 + ‖µ‖C0
)
, i = 1, 2, ...,M. (3.143)
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Since ∥∥∥ψn
i − ψi

∥∥∥
C0 ≤

∥∥∥ψn+m
i − ψn

i

∥∥∥
C0 +

∥∥∥ψn+m
i − ψi

∥∥∥
C0 , i = 1, 2, ...,M, (3.144)

By taking limit as m→ ∞, from (3.143) and (3.144), it follows that

∥∥∥ψn
i − ψi

∥∥∥
C0 ≤

q
n+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, i = 1, 2, ...,M. (3.145)

From (3.140) and (3.145), we get

∥∥∥ψ̃n
i,h − ψi,h

∥∥∥
C0

h
≤ C10h4 +

q
n+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, i = 1, 2, ...,M. (3.146)

Hence, for the approximate solution of the nonlocal problem (3.66), (3.67), we consider the

following difference problem

Lũn
h = 0 on Rh, ũn

h = τh on γ2
h, ũn

h = 0 on γ1
h ∪ γ

3
h, (3.147)

ũn
h = f̃ n

h on γ4
h. (3.148)

where f̃ n
h defined by (3.131) .

Theorem 3.2.3. The estimation holds

max
(x,y)∈Rh

∣∣∣̃un
h − u

∣∣∣ ≤ C11h4 + q0

q
n+1
1

1 − q1
C∗,

where ũn
h is a solution of problem (3.147), (3.148), u is the exact solution of nonlocal

boundary value problem (3.66) , (3.67), C∗ = ‖ϕ‖C0 + ‖µ‖C0 , q0 is defined by (3.69) and

q1 = 1 − ξ

b .

Proof. Let Uh(x, y) be the solution of the system of grid equations

LUh = 0 on Rh, Uh = τ on γ2
h, Uh = 0 on γ1

h ∪ γ
3
h, (3.149)

Uh = fh on γ4
h, (3.150)

where fh is the trace of f on
[
0, β1

]
h. Since τ, µ and ψi, i = 1, 2, ...,M, belong to C6,λ, 0 < λ <

1, on the interval 0 ≤ x ≤ 1, by analogy of (3.121), we have

max
(x,y)∈Rh

|Uh − U | ≤ C13h4, (3.151)
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where U is the solution of problem (3.67),(3.68). The inequalities (3.126) and (3.146) yield

that ∥∥∥∥ f̃ n
h − fh

∥∥∥∥
C0

h

≤ C14h4 + q0

q
n+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (3.152)

where q0 is defined by (3.69) . From the grid maximum principle and from (3.152) we have

max
(x,y)∈Rh

∣∣∣̃un
h − Uh

∣∣∣ ≤ C15h4 + q0

q
n+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (3.153)

where ũn
h is the solution of problem (3.147) , (3.148) and Uh is the solution of problem (

3.149), (3.150). In the view of the estimates (3.151) and (3.153), the following inequality

remains true.

max
(x,y)∈Rh

∣∣∣̃un
h − U

∣∣∣ ≤ C16h4 + q0

q
n+1
1

1 − q1

(
‖ϕ‖C0 + ‖µ‖C0

)
, (3.154)

where U is the solution of the problem (3.67), (3.68).

By using (3.154) and by the maximum principle for the second order elliptic equation (see

in Bers et all, 1964) with the truncation error of Simpson’s rule which is order of O(h4), we

have the final estimate

max
(x,y)∈Rh

∣∣∣̃un
h − u

∣∣∣ ≤ max
(x,y)∈Rh

∣∣∣̃un
h − U

∣∣∣ + max
(x,y)∈Rh

|U − u|

≤ c11h4 + q0

q
n+1
1

1 − q1
c12, (3.155)

where u is the solution of problem (3.66),(3.67) and c12 = ‖ϕ‖C0 + ‖µ‖C0 . �

Remark. In (3.155) the right-hand side is O
(
h4

)
, when

qn+1
1

1 − q1
≈ h4. (3.156)

By (3.156) we have

n = max
{[

ln h4(1 − q1)
ln q1

]
, 1

}
,

where [a] is the integer part of a.
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CHAPTER 4

NUMERICAL EXPERIMENTS

4.1 NUMERICAL RESULTS FOR SECOND ORDER ACCURACY OF

LAPLACE’S EQUATION

Let

R = {(x, y) : 0 < x < 1, 0 < y < 2} .

Problem 4.1

∂2u
∂x2 +

∂2u
∂y2 = 0 on R, u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = 100e−π sin πx, 0 ≤ x ≤ 1,

u(x, 0) =
1

400

∫ 2

1
8

u(x, y)dy, 0 < x < 1.

Problem 4.2

∂2u
∂x2 +

∂2u
∂y2 = 0 on R, u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = x
61
30

(
tan−1 x −

π

4

)
, 0 ≤ x ≤ 1,

u(x, 0) =
1

250

∫ 2

1
4

u(x, y)dy, 0 < x < 1.
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Table 4.1: Solutions on the line y = 0 of Problem 4.1

h = 1/16 h = 1/32 h = 1/64 h = 1/128

1.08143E − 003 1.07733E − 003 1.06995E − 003 1.06878E − 003

2.11043E − 003 2.10093E − 003 2.09985E − 003 2.09723E − 003

3.06437E − 003 3.05995E − 003 3.04753E − 003 3.04516E − 003

3.99917E − 003 3.92006E − 003 3.90146E − 003 3.89853E − 003

4.63414E − 003 4.60194E − 003 4.58118E − 003 4.56626E − 003

5.10924E − 003 5.09734E − 003 5.08458E − 003 5.07102E − 003

5.42355E − 003 5.40011E − 003 5.38575E − 003 5.38023E − 003

5.54481E − 003 5.51245E − 003 5.49120E − 003 5.48215E − 003

5.42355E − 003 5.40011E − 003 5.38575E − 003 5.38023E − 003

5.10924E − 003 5.09734E − 003 5.08458E − 003 5.07102E − 003

4.63414E − 003 4.60194E − 003 4.58118E − 003 4.56626E − 003

3.99917E − 003 3.92006E − 003 3.90146E − 003 3.89853E − 003

3.06437E − 003 3.05995E − 003 3.04753E − 003 3.04516E − 003

2.11043E − 003 2.10093E − 003 2.09985E − 003 2.09723E − 003

1.08143E − 003 1.07733E − 003 1.06995E − 003 1.06878E − 003
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Table 4.2: Solutions on the line y = 0 of Problem 4.2

h = 1/16 h = 1/32 h = 1/64 h = 1/128

−1.24817E − 006 −1.25923E − 006 −1.26118E − 006 −1.25801E − 006

−2.61230E − 006 −2.62049E − 006 −2.62046E − 006 −2.61320E − 006

−4.06639E − 006 −4.06610E − 006 −4.06283E − 006 −4.05144E − 006

−5.54744E − 005 −5.53623E − 005 −5.52926E − 005 −5.51406E − 005

−6.97362E − 005 −6.95075E − 005 −6.94010E − 005 −6.92162E − 005

−8.25574E − 005 −8.22155E − 005 −8.20755E − 005 −8.18652E − 005

−9.30529E − 005 −9.26090E − 005 −9.24408E − 005 −9.22131E − 005

−1.00403E − 005 −9.98743E − 005 −9.96845E − 005 −9.94483E − 005

−1.03901E − 005 −1.03307E − 005 −1.03103E − 005 −1.02868E − 005

−1.02984E − 005 −1.02350E − 005 −1.02140E − 005 −1.01914E − 005

−9.72690E − 005 −9.66213E − 005 −9.64143E − 005 −9.62074E − 005

−8.65773E − 005 −8.59469E − 005 −8.57517E − 005 −8.55715E − 005

−7.09704E − 005 −7.03932E − 005 −7.02198E − 005 −7.00737E − 005

−5.07928E − 005 −5.03143E − 005 −5.01745E − 005 −5.00691E − 005

−2.67421E − 005 −2.64308E − 005 −2.63411E − 005 −2.62829E − 005

The exact solution of Problems 4.1 and 4.2 are unknown. The approximate values of

Problems 4.1 and 4.2 on the line y = 0 obtained by proposed method are given in Tables 4.1

and 4.2, respectively. According to repeated digits, for the decreasing mesh steps

h = 1
16 ,

1
32 ,

1
64 ,

1
128 it follows that the maximum error on these line decreases as O

(
h2

)
. To

obtain these results, 6 iteration are applied for the construction of f̃ n
h with the successive

error which is less than 10−16.

Problem 4.3

∂2u
∂x2 +

∂2u
∂y2 = 0 on R, u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = e2π sin πx, 0 ≤ x ≤ 1,

u(x, 0) =
1

100

∫ 2

1
16

u(x, y)dy + µ(x), 0 < x < 1,
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where u = eπy sin πx is the exact solution, µ(x) =
[
1 + α

π

(
e

π
16 − e2π

)]
sin πx.

Table 4.3: Maximum errors for the solution of Problem 4.3

h Max error Order o f reduction

1/16 1.07964041 × 10−3

1/32 2.70491138 × 10−4 3.99140

1/64 6.76593129 × 10−5 3.99784

1/128 1.69171146 × 10−5 3.99945

Table 4.4: CPU times for Problem 4.1

h Discrete Fourier Gauss S eidel Gauss S eidel

with reducing without reducing

1/16 0.08625 s 0.10125 s 0.25200 s

1/32 0.91325 s 1.30225 s 4.00625 s

1/64 9.57500 s 12.77395 s 38.60125 s

1/128 148.11565 s 234.10215 s 636.12675 s
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Table 4.5: CPU times for Problem 4.2

h Discrete Fourier Gauss S eidel Gauss S eidel

with reducing without reducing

1/16 0.10375 s 0.19525 s 0.39265 s

1/32 1.10225 s 2.10113 s 5.14255 s

1/64 12.7125 s 16.01345 s 41.26315 s

1/128 192.43125 s 310.26890 s 1003.13625 s

Table 4.6: CPU times for Problem 4.3

h Discrete Fourier Gauss S eidel Gauss S eidel

with reducing without reducing

1/16 0.06500 s 0.081250 s 0.21500 s

1/32 0.70312 s 1.21625 s 3.01856 s

1/64 7.79687 s 11.00625 s 34.11175 s

1/128 100.703125 s 192.23987 s 545.37500 s

In Table 4.3 for Problem 4.3, the maximum error for each step h = 1
2k , k = 4, 5, 6, 7 and

the reduction orders are given. From the 3-nd column follows that the convergence order is

O
(
h2

)
.

In Tables 4.4, 4.5 and 4.6 the results of the CPU times in solving Problems 4.1, 4.2 and 4.3
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are given, respectively. On columns 2 and 3 the CPU times for the realization of the proposed

approaches by the discrete Fourier method and by the Gauss-Seidel method are given. For

the construction of the local function f̃ n
h for Problems 4.1 and 4.2 just 6 iterations, are used.

Problem 4.3 needs 4 iterations. In column 4, Gauss-Seidel method is used to solve the given

problems without reducing to the Dirichlet problem. From these results follow that discrete

Fourier method which can not be used to the problem without reducing to the Dirichlet

problem is faster than others. The third and fourth columns show that for the method which

is applicable for both approaches ( as Gauss Seidel ), the CPU times with reducing are less

than the CPU times without reducing to the Dirichlet problem.

As it follows from Tables 4.4 − 4.6, the CPU times given in Tables 4.4 and 4.6 for Problems

4.1 and 4.3 are less than the results for Problem 4.2 given in Table 4.5. These take place

because of low smoothness of the boundary function in Problem 4.2.

Problem 4.4

∂2u
∂x2 +

∂2u
∂y2 = g on R, u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = −3e−2π sin πx, 0 ≤ x ≤ 1,

u(x, 0) =
1

200

∫ 2

1
2

u(x, y)dy + µ(x), 0 < x < 1,

where u = (eπx − 1) (eπx − eπ) sin πy + (1 − 2y)eπy(1−y) sin πx is the exact solution, g(x, y) =

uxx(x, y) + uyy(x, y) and µ(x) =
[
1 + α

π

(
e
π
4 − e−2π

)]
sin πx + α

π
(eπx − 1) (eπx − eπ) .
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Table 4.7: Solutions on the line y = 0 of Problem 4.4

h = 1/16 h = 1/32 h = 1/64 h = 1/128

0, 195064783 0, 195051561 0, 195050965 0, 195051024

0, 382669877 0, 382675485 0, 382680414 0, 382681929

0, 555545763 0, 555559813 0, 555568668 0, 555569489

0, 707116358 0, 707112791 0, 707109567 0, 707107659

0, 831446974 0, 831457026 0, 831459968 0, 831463480

0, 923895614 0, 923886902 0, 923882665 0, 923880204

0, 980766701 0, 980778955 0, 980782390 0, 980783963

0, 999969845 0, 999978899 0, 999982461 0, 999988475

0, 980766701 0, 980778955 0, 980782390 0, 980783963

0, 923895614 0, 923886902 0, 923882665 0, 923880204

0, 831446974 0, 831457026 0, 831459968 0, 831463480

0, 707116358 0, 707112791 0, 707109567 0, 707107659

0, 555545763 0, 555559813 0, 555568668 0, 555569489

0, 382669877 0, 382675485 0, 382680414 0, 382681929

0, 195064783 0, 195051561 0, 195050965 0, 195051024

Table 4.8: Maximum errors for the solution of Problem 4.4

h Max error Order o f reduction

1/16 4.59635288 × 10−3

1/32 1.17381162 × 10−3 3.91575

1/64 2.95002406 × 10−4 3.97899

1/128 7.39382199 × 10−5 3.98985

The exact solution of Poisson’s equation given in Problem 4.4 is known. The approximate

values of Problems 4.4 on the line y=0 demonstrated by proposed method are illustrated in

Tables 4.7. According to order of reduction for the decreasing mesh steps in Table 4.8, the

maximum error on these line decreases as O
(
h2

)
.
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4.2 NUMERICAL RESULTS FOR FOURTH ORDER ACCURACY OF

LAPLACE’S EQUATION

Let

R = {(x, y) : 0 < x < 1, 0 < y < 2} .

Problem 4.5

∂2u
∂x2 +

∂2u
∂y2 = 0 on R, u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = 100e−π sin πx, 0 ≤ x ≤ 1,

u(x, 0) =
1

400

∫ 2

1
8

u(x, y)dy, 0 < x < 1.

Problem 4.6

∂2u
∂x2 +

∂2u
∂y2 = 0 on R, u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = x
181
30

(
tan−1 x −

π

4

)
, 0 ≤ x ≤ 1,

u(x, 0) =
1

250

∫ 2

1
4

u(x, y)dy, 0 < x < 1.
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Table 4.9: Solutions on the line y = 0 of Problem 4.5

h = 1/16 h = 1/32 h = 1/64 h = 1/128

1.06874E − 003 1.06873E − 003 1.06874E − 003 1.06877E − 003

2.09641E − 003 2.09639E − 003 2.09641E − 003 2.09647E − 003

3.04351E − 003 3.04350E − 003 3.04352E − 003 3.04361E − 003

3.87366E − 003 3.87364E − 003 3.87366E − 003 3.87378E − 003

4.55494E − 003 4.55491E − 003 4.55495E − 003 4.55508E − 003

5.06118E − 003 5.06115E − 003 5.06119E − 003 5.06134E − 003

5.37292E − 003 5.37289E − 003 5.37293E − 003 5.37309E − 003

5.47818E − 003 5.47815E − 003 5.47819E − 003 5.47835E − 003

5.37292E − 003 5.37289E − 003 5.37293E − 003 5.37309E − 003

5.06118E − 003 5.06115E − 003 5.06119E − 003 5.06134E − 003

4.55494E − 003 4.55491E − 003 4.55495E − 003 4.55508E − 003

3.87366E − 003 3.87364E − 003 3.87366E − 003 3.87378E − 003

3.04351E − 003 3.04350E − 003 3.04352E − 003 3.04361E − 003

2.09641E − 003 2.09639E − 003 2.09641E − 003 2.09647E − 003

1.06874E − 003 1.06873E − 003 1.06874E − 003 1.06877E − 003
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Table 4.10: Solutions on the line y = 0 of Problem 4.6

h = 1/16 h = 1/32 h = 1/64 h = 1/128

−2.69158E − 006 −2.68953E − 006 −2.68153E − 006 −2.64961E − 006

−5.51443E − 006 −5.51067E − 006 −5.49500E − 006 −5.43245E − 006

−8.61713E − 006 −8.61191E − 006 −8.58921E − 006 −8.49847E − 006

−1.21399E − 005 −1.21335E − 005 −1.21047E − 005 −1.19893E − 005

−1.61725E − 005 −1.61651E − 005 −1.61313E − 005 −1.59957E − 005

−2.07100E − 005 −2.07019E − 005 −2.06644E − 005 −2.05138E − 005

−2.56153E − 005 −2.56069E − 005 −2.55671E − 005 −2.54074E − 005

−3.05943E − 005 −3.05858E − 005 −3.05454E − 005 −3.03827E − 005

−3.51857E − 005 −3.51775E − 005 −3.51378E − 005 −3.49784E − 005

−3.87703E − 005 −3.87626E − 005 −3.87253E − 005 −3.85752E − 005

−4.06024E − 005 −4.05955E − 005 −4.05620E − 005 −4.04271E − 005

−3.98689E − 005 −3.98629E − 005 −3.98345E − 005 −3.97198E − 005

−3.57837E − 005 −3.57787E − 005 −3.57564E − 005 −3.56664E − 005

−2.77381E − 005 −2.77337E − 005 −2.77183E − 005 −2.76563E − 005

−1.55532E − 005 −1.55474E − 005 −1.55393E − 005 −1.55078E − 005

The exact solution of Problems 4.5 and 4.6 are unknown. The approximate values of

Problems 4.5 and 4.6 on the line y = 0 obtained by proposed method are given in Tables 4.9

and 4.10, respectively. According to repeated digits, for the decreasing mesh steps

h = 1
16 ,

1
32 ,

1
64 ,

1
128 it follows that the maximum error on these line decreases as O

(
h4

)
. For

getting this accuracy, 14 iteration are needed to obtain f̃ n
h with the successive error in

absolute value 10−16 is taken.

Problem 4.7

∂2u
∂x2 +

∂2u
∂y2 = 0 on R, u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = e2π sin πx, 0 ≤ x ≤ 1,

u(x, 0) =
1

100

∫ 2

1
16

u(x, y)dy + µ(x), 0 < x < 1,
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where u = eπy sin πx is the exact solution, µ(x) =
[
1 + α

π

(
e

π
16 − e2π

)]
sin πx.

Table 4.11: Maximum errors for the solution of Problem 4.7

h Max error Order o f reduction

1/16 1.40629393× 10−9

1/32 8.77042882× 10−11 16.03449

1/64 5.47739631× 10−12 16.01203

1/128 3.42279360×10−13 16.00270

Table 4.12: CPU times for Problem 4.5

h Discrete Fourier Gauss S eidel Gauss S eidel

with reducing without reducing

1/16 0.10125 s 0.13325 s 0.65250 s

1/32 1.58375 s 2.27125 s 6.70625 s

1/64 19.87500 s 25.15375 s 81.11175 s

1/128 284.72625 s 467.22025 s 1325.14725 s
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Table 4.13: CPU times for Problem 4.6

h Discrete Fourier Gauss S eidel Gauss S eidel

with reducing without reducing

1/16 0.19115 s 0.23565 s 0.71300 s

1/32 2.00135 s 3.97115 s 8.12375 s

1/64 26.6875 s 37.35625 s 90.72425 s

1/128 355.62775 s 580.22315 s 1798.54315 s

Table 4.14: CPU times for Problem 4.7

h Discrete Fourier Gauss S eidel Gauss S eidel

with reducing without reducing

1/16 0.11375 s 0.12125 s 0.62500 s

1/32 1.28437 s 2.18375 s 5.78125 s

1/64 17.96875 s 24.35625 s 79.23375 s

1/128 278.82815 s 443.0125 s 1243.84875 s

In Table 4.10 for Problem 4.7, the maximum error for each step h = 1
2k , k = 4, 5, 6, 7 and

the reduction orders are given. From the 3-nd column follows that the convergence order is

O
(
h4

)
.

In Tables 4.11, 4.12 and 4.13 the results of the CPU times in solving Problems 4.5, 4.6 and 4.7

72



are given, respectively. On columns 2 and 3 the CPU times for the realization of the proposed

approaches by the discrete Fourier method and by the Gauss-Seidel method are given. For

the construction of the local function f̃ n
h for Problems 4.5 and 4.6 just 14 iterations, are used.

Problem 4.7 needs 11 iterations. In column 4, Gauss-Seidel method is used to solve the given

problems without reducing to the Dirichlet problem. From these results follow that discrete

Fourier method which can not be used to the problem without reducing to the Dirichlet

problem is faster than others. The third and fourth columns show that for the method which

is applicable for both approaches ( as Gauss Seidel ), the CPU times with reducing are less

than the CPU times without reducing to the Dirichlet problem.

As it follows from Tables 4.11 − 4.13, the CPU times given in Tables 4.11 and 4.13 for

Problems 4.5 and 4.7 are less than the results for Problem 4.6 given in Table 4.12. These

take place because of low smoothness of the boundary function in Problem 4.6.

4.3 NUMERICAL RESULTS FOR SECOND ORDER ACCURACY OF THE

GENERAL SECOND ORDER ELLIPTIC EQUATION

Let

R = {(x, y) : 0 < x < 1, 0 < y < 2} .

Problem 4.8

uxx + uyy + ex2yux + ex+yuy +
(
1 − ex+y) u = g on R,

u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = ex+2 sin πx, 0 ≤ x ≤ 1,

u(x, 0) =
1

400

∫ 2

1
4

u(x, y)dy + µ(x), 0 < x < 1.

where u(x, y) = ex+y sin πx is the exact solution, µ(x) = 1
400ex sin πx(400 + e

1
4 − e2).

Problem 4.9

uxx + uyy + 10yux + 10xuy − 10(x + y)u = g on R,
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u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = 2x(x − 1), 0 ≤ x ≤ 1,

u(x, 0) =
1

300

∫ 2

1
4

u(x, y)dy + µ(x), 0 < x < 1.

where u(x, y) = x(x − 1) (y + 1)2 is the exact solution, µ(x) = 1667
57600 x(1 − x).

Table 4.15: Solutions on the line y = 0 of Problem 4.8

h = 1/16 h = 1/32 h = 1/64 h = 1/128

0.2076346734 0.2076535562 0.2076687923 0.2076699589

0.4336197832 0.4336283459 0.4336314544 0.4336354674

0.6701248856 0.6701398448 0.6701424531 0.6701429966

0.9079351178 0.9079402676 0.9079428901 0.9079427836

1.1364367811 1.1364389134 1.1364654330 1.1364659465

1.3442278558 1.3442300172 1.3442360241 1.3442365774

1.5190458799 1.5190547266 1.5190656739 1.5190671509

1.6487147567 1.6487209769 1.6487218770 1.6487216379

1.7213226345 1.7213298834 1.7213315642 1.7213313224

1.7260167756 1.7260211221 1.7260299877 1.7260326443

1.6535467253 1.6535586554 1.65356832445 1.6535690575

1.4969211386 1.4969345687 1.4969412133 1.4969447388

1.2519675367 1.2519781418 1.2519854427 1.2519894358

0.9180568793 0.9180249742 0.9180289882 0.9180283238

0.4981676325 0.4981776555 0.4981800113 0.4981821423
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Table 4.16: Solutions on the line y = 0 of Problem 4.9

h = 1/16 h = 1/32 h = 1/64 h = 1/128

0.0585384954 0.0585584334 0.0585768987 0.0585783454

0.1093578543 0.1093698741 0.1093720085 0.1093738953

0.1523369392 0.1523398472 0.1523410479 0.1523418493

0.1875483921 0.1875384932 0.1875329182 0.1875326172

0.2148192832 0.2148273915 0.2148368218 0.2148391352

0.2343638921 0.2343659382 0.2343734679 0.2343748731

0.2460738219 0.2460898271 0.2460923731 0.2460934799

0.2532746392 0.2532584934 0.2532449384 0.2532443601

0.2460738219 0.2460898271 0.2460923731 0.2460934799

0.2343638921 0.2343659382 0.2343734679 0.2343748731

0.2148192832 0.2148273915 0.2148368218 0.2148391352

0.1875483921 0.1875384932 0.1875329182 0.1875326172

0.1523369392 0.1523398472 0.1523410479 0.1523418493

0.1093578543 0.1093698741 0.1093720085 0.1093738953

0.0585384954 0.0585584334 0.0585768987 0.0585783454

Table 4.17: Maximum errors for the solution of Problem 4.8

h Max error Order o f reduction

1/16 3.71348976× 10−4

1/32 9.36492001× 10−5 3.965321

1/64 2.35504136× 10−5 3.976535

1/128 5.90288162×10−6 3.989653

The exact solution of Problems 4.8 and 4.9 are known. The approximate values of Problems

4.8 and 4.9 on the line y = 0 obtained by proposed method are given in Tables 4.14 and 4.15,

respectively.

In Table 4.16 for Problem 4.9, the maximum error are illustrated for decreasing mesh

h = 1
16 ,

1
32 ,

1
64 ,

1
128 . The order of reduction in 3-coulumn shows that the convergence order is
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O
(
h2

)
. To obtain this accuracy, 8 iteration are used on the way of construction f̃ n

h with the

successive error in absolute value 10−16 is taken.

Problem 4.10

uxx + uyy + y
181
30 ux + x

181
30 uy − x

181
30 yu = 0 on R,

u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = x
361
60

(
tan−1 x −

π

4

)
, 0 ≤ x ≤ 1,

u(x, 0) =
1

100

∫ 2

1
16

u(x, y)dy, 0 < x < 1,

Table 4.18: Solutions on the line y = 0 of Problem 4.10

h = 1/16 h = 1/32 h = 1/64 h = 1/128

−3.24817E − 004 −3.25923E − 004 −3.26118E − 004 −3.25801E − 004

−4.61230E − 004 −4.62049E − 004 −4.62046E − 004 −4.61320E − 004

−6.06639E − 004 −6.06610E − 004 −6.06283E − 004 −6.05144E − 004

−7.54744E − 004 −7.53623E − 004 −7.52926E − 004 −7.51406E − 004

−8.97362E − 004 −8.95075E − 004 −8.94010E − 004 −8.92162E − 004

−9.25574E − 004 −9.22155E − 004 −9.20755E − 004 −9.18652E − 004

−1.03052E − 004 −1.02609E − 004 −1.02440E − 004 −1.02213E − 004

−3.00403E − 004 −3.98743E − 004 −3.96845E − 004 −3.94483E − 004

−3.03901E − 004 −3.03307E − 004 −3.03103E − 004 −3.02868E − 004

−3.02984E − 004 −3.02350E − 004 −3.02140E − 004 −3.01914E − 004

−1.07269E − 004 −1.06621E − 004 −1.06414E − 004 −1.06207E − 004

−9.65773E − 004 −9.59469E − 004 −9.57517E − 004 −9.55715E − 004

−6.09704E − 004 −6.03932E − 004 −6.02198E − 004 −6.00737E − 004

−3.07928E − 004 −3.03143E − 004 −3.01745E − 004 −3.00691E − 004

−1.67421E − 004 −1.64308E − 004 −1.63411E − 004 −1.62829E − 004
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Table 4.19: CPU times for Gauss Seidel with reducing for Problem 4.10

h Problem 4.8 Problem 4.9 Problem 4.10

1/16 0.15 s 0.14915 s 0.20152 s

1/32 1.77465 s 1.81675 s 2.31325 s

1/64 21.12625 s 22.01125 s 27.22155 s

1/128 489.01125 s 494.01456 s 589.12372 s

The exact solution of Problem 4.10 is unknown. In Table 4.17 for Problem 4.10, the

approximate values on the line y = 0, is given. According to repeated digits for the

decreasing mesh h = 1
2k , k = 4, 5, 6, 7, it follows that the convergence order is O

(
h2

)
.

In Table 4.18, the results of CPU times of the proposed approaches by the Gauss Seidel

method are given for Problem 4.8, 4.9 and 4.10. To construct f̃ n
h , 8 iterations are used for

Problem 4.8 and 4.9. However for Problem 4.10, just 10 iterations are needed. To achieve

all these, successive error is used as less than 10−16.

In Problem 4.10, the smoothness of boundary functions are less than the smoothness of

boundary functions in Problems 4.8 and 4.9. Therefore the CPU times in Problem 4.10 is

higher than the CPU times in Problem 4.8 and 4.9.

4.4 NUMERICAL RESULTS FOR FOURTH ORDER ACCURACY OF GENERAL

SECOND ORDER ELLIPTIC EQUATION

Let

R = {(x, y) : 0 < x < 1, 0 < y < 2} .

Problem 4.11

uxx + uyy + y
181
30 ux + x

181
30 uy − x

181
30 yu = 0 on R,

u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = x
361
60

(
tan−1 x −

π

4

)
, 0 ≤ x ≤ 1,

u(x, 0) =
1

100

∫ 2

1
16

u(x, y)dy, 0 < x < 1,
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Table 4.20: Solutions on the line y = 0 of Problem 4.11

h = 1/16 h = 1/32 h = 1/64 h = 1/128

−3.25807E − 004 −3.25804E − 004 −3.25801E − 004 −3.25801E − 004

−4.61323E − 004 −4.61323E − 004 −4.61321E − 004 −4.61321E − 004

−6.05146E − 004 −6.05145E − 004 −6.05144E − 004 −6.05144E − 004

−7.51409E − 004 −7.51408E − 004 −7.51407E − 004 −7.51406E − 004

−8.92160E − 004 −8.92162E − 004 −8.92162E − 004 −8.92162E − 004

−9.18658E − 004 −9.18655E − 004 −9.18653E − 004 −9.18652E − 004

−1.02214E − 004 −1.02214E − 004 −1.02213E − 004 −1.02213E − 004

−3.94488E − 004 −3.94486E − 004 −3.94484E − 004 −3.94484E − 004

−3.02869E − 004 −3.02868E − 004 −3.02868E − 004 −3.02868E − 004

−3.01911E − 004 −3.01913E − 004 −3.01913E − 004 −3.01914E − 004

−1.06205E − 004 −1.06205E − 004 −1.06206E − 004 −1.06207E − 004

−9.55711E − 004 −9.55713E − 004 −9.55714E − 004 −9.55715E − 004

−6.00731E − 004 −6.00734E − 004 −6.00736E − 004 −6.00736E − 004

−3.00692E − 004 −3.00691E − 004 −3.00691E − 004 −3.00691E − 004

−1.62824E − 004 −1.64305E − 004 −1.62828E − 004 −1.62829E − 004

Problem 4.12

uxx + uyy + ey2
ux + sin(πx)uy − ex+yu = 0 on R,

u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = e2 sin πx, 0 ≤ x ≤ 1,

u(x, 0) =
1

400

∫ 2

1
4

u(x, y)dy 0 < x < 1,
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Table 4.21: Solutions on the line y = 0 of Problem 4.12

h = 1/16 h = 1/32 h = 1/64 h = 1/128

0.3857382584 0.3857382492 0.3857382478 0.3857382466

0.4758495134 0.4758495189 0.4758495212 0.4758495231

0.6473929863 0.6473929798 0.6473929764 0.6473929714

0.8493612742 0.8493612879 0.8493612865 0.8493612823

1.1837489532 1.1837489603 1.1837489752 1.1837489801

1.3746380152 1.3746380199 1.3746380206 1.3746380215

1.4980766089 1.4980766093 1.4980766102 1.4980766113

1.5999742753 1.5999742689 1.5999742654 1.5999742641

1.4980766089 1.4980766093 1.4980766102 1.4980766113

1.3746380152 1.3746380199 1.3746380206 1.3746380215

1.1837489532 1.1837489603 1.1837489752 1.1837489801

0.8493612742 0.8493612879 0.8493612865 0.8493612823

0.6473929863 0.6473929798 0.6473929764 0.6473929714

0.4758495134 0.4758495189 0.4758495212 0.4758495231

0.3857382584 0.3857382492 0.3857382478 0.3857382466

In Problem 4.11 and 4.12, the exact solutions are not known. The approximate solutions

of the problems are demonstrated on the line y = 0 in Table 4.19 and 4.20. According to

repeated digits, for the decreasing mesh steps h = 1
16 ,

1
32 ,

1
64 ,

1
128 it follows that the maximum

error on these line decreases as O
(
h4

)
. To construct f̃ n

h ,we need 17 iterations with successive

error which is less than 10−16.

Problem 4.13

uxx + uyy + uy − πu = 0 on R,

u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 2,

u(x, 2) = e2π sin(πx), 0 ≤ x ≤ 1,

u(x, 0) =
1

600

∫ 2

1
2

u(x, y)dy + µ(x), 0 < x < 1,
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where u(x, y) = eπy sin(πx) is exact solution, µ(x) = sin(πx)
[

1
600π

(
e

1
2π − e2π

)
+ 1

]
.

Table 4.22: Maximum errors for the solution of Problem 4.13

h Max error Order o f reduction

1/16 2.73648325× 10−7

1/32 1.17039293× 10−8 16.05984

1/64 1.06417712× 10−9 16.01201

1/128 6.65160015×10−11 15.99892

Table 4.23: CPU times for Gauss Seidel with reducing for Problem 4.13

h Problem 4.11 Problem 4.12 Problem 4.13

1/16 0.29343 s 0.16743 s 0.14913 s

1/32 3.43721 s 2.46382 s 2.57218 s

1/64 36.83612 s 27.43587 s 28.34611 s

1/128 701.38212 s 537.38212 s 579.27362 s

In Table 4.21 for Problem 4.13, the maximum error are illustrated for decreasing mesh

h = 1
16 ,

1
32 ,

1
64 ,

1
128 . The order of reduction in 3-coulumn shows that the convergence order is

O
(
h4

)
. To obtain this accuracy, 16 iteration are used on the way of construction f̃ n

h with the

successive error in absolute value 10−16 is taken

In Table 4.22, the results of CPU times of the proposed approaches by the Gauss Seidel

method are given for Problem 4.11, 4.12 and 4.13. To construct f̃ n
h , 17 iterations are used for

Problem 4.8 and 4.9. However for Problem 4.10, just 16 iterations are needed. To achieve

all these, successive error is used as less than 10−16.

80



CHAPTER 5

CONCLUSIONS

A constructive method for the exact and approximate solutions of the nonlocal boundary

value problem for Laplace’s and the general second order linear elliptic equations with

nonlocal integral condition is proposed and justified. In the proposed method, the boundary

values where the nonlocal condition was given, are constructed as a function by using the

n-th term of the convergent fixed point iteration for the solution of the obtained nonlinear

system of equations.

The second and fourth order finite difference schemes are constructed for Laplace’s and

second order linear elliptic equations. The convergence of all finite difference scheme are

verified. As a novel error estimation of order O(h4), for the finite difference scheme

constructed Dennis-Hudson (see in Dennis&Hudson, 1979;1980) for the second order

general linear elliptic equations is obtained.

The uniform estimate of the error of approximate solution for Laplace’s equation with

integral boundary condition is of order O(h2) for 5-point scheme and O(h4) for 9-point

scheme, when the given boundary functions on the sides belong to the Hölder classes C2,λ

and C4,λ, 0 < λ < 1, respectively. For the second order elliptic equation, it is proved that

when the boundary functions are from C4,λ, 0 < λ < 1, the approximate solution by 5-point

scheme of the nonlocal problem with integral boundary condition converges of order O(h2)

and Dennis-Hudson’s scheme converges of O(h4) when the exact solution belongs

C6,λ, 0 < λ < 1.

Finally, the proposed method can be used to get numerical solution of different nonlocal

problems for other type partial differential equations. Also, it can be developed to obtain

higher order as O(hp), p > 4, uniform estimate of the error of the approximate solution.

Moreover, the existing fast algortihms (see in Samarskii, 1989 and the references therein) can

be used for the realization of the obtained local finite-difference problems in the proposed

approach
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