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ABSTRACT

A constructive method for 5 and 9 point approximate solution of Laplace’s and second
order general linear elliptic equations with nonlocal integral boundary condition is proposed
and justified. In this method, the approximate solution is defined as a solution of the
classical Dirichlet problem by using special method to seek a function instead of the
nonlocal boundary value.

Furthermore, a novel estimation for the convergence of the fourth order finite difference
scheme for the second order general elliptic equation containing first order partial derivatives
with variable coeflicients is obtained.

The uniform estimate of the error of approximate solution for Laplace’s equation and the
second order general elliptic equations obtained by the proposed method is of order O(h?)
and O(h*), when 5-point and 9-point scheme are used, respectively. These estimations are
proved when the exact solutions are from the Holder classes C*,0 < A < 1, on the closed
solution domain. It is verified that the order O(h?) and O(h*) are obtained for Laplace’s
equation when k = 2 and k = 4, respectively. For the general elliptic equation the same
estimations are obtained when k = 4 and k = 6, respectively. Numerical experiments are
given to support the obtained theoretical analysis.

Keywords: Laplace’s equation; second order linear elliptic equation; Dirichlet problem:;

nonlocal integral condition; finite difference scheme; uniform estimation
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OZET

Yerel olmayan integral sinir sarthh Laplace ve ikinci mertebeden genel dogrusal elliptik
denklemlerin 5 ve 9 nokta yaklasik ¢oziimleri i¢in yapisal bir yontem Onerilir ve dogrulanir.
Bu yontemde yaklasik ¢6ziim, yerel olmayan sinir sart1 yerine 6zel yontemle bir fonksiyon
bulunarak klasik Dirichlet probleminin bir ¢dziimii olarak tanimlanir.

Ayrica, degisken katsayili birinci mertebeden kismi tiirevleri iceren ikinci mertebeden genel
elliptik denkleminin, dordiincii mertebeden sonlu farklar semasinin yakinsakligi icin yeni bir
tahmin elde edilir.

5 nokta ve 9 nokta plani kullanilarak, Laplace ve ikinci mertebeden genel elliptik denklemleri
icin yaklagik ¢oziimiin hatasimin diizgiin tahmini siras1 ile O(h?) ve O(h*) mertebesindendir.
Bu tahminler, kesin ¢oziimler kapali ¢oziim alaninda C*,0 < A < 1, Hélder sinifindan
oldugunda ispatlanir. Sirasi ile k = 2 ve k = 4 oldugunda, Laplace denklemi icin O(h?) ve
O(h*) mertebelerin elde edildigi ispatanlanir. Ikinci mertebeden genel elliptik denklemleri
i¢in, sirast ile k = 4 ve k = 6 oldugunda aynmi tahminler elde edilir. Elde edilen teorik
sonuclar1 desteklemek i¢in sayisal deneyimler verilir.

Anahtar Kelimeler: Laplace denklemi; ikinci mertebeden dogrusal elliptik denklem:;

Dirichlet problem; yerel olmayan integral sarti; sonlu farklar semasi; diizgiin tahmin
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CHAPTER 1
INTRODUCTION

Bitsadze and Samarskii (1969) stated the nonlocal boundary value problem of finding a
harmonic function on an open rectangle for the given continuous functions on three sides
and on the fourth side of the rectangle is given by using the solution at as the middle of the
rectangle which is parallel to this side (one level nonlocal boundary value problem).

The multilevel nonlocal boundary value problems which are the generalizations of the
nonlocal Bitsadze-Samarskii type problem were studied by many authors (see in Gurbanov
& Dosiyev, 1984; II'in & Moiseev, 1990; Sapagovas, 2002; Gordeziani et all, 2005;
Skubachevskii, 2008; Ashyralyev & Ozturk, 2012; Ashyralyev & Ozturk, 2013). II’in and
Moiseev (1990) verified that if the fourth derivatives of the solutions of the multilevel
nonlocal boundary value problem are continuous on the closed rectangular domain, the
error bound in the uniform metric and in the difference metric W; has a second order
accuracy.

Another important generalization of the Bitsadze-Samarskii problem is the one with integral
boundary condition. These type of problems have many applications in different engineering
problems. (see Jack et all, 1975 and references given therein).

Different type of finite difference problem for Laplace’s equation as an approximation of
the nonlocal problem with integral boundary condition has been studied by many authors
(see Sapagovas, 2008; Zhou et all, 2018 and references given therein). They all basically
focused on the following two difficulties in the existence of the quadrature approximation of
the integral condition on the side of the domain where nonlocal condition was given: (i)
finding an approximate solution by solving the obtained system of equations which are
non-band matrices, (ii) determining the rate of convergence of the approximate solution by
appropriate smoothness conditions on the given data. In (Sapagovas, 2008), the system of
finite difference equations in the case of integral boundary condition for Poisson equation
has been studied for the spectrum of the matrix to apply an iterative method. Moreover, the

author obtained some conditions for which this system has a unique solution. In



(Berikelashvili, 2001) and (Berikelashvili & Khomeriki, 2012), for the error of approximate
solution, order of estimation O(h?) in the difference W21 metric is obtained, where # is the
mesh step. In (Zhou et all, 2018), a finite-difference approximation for the problem with
integral boundary conditions is constructed by pre-reducing of the given problem to the
problem with nonlocal conditions containing derivatives. The authors proved that when the
fourth order partial derivatives of the exact solution are continuous on the closed solution
domain, the uniform estimate is of order O(h? |In A).

Many researchers have been studied on the general elliptic equation with integral boundary
condition (see Wang, 2002; Avalishvili et all, 2010; Sajavicius, 2014; Sapagovas et all, 2016
and given references therein). Wang (2002) investigated eigenvalue problems, existence and
dynamic behavior of solutions of the elliptic equation with integral nonlocal condition by
using comparison principle and a semigroup approach. Avalishvili and Gordeziani (2010)
proved the uniqueness of the elliptic equation with two integral boundary conditions and
obtained a new prior estimates. In (Sajavicius, 2014), the radial basis function collocation
technique is used to find an approximate solution of elliptic equation with nonlocal integral
boundary condition. Sapagovas, Stikoniene, Ciupalia and Joksiene (2016) focused on how
convergence of iterative methods for the system of difference equations, approximating the
elliptic two dimensional equation with integral nonlocal condition depends on the structure
of spectrum for difference operator.

Research of the nonlocal boundary value problem for different type parabolic and
hyperbolic equations with integral boundary condition and its finite difference scheme are
conducted by numerous mathematician (see in Mesloub & Bouziani, 1999; Pul’kina, 2002;
Dehghan & Tatari, 2007; Sapagovas & Jakubelience, 2011 and references given therein).
Pul’kina (2002) proved the unique solvability of a hyperbolic equation with integral
boundary condition in the function class W;. Dehghan and Tatari (2007) used a radial basis
function to find an approximation of the solution for the one-dimensional parabolic
equation with integral boundary condition. They gave numerical results to show efficiency
of the given method to compare with other type finite-difference method. Sapagovas and

Jakubelience (2011) solved a two-dimensional parabolic equation with nonlocal integral



condition by alternating direction method and they studied on the spectrum of the matrix
obtained by the system of finite difference equations.

A new method for the solution of the Poisson equation with nonlocal boundary condition
was given and the problem was defined as the sum of two classical local Dirichlet problems.
(Volkov et all, 2013) By applying the contraction mapping principle, the uniqueness and
existence of the classical solutions and approximate solutions of the multilevel nonlocal
boundary value problem were proved with more general restriction for the coefficients in
nonlocal condition. (Volkov, 2013; Volkov & Dosiyev, 2016).

In Chapter 2 at the first section, the 5-point approximation on a square grid with step size &
of the nonlocal boundary value problem for Laplace’s equation with integral boundary
condition are proposed and justified by using the new constructive method given by Volkov
and Dosiyev (2016). By applying trapezoidal rule for the integral boundary condition, the
approximate problem is defined as the multilevel nonlocal boundary value problem that is
given as the sum of two 5-point Dirichlet problem. In the first Dirichlet problem, the
nonlocal condition is modified with zero. In the second Dirichlet problem, the local
boundary condition is replaced by zeros values and the boundary value where nonlocal
condition is given is defined as a function by using n-th iteration of the convergent fixed
point iterations for nonlinear system of equations. It is verified that when the boundary
functions are from the Holder classes C**,0 < A < 1, continuous and vanish at the enpoints,
the uniform estimate of the error of the approximate solution is order of O(h?), h is the step
mesh.

At the second section in Chapter 2, we propose and justify the method given in Section 1 to
solve the system of nonlocal 9-point finite difference problem for the Laplace equation with
the integral boundary condition. The solution of this nonlocal difference problem is defined
as a solution of the 9-point Dirichlet problem by constructing the approximate values of
the solution on the side where the integral condition was given. Therefore, the approximate
solution is obtained by solving a system with 9 diagonal matrices, for the realization of which
proposed many fast algorithms. (see in Samarskii & Nikolaev, 1989, Vol 1-2). Moreover,

the uniform estimate of the error of approximate solution is of order O(h*), when the given



boundary functions on the sides belong to the Holder classes C*4, 0 < A < 1, and 2m — th
order of derivatives vanish at the endpoints for m = 0, 1, 2.
In Chapter 3 at the first section, the second order general elliptic operator containing first
order partial derivatives with variable coefficients in 2-dimensions is introduced in the form
Lu:Au+ag—Z+bg—$+cu (1.1)
where A = 8%/0x> + 8*/0x*, a, b and c are functions of (x,y). We construct the 5-point
difference scheme for the approximation of the nonlocal problem with integral condition
for the second order linear elliptic equation. The solution of the problem is defined as the
sum of two 5-point Dirichlet problems which are given as multilevel problems by using the
method given in Chapter 2. It is proved that when the boundary functions are from the class
C*',0 < A < 1, the uniform estimate of the error of the approximate solution is order of
o(h?).
At the second section in Chapter 3, the fourth order finite difference scheme for the solution
the nonlocal boundary value problem of the second order elliptic equation with integral
boundary condition is investigated. In (Dennis & Hudson, 1979;1980), the elliptic equation

(1.1)is expressed as following two equations

2

%+a%+cu:r(x,y) (1.2)
0u u

8_))2 + b@ = —r(x,y) (13)

to obtain a different type approximations which is diagonally dominant for certain significant
cases by using difference correction method of Fox (1947). Gupta (1983) presented a fourth
order finite difference scheme for a general class of second order elliptic equation on nine
node points by using local power series representations. Karaa (2005) proposes a fourth-
order difference scheme for the two dimensional elliptic equation on a regular hexagon over
a seven point stencil. They all give the fourth order finite difference scheme deficiency from
its convergence. However Dennis, Hudson (1979;1980) and the researcher (Gupta, 1983;

Karaa, 2005 and references given therein) studying on fourth order finite difference scheme
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for the second order elliptic equation are focus on numerical results without proving the
convergence of the finite difference scheme. In this section, we justified the fourth-order
convergence of Dennis-Hudson’s finite difference scheme under an assumption for the step
size h as hK < 2, for some calculable positive constant K depending on the coefficients of
the equation (1.1). After demonstrating the convergence of the finite difference scheme, the
method given in first section for the approximation of the second order elliptic equation with
nonlocal integral condition is proposed and justified. The solution of this nonlocal difference
problem is defined as a solution of the 9-point Dirichlet problem. The uniform estimate of
the error of approximate solution is of order O(h*), when the given boundary functions are
from the Holder classes C%1, 0 < A < 1.

In Chapter 4, numerical experiments are given to support the obtained theoretical results.
Additionally, the CPU times are illustrated to show efficiency of proposed method.

The results of Chapter 2 in this dissertation are published in (Dosiyev & Reis, 2018;2019).



CHAPTER 2
DIFFERENCE DIRICHLET PROBLEM FOR THE APPROXIMATE SOLUTION
OF LAPLACE’S EQUATION WITH NONLOCAL INTEGRAL CONDITION

2.1 SECOND ORDER ACCURACY FOR THE LAPLACE EQUATION WITH
INTEGRAL BOUNDARY CONDITION

2.1.1 Overview

In this section, the 5-point approximation of the nonlocal boundary value problem of
Laplace’s equation with integral boundary condition is proposed and justified by using the
new constructive method that Volkov and Dosiyev used (see in Volkov & Dosiyev, 2016).
By applying trapezoidal rule for the integral boundary condition, the problem is defined as
the multilevel nonlocal boundary value problem that is given as the sum of two 5-point
Dirichlet problems. It is verified that when the boundary functions are from the class
C**,0 < A < 1, the uniform estimate of the error of the approximate solution is order of

O(h?), h is the step mesh.

2.1.2 Nonlocal boundary value problem

Let
R={(x,y):0<x<a,0<y<b} 2.1)

be an open rectangle, y",m = 1,2, 3, 4, be its sides including the endpoints, numbered in the

clockwise direction, beginning with the side lying on the y-axis and let y = U*

m=

Y™ be the
boundary of R.

Let C° denote the linear space of continuous functions of one variable x on the interval [0, a]
of x-axis, and vanish at the points x = 0 and x = a. For the function f € C°, we define the

norm

Ifllco = max ()] 2.2)

It is clear that the space C° with this norm is complete.



Consider the following nonlocal boundary value problem

AMZOOHR,MIOOI’I‘)/IU’)/3,MITOD’)/Z, (2.3)
b

u(x,0) = af u(x,y)dy + u(x), 0<x<a, 0<&é<b, 2.4)
¢

where A = 8%/0x* + 0%/0x? is the Laplacian, T = 7(x) € C° and u = u(x) are given functions
and « is a given constant which holds |a| < ﬁ. By replacing the integral condition (2.4)

with its approximation using trapezoidal rule, we have

M
u(x,0) = @ ) puaaCxi ) + iy §= 1,2, N = 1, (2.5)
k=1
where p1 = py = %’,pj =htforj=12,..M-1,n=(+(G—-Dh, j=1,2,.,.M,h = %,
(M —-1)h+¢&=>band % is an integer.
It follows that
M
ol > ok =0 < 1. (2.6)
k=1
We consider the following multilevel nonlocal boundary value problem on R :
AUZOOHR,U=T0n72,U=OOIl)/1U’y3, 2.7)
M
Ux,0)=a ) pUCen) +pux), 0<x<a (2.8)
k=1
Let V be a solution of the Dirichlet problem,
AV =00nR, V=1ony? V=0onvy/y. (2.9)
We denote
w(x) = V(x,m) fork=1,2,..., M, (2.10)
and
M
¢ = aZPkQDk- (2.11)
k=1



We consider the Dirichlet problem
AW =0o0nR, W=0ony/y", W=f ony*

where f be an unknown function from C°.

We define the operator B; : C° — C° as
Bif(x) = W(x,m) € C° i=1,2,...M.
Let
1 —
Wl(x7y):E||f”C0(b_y)’ (X,)’)ER-
We put

w: =W iWonI_{

(2.12)

(2.13)

Since W and W, are harmonic functions on R, we construct the following boundary value

problem

+ + 1
Aw”  =00nR, w = Ellfllco(b—y) ony",m=1,3,

: ) : + 4
w =0 ony, w =|fllco—f ony".
The following estimate satisfies
wi >0onvy.
By maximum principle, it follows that
w >0on R,
which yields
1 —
W1 < 2 lIfllco (b= y) on R.

Therefore, we find that

i—1)h .
Bl <1-2CD o 1,2,..M,

(2.14)

(2.15)



and
0 < |By| <|Bpy-1] < ... <|Bi| < 1.
Then the following inequality holds
|Bilgo = q < 1,

where g is defined in (2.6).

It is obvious that,

Ux,0) = f(x), 0<x<a.
Since U = V + W, we have

Ux,m) = V(x, i) + W(x, 1)
Then

M
F=a ) pe(Vem) + W) + p(x).

k=1

(2.16)

(2.17)

(2.18)

(2.19)

Relying on (2.10), (2.11), (2.13) and (2.19), the function f satisfies the following relation

M
f:¢+#+C¥ZPkka-
=1

Existence of f :

Let

M
Y =0, ¥} = Bi[w +/1+C¥ZP1<1//Z_1],
k=1
i=1,2,..,.M; n=1,2,....
Then, for the positive integers m and n with m > n, we write

M
Y-yl =B (aZpk (wy" - wz—‘)], i=1,2,... M.
k=1

By using the inequalites (2.16) and (2.17), we get

-1 -1
||¢:n - l,l/? fo =q ||'v[’:n - l/’? ||C0 >

(2.20)

(2.21)

(2.22)



where ¢ is defined by (2.17). In a similar way with (2.22), we reach

qm—n
=g (llellco + llullco) -

1

lwr = vl < g™

Co

From this, we conclude that the sequences of functions (2.21) are fundamental. Therefore,

there are limits

lim g = y; € Cc’ i=1,2,...M. (2.23)
The following limits also exist:

lim B} = B € C’ ik=1,2,.., M. (2.24)

By taking limit of (2.21) as n — oo, we obtain

M
i IB,-(<,0+,u+a’Zpkl//k), i=1,2,., M. (2.25)

k=1

Therefore we conclude that

M M M
90+/1+6¥Zp,¢,~:¢+u+a2pi3i[¢+u+a2pkwk]- (2.26)
i=1 i=1 k=1

In the view of the relations (2.20) and (2.26), we obtain

M
f=p+p+a) p 2.27)
k=1

Uniqueness of f :

Let f7 € C° p = 1,2, be two functions satisfying the relation (2.20). That is

fr=p+u+a) pBfs p=12.
k=1

Then we reach the inequality

QZPkBk(fl - fz)
=1

which satisfies if f! = f2.

I =l = <qllf' = £l

Co

10



2.1.3 Approximate solution of the nonlocal problem by the finite difference method
We say that F € CH(E), if F has k-th derivatives on E satisfying the Holder condition with
exponent A.

We assume that 7(x) € C>* (yz), u(x) € C?4 (y“) in (2.3) and (2.4), respectively.

On the basis of Lemma 1 and Lemma 2 (Volkov & Dosiyev, 2016) it follows that the function
¢ defined by (2.11) and the functions ;,i = 1,2, ..., M, in (2.25) obtained as the limits of the
sequences (2.21) belong to C*>4,0 < A < 1, on the interval 0 < x < a.

We define a square mesh with the mesh size h = % = %, N, M* > 2 are integers, constructed
with the lines x,y = h, 2h, ....Let D, be the set of nodes of this square grid, R, = RN D;, and
Eh =RN Dy, where R is the rectangle (2.1), and y}' = y" N D,m = 1,2,3,4.

Let

[0.a], = {x =% xi=ih i=01,..N h= 3}
N

be the set of points divided by the step size 4 on [0, a] .
Let Cg be the linear space of grid functions defined on [0, a], that vanish at x = 0 and x = a.

The norm of a function f;, € C) is defined as

= max .
Ifilleg = max 1

Let Aj, be the operator as follows:

Ay, = (up(x + hyy) + up(x = h,y) + up(x,y + h) + up(x,y — h)) /4.

Consider the system of grid equations

v, = Apv,on Ry, v, =T,0n yﬁ, v, = 0on yh/yﬁ, (2.28)
where 7, is the trace of 7 on y; and we define

Gin(x) = v, my), i=1,2,..., M. (2.29)
Let wy, be a solution of the finite difference problem

wy = Ahwh on Rh’ wy = 0 on ’yh/’)/;i, wp = }}: on ’)/2, (230)
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where fh € C}, is an arbitrary function.

Let B! be a linear operator from C} to C) as follows:
BIfi(x) = wi (6, ), i = 1,2, M, 2.31)

where wy, is the solution of the problem (2.30).
By Theorem 1.1 (Volkov, 1979), we have
max |v, — Vil < c1h?, (2.32)
(x.y)eR;
where v, is a solution of the problem (2.28), V, is the trace of the solution of (2.9) on R and
c1 is a constant independent of /.

Let

mie) = 3, 6-». wner
Then we have,
wy, < Wy, on yy.
Additionally we get,
rpwy = 0.
It follows that,

Ay (wy —wy) = 0.

By maximum principle, it yields that

1~ _
eyl < |7 o=y onR

Therefore, the following inequality holds in a similar thought of the estimate (2.15)

|87, < 7], (1- 252). i= 120 (2.33)
h h
Define
M
G =0 P, xel0,aly, (2.34)
k=1

12



where ¢y ;, is function (2.29).

By (2.11), (2.32) and (2.34), we obtain

1@ = @nllco < 2, (2.35)

where ¢, is the trace of the function ¢ defined by (2.11) on [0,a], and ¢, is a constant
independent of 4.
In a similar thought with the relation (2.20) we have
M
fi=@n+m+a ) piBifi onyi, (2.36)
k=1
where p, is the trace of the function u defined by (2.4) on [0, a];, .
Consider the following sequences in C}) :
M
Uy =0, ¥, =B [Eo‘h + y + aZpk;ﬁZ’;l),
k=1

i=12,.,M; n=1,2,... (2.37)

By using the inequality (2.33), the sequence {th}:ozo defined by (2.37) converges to the

unique solution which is denoted by J,-,h, i=1,2,..., M. It follows that

M
Yin = B! [@ + pp + CYZPka,h], i=1,2,..,M. (2.38)

k=1

On the basis of (2.36) and (2.38), we have

M
Fo=@n+mn+a ) pin (2.39)

k=1
Let :ﬁzh, ¢, and (B;¢), be the trace of /!, ¢ and B;p on [0, a], , respectively.
By using (2.21) and (2.37) we have, foralli = 1,2, ..., M,

2 = willey = 0 (240)
Then,

193 = viillo < I1B! @1 = el o

+ 1B o+ ) = (Bi o+ 1| o (2.41)

13



Applying (2.33) and (2.35) it follows that

18! @ - e < (1 - {%)czhz, i=1,2,... M. (2.42)

Since ¢ and y are in the class C*>*,0 < A < 1, on the interval 0 < x < q, by Theorem 1.1 in

(Volkov, 1979) and similarity to the estimate (2.35), the following inequality holds.

1B (o + 1a) = (Bi (o + i)y o < b, (2.43)
where cj is a constant independent of 4.
From the relations (2.41)-(2.43), we have

12 = Wialleo < car®, (2.44)

where ¢, is a constant independent of /.

For n > 2, we have

n n
W ih ‘ﬁ i,h

0
Ch

M
B! (Zo'h + i+ a Z pklﬂZ},l)

k=1

M
- [Bi [90 +p+a Zpkt/fZ‘l]]
h

k=1

(2.45)

Ch
Then,

Vin = Winllco < [1B7 @h+ 101 = (Bi (o + )| o

M M
+||B] (01 Zpkl//ﬁ] - Zpk%_l)
pa) pa) c®

M M
+||B! (a’ Zpsz”) - (Bi [a’ Zpk%_l))
k=1 k=1 h

i=12,.,M (2.46)

0
C/z

The difficulties of the inequality (2.46) comes from third term of the right side which is
needed much effort to obtain an estimation.

By (2.13), (2.15) and (2.21) we have

M
| B, [azpsz“)
k=1 o

E+(i-Dh E+(i—Dh
< — _
< (1= S5 P e+ (1 522y

¥illco S NIBi (e + llco + (2.47)

M
v (a >, |pk|J,

k=1
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foranyn, 1 <n < oo,

ma 17]]co < a (I + lleo + max ) < (248)
where

g1 = {1 - f—)} (2.49)
Therefore,

S o+ p+a ;pkwk (1 g Z |pk|] lp + llco (2.50)

M
The function ¢! = B, (90 +u+ ozk; pk:,l/Z‘z), n > 2, is the trace of a solution of the

following problem
AV"=0onR, V' =0ony", m=1,2,3,

Vi=g+u+a ) py ony,
k=1

on the line segments n; = &+ (j — Dh, j = 1,2,..., M. In the view of (2.50), maximum
principle and Lemma 3 in (Mikhailov, 1978), we have,forO < x<aandi=1,2,..,.M :

s, n—1
i
max 4 N2 s>4,
0<x<1 = 51”90 /JHCO, >
where CO are constants independent of n. Then /!~ ) e C*0<1<lon0<ux<a.

Since V" = 0ony”,m = 1,3, the derivatives d*'¢//"' /dx* = 0,r = 0,1,2,at x = 0 and x = a.
Then, from Theorem 3.1 in (Volkov, 1965), the solution z,i = 1,2, ..., M, of the following

problems
AZ'=0onR, 2 =0ony",m=1,2,3, 2/ = ¢/, (2.51)
are from C** (R ( ) 0 < A < 1. So, the following inequality holds from (Samarskii, 2001),

o2, (2.52)

i, h
where z, is the 5-point finite difference solutions and C(s) is constant independent of % and n.
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By (2.52), we have
M M
B! (a/ Zpk%_]] - [Bi (af Zpk%_l]]
=1 =1 5
M
< 3 lapu |Blws! - (Buy™),

k=1

<csh’, i=1,2,... M, (2.53)

0
Ch

0
Ch

where cs is a constant independent of 4.

In the view of (2.6), (2.33), (2.44) and (2.53) yield

[z %”cg < csh® + qo|

i =0 leo (2.54)

where g is defined by (2.6) and ¢ = ¢4 + ¢5 1s a constant independent of 4. By induction, on

the basis of (2.40) (2.44) and (2.54), we have

From (2.21) and by analogy of the estimation (48) in (Volkov and Dosiyev, 2016), we have

where ¢ and u are defined by (2.11) and (2.4), respectively and ¢; = 1 — %

Vin = Vinllcg < col’ (2.55)

n+1

q;
1 —q

W =i 0 < (lellco + llllco) (2.56)

According to estimates (2.55) and (2.56), we find that

n+1

n q
max [, — sl o < ch® + 77— (lglleo + lalco) (2.57)

where y;, 1s the trace of the function ¥; on [0, a],, .

Define
—~— M —~
f=@n+m+a) pbi, (2.58)
k=1

where ]7,? is an approximation of f defined by (2.27).

Combining estimates (2.35) and (2.57), we obtain

n+1

4,
< 2
CO_C7h +q01_q1

= fi (lellco + llellco) (2.59)
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where ﬁf‘ is computed function (2.58), f; is the trace of f defined by (2.27), g is the number
given by (2.6), ¢; = ¢ + goce 1s a constant independent of A.

Let U, (x, t) be the solution of the system
U,=AU,onR;,, U,=ton yﬁ, U,=0o0n )/,ll U yz, (2.60)
U, = fony;, (2.61)
which approximates the problem (2.7),(2.8) with f defined by (2.27).

Since 7,1, ¢ and ;,i = 1,2, ...,m, belong to C>*,0 < A < 1, on the interval 0 < x < a, By

Theorem 1.1 in (Volkov, 1979), we have

max |U, — U| < csh?, (2.62)
(x.y)ER

where U is the solution of the problem (2.7),(2.8) and cg is a constant independent of 4.

Consider the actual finite difference problem

u, = Ay, on Ry, U, =T, 0n i, u, =0on y} U y,31, (2.63)
@, = fy on v}, (2.64)

where j‘zl is computed function which approximates to f.

In the view of the inequality (2.59) and the grid maximum principle, we obtain
. qn+]
max (@ — U < e7h® + go=— (llglleo + lllleo) (2.65)
(ry)eRy 1 -q
Consequently, according to estimates (2.62) and (2.65), the following inequality holds.

n+1
q,

max i, ~ U] < coh® + gort— (lgllco + lulleo) (2.66)
(x.y)ER, —q1

where U] is a solution of problem (2.63), (2.64), U is the solution of the problem (2.7),(2.8)
and ¢y = ¢7 + cg 1s a constant independent of 4.
Using estimate (2.66) and by error estimate of trapezoidal rule, we derive final estimate

n+1
q,

max [if; - u| < cioh® + qo (lellco + llelleo) , (2.67)

(xy)eR, Il —q

where u is the solution of problem (2.3),(2.4) and cj is a constant independent of /4. Here

right-hand side is O (hz) for

201 _ -1
l1:nmx{rnh 1-q) ],1}, (2.68)
Ing;

where [a] is the integer part of a.
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Remark. The estimation (2.67) holds for nonlocal problem with integral boundary condition
of Poisson’s equation Au = F if F € C>R),0 < 1 < 1 with F(0,0) = F(a,0) = 0,
F(0,b) = 77(0) and F(a,b) = 7"(a) by replacing the equations Av = F, V) = A,V — h’F/4

and uj, = Aﬁg—th /4 instead of the equations Av = 0,V = AV} and uj = A,u}, respectively.

2.2 FOURTH ORDER ACCURACY FOR THE LAPLACE EQUATION WITH
INTEGRAL BOUNDARY CONDITION

2.2.1 Overview

In this section, we propose and justify the method given in Section 2.1 to solve the system
of nonlocal 9-point finite difference problem for the Laplace equation with the integral
boundary condition. The solution of this nonlocal difference problem is defined as a
solution of the 9-point Dirichlet problem by constructing the approximate values of the
solution on the side where the integral condition was given. Therefore, the approximate
solution is obtained by solving a system with 9 diagonal matrices, for the realization of
which proposed many fast algorithms. (see in Samarskii, 1989). Moreover, the uniform
estimate of the error of approximate solution is of order O(h*), when the given boundary

functions on the sides belong to the Holder classes C*1, 0 < A < 1.

2.2.2 Nonlocal boundary value problem

Let
R={(x,y):0<x<a,0<y<b}

be an open rectangle, y", m = 1,2,3,4, be its sides including the endpoints, numbered in
the clockwise direction, beginning with the side lying on the y-axis and let y = U,4,,:17’m be
the boundary of R and R = RUy. Let C° denote the linear space of continuous functions of
one variable x on the interval [0, a] of x-axis, and vanish at the points x = 0 and x = a. For

the function f € C° we define the norm

fllen = max £l
It is clear that the space C° which is defined with this norm is complete.
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Consider the following nonlocal boundary value problem
Au=0on R, u=0 on )/IUy3,u:T on y2, (2.69)
b
u(x,0) = af u(x,y)dy + u(x), 0<x<a, 0<&é<b, (2.70)
¢

where A = 6%/dx*+0*/dx? is the Laplacian, T = 7(x) and u = u(x) are given functions which

belong to C° and « is a given constant which holds the following inequality:

1

2.2.3 Nonlocal finite-difference problem and its reduction to the Dirichlet problem

We define a square mesh with the mesh size i = % = %, N, M* > 2 are integers, constructed

with the lines x,y = h,2h, ... . Let D, be the set of nodes of this square grid and let R, =
RN Dy, Ry, =RNDy. Weput y" =y" N Dy,m=1,2,3,4,and y, = U*_ y".
Let

[O,a]h:{x:xi, xi=ih i=0.1,..N, h:ﬁ}
N

be the set of points divided by the step size 4 on [0, a] .
Let C2 be the linear space of grid functions defined on [0, a], that vanish at x = 0 and x = a.

The norm of a function fj, € C) is defined as

Ifilleg = max 1fil.
We introduce the operator B,
Buy(x,y) = (u(x + h,y) + u(x — h,y) + u(x,y + h) + u(x,y — h)) /5 (2.72)
+(u(x+h,y+h)+ulx+h,y—h)+ (2.73)
+u(x —h,y + h) + u(x — h,y — h))/20.

For the approximate solution of the nonlocal problem (2.69), (2.70), we consider a solution

of the following system of the difference equations (see in Sapagovas, 2008)

up, = Bu, on R,, u, =0 on y}l nyl, U, =T, on )/,%, (2.74)
M

un(6,0) = @ Y (e, 1) + i on i, (2.75)
k=1
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where the equation (2.75) is obtained by approximating the integral in (2.70) and using
Simpson’s rule with p; = py; = %,pj = %(3 + (—l)j) forj=2,3,..M—-1,n;=&(+(j—1h,
J=L2,...M,h= 5, (M- 1)h+¢& =D, , is the trace of u on ﬁ and % is an integer.

We reduce a solution of the nonlocal differential problem to the solution of the local Dirichlet
problem.

Let v;, be the solution of the finite difference Dirichlet problem

v, =By, onR;,, v,=1, on yﬁ, v, =0 on yh/yﬁ, (2.76)
and we put
oin(x) =vp(x,m), i=1,2,.., M, (2.77)

where 7/, is the trace of 7 on yﬁ.

Let w), be a solution of the following finite difference Dirichlet problem
w, = Bw, onR,, w, =0 on yh/yfl, wy, = ﬁ on yﬁ, (2.78)

where f;, € C}, is an arbitrary function.

We define a linear operator B! from C} to C} as follows:
BIfi(x) = wi (5, 1), i=1,2,.., M, (2.79)

where wy, is the solution of the problem (2.78).

Let
wi(x,y) = % Hﬁ o (b—y) onRy.
h
We have
Wi e, VI S wi(x,y),  (X,Y) € Vi (2.80)
Since
Liwy =0 2.81)
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From (2.79)-(2.81) and by comparison theorem (see in Chapter 4 (Samarskii, 2001)), we

have

1~ _
wileg < 3 7], =) on R

Therefore,

87, < L (1 - 222). = 12
h h

b

and then for the norm of operator Bf’, we get
|Bi|< 1, i=12, ..M

Let

M
oh=a Zpk@,h(x), x €[0,al,,
p=r)

where ¢y ;(x) is the function (2.77).

In the view of the inequality (2.71), we have

M
IaIZpk =qo < L.
k=1

The inequalities (2.83) and (2.85) yield that

0Bl =q<1.

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

Lemma 2.2.1. A solution of the finite difference problem (2.74), (2.75) can be represented

as

Up = Vy + Wy,

(2.87)

where v, is the solution of problem (2.76) , w, is the solution of problem (2.78) with ﬁ which

is a solution of the following nonlinear equation

M
fh=on+m+a ZPkBth, onyj.
k=1
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Proof. According to (2.74),(2.76) and (2.78), the relation (2.87) holds on R;, and the
boundary sides y}', m = 1,2, 3.
From (2.84) and (2.88), it follows that

M
Jon=pn+a Zpk [Zﬁk,h(x) + Bth] on ;.
k=1

Relying on (2.77) and (2.79), we have

M
fr=m+a Z o [vaGe, 1) + wy, (x,m:)] on ;.
k=1

By virtue of (2.76) and (2.78) , we obtain

M
vi(x, 0) +wy (x,0) = pay + Zpk [vaCe, i) + wy (x, 7] on ¥j.
k=1

From (2.75), it shows that the relation (2.87) is also satisfied on yg. O

Thus, the unknown function on y2 in problem (2.78) is a solution of the nonlinear equation

(2.88).
Theorem 2.2.2. There exists a unique solution ﬁ: of the nonlinear equation (2.88).

Proof. Consider the following sequences in C,Ol :

M
lﬁ?,h =0, ¥ = B} [‘Zh T MLt azpk‘ﬁﬁl)’

k=1

i=1,2,.,M; n=1,2,.... (2.89)

From this, for the positive integers m and n with m > n, we get

M
n g, =B (a > o (W' - JZ,?)]’ i=1,2,..M
k=1

<

Applying the inequality (2.82), we reach

I = Vinlleg < allwii - i llg (2.90)

where ¢ is defined by (2.86). In a similar way with (2.90), we obtain

m—n

w1l —q
+1T(

(7 Ballco + aallco)

CO —q
h
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which shows that the sequences (2.89) are Cauchy sequences. Since C) is complete, there

are limits
limy?, =y, € Ch, i=1,2,.., M.
By using (2.82) and (2.86),

lim By!, = By € Cy, ik =1,2,.., M. (2.91)

h>

Using (2.91) and taking limit of (2.89) as n — oo, we have

M
in = B [g“o‘h ey pkwk,h], i=1,2,.,M. (2.92)
k=1

We multiply both of side of the equation (2.92) by ap; and summing fori = 1,2,..., M, we
have
Mo M Mo
On+ @ Zpilﬁi,h =@nt+ @ ZP:‘B? [% +u + a Zpkl//k,h (2.93)
i=1 i=1 k=1
In the view of the relations (2.88) and (2.93), we obtain a solution of the nonlinear equation

(2.88) as

M
=0+ + @Z[)kl/’k,h-
k=1

To show the uniqueness, let ﬁ,p € Cg, p = 1,2, be two functions satisfying the relation

(2.88). Then, we obtain the following inequality

Hﬁl ~ fua @ ZPkBZ (fr = fi2)| <4 Hﬁl ~ fun
k=1 0

h

CO

0
Ch h

C

where 0 < g < 1 is defined by (2.86). Hence ﬁ,l = ﬁ,z. O

2.2.4 Convergence of the finite difference problem
We say that F € C*Y(E), if F has k-th derivatives on E satisfying the Holder condition with

exponent 1. We assume that 7(x) and u(x) in (2.69) and (2.70) are from C**,0 < 1 < 1, on
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¥? and y*, respectively and 7™ (0) = 7™ (a) = 0, u®™ (0) = u®™ (@) = 0, m = 0,1, 2. By

using the n — th iteration A@ w12 1 0of (2.89), we define the function

M
F=i+m+a) pdi, (2.94)
k=1

Hence, for the approximate solution of the nonlocal problem (2.69), (2.70), we define the

following difference problem

u, = Byu; onR,, u, =7, on yﬁ, u, =0 on 7,11 U yfl, (2.95)
o = f' onyt (2.96)

Theorem 2.2.3. The estimation holds

n+l
9

max [if; — u| < cih* + qo ¢, (2.97)

()R, 1-q
where EIZ is a solution of problem (2.95), (2.96), u is the exact solution of nonlocal boundary
value problem (2.69), (2.70), ¢; and ¢* are constants independent of 4, g, is defined by (2.85)

andg; =1- %.
Proof. Let U be the exact solution of system of the following problem
AU=0 onR, U=t ony*, U=0 ony' Uy’ (2.98)

M
Ux,0)=a ) pUCen) +ux), 0<x<a. (2.99)
k=1

Let V be a solution of the Dirichlet problem,

AV =00onR, V=tony* V=0ony/y, (2.100)
and denote by
o(x) = V(x,my) for k=1,2,... M, (2.101)

where g, =6+ (k—1)h, k=1,2,..., M. We define the function
M
p= CVZPkQDk- (2.102)
k=1
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Consider the Dirichlet problem
AW =0 onR, W=0 ony/y*, W=f on y* (2.103)
where f be an unknown function from C°. The linear operator B; : C° — C is defined as
Bif(x)=W(x,n;) € C°, i=1,2,...,M. (2.104)

Then following inequality holds for the norm |B;|

E+(i-Dh

IB)| < (1 _ ) i=1.2,.. M. (2.105)

By analogy with the results in (Volkov, 2013), it is shown that a solution U of problem
(2.98), (2.99) can be represented as U = V + W where V and W are the solutions of problem
(2.100) and (2.103) respectively, when f defined by

M
f=g+p+a) p (2.106)
k=1

Here the functions /1, ¥», ..., ¥, are from C°, and are defined as the solution of the nonlinear

equations

M
¢,-:B,~(<,o+u+azpk¢k), i=1,2,.., M. (2.107)

k=1
Therefore, the nonlocal problem (2.98), (2.99) is reduced to the following Dirichlet problem

AU=0onR, U=71 onyz, U=0 ony1 U73, (2.108)

Ux,0)=f,0<x<a, (2.109)

where f is defined by (2.106) . The solution ¢, i = 1,2, ..., M, of system (2.107) is found as
“ in C° defined by
0

=

a limit of the infinite sequence of functions {l//?}
M
Y =0, y} = Bi[‘ﬁ +u +aZpk1//Z‘1],
k=1
i=1,2,.,.M; n=1,2,.... (2.110)
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Since 7(x) in (2.100) belongs to C** (y?) and 72" (0) = 72" (a) = 0, m = 0, 1,2, it follows
from (Dosiyev, 2003) that
max |v, — Vil < okt (2.111)
(x.y)€Ry,
where v, is a solution of the problem (2.76), V,, is the trace of the solution of (2.100) on
R, and ¢, is a constant independent of h. Let ¢y, Yin and Y7, be the trace of ¢, ¥; and ¢}
on [0,a],, respectively and let (B; (F)), be the trace of B;(F) on [0, a], for any function
F € C*'[0,a]. By (2.77), (2.84), (2.101), (2.102) and ( 2.111), we obtain

1@ = llco < 3, (2.112)

where ¢3 is a constant independent of 4. By using (2.89) and ( 2.110), we have, for all
i=1,2,...M,

71 1 h —~
||wi,h - wi,h 9 < ||Biz (Qph - ()Dh)”C;)

+1B! o+ 1) = (Bi o+ 1) o (2.113)
Applying (2.82) and (2.112), it follows that
187 @h = enl|o < calt®, i=1.2,...M, (2.114)
where ¢4 is a constant independent of 4. Similar to the inequality (2.111), we have
1B (on + an) = (Bi (0 + )| o < e5h’, (2.115)
where cs is a constant independent of 4. From the relations (2.113)-(2.115), we have

o S Coh’, (2.116)
h

-1 1
||wi,h - wi,h

where cg is a constant independent of 4. For n > 2, we have

n n
| l// ih ‘/’ ih

0 =
Ch

M
Bl}-' (575;, +u, +a Z Pk‘/fﬁl]
k=1

M
- [Bi [so +p+ azpkwﬁ‘l]]
k=1

rllc?
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Then,

i = Winllco < [|BY @+ 111) = (Bi (o + )| o

M M

+|1B! (CV ZPWZ,ZI —a ZPM_I)
k=1 k=1 Cg
M M
k=1 k=1 C2

i=12,..,M (2.117)

b

h

From (2.104), (2.105) and (2.110)1 it yields that

M
|lﬂ? oo SIBi(@ + Wlleo + ||B; [aZpka_l) (2.118)
k=1 Co
&+(i—Dh &+(i—Dh <
_ s+(1— _ s+(1— i.’l—l
< (1 3 )||<,o+u||co +(1 3 )gé‘ﬁwl II(a;m].
Foranyn, 1 <n < oo,
max ||y < a1 (Ilso + pillco + max |1//?‘1||) <o+ plleo
1<isp 7 HINCO = 7 iy 1 T l-q o
where
q=1- %
So,
M q M
n 1
sup <p+/,t+2pkwk < (1 + 1 lekl)llgo + ullco - (2.119)
O<n<oo k=1 A=

M
The function ¢! = B, ((p +u+a) pka‘z), n > 2, is the trace of a solution of the
k=1

following problem
AV"=0onR, V' =0ony", m=1,2,3, (2.120)

M
Vi=p+pu +aZpkl//Z‘2 ony*,
k=1
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on the line segments n; = &+ (j — Dh, j = 1,2,..., M. In the view of (2.119), maximum
principle and Lemma 3 in (Mikhailov, 1978), we have, forO < x <aandi=1,2,..,.M :

s p—l

max
0<x<a

O o+ ullco, n =2, s>6,

- Al

where co are constants independent of n.Then, y"~'(x) € C®*,0 <A1 < 1,0n0 < x < q,

nlO n—1
and d'y; (): l//)(a)_o
dx* dx

d*y"'/dx* =0,r =0,1,2, at x = 0 and x = a. Then, from Theorem 3.1 in (Volkov, 1965),

= 0,2,4,6. Since V" = 0 on y",m = 1,3, the derivatives

the solution z?,i = 1,2, ..., M, of the following problems
AZ'=0o0nR, 2! =0ony",m=1,2,3, 2/ =y}, (2.121)

are from C“( ) 0 < 4 < 1. So, the following inequality holds from (Samarskii, 2001),

(2.122)

n
max |z;, —
h

where z}, is the 9-point finite difference solutions and c7 is constant independent of / and n.

By (2.122), we have

M M
B! (a/ Zpka‘l] - [Bi (a ZPWZHD
k=1 k=1

rlic?
M
< 3> lapu Bl = (B, |,
k=1
<csh*, i=1,2,..,M. (2.123)

where cg is a constant independent of 4.

In the view of (2.82), (2.85), (2.115), (2.117) and (2.123 ), yields

where ¢ is defined by (2.85) and ¢ is a constant independent of 4. By virtue of (2.116),
(2.124), we have

n
Yin = lh”CO < coh® + C]o|

yit - g;1||cg, (2.124)

~Zh - %h”cg < cioh’ (1 +qo+ q% +..+ 6]8_1) < cnht, (2.125)
where ¢y, ¢1; are constants independent of 4. According to (2.110), it follows that
&
Jilleo = (1= 3 ) Qllcn + lileo). (2.126)
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M
W= < 1Bl ) il

k=1

where ¢ is defined by (2.102). From (2.126) and (2.127 ), we have

where g; = 1 — %. Moreover, for any m = 1,2, ..., we obtain

w?—l _ ’*M'l_z”CO ,i1=1,2,..., M,

U =0 o < 1 Uiellco + dllen) s i = 1,2, M,

n+ 1_qm
|¢7+m - ¢/7 co S ql 1 [1_—1J (“()OHCO + ||/J||C0) s l = 1527 seey M-
q1
Since
||w7 - wi”Co S | w;ﬁ—m - w:l Co + | wiﬁ—m - ‘pi”Co s l = 1$ 2’ seey M,

by taking limit as m — oo, from (2.128) and (2.129 ), it follows that

From (2.125) and (2.130), we have

Let U,(x,y) be the solution of the system of grid equations

n+l

q,
W =il < =g (el + ) i = 1.2,.... M.
— Y1

n+l

9

- 4
Yin— lﬁi,h”q) <cph'+ ]

U,=BU, onR,, U,=tony;, U,=0ony,Uy,,

Uh = fh on ’)/2,

7 (lgllco + lltllco)s i=1,2,...; M.
1

(2.127)

(2.128)

(2.129)

(2.130)

(2.131)

(2.132)

(2.133)

which approximates problem (2.108), (2.109) when f;, is the trace of f on [0, a],. Since

T, u,¢ and ¥, i = 1,2,..., M, belong to C*10 < A < 1, on the interval 0 < x < a, and

2m — th order of derivatives vanish at the endpoints for m = 0, 1, 2 (see in Dosiyev, 2018), by

(Dosiyev, 2003), we have

max |Uh - U| < C12]’l4,
(x.y)ER),
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where U is the solution of problem (2.98),(2.99) and ¢y, is a constant independent of 4. In

the view of the inequalities (2.112) and (2.131), we obtain

n+1

< C13]’l4 + qo0

c s (llellco + llullco) , (2.135)

=t

where ¢ is defined by (2.85) and ¢35 is a constant independent of 4. By the grid maximum

principle and from (2.135) we have

n+1
4

max [if} — Uy| < cish* + qo (Nlellco + lltllco) (2.136)

(x)€Ry l-q
where %) is the solution of problem (2.95), (2.96) and U}, is the solution of problem ( 2.132),
(2.133). According to estimates (2.134) and (2.136), the following inequality holds.

n+l
9

max [if; — U] < e1ah® + go (lellco + lledlco) (2.137)

(xy)eRy 1 -q
where U is the solution of the problem (2.98), (2.99) and cy4 is a constant independent of 4.
Using the estimate (2.137) and by the maximum principle for the Laplace equation with the

truncation error of Simpson’s rule which is order of O(h*), we obtain the final estimate

max ?tZ—u| < max |?ﬂh1—U|+ max |U — u
(x.y)ERy, (x.y)€R, (x.y)ERp
\ q;ﬁl
<cth” +qo c’, (2.138)
1-q

where u is the solution of problem (2.69),(2.70) and c; is a constant independent of & and

¢ = [lgllco + [lllco- 0

Remark. In (2.138) the right-hand side is O (i*), when

n+1

q; 4
= h".
1 —q

It follows that

Inh*(1 -
n:max{[M],l},
1Ilq1

where [a] is the integer part of a.
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CHAPTER 3
DIFFERENCE DIRICHLET PROBLEM FOR THE APPROXIMATE SOLUTION
OF THE GENERAL SECOND ORDER LINEAR ELLIPTIC EQUATION WITH
NONLOCAL INTEGRAL BOUNDARY CONDITION

3.1 SECOND ORDER ACCURACY FOR THE SECOND ORDER ELLIPTIC
EQUATION WITH INTEGRAL BOUNDARY CONDITION

3.1.1 Overview

In this section, the method given by Chapter 2 for the general second-order linear elliptic
equation with nonlocal integral boundary condition is proposed and justifed. The solution of
this nonlocal problem is defined as 5-point classical Dirichlet problem by finding a function
isntead of boundary value where the nonlocal condition was given. The approximate solution
is obtained by using 5-diagonal matrices which are determined from the system of finite
difference equations. It is proved that the uniform estimate of the error of the approximate
solution is order of O(h?), h is the step mesh, when the boundary functions have a fourth

derivative satisfying a Holder condition.

3.1.2 Nonlocal boundary value problem

Let

R={(x,y):0<x<B,0<y<p} (3.1)

be an open rectangle, y",m = 1,2, 3,4, be its sides including the endpoints, numbered in the
clockwise direction, beginning with the side lying on the y-axis and let y = U} _ y" be the
boundary of R.

Let C° denote the linear space of continuos functions of one variable x on the interval [0, 31 ]
of x-axis, and vanish at the points x = 0 and x = ;. For the function f € C° we define the

norm

Ifllco = max /(). (3.2)
It is obvious that, the space C° is complete by normed with this way.
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The second order elliptic operator is given in the form

w0
Lu=Au+a b2 4 cu, (3.3)
0x ay

where A = 6%/9x* + 6*/0x* is the Laplacian, a, b and ¢ are functions of (x,y) which we
suppose to be continuous with c(x,y) < 0.

Consider the following nonlocal boundary value problem

LuzOonR,uzOonyIUy3,uzronyz, 3.4)
B2
u(x,0) = af u(x,y)dy + u(x), 0<x<p, 0<é<ps, 3.5)
¢
where 7 = 7(x) € C? is a given function and « is a given constant satisfying the inequality
1
|cx| < Bt

We consider the following multilevel nonlocal boundary value problem on R in the similar

thought of replacing (2.4) to (2.5) in Chapter 2 by using trapezoidal rule,
LU=0onR, U=7tony?, U=00ony'Uy’, (3.6)

M
Ux,0) = a Y plUCen) +pux), 0<x<p. (3.7)

=1
where o) = py = &, p; = hfor j= 1,2, ., M~ 1,0, =€+ (- Dh, j=1,2,.., M, h = &,
(M —-1)h+¢&é=p;and % is an integer.

Therefore,

M
qo = |C¥|Zpk <L (3.8)
k=1

We consider the Dirichlet problem,

LV=00onR, V=71ony?, V=0ony/y. (3.9)
Let us put
oe(x) = V(x, ) fork=1,2,.., M, (3.10)
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and

M
Y= CVZPkQDk-
k=1

Let W be a solution of the Dirichlet problem,
LW=0onR, W=0onvy/y*, W=f ony,
where f be an unknown function from C°.
Lemma 3.1.1. Assume that
b(x,y) > 0.
Then the following inequality holds

IW(x,y)| < W(x,y) on R,

where b is defined by (3.3) and W(x, y) = ﬁlz Ifllco B2 =), (x,y)€ R

Proof. From (3.12), we have
[W(x,y)| < W(x,y) ony.
Since AW + a(x, y)g—z = 0,we have
— 1

LW =
B>

1
< —,G—Zb(x,y)llfllco.

b(x, y) Ifllco + cCe, ) I fllco (B2 = ¥)

By assumption, we get

LW < 0.

(3.11)

(3.12)

(3.13)

Since W —W < 0onyand L(W— W) = —LW > 0 on R, by the maximum principle (see Bers

et all, 1964), the function W — W takes its positive maximum on . Then,

W < W onR.
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If we replace W with —W, we obtain in a similar way,

-W < WonR.
Therefore,

|W| < W onR.

O

We introduce the operator B; : C° — C as

Bif(x) = W(x,m) € C° i=1,2,...M. (3.14)
By Lemma 3.1.1, it follows that

1Bl < (1= ES e, 7= 1.2 (3.15)

B2

and

0 < |Byl <|By-1]l <...<|By| < 1. (3.16)
Then the following inequality remains true

|Bilgo =g < 1, (3.17)

where g is defined in (3.8).
By the facts U(x,0) = f(x),0 < x < By, and U = V + W with combining (3.10),(3.11) and
(3.14) we have,

M
F=¢+u+a) pBif. (3.18)
k=1

Consider an infinite sequence of functions //(x) on 0 < x < 3y,

M
v =0, ¢ = Bi[so +/1+0/Zpkw2"l],

k=1

i=12,.,M; n=1,2,... (3.19)

We assume that ¢/ (x) € C*,0 < A< 1,k=1,2,..,M,0on0 < x <.
The first aim is to prove existence and uniqueness of the function f. To achieve this, we

prove next Lemma.
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Lemma 3.1.2. The infinite sequence of functions defined by (3.19) is fundamental.

Proof. By virtue of (3.19),

M
vl =y = B; aZpk(wf_l—tﬁZ_l)], i=1,2,.., M.
k=1

By using the inequalities (3.15) and (3.17)we get

w7 = vl o < a o™ = v 7| o (3.20)

where ¢ is defined by (3.17). In a similar way with (3.20), we reach

n qm—n
w<q Hﬁ (lgllco + lleallco)

(A
From this, we conclude that the sequences of functions (3.19) are fundamental. O

By Lemma 3.2.1, there are limits

limy! =y;€C’, i=1,2,..,M. (3.21)
Then
lim B! = B € C°, ik =1,2,..., M. (3.22)

By taking limit of (3.19) as n — oo, we het

M
i :Bi(go+p+a2pkwk), i=1,2,.,M. (3.23)

k=1
We multiply the relation (3.23) by p;, foreach i = 1, 2, ..., M and sum M number of equation.

Then we multiply the existing relation by @ and we add ¢ + u to both sides. Then,

M M M
w+ﬂ+aZpiwi=90+ﬂ+aZpiBi(so+u+aZpkwk] (3.24)
i=1 i=1 k=1
From the relations (3.18) and (3.24), we obtain
M
f=g+p+a) p (3.25)
k=1

Uniqueness of f :
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Let 7 € C° p = 1,2, be two functions satisfying the relation (3.18). That is

fP:‘P"',U"‘a’ZPkkaP, p=12
=1

Then we reach the inequality

Q'ZpkBk (fl - fz)
=1

which satisfies if f! = f2.

I = Flleo = <allf' = £l

co

3.1.3 Finite difference method for the approximate solution of the nonlocal boundary
value problem

We say that F € CH(E), if F has k-th derivatives on E satisfying the Holder condition with

exponent A.

We assume that 7(x) € C** (yz), u(x) € C+ (y“) in (3.4) and (3.5), respectively.

On the basis of Lemma 1 and Lemma 2 (Dosiyev, 2018) it follows that the function ¢ defined

by (3.11) and the functions ¥;,i = 1,2, ...,m, in (3.23) obtained as the limits of the sequences

(3.19) belong to C**,0 < A < 1, on the interval 0 < x < ;.

We define a square mesh with the mesh size h = %, N > 2 is an integer, constructed with

the lines x,y = h,2h,....Let D, be the set of nodes of this square grid, R, = R N Dy, and

R, = RN D, where R is the rectangle (3.1), and y}' = y" N Dy,m = 1,2,3,4.

Let

[O,,Bl]h = {.X =X, X; = ll’l, I = O, 1,...,N, h= %}

be the set of points divided by the step size & on [0, ].
Let Cg be the linear space of grid functions defined on [0, 8], that vanish at x = 0 and x = §;.

The norm of a function f;, € C) is defined as

Ifillco = max_|fi].

x€[081],
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We approximate the operator L by finite difference operator as

1
Lyuy, = i (up(x + h,y) + up(x — h,y) + up(x,y + h) + up(x,y — h) — 4u(x,y))  (3.26)

up(x +h,y) — uy(x — h,y) up(x,y +h) — uy(x,y — h)
> + b(x,y) > (3.27)

+c(x, Yup(x,y) = 0

a(x,y)

It is assumed that /4 is so small and then the maximum principle holds for functions « under

the following assumption
hK <1,

where K = max (|a| + |b[). This is achieved from the positivity of the coefficients of h-

neighbors u(x, y) (see Bers et all, 1964).
Let v, be a solution of following the system of grid equations

Lyv,=0onR,, v,=T7,0n yfl, v, =0on yh/y,%, (3.28)
where 7 is the trace of 7 on y; and we define

@in(x) =vp(x,m), i=1,2,..., M. (3.29)
Let w), be a solution of the finite difference problem

Lyw,=00nR, w,=0o0ny,/yl, wy=f,onyi, (3.30)

where f), € Cg, is an arbitrary function.

Let B! be a linear operator from C? to C? as follows:
Bl fiux) = wy (x,m), i = 1,2, M (3.31)

where wy, is the solution of the problem (3.30).

Let

(B:=). i= 12N, j= 1.2, M.

Wi(xi,y;) = ,8% Hﬁ o
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Then we have,

LW, = % Hﬁ

o [B2b + (B2 =] <0

Therefore, the following inequality holds in a similar thought of the estimate (3.15)

h7 = R (A T
|7, < |17, (1 . ) i=1.2...M. (3.32)
Define
M
Gn=a ) pia(, x€[0.B1],, (3.33)

k=1
where ¢, is function (3.29).

By (see in Bers et all, 1964), we have

max |v, — Vil < ¢1h?, (3.34)

(X.Y)ERy,

where v, is a solution of the problem (3.28), V,, is the trace of the solution of (3.9) on R and
¢ 1s a constant independent of /.

Combining (3.11), (3.33) and (3.34), the following inequality holds true

1@ = @allco < 2, (3.35)

where ¢, is the trace of the function ¢ defined by (3.11) on [0,8,], and ¢, is a constant
independent of 4.

By analogy of (3.18) we get,

M
fi=@n+m+a ) piBifi onyi, (3.36)
k=1

where py, is the trace of the function u defined by (3.5) on [0, ], -

Consider the following sequences in C,Ol :
S~ —~ M —~
llfgh =0, ¢}, = B!\ @) + i + QZPH//Z,ZI ,
=1
i=1,2,.,.M; n=1,2,... (3.37)

For the following Lemma, let us denote (B;¢),as the trace of B;p on [0,8],, .
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Lemma 3.1.3. The following inequality is true

where Jl” » defined by (3.37), Y}, be the trace of Y} on [0, 1], and c; is a constant independent
of h.

2
<Ch
0o = (3
Ch

n n
wi,h - !//i,h

Proof. The sequence {th}:io defined by (3.37) is Cauchy sequence. Therefore, it converges

to the unique solution %,h € C2, i=1,2,..., M. By taking limit of both side of (3.37) we have,

M
Yin =B} [’sEh * azpk%,h], i=12..M (3.38)

k=1

From (3.36) and (3.38), it follows that

M
fo=@n+up+a Zpk;/;k,h- (3.39)
k=1
By virtue of (3.19) and (3.37) we have,
[0, = 0]l o = 0. foralli=1,2,... M, (3.40)
’ ’ h

The estimations (3.32) and (3.35) yields that

”Bfl (o — %)”cg < (1 - fJr;;)h)czhz, i=12,.,M. (3.41)

Since ¢ and y are in the class C**,0 < A < 1, on the interval 0 < x < 8, by (see Bers et all,

1964) and similarity to the estimate (3.35), we have

B! (on + ) = (Bi (¢ + )il o < sl (3.42)

where ¢, is a constant independent of 4.

Then, by (3.41) and (3.42), we obtain

(2 l/’il,hHCff < ||B! @ - 90h)||c§j +||Bf (on + tn) — (Bi (@ + ”))h“CZ’

< csh?, (3.43)

where cs is a constant independent of 4.
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For n > 2, we have

n n
| l/’i,h - ‘/’i,h

0 =
Ch

M
Bl}-' (575;, +u, +a Z Pk‘/fﬁl]
k=1

M
- [Bi [so + aZpka‘l]]
k=1

(3.44)

rllc?

From this,

Ui~ Villco < 1B @+ ) = (Bi (o + i)y | o

M M
+||B! (a > plyt-a ) psz‘l)
k=1 k=1 o

M M
+||B! (af Zpk%_l) - [Bi (CX Zpsz”))
=1 =1 wllco

i=12,..,M (3.45)

The difficulties of the inequality (3.45) is to achieve the estimation O(h?) are occurred by
third term. By analogy of the estimation (32) in (Volkov & Dosiyev, 2016), we estimate the
third term on the right side of (3.45) by (Bers et all, 1964):

M M
B! (01 Z pkl//;;-l) - [Bi [a Z o )) <, i=1,2,..M (3.46)
k=1 k=1 nllco
where c(s) is a constant independent of /.
By combining (3.8), (3.32), (3.42) and (3.46),
| th - !//Zh”C;l) S C6h2 =+ qo | JZ;] _ wz;l ||C2 , (347)

where ¢ is defined by (3.8) and c¢ is a constant independent of /.

By induction, (3.40) (3.43) and (3.47) yield

where ¢ is a constant independent of 4. O

< c/h?, (3.48)

n n
v ih v ih

0
Ch

Lemma 3.1.4. The next estimation remains true
qn+1
1

| l—q
where /!, ¢ and u are defined by (3.19) ,(3.11) and (3.5), respectively and q; = 1 — ﬂ%

v =il o < (lellco + leellco) (3.49)

40



Proof. In the view of (3.19), for positive integer m,n > 0,

n+

1 =g
o <40 (gl + i) (3.50)

||w;1+m _ w:z

By using triangle inequality,

Taking limit of (3.51) as m — oo, the second term of the right side vanishes. Therefore, by

+
gt =y

oo =] o - (3.51)

i =il <

(3.50), the proof is completed. O

According to the estimate (3.48) and Lemma 3.1.4, we find that

n+1

4,

fmwwfwM@3aW+lq(Mm+mmx (3.52)
<i<m — ({1
where ¢, is the trace of the function ¢; on [0, 8], -
Define
— M S~
F=+m+a) pdi (3.53)
=1

where ]7,? is an approximation of f defined by (3.25).
By (3.35), (3.52) and (3.53)we reach

n+1

q
o el + dog = (lellco + llles). (3.54)

|-

where fZ‘ is computed function (3.53), f; is the trace of f defined by (3.25), g is the number
given by (3.8), cg is a constant independent of /.

Consider the actual finite difference problem

Lu, =0onR,, u,=T1,0n 7%, uy, =0on y,i U yZ, (3.55)
o = f7 on v, (3.56)

where j?,? is computed function which approximates to f and 7, is the trace of 7 on [0, 3], .

Theorem 3.1.5. The next estimation holds

n+1
1

max |ﬁﬁ - u| < coh® + qq

llellco + lealleo)
(x.y)eR, 1 -gq (e )

where u is the solution of problem (3.4),(3.5) and cq is a constant independent of h.

41



Proof. Let Uj(x,t) be the solution of the system

LU,=0onR,, U,=tony;, U,=0ony,Uy;, (3.57)

U, = fony, (3.58)

which approximates the problem (3.6),(3.7) with f defined by (3.25).
Since 7,1, ¢ and ¥;,i = 1,2, ...,m, are from C**,0 < 1 < 1, on [0, 8], By (see in Bers et al.,
1964) we have
max |Uh — Ul < C]()]’lz, (359)
()C,y)'ERh

where U is the solution of the problem (3.6),(3.7) and ¢ is a constant independent of 4.

By virtue of (3.54) and the grid maximum principle, it follows that

n+1

q
Hw§WZ—UA$cm2+%HI (llgllco + lltllco) - (3.60)
(x.y)ERy, —q1

Then, in the view of (3.59) and (3.60), we obtain

n+1

y q
max [@ - U| < cih® + go—— (lgllco + lltdllco) 3.61)
(x))eR) 1-q

where ﬁz is a solution of problem (3.55), (3.56), U is the solution of the problem (3.6),(3.7)
and cy; is a constant independent of 4.

The estimate (3.61) and error estimate of trapezoidal rule yield that

-, qn+l
max |1} — u| < coh® + go—— (llgllco + lIutllco) - (3.62)
(x)€R) I -q
O
The right-hand side of (3.62) is order of O (i?) for
201 _ -1
n:max{[lnh d-q) }1} (3.63)
Ing;!

where [a] is the integer part of a.
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3.2 FOURTH ORDER ACCURACY FOR THE SECOND ORDER ELLIPTIC
EQUATION WITH INTEGRAL BOUNDARY CONDITION

3.2.1 Overview

In this section, the second-order elliptic equation with nonlocal integral condition and its

finite difference scheme which is related to Dennis-Hudson finite difference scheme (Dennis

& Hudson, 1979;1980) are justified and proposed.

The researcher studying fourth order difference scheme of second order elliptic equation for

local problem focus on finite difference scheme and its numerical results without giving the

convergence of the finite difference scheme. In this section, after analyzing Dennis-Hudson

finite difference scheme, it s proved the convergence of the fourth order difference scheme

of the general second order elliptic equation for local problem under some restriction on step

size h, when the solution of the elliptic equation have a sixth derivative satisfying a Holder

condition.

Additionally, the constructive method for the approximation of the second order elliptic

equation with integral condition is justified by using Dennis-Hudson finite difference

scheme. It is verified that the uniform estimate of the error of the approximate solution is

order of O(h*), h is the step mesh, when the boundary functions have a sixth derivative

satisfying a Holder condition.

3.2.2 Nonlocal boundary value problem

Let

R={(x,y):0<x<pB,0<y<p,}

be an open rectangle, ¥, m = 1,2, 3,4, be its sides including the endpoints, numbered in

the clockwise direction, beginning with the side lying on the y-axis and let y = U}

m=

7" be
the boundary of R and R = RUy. Let C° denote the linear space of continuos functions of
one variable x on the interval [0, 8;] of x-axis, and vanish at the points x = 0 and x = ;. For

the function f € C° we define the norm
= max [f(x)].
1/l co [Mmax lf (0l
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Consider the following operator
0 0
Lu = A+ a(x, V) 22+ b(x, )22 + e(x, y)u, (3.64)
0x ay

where A = §°/dx* + 6*/0x? is the Laplacian, a, b and ¢ are functions with b(x,y) > 0 and
c(x,y) <0.

Consider the nonlocal boundary value problem on R
Lu=0onR, u=00ony' Uy, u=r1ony? (3.65)

B2
u(x,0) = af u(x,y)dy + u(x), 0<x<p;,0<é<p,, (3.66)
3

where T = 7(x) and u = u(x) are given functions from C° and « is a given constant with

satisfy the inequality given below |a| < ,82#_5

We consider the following multilevel nonlocal boundary value problem to solve the problem

(3.65) and (3.66) by using Simpson’s rule for the boundary condition (3.66),

LU=0onR, U=7ony>, U=0o0ny'Uy’ (3.67)
M

Ue0)=a ) pUm) +u(x), 0<x<p, (3.68)
k=1

where py = py = 4, p; =23+ (=1)/)for j=2.3,...M~1,n; = E+(j=Dh, j = 1.2, ... M,
h= %‘, (M —-1)h+ & =, and % is an integer.
This yields

M
go=1lal ) pi < 1. (3.69)
k=1

The solution U of problem (3.67), (3.68) is defined as a sum of two functions (see in Section

3.1)
Ulx,y) = V(x,y) + W(x,y)
where V is the solution of the problem

LV =0onR, V=tony? V=0o0ny/y, (3.70)
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and W is the solution of the problem
LW=0onR, W=0ony/y", W= f ony*

with f be an unknown function from C°.

We define the operator B; from C° to C° as follows
Bif(x) =W(x,n), i=1,2,..., M.

It is verified

E+(—-1Dh

Ifllco, i=1,2,... M
=i

1Bifllco < (1 -
and

0 < |Byl < |By-1] < ...<|By| < 1.
Therefore, we put

q=1Bilqo < 1.
We set

or(x) = V(x,m) fork=1,2,... M

and

M
= Q/ZPk‘Pk-
k=1

Consider the sequences in C°

M
W =0,y = Bi[go+u+a2psz‘l]
k=1

i=1,2,.,M; n=1,2,...

where Y7 € C*',0 <A< 1,i=1,2,...,M,0n0 < x <.
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The limit of the sequence is found as a solution of the following nonlinear equations

M
lﬁ,-ZBi((p+,u+a'Zpklﬁk), i=1,2,.,M. (3.79)

k=1

Therefore, the function f in (3.72) is denoted by

M
f=p+u+a) pa (3.80)
k=1

The existence and uniqueness of the functions f is proved in Section 3.1.

3.2.3 Convergence of Dennis-Hudson finite difference-scheme

We define a square mesh with the mesh size & = % = %, N, M* > 2 are integers, constructed
with the lines x,y = h, 2h, ....Let D, be the set of nodes of this square grid, R, = RN D,,, and
R, =RNDy,andy" =y"NDy,m=1,2,3,4.

Let

0,8], = {x = xi, xi=ih i=0,1,.,N, h= %}

be the set of points divided by the step size / on [0, ].

The values of u(x, y) at (xo, yo), (xo + A, ¥0), (X0, Yo+ h), (xo — h, yo) and (xo, yo — h) are denoted
by ug, u, u, uz and uy, respectively. For other type functions, the identical notations are
utilized.

Special type approximations can be obtained by describing (3.64) as the two equations

Pu  Ou

e + aa +cu =r(x,y) (3.81)
and

Pu W e (3.82)

0y? dy Y- )

The finite-difference approximations to (3.81) and (3.82) are

(1 + %ha(x, y)) u(x + h,y) + (1 - %ha(x, y)) u(x —h,y)

+(2 - Ke(xy)) ulx.y) = Br(x,y), (3.83)
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(1 + %hb(x, y)) u(x,y + h) + (1 - %hb(% Y)) u(x,y = h)

—2u(x,y) = h*r(x,y). (3.84)

The method (Dennis, 1960) is to reduced (3.83) and (3.84) along y = y, and x = x,by

replacing
_h(x.yp) _8(x.y)
u = ge and u = pe , (3.85)
where
1 1
h(x,yo) = 3 a(z,yo)dz and g(xo,y) = 3 b(xy, 2)dz. (3.86)
X0 Yo

Therefore, the equations (3.81) and (3.82) are written as

#¢ (10a 1 , A

5?"«§5£+Z“_“)¢_m =0 G87
and

o (16b 1

=224 Zp? 8 — .

3 (2 o + 2 Q) +ref =0, (3.88)
respectively.

By approximating the derivatives and putting x = xp,y = Yy in (3.87) and (3.88) , the

following finite-difference equation at (xy, o) is obtained ( see in Dennis & Hudson, 1979)
we' + et + uze" + uget — (4 + hgg)ug + Cy + C'6 = 0, (3.89)
where

1
Cidy = — 1 [(Fuuey + ry) € = 2 (Fouy + 10)

+ (Fsus + r3) €| + O(h°), (3.90)

’ 1 ~.
C 60 = _ﬁhz [(G2M2 - rz) eh(lz -2 (GOMO - rO)

+ (Gauty — 14) €] + O(h®) (3.91)
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and

_1da 1 1ob 1

- -2 - _ = 12
2(9x + 4a cand G = 29 4b (3.92)
da  ob] 1
¢(x,y) = [ . ]+ (a®+b%)-c (3.93)
Ay

The last two terms of (3.89) represents finite difference correction and contains terms of
o (h4) and higher (see in Dennis & Hudson, 1979). Using three point numerical method for
integrations in (3.86) is recommended. By using Taylor expansion about the point (xg, yo)

for the function a(x, yy), we have

1 1 ,(0a 1 ,(0%a 1 ,(8a
fu = Fhao + 4 (0x)0+ " (6x2)0+48h a5,

1 0a
+— (—) T (3.94)
240 0

Then by putting (3.94) into the series expansion of ¢!, we get

1 oa 1 1 1 1 oa 1 {8%a
o = 2 2 3 3
= 1+ Sl + g [(a) + ‘“o] + z’“ [E“O + 54 (a_) 3 (a—)]
1, 1 (8a
+§h 6 (?)o}

i014+ 6—0 l & +
487" ox), " 4 "\oe ),

1 1 5 1 5(6a 1232 1 (da\
T [240‘1(“r 12% (a ) "%\ o), T 3%\ ox

L1 (Pa)  1(0a) ($a\ 1 (¢
6 '\ox3), 3\ox)\ox2), 15\ax*),

Expanding e™ in Taylor series in a similar way with (3.95) yields that

+ O(h%). (3.95)

da 1 -
Mt =2+ h2[ 2(&)0+1a3 +h* o + O(h®), (3.96)
where
Ax )—lia4+laza—a+la—a2+laaz—a+ Fa (3.97)
g8 T \ox) T a\ax) T3%ex2) T 6\an '
Similarly, by using Taylor expansion about the point (xg, yo) for the function b(xy, y), we have
1 ob 1 *b 1 *b
= —hby + —h2 —hW = | + =<' — 3.98
o= 30 3 (51) i (), (), 6
4
+Lh5 a_b +
240 \oy*),
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Then,

eg2:1+%hb0 ihﬂ(?y’);%bﬁ +%h3[112b3 ;bo(‘;l;) +
R R RN
e o] 2l

3 2 4
ol ), 3 (G (5], 35 (G oo

If we use Taylor expansion for e%¢, we obtain

1(ob 1
e8? + e84 _2+l’l2 2(a—y)o+—b(2) +h4ﬁ0+0(h6)5
where
111 1 ,(db\ 1({ab\> 1 (8b\ 1(&b
)t DTl Eel Kl bl BE ol el R e 3 I B

We add (3.96) and (3.101) .Therefore,
M+ e+ €+ et =4+ P (g + o) + HH(A+ D) + O(R°).

where g_b, Aand u defined by (3.93), (3.97) and (3.102) .

]

|

|

)

(3.99)

(3.100)
(3.101)
(3.102)

(3.103)

From (3.89) and (3.103), by eliminating ¢, and ignoring all term of O (h4) and higher, the

second orde finite difference is obtained as follows:

ure + ure® + uze™ + uget — (eh‘ +e2 4+l et — hzco) uy = 0.

(3.104)

We evaluate ry, ry, 1y, 3, r4 by (3.83) and (3.84) for (3.90),(3.91). Then, for obtaining a

similar finite difference correction, the equation (3.104) is expressed in the form

ure™ + ure%? + use™ + uget — (eh] +e%2 4+ e et — h2co) uy+ D% + D 8y = 0, (3.105)

where

Dy = Cy + h* Agug + O(h®)
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and
D'8y = C 6o + h*Tguo + O(h®).
We put
E(x,y) = F(x,y) + c(x,y).
Expanding E(x,y) and using (3.95), it follows that
1

3 ,(da
Elehl + Elgeh3 — 2E0 = l’l2 [Eag + ZCZ% (EC)O

S(2aY (29, L (&
4\ax), "\ox2) " 2\6x3),

In a similar way, we obtain

1 3 ,(0b
G + Gue®* — 2G, = [1—619‘0‘ + Za(z) (a_y)o

3 (0b)’ b\ 1(8% A
) 5] 25, oo

In the view of (3.97), (3.102), (3.109) and (3.110), we have,
2

A
B, = 5 [Elehl + Eqel — 2E0] + O(h®)

and

h2
h*i, = 15 [G2e® + Gue® = 2Go] + O(h®).

+ O(h*).

(3.107)

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

By ignoring the term of O(h®) and higher, we get the corrections (3.106) and (3.107) as

follows:

1
Dy = _Eh2 [(F1u1 — Equp +rp) €™

-2 (F()MQ - E()M() + 1’0) + (F3M3 - E3l/l0 + 1’3) €h3]

and

, 1
D 6y = —Ehz [(sztz - Gougy — I"Q) €hG2 + 27‘0

+ (Gauy — Gauy — 1r4) €g4] .
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By combining (3.83), (3.84), (3.92), (3.105), (3.108) (3.113) and (3.114), the final finite-

difference equation is written in the form

Ly = e [% - éhz (% (%)1 + %a% - cl) u(x+h,y)
+e%? % - 11—2h2 (% %)2 + %b% - cz): u(x,y + h)
+eh % - 1—12h2 (% %)g + iag - c3): u(x —h,y)
+e8 % - 11—2h2 (% %)4 + %bi - c4): u(x,y —h)
+% >ef‘ 1—% +es |1 +%) u(x +h,y—h)
1—12 ef 1+% + €% 1—%)— u(x —h,y+h)
+é >ef3 1—% + e 1—%)— u(x —h,y—h)
+% »ef1 1 thl +e2 (1 + %) u(x+h,y+h)
Pl
-] )
-l )
e - ) )
=0. (3.115)
The restriction for the step size & is given by
hK <2,
18,2 ¢

1 da

where K = max {max (la] + |b]) ,max(\/za +a’2—-c+ 2%

b

)+ ) man (2]

Everywhere, for all estimations, the all constants that we define are independent of 4 as
C,Cy,Cs, ...
The following all Lemmas and Theorems in present Section are proved whenever at least

one of following conditions satisfy:
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C1) If all a, b, ¢ are arbitrary constants.

C2) If a and b are single variable functions depends on y and x, respectively.

Lemma 3.2.1. If v is any function defined on Ry, then
max [v] < max [u] + (8] + 53) max || (3.116)
Ry Yh Ry,
where Lyv = h™2Ly, r* = B2 + % and A is a constant with A > 0,

Proof. We define the function ¢;; as¢;; = A (r2 - ylz) :
Then,

A 5
Lyij = Ehz(r -y )(cle +c3e + cpef + c4eg4) +A6hco(r )

5 1 ,(1({ab) 1
—AK1Z = “h2_ 22
#le -7  (5) -e))

5 ob\ 1
Y o pg— -b2 - 84
(6= (5,571

Ah2 I h3 82 84 Ah hi h3
- g(e +eP+ef +e )— gy(e +e)

5 1 1{0b 1
2vhA|= — —=h"[=|— -b2 — 84
+2yh (6 12h (2(6y) + 4b4 04))6

5 ob 1
—2yhA (6 - —h2( (8)/) —b2 - cz)) e®?
h2
—Ag (bleh‘ + b3€h3) .

It follows that,

Lyoij < AW? [ (rz—yZ)— %],

where ¢ = max {cy, ¢y, ¢2, 3, C4} .

Since c(x,y) < 0 and by picking A = 3, we have

Lugij < —h*.
From this,
Lygij < —1. (3.117)
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Now, we define the functions w™ and w™ by
w'=v+N¢and w™ = —v + No,

where N = max |th| .

Therefore,

L,w* =L, [iv + N(p] )
In the view of (3.117),

Lyw* < +L,[u]-N<0.
By maximum principle, we have

max (w*) < max (wi)
Ry, Yh

< max (£v) + 3 (B} + B3) N.
Yh
Since wl.ij =ty + N(ﬁij and N¢ij > 0, we get
+v;; < wj; for all (xi,yj) €R,.
Hence, the inequality (3.118) yields that
max (+v) < max (xv) + 3 (,8% +ﬁ§) N,
Ry Yh

which completes the proof

We take

U:Vh—Vh

(3.118)

where v;, are solution of the problem (3.122), V), is the trace of the solution of (3.70) on R,.

Then from Lemma 3.2.1 we have,

n}eax [vi — Vil <max|v, - V,|+ A (,Bf +ﬁ§) rr}eax |Zh (v — Vh)| .
h Yh h
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By (Dennis & Hudson, 1980) we have,

Hfleé,}x IL, (v, — V)| < C1HS.
It yields that

max Ly v = V)| < €A™, (3.120)
By using (3.119) and (3.120), it follows that

max |v, — V| < C1h*. (3.121)

(x.y)€R,

3.2.4 Approximate solution of the nonlocal boundary value problem by
Dennis-Hudson’s finite-difference scheme

We say that F € C*Y(E), if F has k-th derivatives on E satisfying the Holder condition with

exponent A.

We assume that 7(x) € C%* (72), u(x) € Co4 ()/4) in (3.65) and (3.66), respectively.

Let Cg be the linear space of grid functions defined on [0, 5, ], that vanish at x = 0 and x = ;.

The norm of a function f;, € Cg is defined as

1fullco = max |/l
X

Pl
Let v, be a solution of following the system of grid equations
Lyv,=00nR,, v,=t1,0ny;, v,=0ony,/y, (3.122)
where 7, is the trace of 7 on )/,% and we define
Cin(x) = vp(x,m), i =1,2,.., M. (3.123)
Let wy, be a solution of the finite difference problem

Lyw,=00nR, w,=0ony,/y}, w,=f,ony, (3.124)

0 . . .
where f;, € C}, is an arbitrary function.

Let B! be a linear operator from C)) to C} as follows:
Bl fi(x) = wy (x,m), i = 1,2,.., M, (3.125)
where wy, is the solution of the problem (3.124).
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Lemma 3.2.2. The following estimate holds

E+i-vn) .
IIB?Mx)IIchnfhncg(l— o (3.126)
2
Proof. We put
Wi 3 = 2 L Wfilleg B =300+ i = 1,20 a M, j = 1,2, .

It yields the following inequality on y;:

wn(xi, yl < wi(xi, yi)

By substitute wy(x;, y;) in L,w;, we have,

Mo feri h
Liwy = — [lz(hb1+hc1(2 )+ z(hb3+hc3(2 )
W(1(op\ 1 1
+e*? (—h + E (E (a—y)z + Zb% — C2) + Eh C2(2 y))

b\ 1 1
+es (h - — (— (ay) + —bi —~ c4) + ﬁh cy(2 - y))]

Under the restriction 2K < 2, it follows that
Lyw, <0
Then we get,
wa(xi, yi) < Wh(x;, y;) on Ry,
Therefore we have the following inequalities
wp —wy, < 0onvy, and L(w, —wy,) > 0on Ry,

In the view of the maximum principle (see in Bers et all, 1964),

By replacing —w,, with wy,, we obtain

—wy, < w,onR.

55



Consequently, we can reach the inequality

lwnl < Wy, on R.

Hence, the proof is completed. O
Define
M
@i =) pgenx), x€[0,B1],, (3.127)
k=1

where ¢y ,(x) is the function (3.123).

We define the function ﬁ: with similar analogy of (3.39)
—~ M —~—
S = On + +C¥Z/?klﬁk,h- (3.128)
k=1

where y, is the trace of u defined in (3.66) on [0, ], and Jk,h e C%k =1,2,..., M, are the

solution of the system of the equations

M
Vin = B; [’sb'h + o + aZpkwk,h], i=1,2..,M (3.129)

k=1

The solution of the system (3.129) are sought by using the fixed point iteration below:
— —~ M —_—
Wiy =0, Y, =Bl [@h + Uy + CYZPH//Z;),
k=1
i=1,2,.,M; n=1,2,.... (3.130)

By using the n — th iteration @,h, n > 1 of (3.130), we define the function

M
F=+m+a) pli (3.131)
k=1

Let @5, Yy and 7, be the trace of ¢, ¢; and ¢/} on [0,8,], , respectively and . In the view of
(3.76), (3.77), (3.123), (3.121) and ( 3.127), we have

@5 = @nllco < Cah?, (3.132)

where ¢, be the trace of ¢ defined by (3.77) on [0, 8], -
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From (3.78) and ( 3.130), it follows that, foralli = 1,2, ..., M,

! 1 h —~
o =i oS 1B} (@1 — %)”C;)

+[[B o+ ) = (Bi (@ + 1) co - (3.133)

By using (3.126) and (3.132), we have

IB! @i - el o < Cols i = 1.2, (3.134)

Let (B; (F)),, be the trace of B; (F) on [0, 3], for any function F € C®'[0,;]. Then,

B! o1 + 1) = (Bi o + i) o < Cat® (3.135)
By combining (3.133), (3.132) and (3.134), we reach

i = walleo < Csh* (3.136)

For n > 2, we have

M
17 = vialleo = (B2 (’sb'h tpta ; psz;:]
M
- [Bi [gp +u+ aZpka_l]]
k=1 rllc?
Then,
192 = winlleo < 11B! @i + 1) = (Bi (o + )i o

M M
+ 1B (0/ Zpsz;ll —a Zpk%_l)
k=1 k=1

0
Ch

i=12,.,M (3.137)
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By analogy of (54) in (Dosiyev, 2018) and the convergence of Dennis-Hudson’s finite

difference scheme which is proved in (3.121) the following estimate holds

max
1<ksM

[Biwit = (B ), < Cont,
h

Therefore, we get
M M

B} (a/ Zpk%_]] - [Bi (af Zpsz”]]
k=1 k=1 h

M
sémﬂ@%bwﬂﬁh

0
Ch

0
Ch

Jh?, (3.138)

IA
A

By combining (3.126), (3.135), (3.137) and (3.138), we have

From the estimations (3.136), (3.139), it yields

4
co < Csh + qo|

W= U it =i o (3.139)

|t — vt o < Coh* (1+qo + g5 + . + g5 ') < Croh?, (3.140)

The relation (3.78) yields that

H%Ms@—é%ww+mwx (3.141)

and

where ¢ is defined by (3.77). By using (3.73), (3.75), (3.141) and (3.142), we have

where g; = 1 — ﬂ% Moreover, for any m = 1,2, ..., we find that

M
W =0 o < 1Bild Y o [0 = 0o i = 12,0 M, (3.142)
k=1

V=0l < 41 Ulellco + llllco) . i =1,2,.... M,

1 qm

o <d [ﬁ)(llgallco +lulleo)s i=1,2,.. M. (3.143)
—4q1

+
A
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Since

By taking limit as m — oo, from (3.143) and (3.144), it follows that

W =g # T = || o i= 10200 M, (3.144)

i =il <|

n+l

a4,
W =i < o (Nlellco + Nullgo), i=1,2,..., M. (3.145)

From (3.140) and (3.145), we get

n+l1

g,

15 = Yisllco < Crof* + T (lgllco + ) , i = 1,2, M. (3.146)

1 —q
Hence, for the approximate solution of the nonlocal problem (3.66), (3.67), we consider the

following difference problem

Ld, =0 onR,, u =1, 0ony;, u =0ony, Uy, (3.147)
o= f' onyt (3.148)

where f defined by (3.131).

Theorem 3.2.3. The estimation holds

n+1

max |ﬁﬁ—u|§C11h4+q0 cr,

(x)eRy 1—gq
where ) is a solution of problem (3.147), (3.148), u is the exact solution of nonlocal

boundary value problem (3.66),(3.67), C* = |l¢llco + |ltllco s go 1s defined by (3.69) and

S

q=1-
Proof. Let U(x,y) be the solution of the system of grid equations

LU,=0 onR,, U,=tony,, U,=0ony,Uy,, (3.149)

U, = f, ony,, (3.150)

where f; is the trace of f on [0,8,],. Since 7, and ¢;,i = 1,2, ..., M, belong to C0< A<

1, on the interval 0 < x < 1, by analogy of (3.121), we have

max |Uj, — U| < Ci3h*, (3.151)

(x.y)eRy,
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where U is the solution of problem (3.67),(3.68). The inequalities (3.126) and (3.146) yield

that

n+1

4,

=t

(lellco + llll o) 5 (3.152)

< Cuh* +
Cg—CM q07

qi

where ¢ 1s defined by (3.69) . From the grid maximum principle and from (3.152) we have

n+1
9

max |ﬁz - Uh| < C15h4 + qo
(x.)eRy l-—q

(llellco + llllco) , (3.153)
where U] is the solution of problem (3.147), (3.148) and U, is the solution of problem (
3.149), (3.150). In the view of the estimates (3.151) and (3.153), the following inequality

remains true.

n+l
q,

max |ﬁz - U| < Ci6h* + qo
(x)ERy l-q

(llellco + lltllco) » (3.154)
where U is the solution of the problem (3.67), (3.68).

By using (3.154) and by the maximum principle for the second order elliptic equation (see
in Bers et all, 1964) with the truncation error of Simpson’s rule which is order of O(h*), we

have the final estimate

max |EFZ—M|§ max |’LZZ—U|+ max |U — u

(x.))ERy, (x.y)eRy (x.y)eRy
qY+l
<cenh* + qo C12, (3.155)
1 —q
where u is the solution of problem (3.66),(3.67) and ¢ = ||¢llco + ||l co- O

Remark. In (3.155) the right-hand side is O (h4), when

n+1

G (3.156)
I -q

By (3.156) we have

{[lnh4(1 —ql)] }
n = max T K 1 s
Ing,

where [a] is the integer part of a.
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CHAPTER 4
NUMERICAL EXPERIMENTS

4.1 NUMERICAL RESULTS FOR SECOND ORDER ACCURACY OF
LAPLACE’S EQUATION

Let
R={(xy):0<x<1,0<y<?2}.
Problem 4.1
Pu  Fu
@'Fa—yz:() on R, u((),y):u(l,y):(), OSySZ,
u(x,2) =100e”sinmx, 0<x<1,
1 2
u(x,0) = mﬁ u(x,y)dy, 0<x<1.
Problem 4.2
u  Ou
@4_6_))2:0 on R, u(O,y):u(l,y)ZO, OSySZ,

u(x,?2) = X% (tan_lx— g), 0<x<l,

1 2
u(x,O):ﬁj:u(x,y)dy, O0<x<1.
b
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Table 4.1:

Solutions on the line y =0 of Problem 4.1

h=1/16

h=1/32

h=1/64

h=1/128

1.08143E - 003
2.11043E - 003
3.06437E - 003
3.99917E - 003
4.63414E — 003
5.10924E - 003
5.42355E - 003
5.54481E - 003
5.42355E - 003
5.10924E - 003
4.63414E - 003
3.99917E - 003
3.06437E - 003
2.11043E - 003
1.08143E - 003

1.07733E - 003
2.10093E - 003
3.05995E - 003
3.92006E - 003
4.60194E — 003
5.09734E - 003
5.40011E - 003
5.51245E - 003
5.40011E - 003
5.09734E - 003
4.60194E — 003
3.92006E — 003
3.05995E - 003
2.10093E - 003
1.07733E - 003

1.06995E - 003
2.09985E - 003
3.04753E - 003
3.90146E - 003
4.58118E — 003
5.08458E - 003
5.38575E - 003
5.49120F - 003
5.38575E - 003
5.08458E - 003
4.58118E — 003
3.90146E - 003
3.04753E - 003
2.09985E — 003
1.06995E — 003

1.06878E — 003
2.09723E - 003
3.04516E - 003
3.89853E - 003
4.56626E — 003
5.07102E - 003
5.38023E - 003
5.48215E - 003
5.38023E - 003
5.07102E - 003
4.56626E — 003
3.89853E - 003
3.04516E - 003
2.09723E - 003
1.06878E — 003
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Table 4.2: Solutions on the line y =0 of Problem 4.2

h=1/16 h=1/32 h=1/64 h=1/128
-1.24817E - 006 —1.25923E - 006 -1.26118E —006 —1.25801F — 006
-2.61230E - 006 -2.62049E — 006 —2.62046E —006 -2.61320F — 006
—4.06639E — 006 —-4.06610E — 006 —4.06283E —006 —4.05144E — 006
=5.54744F - 005 -5.53623E — 005 -5.52926E - 005 -5.51406E — 005
-6.97362E — 005 —-6.95075E — 005 -6.94010E —005 -6.92162EF — 005
—8.25574E - 005 —8.22155E -005 -8.20755E —005 —8.18652E — 005
-9.30529E - 005 -9.26090F — 005 -9.24408E — 005 -9.22131F - 005
—1.00403E - 005 -9.98743E — 005 -9.96845E —005 —9.94483E — 005
-1.03901E - 005 -1.03307E —005 -1.03103E -005 -1.02868E — 005
—1.02984F — 005 -1.02350E - 005 -1.02140E -005 -1.01914F - 005
-9.72690E — 005 -9.66213E — 005 -9.64143E —-005 -9.62074E — 005
—8.65773E — 005 —8.59469E — 005 -8.57517E -005 —8.55715E — 005
=7.09704E - 005 -7.03932E - 005 -7.02198E —-005 -7.00737E — 005
-5.07928E - 005 -5.03143E —-005 -5.01745E —-005 -5.00691F — 005
-2.67421E - 005 -2.64308E — 005 -2.63411E —-005 -2.62829E — 005

The exact solution of Problems 4.1 and 4.2 are unknown. The approximate values of
Problems 4.1 and 4.2 on the line y = 0 obtained by proposed method are given in Tables 4.1

and 4.2, respectively. According to repeated digits, for the decreasing mesh steps

Bp= Ll 1 1 1
T 167 32 64° 128

it follows that the maximum error on these line decreases as O(hz). To
obtain these results, 6 iteration are applied for the construction of fz’ with the successive
error which is less than 10716

Problem 4.3

Pu  Pu
a—x2+a—y2:0 on R, M(O,y):u(l’y):()» OS)’SZ,

u(x,2) = e¥sinmx, 0<x<I,

1 2
u(x,0) = Too f u(x,y)dy + u(x), 0<x<l,

L
16
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2

where u = ¢ sin mrx is the exact solution, u(x) = [1 +2 (e 6 — ez”)] sin 7Tx.

Table 4.3: Maximum errors for the solution of Problem 4.3

h Max error Order of reduction
1/16 1.07964041 x 1073

1/32 2.70491138 x 10~* 3.99140

1/64 6.76593129 x 107> 3.99784

1/128 1.69171146 x 1073 3.99945

Table 4.4: CPU times for Problem 4.1

h Discrete Fourier Gauss S eidel

with reducing

Gauss S eidel

without reducing

1/16 0.08625 s 0.10125 s 0.25200 s
1/32 0.91325 s 1.30225 s 4.00625 s
1/64 9.57500 s 12.77395 s 38.60125 s
1/128 148.11565 s 234.10215 s 636.12675 s
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Table 4.5: CPU times for Problem 4.2

h Discrete Fourier Gauss Seidel Gauss S eidel

with reducing without reducing

1/16 0.10375 s 0.19525 s 0.39265 s
1/32 1.10225 s 2.10113 s 5.14255 s
1/64 12.7125 s 16.01345 s 41.26315 s

1/128 192.43125 s 310.26890 s 1003.13625 s

Table 4.6: CPU times for Problem 4.3

h Discrete Fourier Gauss Seidel Gauss Seidel

with reducing  without reducing

1/16 0.06500 s 0.081250 s 0.21500 s
1/32 0.70312 s 1.21625 s 3.01856 s
1/64 7.79687 s 11.00625 s 3411175 s

1/128 100.703125 s 192.23987 s 545.37500 s

In Table 4.3 for Problem 4.3, the maximum error for each step & = Lk = 4,5,6,7 and

2k
the reduction orders are given. From the 3-nd column follows that the convergence order is
0(r?).
In Tables 4.4,4.5 and 4.6 the results of the CPU times in solving Problems 4.1,4.2 and 4.3
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are given, respectively. On columns 2 and 3 the CPU times for the realization of the proposed
approaches by the discrete Fourier method and by the Gauss-Seidel method are given. For
the construction of the local function ﬁ’ for Problems 4.1 and 4.2 just 6 iterations, are used.
Problem 4.3 needs 4 iterations. In column 4, Gauss-Seidel method is used to solve the given
problems without reducing to the Dirichlet problem. From these results follow that discrete
Fourier method which can not be used to the problem without reducing to the Dirichlet
problem is faster than others. The third and fourth columns show that for the method which
is applicable for both approaches ( as Gauss Seidel ), the CPU times with reducing are less
than the CPU times without reducing to the Dirichlet problem.
As it follows from Tables 4.4 — 4.6, the CPU times given in Tables 4.4 and 4.6 for Problems
4.1 and 4.3 are less than the results for Problem 4.2 given in Table 4.5. These take place
because of low smoothness of the boundary function in Problem 4.2.
Problem 4.4
u  0u
o oy

u(x,2) = -3¢ Fsinmx, 0<x<l1,

=gon R, u(,y)=u(l,y)=0, 0<y<2,

1 2
u(x,0) = 200 f u(x, y)dy + p(x), 0<x<1I,
2

where u = (€™ — 1) (&™ — €")sinmy + (1 — 2y)e™ Y sinnx is the exact solution, g(x,y) =

Uyr(X,y) + Uy (x,y) and u(x) = [1 + (e% — e‘z”)] sinzx + 2 (™ — 1) (e™ —€").
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Table 4.7: Solutions on the line y =0 of Problem 4.4

h=1/16

h=1/32

h=1/64

h=1/128

0, 195064783
0,382669877
0,555545763
0,707116358
0, 831446974
0,923895614
0,980766701
0,999969845
0,980766701
0,923895614
0, 831446974
0,707116358
0,555545763
0, 382669877
0, 195064783

0, 195051561
0,382675485
0,555559813
0,707112791
0, 831457026
0,923886902
0,980778955
0,999978899
0,980778955
0,923886902
0, 831457026
0,707112791
0,555559813
0,382675485
0, 195051561

0, 195050965
0,382680414
0,555568668
0,707109567
0, 831459968
0,923882665
0,980782390
0,999982461
0,980782390
0,923882665
0, 831459968
0,707109567
0,555568668
0,382680414
0, 195050965

0,195051024
0,382681929
0,555569489
0,707107659
0, 831463480
0,923880204
0,980783963
0,999988475
0,980783963
0,923880204
0, 831463480
0,707107659
0,555569489
0,382681929
0,195051024

Table 4.8: Maximum errors for the solution of Problem 4.4

h Max error Order of reduction
1/16 4.59635288 x 1073

1/32 1.17381162 x 1073 3.91575

1/64 2.95002406 x 107 3.97899

1/128 7.39382199 x 107> 3.98985

The exact solution of Poisson’s equation given in Problem 4.4 is known. The approximate
values of Problems 4.4 on the line y=0 demonstrated by proposed method are illustrated in
Tables 4.7. According to order of reduction for the decreasing mesh steps in Table 4.8, the

maximum error on these line decreases as O (hz)
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4.2 NUMERICAL RESULTS FOR FOURTH ORDER ACCURACY

LAPLACE’S EQUATION

Let
R={(x,y):0<x<1,0<y<?2}.
Problem 4.5
Pu  Pu
@4_8_))2:0 on R, M(O,y):u(l,y):(), OS)’SQ,
u(x,2) = 100e " sinwx, 0<x<1,
1 2
u(x,0) = mj; u(x,y)dy, 0<x<1.
Problem 4.6
Pu  du
@+a—y2:0 OHR, M(O,y):l/t(l,y):(), OSySZ,

181

u(x,2) = x (tan‘lx—%), 0<x<1,

1 2
u(x,O):ﬁf; u(x,y)dy, 0<x<1.
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Table 4.9: Solutions on the line y =0 of Problem 4.5

h=1/16

h=1/32

h=1/64

h=1/128

1.06874E — 003
2.09641E - 003
3.04351E - 003
3.87366E — 003
4.55494F — 003
5.06118E - 003
5.37292E - 003
5.47818E — 003
5.37292E - 003
5.06118E - 003
4.55494EF — 003
3.87366E — 003
3.04351E - 003
2.09641E - 003
1.06874E — 003

1.06873E — 003
2.09639E — 003
3.04350E - 003
3.87364E — 003
4.55491E - 003
5.06115E - 003
5.37289E - 003
5.47815E - 003
5.37289E - 003
5.06115E - 003
4.55491F - 003
3.87364E — 003
3.04350E - 003
2.09639E — 003
1.06873E — 003

1.06874E — 003
2.09641E - 003
3.04352E - 003
3.87366E — 003
4.55495E - 003
5.06119E - 003
5.37293E - 003
5.47819E - 003
5.37293E - 003
5.06119E - 003
4.55495E - 003
3.87366E — 003
3.04352E - 003
2.09641E — 003
1.06874E — 003

1.06877E — 003
2.09647E — 003
3.04361E - 003
3.87378E — 003
4.55508E — 003
5.06134E — 003
5.37309E - 003
5.47835E - 003
5.37309E - 003
5.06134E - 003
4.55508E — 003
3.87378E — 003
3.04361E - 003
2.09647E — 003
1.06877E — 003
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Table 4.10: Solutions on the line y =0 of Problem 4.6

h=1/16 h=1/32 h=1/64 h=1/128
-2.69158E - 006 —2.68953E — 006 —2.68153E —006 -2.64961F — 006
—5.51443E - 006 —-5.51067E — 006 —5.49500E — 006 —5.43245E — 006
-8.61713E - 006 -8.61191E —006 —8.58921E - 006 —8.49847E — 006
-1.21399E - 005 -1.21335E -005 -1.21047E -005 -1.19893F - 005
-1.61725E - 005 -1.61651E —005 -1.61313E-005 -1.59957F —005
-2.07100E - 005 -2.07019E — 005 -2.06644E —005 -2.05138E — 005
-2.56153E - 005 -2.56069E — 005 -2.55671E —005 -2.54074E — 005
—3.05943E - 005 -3.05858E — 005 -3.05454E —005 -3.03827E - 005
-3.51857E - 005 -3.51775E —-005 -3.51378E —005 —3.49784E — 005
-3.87703E - 005 -3.87626E — 005 -3.87253E —-005 -3.85752E — 005
—4.06024E — 005 —4.05955E — 005 -4.05620E — 005 —4.04271E - 005
—3.98689E — 005 —3.98629E — 005 -3.98345E —-005 -3.97198E — 005
—3.57837E - 005 -3.57787E — 005 -3.57564E —005 —3.56664F — 005
=2.77381E - 005 -2.77337E - 005 -2.77183E —005 -2.76563E — 005
—1.55532E - 005 —1.55474E - 005 -1.55393E -005 -1.55078E — 005

The exact solution of Problems 4.5 and 4.6 are unknown. The approximate values of
Problems 4.5 and 4.6 on the line y = 0 obtained by proposed method are given in Tables 4.9

and 4.10, respectively. According to repeated digits, for the decreasing mesh steps

p=l 1 1 1
T 167 32° 64° 128

it follows that the maximum error on these line decreases as O (h“). For
getting this accuracy, 14 iteration are needed to obtain j?,? with the successive error in
absolute value 107!° is taken.

Problem 4.7

Pu u
a—x2+a—y2:0 on R, M(O,y):u(l’y):()» OS)’SZ,

u(x,2) = e¥sinmx, 0<x<I,

1 2
u(x,0) = Too f u(x,y)dy + u(x), 0<x<l,

L
16
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where u = ¢ sin mrx is the exact solution, u(x) = [1 +2 (e 6 — ez”)] sin 7Tx.

Table 4.11: Maximum errors for the solution of Problem 4.7

h Max error Order of reduction
1/16 1.40629393x 10~

1/32 8.77042882x 10! 16.03449

1/64 5.47739631x 10712 16.01203

1/128 3.42279360x10713 16.00270

Table 4.12: CPU times for Problem 4.5

h Discrete Fourier Gauss Seidel Gauss S eidel

with reducing  without reducing

1/16 0.10125 s 0.13325 s 0.65250 s
1/32 1.58375 s 227125 s 6.70625 s
1/64 19.87500 s 25.15375 s 81.11175 s

1/128 284.72625 s 467.22025 s 1325.14725 s
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Table 4.13: CPU times for Problem 4.6

h Discrete Fourier Gauss Seidel Gauss S eidel

with reducing without reducing

1/16 0.19115 s 0.23565 s 0.71300 s
1/32 2.00135 s 397115 s 8.12375 s
1/64 26.6875 s 37.35625 s 90.72425 s

1/128 355.62775 s 580.22315 s 1798.54315 s

Table 4.14: CPU times for Problem 4.7

h Discrete Fourier Gauss Seidel Gauss Seidel

with reducing  without reducing

1/16 0.11375 s 0.12125 s 0.62500 s
1/32 1.28437 s 2.18375 s 5.78125 s
1/64 17.96875 s 24.35625 s 79.23375 s

1/128 278.82815 s 443.0125 s 1243.84875 s

In Table 4.10 for Problem 4.7, the maximum error for each step h = Lk =4,56,7 and

2k
the reduction orders are given. From the 3-nd column follows that the convergence order is
O(h*).
In Tables 4.11,4.12 and 4.13 the results of the CPU times in solving Problems 4.5, 4.6 and 4.7
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are given, respectively. On columns 2 and 3 the CPU times for the realization of the proposed
approaches by the discrete Fourier method and by the Gauss-Seidel method are given. For
the construction of the local function f}f’ for Problems 4.5 and 4.6 just 14 iterations, are used.
Problem 4.7 needs 11 iterations. In column 4, Gauss-Seidel method is used to solve the given
problems without reducing to the Dirichlet problem. From these results follow that discrete
Fourier method which can not be used to the problem without reducing to the Dirichlet
problem is faster than others. The third and fourth columns show that for the method which
is applicable for both approaches ( as Gauss Seidel ), the CPU times with reducing are less
than the CPU times without reducing to the Dirichlet problem.

As it follows from Tables 4.11 — 4.13, the CPU times given in Tables 4.11 and 4.13 for
Problems 4.5 and 4.7 are less than the results for Problem 4.6 given in Table 4.12. These

take place because of low smoothness of the boundary function in Problem 4.6.

4.3 NUMERICAL RESULTS FOR SECOND ORDER ACCURACY OF THE
GENERAL SECOND ORDER ELLIPTIC EQUATION

Let
R={(xy):0<x<1,0<y<?2}.
Problem 4.8
Uy + Uy + e Vu, + euy+(1-e"™)u=g onR,
u©0,y) =u(l,y)=0, 0<y<2,
u(x,2) = e sinmx, 0<x<1,
1 2
u(x,0) = m]}: u(x,y)dy + u(x), 0<x<1.
where u(x,y) = e sinzx is the exact solution, u(x) = ﬁex sin 1x(400 + et — e?).
Problem 4.9

Uyy + Uy + 10yu, + 10xu, — 10(x + y)u = g on R,
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u©0,y) =u(l,y)=0, 0<y<2,

u(x,2) =2x(x-1),

0<x<1,

| 2
u(x,0) = —f u(x,y)dy + u(x), 0<x<l1.
1
I

300

where u(x,y) = x(x - 1) (y + 1)? is the exact solution, u(x) =

1667
57600 (1 — %)

Table 4.15: Solutions on the line y =0 of Problem 4.8

h=1/16 h=1/32 h=1/64 h=1/128

0.2076346734  0.2076535562 0.2076687923  0.2076699589
0.4336197832 0.4336283459 0.4336314544  0.4336354674
0.6701248856  0.6701398448 0.6701424531  0.6701429966
0.9079351178  0.9079402676 0.9079428901  0.9079427836

1.1364367811
1.3442278558
1.5190458799
1.6487147567
1.7213226345
1.7260167756
1.6535467253
1.4969211386
1.2519675367
0.9180568793
0.4981676325

1.1364389134
1.3442300172
1.5190547266
1.6487209769
1.7213298834
1.7260211221
1.6535586554
1.4969345687
1.2519781418
0.9180249742
0.4981776555

1.1364654330
1.3442360241
1.5190656739
1.6487218770
1.7213315642
1.7260299877
1.65356832445
1.4969412133
1.2519854427
0.9180289882
0.4981800113

1.1364659465
1.3442365774
1.5190671509
1.6487216379
1.7213313224
1.7260326443
1.6535690575
1.4969447388
1.2519894358
0.9180283238
0.4981821423
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Table 4.16: Solutions on the line y =0 of Problem 4.9

h=1/16

h=1/32

h=1/64

h=1/128

0.0585384954
0.1093578543
0.1523369392
0.1875483921
0.2148192832
0.2343638921
0.2460738219
0.2532746392
0.2460738219
0.2343638921
0.2148192832
0.1875483921
0.1523369392
0.1093578543
0.0585384954

0.0585584334
0.1093698741
0.1523398472
0.1875384932
0.2148273915
0.2343659382
0.2460898271
0.2532584934
0.2460898271
0.2343659382
0.2148273915
0.1875384932
0.1523398472
0.1093698741
0.0585584334

0.0585768987
0.1093720085
0.1523410479
0.1875329182
0.2148368218
0.2343734679
0.2460923731
0.2532449384
0.2460923731
0.2343734679
0.2148368218
0.1875329182
0.1523410479
0.1093720085
0.0585768987

0.0585783454
0.1093738953
0.1523418493
0.1875326172
0.2148391352
0.2343748731
0.2460934799
0.2532443601
0.2460934799
0.2343748731
0.2148391352
0.1875326172
0.1523418493
0.1093738953
0.0585783454

Table 4.17: Maximum errors for the solution of Problem 4.8

h Max error Order of reduction
1/16 3.71348976x 10~

1/32 9.36492001x 1072 3.965321

1/64 2.35504136x 1073 3.976535

1/128 5.90288162x107¢ 3.989653

The exact solution of Problems 4.8 and 4.9 are known. The approximate values of Problems

4.8 and 4.9 on the line y = 0 obtained by proposed method are given in Tables 4.14 and 4.15,

respectively.

In Table 4.16 for Problem 4.9, the maximum error are illustrated for decreasing mesh
L1 11

= 16> 3 54° 05" The order of reduction in 3-coulumn shows that the convergence order is
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0 (hz). To obtain this accuracy, 8 iteration are used on the way of construction f; with the
successive error in absolute value 1076 is taken.

Problem 4.10

181 181 181
Ugy + Uy + Y0 Uy + X0 u, —x0yu =0 on R,

u0,y) =u(l,y)=0, 0<y<2,

u(x,2) = x® (tan_lx—g), 0<x<1,

1 2
u(x,0) = Ef u(x,y)dy, 0<x<l,

L
16

Table 4.18: Solutions on the line y = 0 of Problem 4.10

h=1/16 h=1/32 h=1/64 h=1/128
-3.24817E - 004 -3.25923E - 004 -3.26118E —004 -3.25801F — 004
—4.61230E — 004 —4.62049E — 004 -4.62046E — 004 —4.61320F — 004
—6.06639EF — 004 —-6.06610E — 004 -6.06283E —004 —6.05144EF —004
—7.54744F — 004 -7.53623E — 004 -7.52926E —004 —7.51406E — 004
-8.97362E — 004 —8.95075E — 004 -8.94010E —004 -8.92162F — 004
-9.25574E - 004 -9.22155E - 004 -9.20755E - 004 —-9.18652F — 004
—1.03052E - 004 -1.02609E — 004 -1.02440E —-004 —1.02213E —004
—-3.00403E — 004 —-3.98743E — 004 -3.96845E —004 —3.94483EF — 004
-3.03901E - 004 -3.03307E — 004 -3.03103E —004 —3.02868EF — 004
-3.02984F - 004 -3.02350E - 004 -3.02140E -004 -3.01914E - 004
—1.07269E — 004 -1.06621E —004 -1.06414E —004 —1.06207E — 004
-9.65773E - 004 —-9.59469F — 004 -9.57517E -004 -9.55715E — 004
—6.09704F — 004 -6.03932E - 004 -6.02198E —-004 —6.00737E — 004
-3.07928E - 004 -3.03143E - 004 -3.01745E —-004 -3.00691F — 004
-1.67421E - 004 —1.64308E — 004 —1.63411E —-004 -1.62829EF — 004
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Table 4.19: CPU times for Gauss Seidel with reducing for Problem 4.10

h Problem 4.8 Problem 4.9  Problem 4.10
1/16 0.15 s 0.14915 s 0.20152 s
1/32 1.77465 s 1.81675 s 231325 s
1/64 21.12625 s 22.01125 s 27.22155 s

1/128 489.01125 s 494.01456 s 589.12372 s

The exact solution of Problem 4.10 is unknown. In Table 4.17 for Problem 4.10, the
approximate values on the line y = 0, is given. According to repeated digits for the
decreasing mesh 4 = 2—1,{, k=4,5,6,7, it follows that the convergence order is O (hz) .

In Table 4.18, the results of CPU times of the proposed approaches by the Gauss Seidel
method are given for Problem 4.8,4.9 and 4.10. To construct f,?, 8 iterations are used for
Problem 4.8 and 4.9. However for Problem 4.10, just 10 iterations are needed. To achieve
all these, successive error is used as less than 1071°,

In Problem 4.10, the smoothness of boundary functions are less than the smoothness of
boundary functions in Problems 4.8 and 4.9. Therefore the CPU times in Problem 4.10 is
higher than the CPU times in Problem 4.8 and 4.9.

4.4 NUMERICAL RESULTS FOR FOURTH ORDER ACCURACY OF GENERAL
SECOND ORDER ELLIPTIC EQUATION

Let
R={(xy):0<x<1,0<y<?2}.

Problem 4.11

181 181

181
Ugy + Uy + YO0 Uy + X0 u, —x0yu =0 on R,

u0,y) =u(l,y)=0, 0<y<2,

u(x,2) = x (tan_lx—%), 0<x<l1,

1 2
u(x,O)sz u(x,y)dy, 0<x<1,

L
16
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Table 4.20: Solutions on the line y = 0 of Problem 4.11

h=1/16 h=1/32 h=1/64 h=1/128

-3.25807E - 004 -3.25804E - 004 -3.25801E —004 -3.25801F — 004
—4.61323E - 004 —-4.61323E -004 -4.61321E-004 —-4.61321F —004
—6.05146FE — 004 —6.05145E — 004 -6.05144E —-004 —6.05144E —004
—7.51409E — 004 -7.51408E — 004 -7.51407E —004 —7.51406E — 004
-8.92160E — 004 —8.92162E — 004 -8.92162E —004 —8.92162F — 004
-9.18658E — 004 —9.18655E — 004 -9.18653E —004 —9.18652F — 004
-1.02214E - 004 -1.02214E - 004 -1.02213E -004 -1.02213E - 004
—3.94488E — 004 —3.94486E — 004 —3.94484E — 004 —3.94484F — 004
-3.02869E — 004 —3.02868E — 004 -3.02868E — 004 —3.02868EF — 004
-3.01911E - 004 -3.01913E -004 -3.01913E -004 -3.01914E —004
-1.06205E — 004 —1.06205E — 004 -1.06206E —004 —1.06207E — 004
-9.55711E - 004 -9.55713E - 004 -9.55714E —-004 -9.55715E — 004
—6.00731E - 004 -6.00734E — 004 -6.00736E —004 —6.00736E — 004
-3.00692E — 004 -3.00691E — 004 -3.00691E —004 -3.00691F — 004
—1.62824E — 004 —1.64305E — 004 —1.62828E —004 —1.62829EF — 004

Problem 4.12

2 .
Upy + Uy + € Uy + sin(mx)u, — e u =0 on R,

u0,y) =u(l,y)=0, 0<y<2,

u(x,2) = e*sinx, 0<x<1,

1 2
u(x,O):m‘ﬁ u(x,y)dy 0<x<1,
3
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Table 4.21:

Solutions on the line y =0 of Problem 4.12

h=1/16

h=1/32

h=1/64

h=1/128

0.3857382584
0.4758495134
0.6473929863
0.8493612742
1.1837489532
1.3746380152
1.4980766089
1.5999742753
1.4980766089
1.3746380152
1.1837489532
0.8493612742
0.6473929863
0.4758495134
0.3857382584

0.3857382492
0.4758495189
0.6473929798
0.8493612879
1.1837489603
1.3746380199
1.4980766093
1.5999742689
1.4980766093
1.3746380199
1.1837489603
0.8493612879
0.6473929798
0.4758495189
0.3857382492

0.3857382478
0.4758495212
0.6473929764
0.8493612865
1.1837489752
1.3746380206
1.4980766102
1.5999742654
1.4980766102
1.3746380206
1.1837489752
0.8493612865
0.6473929764
0.4758495212
0.3857382478

0.3857382466
0.4758495231
0.6473929714
0.8493612823
1.1837489801
1.3746380215
1.4980766113
1.5999742641
1.4980766113
1.3746380215
1.1837489801
0.8493612823
0.6473929714
0.4758495231
0.3857382466

In Problem 4.11 and 4.12, the exact solutions are not known. The approximate solutions

of the problems are demonstrated on the line y = 0 in Table 4.19 and 4.20. According to

1 1 1 1

6> 35> 51> Tog 1t follows that the maximum

repeated digits, for the decreasing mesh steps h =
error on these line decreases as O (h4) . To construct ﬁ, we need 17 iterations with successive
error which is less than 1071°.

Problem 4.13

Ugy + Uy + 1y, —u =0 on R,

u,y) =u(l,y) =0, 0<y<2,

u(x,2) = e sin(mx), 0<x<1,

O<x<l,

1 2
ux,0) = o f u(x, y)dy + (),
2
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where u(x,y) = €™ sin(;rx) is exact solution, u(x) = sin(zx) [@ (e%” — ez”) + 1] .

Table 4.22: Maximum errors for the solution of Problem 4.13

h Max error Order of reduction
1/16 2.73648325% 1077

1/32 1.17039293x 1078 16.05984

1/64 1.06417712x 1070 16.01201

1/128 6.65160015x107!! 15.99892

Table 4.23: CPU times for Gauss Seidel with reducing for Problem 4.13

h Problem 4.11 Problem 4.12 Problem 4.13
1/16 0.29343 s 0.16743 s 0.14913 s
1/32 3.43721 s 2.46382 s 2.57218 s
1/64 36.83612s  27.43587 s 28.34611 s

1/128 701.38212 s 537382125  579.27362 s

In Table 4.21 for Problem 4.13, the maximum error are illustrated for decreasing mesh
h = %, é é, 1;—8 The order of reduction in 3-coulumn shows that the convergence order is
0] (h“). To obtain this accuracy, 16 iteration are used on the way of construction ]"Z’ with the
successive error in absolute value 107 is taken
In Table 4.22, the results of CPU times of the proposed approaches by the Gauss Seidel
method are given for Problem 4.11,4.12 and 4.13. To construct ]A‘Z?, 17 iterations are used for
Problem 4.8 and 4.9. However for Problem 4.10, just 16 iterations are needed. To achieve

all these, successive error is used as less than 1071°,
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CHAPTER 5
CONCLUSIONS

A constructive method for the exact and approximate solutions of the nonlocal boundary
value problem for Laplace’s and the general second order linear elliptic equations with
nonlocal integral condition is proposed and justified. In the proposed method, the boundary
values where the nonlocal condition was given, are constructed as a function by using the
n-th term of the convergent fixed point iteration for the solution of the obtained nonlinear
system of equations.

The second and fourth order finite difference schemes are constructed for Laplace’s and
second order linear elliptic equations. The convergence of all finite difference scheme are
verified. As a novel error estimation of order O(h*), for the finite difference scheme
constructed Dennis-Hudson (see in Dennis&Hudson, 1979;1980) for the second order
general linear elliptic equations is obtained.

The uniform estimate of the error of approximate solution for Laplace’s equation with
integral boundary condition is of order O(h?) for 5-point scheme and O(h*) for 9-point
scheme, when the given boundary functions on the sides belong to the Holder classes C>*
and C*1, 0 < A < 1, respectively. For the second order elliptic equation, it is proved that
when the boundary functions are from C*1,0 < A < 1, the approximate solution by 5-point
scheme of the nonlocal problem with integral boundary condition converges of order O(h?)
and Dennis-Hudson’s scheme converges of O(h*) when the exact solution belongs
C'0<aA<1.

Finally, the proposed method can be used to get numerical solution of different nonlocal
problems for other type partial differential equations. Also, it can be developed to obtain
higher order as O(h”), p > 4, uniform estimate of the error of the approximate solution.
Moreover, the existing fast algortihms (see in Samarskii, 1989 and the references therein) can
be used for the realization of the obtained local finite-difference problems in the proposed

approach
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