lapAeH

ST3A0ON D1N3IdIdT ONIAYISF0 04 SNOILVYNOT TVILNIY3I4HId

6T0¢

19pAeH J1iyeyq uime]

IVNOILOVYHH 40 W31SAS 3HL 40 SNOILNTTOS TVOIH43INNN

N3AN

NUMERICAL SOLUTIONS OF THE SYSTEM
OF FRACTIONAL DIFFERENTIAL
EQUATIONS FOR OBSERVING EPIDEMIC
MODELS

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES
OF
NEAR EAST UNIVERSITY

By
LAWIN DHAHIR HAYDER HAYDER

In Partial Fulfillment of the Requirements for
the Degree of Master of Science
in
Mathematics

NICOSIA, 2019



NUMERICAL SOLUTIONS OF THE SYSTEM OF
FRACTIONAL DIFFERENTIAL EQUATIONS

FOR OBSERVING EPIDEMIC MODELS

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES
OF
NEAR EAST UNIVERSITY

By
LAWIN DHAHIR HAYDER HAYDER

In Partial Fulfillment of the Requirements for
the Degree of Master of Science
in
Mathematics

NICOSIA, 2019



Lawin Dhahir Hayder Hayder : NUMERICAL SOLUTIONS OF THE SYSTEM OF
FRACTIONAL DIFFERENTIAL EQUATIONS FOR OBSERVING EPIDEMIC

MODELS

Approval of Director of Graduate School of
Applied Sciences

Prof. Dr. Nadire CAVUS

We certify this thesis is satisfactory for the award of the degree of Masters of Science
in Mathematics Department

Examining Committee in Charge

Prof. Dr. Evren Hingal

Assist. Prof. Dr. Bilgen Kaymakamzade

Prof. Dr. Allaberen Ashyralyev

Assoc. Prof. Dr. Murat Tezer

Assist. Prof. Dr. Firudin Muradov

Committee Chairman, Department
of Mathematics, NEU.

Supervisor, Department
of Mathematics, NEU.

Co-Supervisor, Department of
Mathematics, NEU.

Department of Primary Mathematics
Teaching, NEU.

Department of Mathematics, NEU.



| hereby declare that all information in this document has been obtained and presented in
accordance with academic rules and ethical conduct. | also declare that, as required by
these rules and conduct, | have fully cited and referenced all material and results that are

not original to this work.

Name, Last name: Lawin Hayder
Signature:

Date:



ACKNOWLEDGMENTS

First and foremost, | would like to dedicate this thesis to my parents and to thank them
from the bottom of my heart for their love, moral, material and spiritual support throughout
my life. Thank you both for giving me the strength to reach for the top and achieve my
dreams.

I would like to express my profound appreciation to my supervisors, Prof. Dr. Allaberen
Ashyralyev and Assist. Prof. Dr. Bilgen Kaymakamzade for their support and professional
guidance throughout this thesis project. 1 would like to also thank the Committee
Chairman, Department of Mathematics, Prof. Dr. Evren Hingal.

I would like to appreciate my lovely brother for being the most supportive and for
standing by me at all times. |1 would like to also thank my sisters. Lastly, to all my
colleagues, friends and everyone who has helped me. | wish for all of the success and
happiness.



To my family...



ABSTRACT

In this thesis, the system of fractional differential equations for observing epidemic models
problems are investigated. Applying Fourier series, Laplace transform and Fourier
transform methods, the solutions of six problems are obtained. First and second order of
accuracy difference schemes are presented for the solution of the one-dimensional
epidemic models problem and the numerical procedure for implementation of these

schemes is discussed.

Keywords: Epidemic models; fractional differential equations; Fourier series method,;

Laplace transform solution; difference scheme



OZET

Bu tez ¢alismasinda, epidemik model problemleri i¢in kesirli tiirevli diferansiyel denklem
sistemleri incelenmistir. Fourier serileri, Laplace doniisiimii ve Fourier doniigiimii
yontemlerini uygulama, ile alti problemlerin ¢dziimleri biiliimistiir. Birinci ve ikinci
dereceden dogruluk farki semalar1 tek boyutlu epidemik model probleminin ¢6ziimii i¢in

sunulmus ve bu semalarin uygulanmasina yonelik sayisal prosediir ele alinmustir.

Anahtar Kelimeler: Epidemik modeller; kesirli turevli diferansiyel denklemler; Fourier

serisi yontemi; Laplace doniisiimii ¢oziimii; fark semasi
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CHAPTER 1
INTRODUCTION

Fractional differential equations take an important role in applied mathematics (A. Guner
& S. Bekir, 2017), engineering (Y. Xiao-Jun, 2011), physics (M. Bayram, A. Secer, & A.
Adigiizel, 2017), biology (V. Srivastava, K. Kumar, M. K. Awasthi, & B. K. Singh, 2014)
and other fields of science. The system of a fractional differential equation is used in various
fields in applied science.

Fractional differential equations are formed from fractional calculus which is a branch of
mathematics that deals with the properties of integrals and derivatives of non-integer orders
(W. FE. Ames, 1999). The concept was first mentioned in a letter sent to L’'Hopital by
Leibniz in 1695, where the idea of semi-derivatives was suggested. Other famous
mathematicians, Liouville, Grunwald, Riemann, etc. have proposed original approaches to
improve fractional calculus over time (K. Shukla & P. Sapra, 2019). So that fractional
differential equations can be applied in the various fields listed above, it is important to
develop methods of solutions. Several methods already employed are perturbation
techniques (O. Abdulaziz, I. Hashim, & S. Momani, 2008), variational iterative method (V.
Gejji & S. Bhalekar, 2007), decomposition methods (H. Jafari & V. Gejji, 2006), integral
transform methods (B. Sontakke, G. Kamble, & S. Acharya, 2017), and numerical methods
(Y. Yan, K. Pal, & N. Ford, 2014).

An epidemiological study is important to help understand the impact of infectious diseases
in a community. The mathematical model is used to analyze data and study the spread and
transmission of infectious diseases. With new ideas in epidemiology, we can investigate
models by model building, perform estimation of parameters, check sensitivity of models
by varying parameters, and compute their numerical simulations. Over the course of
history, we have seen examples of epidemic outbreaks infecting large numbers of people.
Examples of such are the 1918 Spanish flu outbreak which killed millions and more
recently, we have had cases such as HIV/AIDs, SARS, and Ebola outbreaks. World Health

Organization (WHO) reports indicating that an estimated 13 million people worldwide die



from infectious diseases (WHO, 2012). In light of this, the issue of developing realistic
epidemic spreading models and controlling the outbreak and spread of infectious diseases
should be considered paramount. The research of this kind helps to understand the ratio of
disease spread in the population and to control their parameters (I. Abubakar et al., 2012; B.
T. Grenfell, 1992).

Various classical epidemic models have been proposed and studied such as SIR, SIS, SEIR,
and SIRS. Kermack and McKendrick developed the first known mathematical and
population-level model applicable in studying influenza outbreaks (N. Bacaér, 2011). The
model contains three groups: Susceptible (containing those individuals who have a high
tendency of contracting the disease), infectious (who currently have the disease who can
transmit it to the susceptible individuals), and recovered (this contains individuals that have
previously contracted the infection and have now been removed from the epidemic either by
recovery or by death). This model is known as the SIR model.

In the SIR model, an infected individual is brought right into a population in which all
the individuals are all susceptible. Vertical transmission (transmission of a disease by an
infected parent to their children) may be integrated into the SIR model if we consider that a
portion of the children of the infected individuals is infected at birth (H. W. Hethcote, 2000;
S. Waziri, S. Massawe, & D. Makinde, 2012). This will come in handy when considering
a case such as the HIV mother-to-child transmission (MTCT) epidemic. The dynamics of
diseases like measles (A. Ahmad, 2018) and influenza (G. H. Li & Y. X. Zhang, 2017) have
also been explained using the modified SIR model. This model may be extended to add a
state of temporary immunity where individuals who have been removed are returned to the
susceptible class after they’ve missed out on their immunity. This extension is called the
SIRS model as has been stated earlier.

In the SIS model, no perennial immunity from the infection exists, individuals can be
infected again and can return to the susceptible class. El-Saka studied the stability of
equilibrium points for a fractional-order SIS epidemic model (H. A. A. El-Saka, 2014).
According to him using fractional differential equations can aid in reducing errors that arise

from the neglected parameters in modeling real-life phenomena. The numerical solutions of



the models were given and he was able to verify the theoretical analysis using numerical
simulations. In the paper, Prakash et al. (B. Prakash, A. Setia, & D. Alapatt, 2017)
employed a fractional-order nonlinear SEIR model with a non-constant population
mathematical model to model infectious diseases. They proposed a faster and simpler
numerical methods based on Harr wavelets to solve the SEIR model deriving and validating
the error bounds.

Jun-Jie Wang et al. (J. J. Wang, K. H. Reilly, H. Han, Z. H. Peng, & N. Wang, 2010)
employed a deterministic transmission model for the Chinese HIV MTCT epidemic to
demonstrate how it is affected by some key parameters. They presented a system of
ordinary differential equations and their solutions were derived using this model. HIV
positive children delivered by the infected mothers were taken as the susceptible group (S),
the transmission rate for HIV positive mothers was (8), and the screening proportion («)
was defined as the percentage of pregnant women who have tested HIV positive to the
proportion of HIV positive pregnant cases. They found out that in China, these three factors
have the biggest influence on the epidemic. This led them to conclude that proper testing
for pregnant women, strengthening prevention of mother-to-child transmission (PMTCT)
interventions, and reducing the amount of HIV positive occurrences in women of
reproductive ages are steps that will aid in curbing the HIV MTCT epidemic in China.
Ashyralyev et al. (A. Ashyralyev, E. Hincal, & B. Kaymakamzade, 2018) studied the
stability of initial-boundary value problem for the system of partial differential equations
for observing HIV mother to child transmission epidemic models. The study was aimed at
helping to understand the estimation of the transmission rate from mathematical models
representing the dynamics of the population of infectious diseases using numerical
methods. In their paper, various initial-boundary-value problems for the system of partial

differential equations they presented as the initial-value problem for the system of ordinary



differential equations

WO o (1) + Au' (1) = [ (0),

WO 4 B (1) - Bt () + cAW (1) = f2(0),

O oyl (1) =y (1) + eAu (1) = £(0), (1.1)
DO il (1) — dy (1) - doti* (1) + 14U (5) = £ (1),

0<t<T,u"0)=¢",m=1,2,3,4

in a Hilbert space H with a self-adjoint positive definite operator A. They proved theorems on
stability by applying the operator approach. Moreover, difference schemes for approximate
solution of system (1.1) were presented and theorems on stability of these difference schemes
were proved. Numerical result was given.

Ameera Masour (2018) in her master’s thesis obtained the solution of a system of partial
differential equations by solving analytically using Fourier series, Laplace transform and
Fourier transform methods. The first order of accuracy difference scheme for the numerical
solution of the initial-boundary value problem for one-dimensional partial differential
equations was presented. Numerical results were given.

In the present study, systems of fractional differential equations which an extension of partial
differential equations are used to modify the system (1.1). We considered stable solution
of the initial value problem for solving of fractional differential equations for observing

epidemic models and we used classical methods to solve the initial value problem for the



system of one dimensional partial differential equation

1 1
WD 4 oDl (1, x) — LU = f1(7, ),

(’)u (tx) +ﬁD2u2(t x) ﬁll/l (t x) _ _6 u (tx) f (t x)’

0x?

o’ (tx) +)/D2u (t, x) — yu' (t, x) — i 'gx(ztx) f (t, x),

4 1
WD) 4 AD2u' (1, x) — dyid (8, %) — do (8, %) — T80 = £ (1, x), (12)

O0<t<T,0<x<m,

u(t,0)=u"(t,m)=0,0<1<T,

u"0,x) =¢"x), 0<x<nm,m=1,2,3,4.

Here,

D = Dj,

is the standard Riemann-Liouville’s derivative of order a € (0, 1). This system of fractional
differential equations corresponding to the Basset problem (A. Ashyralyev, 2011). The
present work aims to study numerical solutions of the initial value problem for the system
of fractional differential equations observing the HIV mother-to-child transmission
epidemic. The first and second-order of accuracy difference schemes for the numerical
solution of the system of one-dimensional fractional partial differential equations are
presented and the illustrative numerical results are provided.

The thesis organization is as follows. Chapter 1 is an introduction. The history of
epidemiology problems with the system of fractional partial differential equations is
presented. In Chapter 2, the methods of solution of the system of fractional partial
differential equations by solving analytically using Fourier series, Laplace transform, and

Fourier transform methods are presented. In chapter 3, the first and second-order of
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accuracy single-step difference schemes for the approximate solutions of one-dimensional
epidemiology problem for the system of fractional partial differential equations are
presented. Numerical results are provided by the Gauss elimination method. Chapter 4 is a

conclusion.



CHAPTER 2
METHODS OF SOLUTION OF SYSTEM OF FRACTIONAL PARTIAL
DIFFERENTIAL EQUATIONS

It is known that the system of fractional partial differential equations can be solved
analytically by Fourier series, Laplace transform and Fourier transform methods. In this
section, three different analytical methods by examples are illustrated.

2.1 Fourier Series Method

First, we consider the Fourier series method for the solution of the mixed problems for the
system of fractional partial differential equations.

Example 2.1. Consider the mixed problem for the system of fractional partial differential

equations

o' (tx)+a,D2 I(t, x) — M _(2;+;2+a/§ ’2)smx

2
6!4 (tx) +ﬁD2 2(t x) ﬁlu (t x) 6 u-(t,x)

0x2

= (2t +B8 i - B> + ) sin x,

3
a“<“‘>+5Dz (8, x) — 6ul (1, x) — L0

Toxz

_(2t+68’} 5112 + %) sin x, (2.1)

6ua(tt = 4 dD%Lﬁ(L x) — dyu(t, x) — dou® (2, x) — _5 1)
=@+ ds : —dit* - dpt* + 1) sin x,

O0<r<1, O<x<7r,

btl(l, 0) = uz(f, 0) = u3(l, 0) = u4(t, 0)=0,0<1<1,
ul(l,ﬂ') = uz(l‘,ﬂ) = u3(t,7T) = u4(t, ) =00<r<1,

u'(0,x) = u*(0,x) = u?(0,x) = u*(0,x) = 0,0 < x < 7.




Solution. To solve this problem, we consider the Sturm-Liouville problem
—u’'(x)— Au(x)=0, 0 < x<m u0)=u(r) =0, 2.2)

generated by the space operator of problem (2.1). It is clear to see that the solution of the

Sturm-Liouville problem (2.2) is
A = k%, w(x) = sinkx, k=1,2, ...

Then, with using Fourier series solution of problem (2.1) by formula

Wt x) = 3 AD) sinkx,
k=1

(1 x) = 3 Bu(h) sinkx,
k=1
2.3)
B x) = 3 Cold) sinkx,
k=1

W6 x) = 3 Di(t) sinkx,
k=1

where A (), Bi(t), Cr(t) and Dy(t) are unknown functions. Putting system (2.3) to the system

(2.1), we obtain



o0 (o) l (o)
YA () sinkx + @y, D} Ay(f) sinkx + Y, k*A(?) sin kx
=1 =1 =1

3
=Qt+ 1+ a%%) sin x,

S B.(t)sinkx + B3, D Bi(t) sinkx — By ¥ Ay(t) sinkx + Y K2By (1) sin kx
k=1 k=1 k=1 k=1

= (2t +,88 d — B11% + ) sin x,

S CL(t)sinkx + 83, DEC(t) sinkx — 6, 3 Aty sinkx + 3 K2Co(r) sin kx
k=1 k=1 k=1

= (21 + 6% fj 5112 + 1%) sin x,

S DLty sinkx +d Y, DX Dy(r) sinkx — dy Y, Co(t) sinkx — dy 3, Bi(f) sin kx
k=1 k=1 k=1 k=1

+ z k*Dy(1) sinkx = (2t + d& fjf di* — dpt* + *) sin x,

O0<r<1l,0<x<m.

Applying the initial conditions to the system (2.3), we can write

W(0,%) = 3 A(0)sinkx = 0,
k=1

120, x) = 3 Bi(0)sinkx = 0,
k=1

B0,x) = 3 Cu(0)sinkx = 0,
k=1

140,x) = 3 Dy(0) sinkx = 0,
k=1




Equating coefficients sinkx, k = 1,2, ..., we get

A (0) + aDI Ar(t) + Ay (D) = 2t +

B(1) + BD? By(1) - B1Ay(1) + By(1)

C\(0) + 6D; C1(1) - 51A1() + C1 (1)

3
= 2t+<‘5§%r —6,1% + 1%,

3
=2+ d%’—fﬁ —d\? —dot* + 12,

0<t<1, A(0) = B(0) = C(0) =

and for k # 1
AL + aD; Ay(r) + KA = 0,

8
+ aj

C,;(t) + 6D,% Ci(t) — §1AK(D) + K*Ci(t) = 0,

(2.4)

D\(n)+ dD[%Dl(t) —d\C1(t) — dyB1(1) + D:(1)

D(0)=0

B.(t) + BD} Bu(t) — BiAw(t) + KBy(1) = 0,

(2.5)

D.(1) + dD; Di(t) — dyCi(t) — daBy(1) + K2Dy(1) = 0,

0<t<1, Ax(0) = Bi(0) = Ci(0) = Di(0) = 0.

So, we have initial value problems for the system of ordinary differential equations. For

solving the systems the Laplace transform method is applied.

10



Here and in future we assume that

L{A(D} = Aw(s),

L{B(t)} = Bi(s),

LA{C(n} = Cils),

LA{D (1)} = Di(s).

Taking Laplace transform of both sides of system of fractional partial differential equations
in the systems (2.4), (2.5) and using the following conditions A;(0) = Bi(0) = Ci(0) =

Dy(0) =0, k > 1, we obtain the following systems of algebraic equations

SAL(S) + @52 AL () + Ai(s) = 2+ Z +a X,
52

52

sBi(s) +Bs*Bi(s) = BiAi(s) + Bi(s) = F + S5 —Bif + 3,

sCi(5) +852Ci(s) = 5141() + C1(8) = F + 6% ~ 615 + 3, (2.6)

SDl(S) + dS%Dl(S) - dlCl(s) - dzB](S) + Dl(S)

2

s s §3°

2 2 2 2
:—2+d—5—d1s—3—dzj+
s2

11



and for k # 1

(s + as? + k)A(s) = 0,

(s + Bs? + k)Bi(s) — Bi1Aw(s) = 0,

(s + 052 + k2)Ci(s) — 61Ax(s) = 0,

(s +ds? + kK)Dy(s) — d,Ci(s) — doBy(s) = 0.

2.7)

For k # 1 from system (2.7) it follows Ai(s) = Bi(s) = Ci(s) = Dy(s) = 0. Taking the

inverse Laplace transform with respect to 7, we get

Ap(t) = Bi(t) = Ci(t) = Di(r) = 0.

For finding A,(?), B1(t), C(¢) and D,(¢), we use the system (2.6). First, we obtain A;(s). We

have that
(s+as? + DA(s) = 2+ 2 + %
s

Therefore,
2!
Al(S) =3
s
Second, we obtain B;(s). Using formula (2.8) in the second equation, we get
(s+Bs? + DBi(s) = 1% = (s +Bs? =1 + D).
Therefore,
2!
B[(S) =3
s

Third, we obtain C(s). Applying formula (2.8) in the third equation, we obtain

(5+052 + DC1(s) = 6% = L(s+ 852 -6, + 1)

12

(2.8)

(2.9)



or
2!
Ci(s) = 7 (2.10)

Fourth, we obtain D;(s). Applying formula (2.9) and (2.10) in the last equation, we get

2

2 2

(s+ ds% +DDi(s)—di—= —-dr— = =(s+ ds% —di—dry+ 1)
3 3 3
s s s

or
2!
D (s) = e (2.11)

Finally, applying formulas (2.8), (2.9), (2.10) and (2.11) and taking the inverse Laplace

transform with respect to ¢, we get
A1) = Bi(0) = C,(1) = Di(r) = 1.
Therefore, the exact solution of the problem (2.1) is
u'(t,x) = A;(t)sin x = £ sin x,
u*(t,x) = Bi(¢)sin x = £* sin x,

w(t,x) = C(t)sinx = ?sin x,

u(t,x) = Dy () sinx = > sin x.

Using similar procedure we can get the solution of the following initial boundary value

problem

13



ou (tx) +aD2ul(t x) — Z atr‘9 “ (tx) = fi(t, x),

r=1

0D 4 B D2t x) — Bl (1, %) — Z a, 28D = £(t, ),

3 1
el 1 5D} w(t, x) — Syu (1, x) — z a, 758 = £(1, x),

1) L dDMM1, %) — dy w1, %) — do w21, %) — z a, 2040
(2.12)

= fa(t, %),

X =(X1y.00r Xp) eﬁ, 0<t<T,

u' (0, %) = @(x), u?(0,%) = ¥ (x), (0, x) = £(x), u*(0,x) = A),

X =(x1,..,X,) € 5,

ul(t,x) = u?>(t,x) =t x) = u*(t,x) =0, xS, 0<t<T

for the system of multidimensional fractional partial differential equations. Note that a, >
a, > 0and fi (t,), k = 1,2,3,4 (1€ (0,T), x€ Q), o(x), ¥ (x), &), A(x), (x € Q) are
given smooth functions. Here and in future Q is the unit open cube in the n—dimensional
Euclidean space R" (0 < x; < 1,1 < k < n) with the boundary

S,Q=QuUSs.

Note that the Fourier series method described in solving (2.12) can be used only in the case

when (2.12) has constant coefficients.

14



Example 2.2. Consider the mixed problem for the system of fractional partial differential

equations
Aul (t,%) &', 2 8 13
”(x +aD2ul(t X) — Léx(zx) =2+ +a 5%)cosx
2
BN 4 BD; (1, 3) - fyu 1, ) = o
= (2t +ﬁ§i — B2 + 1) cos x,
F) 1 62 3 ,
”(,(;x) +0D2ui(t, x) — 61u' (2, x) — %
= (21 + 6% t\zr 5112 + 1) cos X,
ou* (t x) 34 3 2 0 u4(t x) 2.13
+dD;u*(t,x) — diw’(t, x) — dyu(t, x) — —— (2.13)

= (2t + d8 3 —d\* — dof* + 1*) cos x,

O0<t<l1,0<x<m,

u'(0,x) = (0, x) = u?(0,x) = u*(0,x) =cosx, 0 < x <,

ul(t,0) = u?(t,0) = u3(1,0) = ut(1,0) =0, 0 < < 1,

ult,m) =2t m) =, m) = ut(t,n) =0, 0<t < 1.

Solution. To solve the mixed problem, we consider the Sturm-Liouville problem
—u’'(x)—Au(x) =0, 0 < x <, ud0) =u(r)=0, (2.14)

generated by the space operator of problem (2.13). It is clear to see that the solution of this

Sturm-Liouville problem (2.14) is
A = =k, w(x) = coskx, k=0,1,....

15



Then, with using Fourier series solution of problem (2.13) by formula
ul(t,x) = 3 Ax(f) cos kx,

k=0
u*(t,x) = 3 Bi(t)cos kx,

k=0

(2.15)

B, x) = 3 Cult) cos kx,
k=0

W, x) = 3 Di(f) cos kx,
k=0

where Ay (?), Bi(t), Ci(t) and D(t) are unknown functions. Putting system (2.15) to the

system (2.13), we obtain
) %) 1 =) 3
Y A (H)coskx +a Y D?Ay(t) coskx + 3 kK2Au(f) coskx = 2t + 2 + a¥ L) cos x,
=0~ = ! k=0 3
3 B, (t)coskx + B Y D>Bi(t)coskx — B Y Ai(t)coskx + 3 k*By(f) cos kx
=0~ =0 ! k=0 k=0

3
= (2t +B§’—\; — B2 + 1*) cos x,
3 C(f)coskx +8 Y D2 Ci(t) coskx — 8 Y Aw(t) coskx + 3 k>Ci(t) cos kx

k t

k=0 k=0 k=0 k=0

3
=2t + 6%% — 0,1 + 1) cos x,

S Di(f)coskx +d Y, DI Dy(t)coskx —dy 3, Cy(r) coskx — dy Y. By(r) cos kx
k=0 k=0 k=0 k=0

3 3
+ 3 k*Dy(t) cos kx = (2t + d%%r —d, 1> — dot* + ?) cos x,
k=0

O0<t<1,0<x<nm.

Applying the initial conditions to the system (2.15), we can write

16



10, %) = 3 Au(0)cos kx = cos x,
k=0

1200, %) = 3 Bi(0)cos kx = cos x,
k=0

B30, %) = 3 Cu(0) cos kx = cos x,
k=0

140, x) = 3 Dy(0) cos kx = cos x,
k=0

0<x<m.

Equating coefficients cos kx, k = 0, 1, ..., we get

1
A1)+ aDFA(1) + Ay (1) = 2t + 2 + a3

B,(1) + BD? By(1) - B1Ay(1) + By(1)

, 1
Cl(l) + (5thC1(l') —01A1(t) + Ci(v)
(2.16)
3
=20+ 03 617 + 7,

D\(t) + dD; Di(t) - d\Cy(1) — dsB1 (1) + Dy (1)

3
=2+ d%%r —di? —doi* + 12,

0<tr<1, A1(0)=B,0)=Ci(0)=Di(0)=0
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fork #1
, 1
A, (D) +aD} A1) + kA1) = 0,

B.(1) + BD} Bu(t) — BiAL(D) + KBy(1) = 0,
C(1) + 6D Cult) - $1A(1) + KCi(t) = 0, (2.17)
DL(t) + dD} Dy(t) — dyC(t) — dsBe(t) + K2Dy(t) = O,

0<t<1, Ar(0) = Bi(0) = Ci(0) = D(0) = 0.
Taking Laplace transform of both sides of system fractional partial differential equations in

the systems (2.16) and (2.17) and using the following conditions A;(0) = Bi(0) = Cx(0) =

Di(0) =0, k > 1, we obtain the following systems of algebraic equations

SAL(s) + asTAL(s) + Ai(s) = & + L + ad,
52

2 2 2
5 _ﬁls_ii + 3
N

sBi(s) + Bs?Bi(s) = BiAi(s) + Bi(s) = 2 + 8
(2.18)

2 2 2
_61s_3 + 3>

[l

[

N

SC1(8) + 651 C1(9) = 1AI(8) + Ci(s) = 3 +6

sD(s) + ds?Dy(s) — d,Cy(s) — dyBy(5) + Dy (s)
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and for k # 1

(s + as? + k»A(s) = 0,

(s +Bs7 + k2)Bi(s) — BiA(s) = 0,
(2.19)

(s + 08t + k2)Ci(s) — 61A4(s) = 0,

(s +ds? + k)Dy(s) — d,Ci(s) — doBi(s) = 0.

For k # 1 from system (2.19) it follows Ax(s) = Bi(s) = Ci(s) = Di(s) = 0. Taking the

inverse Laplace transform with respect to ¢, we get Ay(t) = Bi(t) = Ci(t) = Di(t) = 0.

For finding A,(¢?), B,(¢), C () and D;(¢), we use the system (2.18). First, we obtain A;(s).
We have that

(s+as?+ DA(s) = 2 + 2 +al.
s2

Therefore,
2!
Ai(s) = . (2.20)
s
Second, we obtain B;(s). Using formula (2.20) in the second equation, we get
1 2 2 1
(s +pBs2 +1)B(s) —,315 = E(s +Bs2 =B+ 1).
Therefore,
2!
Bi(s) = . (2.21)
s
Third, we obtain C(s). Applying formula (2.20) in the third equation, we obtain
1 2! 2! 1
(s+0s2 + 1)Ci(s) —61—3 = —3(5 +0s2 -0, +1)
s s
or
2!
Ci(s)=—. (2.22)

$3
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Fourth, we obtain D;(s). Applying formula (2.21) and (2.22) in the last equation, we get

2 2 2
(s+ds’ + DD\(s) —dy = —dy— = =(s+ds? —d, —dy + 1)
A N N

or
2!
Di(s) = 5 (2.23)

Finally, applying formulas (2.20), (2.21), (2.22), (2.23) and taking the inverse Laplace
transform with respect to ¢, we get A,(t) = B(¢) = C,(t) = D,(¢t) = *.

Therefore, the exact solution of the problem (2.13) is

u'(t,x) = A;(t) cos x = 1> cos x,
u*(t,x) = B;(t) cos x = 1> cos x,

w(t,x) = C(f)cos x = 1> cos x,

u*(t,x) = Dy(t) cos x = 1> cos x.

Using similar procedure we can get the solution of the following initial boundary value

problem
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1 1
09+ @ DFul(t, x) - z#““ fi(t, %),

2
20D 4 5 D21, x) — muam—Zm“%”

Oxy

= fa(t, x),

i <’x)+51)2 (1, x) — 6,u' (8, x) — zar"’"“”

= f3(t, %),
ou’ o +dD2 ut(t, x) — dy u(t, x) — dr u3(t, x) (2.24)
_zn:ar(’)u(tx) f;]_(l x)

r=1

x=(x1,...,xn)€5, O0<t<T,

u' (0, x) = @(x), u*(0,x) = ¢ (x), u(0,x) = &(x),
u*(0, x) = A(x),
x=(x7,....,x,) € ﬁ,

oul(tx) _ 0ul(tx) _ 0u(tx) _ dut(tx) _ 0
- >

om ~  Om om om

xeS, 0T

for the system of multidimensional fractional partial differential equations. Note that a, >
a, > 0and fi (t,x), k = 1,2,3,4 (€ (0.7), x€Q), ¢(x), ¥ (x), £), Ax), (x € Q) are
given smooth functions. Here and in future m is the normal vector to S.

Note that the Fourier series method described in solving (2.24) can be used only in the case

when (2.24) has constant coefficients.
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Example 2.3. Consider the mixed problem for the system of fractional partial differential

equations

Au! (tx) +C¥D2M1(t X)

= (2
3
+a8 L= + 41%) cos 2x,

\/E

ou? (tx) +,8D2 Z(I X) ﬂlu (l‘ X) _ (37
=2t + 38 3 — B11* + 41%) cos 2x,
o (M) +5D2 u(t, x) — 61u'(t, x)— g
=2t + d8 3 — 8,1 + 41%) cos 2x,
1

auta(tt’X) + thz u4(t, x)—d, M3(l, X) — dzuz(t, X)
_% (2t + dS e — d,1? — dot* + 41*) cos 2x,
O0<t<l1, 0<x<m,

ul((), x) = l/lz(o, X) = u3(0’ x) = u4(0’ _x) — l’
0<x<m,

u'(t,0) = u'(t,n), ul(t,0) = ul(t,n), 0 <t <1,
I/lz(t, 0) = l/tz(t, JT), I/l)zc(t, 0) = u}zc(t’ ﬂ-), 0<t<l,

wB(t,0) = wd(t,7), ul(t,0) = dt,m), 0 <t <1,
u*t,0) = u(t,n), ut(t,0) = ut(t,m), 0 <t < 1.
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Solution. To solve the mixed problem, we consider the Sturm-Liouville problem
—u”"(x) — Au(x) =0,0 < x <m, u0) =uln), u(0) = u.(n), (2.26)

generated by the space operator of problem (2.25). It is clear to see that the solution of the

Sturm-Liouville problem (2.26) is

A = =4k, w(x) = sin2kx, k= 1,..., u(x) = cos2kx, k=0,1,....

Then, with using Fourier series solution of problem (2.25) by formula

W (tx) = 3 Adf)sin2kx + Y By(f) cos 2kx,
k=1 k=0

(1, x) = 3 Cu(t) sin 2kx + 3 Di(7) cos 2kx,
k=1 k=0
2.27)
B, x) = 3 Eu(f)sin2kx + 3 Fi(t) cos 2kx,
k=1 k=0

W x) = S M) sin 2kx + 3 Ni(f) cos 2kx,
k=1 k=0

where Ay(t), Bi(t), Ci(t), Di(t), E(t), Fi(t), M (t) and Ni(¢) are unknown functions. Putting

system (2.27) to the system (2.25), we obtain
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) ) [+ 1 0 1

> A;((t) sin 2kx + ), B}c(t) cos2kx + a ), D}Ak(t) sin2kx + @ ), D; Bi(t) cos 2kx
k=1 k=0 k=1 k=0

3

+ Z 4k A,(7) sin 2kx + Z 4K*By (1) cos 2kx = (21 + o'} ﬁﬂ + 41%) cos 2x,

00 , 00 , 0 1 . & 1

2 C.()sin2kx + 3, D, (1) cos 2kx + B 3, D} Ci(t) sin 2kx + B 3, D; Di(1) cos 2kx

k=1 k=0 k=1 k=0

-B; f Ap() sin 2kx — B1 Y Bi(t) cos 2kx + Y, 4k*C(t) sin 2kx + Y 4k*Dy(t) cos 2kx

k=1 k=0 k=1 k=0

= (2t +ﬁ8 2 — Bit* + 41*) cos 2x,

) o o 1 & 1

> E,;(t) sin 2kx + ) F,;(t) cos2kx + 6 ), D; Ex(t)sin2kx + 6 ), D; Fy(t) cos 2kx

k=1 k=0 k=1 k=0

6, S A sin2kx — 6, 3 Be(t) cos 2x + 3 ACE () sin 2kx + 3, 4K2Fy(1) cos 2kx
k=1 k=0 k=1 k=0

= (2t + 58 2 — 8,1* + 47%) cos 2x,

S M.(1)sin2kx + Y N.(t)cos 2kx +d 3, DI My(t)sin 2kx +d Y, DI Ni(t) cos 2kx

k=1 k=0 k=1 k=0

—dy S Ex()sin2%kx—d; S Fe(f)cos2kx —dy 3 Cu(t)sin2kx — dy 3 Dy(1) cos 2kx
k=1 k=0 k=1 k=0

+ Z 4k> M, (1) sin 2kx + Z 4K*Ni (1) cos 2kx = (2t + d3 izf d, 1> — dyt? + 41*) cos 2x,
k=1

O0<t<l1l,0<x<m.

Applying initial conditions to the system (2.27), we can write
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W0, %) = 3 AL0)sin2kx + 3 Bi(0)cos 2kx = 1,
k=1 k=0

1200, x) = 3 Cy(0)sin 2kx + 3 Dy(0) cos 2kx = 1,
k=1 k=0

B0, x) = 3 Ex(0)sin2kx + 3 Fi(0)cos 2kx = 1,
k=1 k=0

W40,%) = 3 M(0)sin 2kx + 5 Ny(0) cos 2kx = 1,
k=1 k=0

0<x<nm.

Equating coefficients sin 2kx, k = 1,2, ..., we get

A1) + @D A(r) + 42 AL(1) = 0,
Cy(1) + BD; Ci(t) = BLAW(D) + 42C(1) = 0,
E\(t) + 6D} Ex(t) — 51 A1) + 3K Ey(r) = 0, (2.28)

M,;(t) + th% M(t) — d\Ex(t) — drCi(t) + 4k* M (2) = 0,

0<t<1, A0) = C,(0) = EL(0) = M(0) = 0.
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Equating coefficients cos2kx, k =0, 1, ..., we get
1 3
B\(1) + aD; B\(1) + 4B,(1) = 2t + a5 1L + 47,
, 1
D \(t) + BD; D(t) — 1D (1) + 4D, (1)

3
= 2t+,8§%r — Bt + 47,

F\(t) + 6D; Fy(t) — ,B,(t) + 4F (1)

(2.29)
3
=21+ 03 4- — 6117 + 47,
1
N(t) + dD?N\(r) — d\F(1) — dyD; (1) + 4N, (1)
3
=2 +d3 iz — dif* — dot® + 4P,
0<t<1, Bi(0)=D(0) = Fi(0) = N;(0) = 1
and for k # 1, we get
Bi(r) + aD3 By(t) + 4k’ By(t) = 0,
, 1
D (1) + BD} Dy(t) — B1Bi(t) + 4k* Dy (1) = 0,
F(1) + 6D] Fi(t) - 61By(1) + 42 Fy(1) = 0, (2.30)

N,;(t) + th%Nk(l) —d Fi(t) — dyDi (1) + 4k2Nk(l) =0,

0 <1< 1, Bi(0) = Di(0) = Fr(0) = N (0) = 0.
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Here, we assume that

L{AD} = Aw(s),

L{Bi(1)} = Bi(s),

LA{Cn} = Ci(s),

LA{D(0)} = Di(s),

LI{E(D)} = E(s),

L{F (D)} = Fi(s),

LMD} = Mi(s),

LAN(D} = Ni(s).

Taking Laplace transform of both sides of system of fractional partial diffrential equations in
the systems (2.28) and (2.30) and using the following conditions
Ar(0) = B(0) = Cr(0) = Dy(0) = Ex(0) = Fr(0) = M(0) = Ni(0) = 0, k > 1, we obtain the

following system of algebraic equations

SAL(S) + as® A(s) + 4k2Ai(s) = 0,

SCi(s) + Bs* Cals) — BLAs) + 4K2Cy(s) = 0,
2.31)
SE((s) + 65  Ex(s) — 61A(s) + 4R Ey(s) = O,

1
SMk(S) + dSZ Mk(S) - dlEk(S) - dng(S) + 4k2Mk(S) = 0,
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and

1
sB,(s) + as’ B,(s) + 4k*B,(s) = 0,
1
sD,(s) + Bs” D,(s) + 4k*D,(s) — B1B,(s) = 0,
(2.32)
sF . (s) + 6s7Fk(s) + 4k2Fk(s) - 01B,(s) =0,
1
SN (s) +ds’ N(s) + 4k2Nk(s) —d\F.(s)—d,D (s)=0.
From the system (2.29), we get
sB1(s) + as?B(s) + 4B (s) = s% +a: + %,
s2
sD\(s) + Bs2Dy(s) — B1Bi(s) + 4D (s)
=2 ‘hBl% -3+ 3,
(2.33)

_ 2 2 2 2 8
_s_2+d_5_dls_3_d2_+s_3'
s2

For k # 1 from the system (2.31) and (2.32) it follows Ax(s) = Bi(s) = Ci(s) = Di(s)
E(s) = Fi(s) = Mi(s) = Ni(s) = 0. Taking the inverse Laplace transform, we get

Ai(1) = Bi(t) = Ci(1) = Di(1) = Ex(1) = Fi(t) = Mi(1) = Ni(1) = 0.

For finding B (t), D:(¢), F1(¢) and N,(f), we use the system (2.33). First, we obtain B;(s).
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We have that

2 2 8
SB](S) + (IS%BI(S) + 4Bl(s) = —3 + a_s + _3'
s s2 S
Therefore,
2!
Bl(s) = E (2.34)

Second, we obtain D;(s). Using formula (2.34) in the second equation, we get
1 2! 2! 1
(S '|'ﬂS2 + 4)D1(S) —ﬁlg = E(S '|'ﬁS2 _ﬁl + 4)
Therefore,
!

2!
Di(s) = 3 (2.35)

Third, we obtain F';(s). Applying formula (2.34) in the third equation, we obtain

1 2! 2! 1
(S+6S2 +4)F1(S)—(51—3 = —3(S+6S2 —61 +4)
h) S
or
|

2!
Fi(s) = 7 (2.36)

Fourth, we obtain N;(s). Applying formulas (2.35) and (2.36) in the last equation,

we get

)
(s +ds? + DN(s) —di— —dr— = —=(s +ds? —dy — d» +4)
S S S
or

2!
Ni(s) = 7 (2.37)
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Finally, appling formulas (2.34), (2.35), (2.36) and (2.37) and taking the inverse Laplace
transform with respect to ¢, we get
Bi(t) = Di(t) = Fi(t) = Ny(1) = 1*.

Therefore, the exact solution of problem (2.25) is

u'(t, x) = By (t) cos 2x = > cos 2x,

u*(t,x) = Dy(t) cos 2x = > cos 2x,

w(t,x) = Fi(t) cos 2x = 1> cos 2x,

u*(t, x) = Ny(f) cos 2x = 1% cos 2x.

Using similar procedure we can get the solution of the following initial boundary value

problem
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1 1
a”a(tt’x) +a DX ul(t,x) - Z a2 (tx) = fi(t, x),

r=1

0D 4 B D2t x) — Bl (1, %) — Z a, 28D = £(t, ),

ou? (tx) +6D2 3(l x) — 6114 (t, x) — Z ara w (l‘x) f3(l"x),

4 1 )
aua(tt,X) +d D; ”4(t, x) —d, u3(t, xX)—dy uz(t, X) — Z arﬁ u (tx)

= fa(t, %),

X =(X1,...,X,) € ﬁ, 0<t<T,
(2.38)

u'(0, %) = ¢(x), u*(0,%) = ¢ (x), w0, %) = £(x), u*(0,x) = Ax),

x=(x1,...,X,) € Q,

ul(t,x)|sl = ul(t,x)|S2, %51 = %Sz, 0<t<T,
uz(t,x)|sl = uz(t,x)|S2, % 5 = %Sz, 0<r<T,
143(t,)c)|sl = u3(t,x)|S2, % 6 = %Sz, 0<r<T,
”4(t’x)|51 = u4(t,x)|S2, %Sl = %Sz, 0<r<T,

for the system of multidimensional fractional patrial differential equations. Note that a, >
a, > 0and fi (t,x), k = 1,2,3,4 (€ (0.7), x € Q), ¢(x), ¥ (x), ), Ax), (x € Q) are

given smooth functions. Here § =S, U S,,0=5,N3S,.
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Note that the Fourier series method described in solving (2.38) can be used only in the case
when (2.38) has constant coefficients

2.2 Laplace Transform Method

Now, we consider Laplace transform solution of problems for the system fractional partial
differential equations.
Example 2.4. Consider the initial-boundary-value problem for the system of fractional

partial differential equations

3

aul(1,%) 31 _Pun) o me 2 o 82 x
o taDiu(t,x) G = (2t t+a3ﬁ)e ,

2
6!4 (tx) +ﬁ Dz 2(t x) ﬁlu (t x) (9 u”(t,x)

ox2
=Qt-p1> -1 +,88 =)e ™,

3 1 2,3
—a”a(tt’x) +06 D2ud(t, x) — Su'(t, x) — Fu(t.x)

0x2
3
=Qt-6 -+ 58f e

WD 4 g DI, x) — dyi (1, x) — da(E, %) (2.39)

ot

3
624, 8 _
—Tge = Q= di? = dof? =+ d)e,
O0<t<1,0<x<o0,

u'(0,x) = 4?0, x) = u?(0,x) = u*(0,x) =0, 0 < x < oo,

ul(t,0) = u*(1,0) = 3(1,0) = u*(1,0) =2, 0 <t < 1,

ul(t,0) = u?(1,0) = 3(t,0) = u*(t,0) = -, 0 <t < 1.
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Solution. We will use Laplace transform solution of problem (2.39). Here and in future we

assume that

L {ul(t, x)} =u'(t,s),
L {uz(t, x)} = u’(t, 5),

L{u3(r, x)} = W31, s),

L {u4(t, x)} = ut(t, s).

Using formula

Lie™} =

ey (2.40)

taking Laplace transform of both sides of the system of fractional partial differential
equations (2.39) and using the following conditions

u'(t,0) = u?(1,0) = u’(1,0) = u*(t,0) = 2, u,(1,0) = u3(t,0) = u3(1,0) = u}(1,0) = -1,
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we get

1
u) (t,8) +aDru' (t,s) — s*u' (t,5) + st* +y, (1)

3
= (2t — 2 83y 1
=Qt-t +“3\/7r)s+1’

1

u? (t, s) + BDu? (1, s) — Bru' (¢, 5) — s*u* (1, 5) + st
2 2 p8iiy

+y, () = 2t —pit* — ¢ +:3#;)m’

1
w(t,s) + 0D’ (t,5) — S1u' (¢, 5) — s°u® (1, 5) + st? (2.41)

3

+y, () = Qt -6, — 2 + 638’—% =4,

uf (t,5)+ dD,% ut (t,8) — dyi’ (t, s) — dau(t, 5) — s*u (¢, s)

3
2 _ 2 2 2 813 1
+sto+y, (1) = 2t —dit" —dyt” — t +d—3ﬁ —1

u'(0, s) = u*(0, s) = u?(0, s) = u*(0, s) = 0.
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Applying the Laplace transform with respect to ¢ of the system (2.41), we get
pu () + o’ (u, ) = s*u' (u, ) + 5% -

1

2 2 2
=(—z——3+a—%)m,

JZ Jz
U

i (1, 5) + B (u, s) — Bua (u, ) — s2u>(u, )

=

2 _ 2 _ (2 2 _ 2 2 \_1
+S—3—/7—(—z—ﬁlp—p+ﬁ#—%)m,

uu? (i, s) + (5/ﬁu3 (u, s) — 6u' (u, s) — s*u’ (u, s) (2.42)

For finding u' (u, s) , u? (u, s) , u® (u, s) and u* (1, s) we use the system (2.42). First, we obtain
u' (u, s) . We have that

N 2_2_2_2 chu
(,u+oz,u2—S)M(/J’S)+Sl?_l?_(/u7_/?+a;)(s+l)'

Therefore,

| 2 1
" ('u’s)_u3(s+1)'

(2.43)

Second, we obtain u? (i, s) . Using formula (2.43) in the second equation, we get

1 2 2

1 2
(1 +Buz — s (u, ) —ﬁllﬁm + S'u3 7

35



2 2 2 2 1
=(Z-Bi3——3+B3)
p Tl

(s+1)
Therefore,
2 1
2 == . 2.44
u” (i, 5) ForD (2.44)
Third, we obtain 1> (i, s) . Applying formula (2.43) in the third equation, we obtain
(u+ ou? — s (u 9= (1= $)(s+1)+8 +pu—6 — 1 +3u?)
) IR 1 1
or
2 1
3 _~ ) 2.45
u (L, s) ForD (2.45)

Fourth, we obtain u* (i, s) . Applying formulas (2.44) and (2.45) in the last equation, we get

1 2 1 2 2

+du? — sHu -dyw——-dyb—=——+
(1 +du s (u, 5) 1,u3(s+1) 2/43(s+1) S,u3 e

2 2 2 2 2 1
:(—2—d1—3—d2—3+d—5——3) .
H H M w: W+
Therefore,
2 1
4 == . 2.46
u (i, 5) ForD (2.46)

Finally, applying formulas (2.43), (2.44), (2.45), (2.46) and taking the inverse Laplace

transforms with respest to ¢ and x, we obtain

u' (1, x) = (1, x) = (1, x) = u'(t, x) = Pe .
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Example 2.5. Consider the initial-boundary-value problem for the system of fractional

partial differential equations

3
1 1 2,1
W+anul(t,x)—%:(2t t2+a/ )e"‘,

2
Ou? (tx) +ﬁ DZ 2(t x) ﬁlu (t x) 8%u (t,x)

Ox2
=Q2t-pi* -1 +,8 )e‘x,

3 1 2,3
) 1§ DI ud(t, x) - Siu (1, x) — L

Ox2

=Q2t-62 -1+ 68’ e,

WD 4 g D2u(t, x) - dy 1t X) — dy U3, ) (2.47)

2,4
~58 = (2t — dif? — dot® - f2+d8\r)e .
0<t<1,0<x<o0o,

u'(0,x) = 1?0, x) = u?(0,x) = u*(0,x) =0, 0 < x < oo,

ul(,0) = u*(t,0) = 3(1,0) = u*(1,0) =2, 0 <t < 1,

ul(t,0) = u*(t,0) = u(t,0) = u*(t,00) =0, 0 <t < 1.

Solution. Applying formula (2.40) and taking the Laplace transform of both sides of the
system of fractional partial differential equations in the system (2.47) and using the following

conditions
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u'(1,0) = u?(t,0) = u’(¢,0) = u*(t,0) = £*, we can write

L{a”(’x)}+a/L{D2u1(t x)} Lffetn) = {(Zt £+t )e‘x}
L]0} 1 g £{Df w0 0 - BiL ' 0) - £{252)

= c{ei-pie - r 4 pipet,
L2502+ 52 {D}u 0 - 0L {u'0,0) - £{2582)
:L{(zt—51t2—z2+58f‘ Ve~ }
L]0} 1 g {Dfut e, 0) - di L] w0, 0) - do L 0) - £{7562)
= r{@r-air - -2+ atpe)

O0<t<l1,

L{u'0,0} = £L{z20,0} = £L{i}©0, 0} = L{u*0. 0} = £{0}.

Here, we assume that

Y, (1) = u, (1,0),
Y (t) = ui (t’ 0)’

¥y, (1) = ul (1,0),

Y, (1) = u; (1,0).

Now, we using the Laplace transform with respect to ¢, we get
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1
(U + ap? — sHu' (i, s) = (— - —a +a 5)(311)
u?

_S/% + /% - (lu)’
(1 + Bt = 52 (s 5) = B’ (u, ) = (G5 =i %
B - DS

(u+0ud = s () = 61! () = (3 - 612 (2.48)

2 2
3+6 )(S+1)_ F+IV?_’)/3(“)’

(U + duz — sHu* (u, s) — dyi (i, 5) — dou® (, )

_ (2 2 2 2 2
= (o~ i~ +d ) — s+

Y, (,Ll) .

Taking the Laplace transform for the following conditions
u'(t,00) = u*(t,00) = u'(t,00) = u'(t,00) = 0
we get
u' (1, 0) = 0, u? (u,00) =0, 1 (u, ) =0, u*(u,0) =0. (2.49)

For finding u' (u, s), u* (u, s), u? (u, s) and u* (i, s), we use the system (2.48). First, we

obtain u' (i, s) . We have that

. 2 2 21 2
+au? — ) =(= - =+a— — 5 —~ :
(u+au? —s7u (i, s) (qu i a,ui)(s+1) st -7 W
Then
2 1 1
I/tl ,S)__ 1 )
(,u pw(s+1) a0 (1 + auz — s?)



Using the formula

1 1 ! !
1 2 - 1 " 1 1’
H+auz—s 1’,U+CY,U§_S AU+ auz +s 2\,,U+a’,ui
we obtain
_2 1 1
L s) = = 2.50

21/u+(w% s + ,u+a,u% ,u+a,u%

Taking the inverse Laplace transform with respect to x, we get

R (e_ N e\/wuix) , (2.51)

Passing to limit in (2.51) when x — oo and using (2.49), we get

u' () = e +y, (W

1 1
u' (u, ) =y, () ——— lim e V***** = (),

24Ju + a/,ué .

From that it follows

Y, (W) =0. (2.52)

Appling (2.50), (2.51) and (2.52), we get

;2
Loy _ 2ptaur-s
then
T pp— (2.53)
u = — .
w (S+ 1)
Second, we obtain u? (u, s) . Using formula (2.53) in the second equation, we obtain
2 2 2 2 1 2 2
o+ B — s (. ) = prut’ (. ) = (55— i — = +B=) —s—=+—=-7W.
M wow s+
Then
2
(/J+ﬁ,u2 sHU (i, s) = ek, —1+,8,u2+(1—s)(s+1)+,81) v, (W)
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or

2 1 1
e

2 _ - -
u (u,s)—# GiD 72(”)(p+ﬁu%—s2)'

Using the formula

1

1 1 1
% 2 - 1 " 1 ]’
(1 + Buz — %) "/1 +Pur—s  AJu+Puz+s 2\/# + pu?

we get

2 1 1

| 1
MZ(M’S):—S——YZ(,U) + )
H 2+ Bt s+ \Ju+Buz s — \Ju+pu

Taking the inverse Laplace transform with respect to x, we get

(2.54)

2 I T
W x) = e +y, (1) (e— Vb _ e‘/‘”ﬁ””) . (2.55)
Jui

2\u+ Buz

Passing the limit in formula (2.55) when x — oo and using formula (2.49), we get

1 1
u? (u, ) =y, (U) ——— lim e V**A** = (,
2\Ju+put’

From that it follows

¥, () = 0. (2.56)

Applying the formulas (2.54), (2.55) and (2.56), we get

2 (utpu’ =)

%_2 2 =
O O

Then

> _ 2 1
. (N’S)_,Lz3(s+1)'

(2.57)

Similarly, we obtain u? (i, s) . Applying formula (2.53) in the third equation of the system

(2.48) and making some elimination, we have
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2 1 1
3
w(u,s) = ———— ) .
(k w3 (s+1) RaG (U + 6z — s2)
Applying the formula
1 ~ 1
1 ) -
(1 + 6u7 = 57) /,H(sﬂz_s 1/,u+(5ﬂz+s 2\/,u+5/ﬁ
we get
2 1 1 1 !
w (U, s) = /1_ =3 (W + - (239

(s+1) 2\/u+5,u% s+ \/u+6,u% s—\/,u+5,u%

Taking the inverse Laplace transform with respect to x, we get

_ (e— Vst _ e‘/ﬂﬂsﬂ%*) . (2.59)
2+ 6/1%

Passing the limit in formula (2.59) when x — oo and using formula (2.49), we obtain

W (u,x) = =€ +y3 ()

1 I
1 (1,00) = ¥, (1) — === lim e WW*9*x = 0,
24/pu+ 6,11%

From that it follows
v3 () = 0. (2.60)

Applying formulas (2.58), (2.59) and (2.60), we get

2 (y+6,u2—s)
@B (s+ 1)

(/,l+5/.12 sHu? (i, 8) =

Then

(2.61)

Applying formula (2.57) and (2.61) in the fourth equation of the system (2.48) and making

some computation, we have

2 2 2 2 1 2 2
(,U"‘dlu%—sz)u4 (. $)—dvie’ (u, )—dout® (1, 8) = (5-di—=-dr—=+d—) =+ W.
wooow T s+ 1) M
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Then

1 i
du? — sHu (u, s) = — +du? — s%) -
(1 +dp> — s7)u” (u, s) #3(”1)(# e —s7) =y, (W
or
2 1 1
ut (u, s) = — A .
o wis+1) 7(#(p+d,u%—sz)
Applying the formula
1 1 1 1
1 2 = + ’
(e +dpz — s%) \//J+d,u%—s \/u+d,u%+s 2\/u+d,u%
we get
2 1
4 [ p—
1 1 1
— (va () + : (2.62)
2\/,u+d,u% s + \/,u+d,u% s — \/,u+a’,u%
Taking the inverse Laplace transform with respect to x, we get
2 1 4 4
u(x) = Se Tty () ——— (e Vb _ e‘/’”d“ ) (2.63)
H 21+ d,u%
Passing the limit in formula (2.63) when x — oo and using formula (2.49), we get
1 [T
ut (U, 00) = Y4 (U) ——= lim e V**¥** = (.
24+ d,u%
From that it follows
ya (@) = 0. (2.64)
Applying formulas (2.62), (2.63) and (2.64), we get
, 2 (u+dur — 52
du? — st )= e 2
(H+dp> = su (i, s) Gl
Then
2 1
Y = = : 2.65
w9 = 5 (2.65)
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Finally, applying formulas (2.53), (2.57), (2.61), (2.65) and using the inverse Laplace

transform with respect to ¢ and x, we get
ut(t,x) = (t,x) =’ (t,x) = u* (1,x) = Pe ™.

Using similar procedure we can get the solution of the following initial boundary value

problem
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O (’x) + aDzul(t x) — Z ara -~ (tx) = fi(t, x),

Ou? (tx) +ﬁD2 Z(t x) ,81u1(t x) Z arﬁ u (tx) (fz(l, x)’

; 1
QD 4 5D; 1w (t, x) — Syu'(t, x) — Z ar{) - (tx) = f3(t, %),

—4 > n 2.4
P+ d DRut (e, x) — dud (8, x) — dot* (8, %) — 3 4,50

r=1 r
= fa(t, x),

X =(x1,..,X,) € 5+, O0<t<T,

1 (0, x) = o(x), u*(0,x) = ¥ (x), 130, x) = &(x), u*(0,x) = Ax), (2.66)

X= (X)) €Q,

u(t,x) =ay (t,x), uy(t,x)=p(x),
w(t,x) = @y (t,x), w(t,x) =B, x),
wW(t,x)=az(t,x), u, (t,x)=p5(tx),

wt(t,x) = @y (t,x), (1, %) =Ba(t, ),

1<r<n 0<t<T, xeS"

for the system of multidimensional fractional partial differential equations. Note that a, >

a,>0and fi (1.x), k=1,2,3,4(1€(0.7),x€Q), 0. (),
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amaux@eEWJH@mJﬁ@@,k:L114aemjmxefnmgw%mmmh
functions. Here and in future Q* is the open cube in the n-dimensional Euclidean space

R"(0 < x; < 00, 1 < k < n) with the boundary S * and
Q =0'us

Note that Laplace transform method described in solving (2.66) can be used only in the case
when (2.66) has a,(x) constant or polynomials coefficients.

2.3 Fourier Transform Method

Now, we obtain the Fourier transform solution of the initial-value problem for the system of

fractional partial differential equations.
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Example 2.6. Consider the initial-value problem for the system of fractional partial

differential equations

ou! (t x) Ful(t,x)

21
+a Diu(t,x) — =5

3

= 2t + St 212 — 4322 e,

2
ou* (tx) +ﬁD2 2(t .X) ﬁlu (l X) _ 8%u%(t,x)

0x2

3
- (2t + B% — B2+ 282 — 4222 e,

2,3
o <“‘>+5D2 w3 (t, x) — 6y (1, x) — Ll

Ox?

(2.67)

"5

2
v 511 + 217 — 4x? e,

= (2t + 63

2 4
W) 4 g D1, x) — dy 13t %) — d 12(1, x) — LEED v

3

= (2t + df’%ﬁ —di 2 — dot® + 2% — 42D e ™,

O<t<l, —c0<x<o00,

u' (0, x) = 420, x) = 130, x) = u*(0,x) = e, — 00 < x < 00.

Solution. Here we assume

Flut,x)}=u(,s),
F{e‘xz} =n(s).

We have that

0
F {Eu (t, x)} =u (t,s),
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F o = -’
ﬁu(t,x) =—su(,s).

Taking the Fourier transform of both sides of the system of fractional partial differential

equation (2.67), we have the following system of ordinary differential equations
1
ul (¢, 5) + aDu' (1, s) — s*u' (¢, 5)

3

= 2+ a4 212 - 4522 n(s),

1
u? (1, 8) + BD i (t, s) — Biu (¢, s) — s2u (2, 5)
%
= (2t +'B§tTlﬁ - B2 + 22 — 452 (s),

w(t,s) + 5Déu3 (t,5) — o u' (t,5) — s2u’ (1, 5)
(2.68)

3

= Q1+ 538’—; _ 6112 + 27 — 452 2)n(s),

W (1, 5) + dD2ut (1, 5) — duid (1, ) — doti(t, 8) — S (1, $)

3

- (2t + d% Ay = dot? + 212 — 4520 (),

O<t<l1,

u'(0, s) = u?(0, s) = u?(0, s) = u*(0, 5) = n(s).

Taking Laplace transform with respect to ¢ in the system (2.68), we obtain the following

system of algebraic equations
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(i, 8) + apru' (u, s) + s2u' (i, )

2 2 2
= (/7 ta5 — 2 s7)n(s),

=

uz
i (1, 5) + B (u, s) — B (u, 8) — s2u>(u, )

2
= G +B5 — Bz = Tn(s),
u

u H
(2.69)
e’ (1, 5) + Ot (u, 8) = 1’ (. 5) = s (1, )
= (& + 6#1 — 615 = Z0)n(s),
put (1, 8) + dptuet (u, 8) — dyid (u, 8) — doti (g, s)
—s%u (u, 5) = (% + d#l% —di % - dy % - Z0)n(s).
For finding u'(u, s), u*(u, s), u*(u, s) and u*(u, s), we use the system (2.69).
Using the first equation of the system (2.69), we get
1 2
u(u,s) = —3n(s) (2.70)
u

Applying inverse Laplace transform with respect to ¢ and Fourier transform with respect to

x, we get

2

u' (t,x) = £F! {F {e—xz}} = e, 2.71)

Putting formula (2.70) in the second equation of the system (2.69), we obtain

(14 1t = ) G1.9) = i) = = (u+ i =1 =) n ).
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Then

w (U, s) = %n (s). (2.72)

Applying inverse Laplace transform with respect to ¢ and Fourier transform with respect to

X, we get

W (t,x) = P F e} = e (2.73)
Similarly, putting formula (2.70) in the third equation of the system (2.69), we obtain

3 _2\,3 2 2 3 _ 2
(,u +ou? —s )u (1, s) — 61—n(s) = —3(/1 +ou? —s —61)n(s).
H I
Then
3 _ 2
u (u,s) = En (s). 2.74)

Applying inverse Laplace transform with respect to ¢ and Fourier transform with respect to

x, we get
W (t,x) = PFHF e} = e (2.75)
Putting formula (2.72) and (2.74) in the fourth equation of the system (2.69), we get
1 2N 4 2 2 2 1 2
(u+duz —sHu™ (u, s) — dII?n(s) — dzl?n(s) = l?(,u +du? —dy — d, — s7)n(s).
Then
4 2
u' (u,s) = —n (s). (2.76)
u

Applying inverse Laplace transform with respect to ¢ and Fourier transform with respect to

X, we get

ut (t,x) = P {F e} = e (2.77)
Finally, applying formulas (2.71), (2.73), (2.75) and (2.77), we obtain

u @, x) = (t,x)=u’(t,x) =u* (t,x) = Pe ™.
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Using similar procedure we can get the solution of the following initial-value problem

1 1 2
25+ aD} (1, x) - zar”‘”) [, %),

2 1
ﬁua(tt,x) +ﬁ th u2(t, X) —ﬁlul(l, X) Z ara u (tx) f2(t, X),

3 1
(')ua(tt,x) + 6Dt2 I/t3(t, X) _ 511/!1(t, X) Z arﬁ u’ (t x) _ fS(t, X),

du(t,%) 34 3 2 L a1
o +d D u(t, x) — dyu’ (1, x) — dou”(t, x) — 21 ar=—5> (2.78)
r= "

= fa(t, %),

x=(x1,..x)€ER", 0<t<T,
u'(0,x) = @(x), u*(0,x) = ¢ (x), u?(0,x) = &x), u*(0,x) = A(x),

x=(x1,...,x,) €ER"

for the system of multidimensional fractional partial differential equations. Note that a, >
a,>0and f, (t,x), k=1,2,3,4(€(0,T),x e R"), o(x), ¥ (x),

&(x), A(x) (x € R") are given smooth functions. Note that Fourier transform method described
in solving (2.67) can be used only in the case when (2.67) has constant coefficients.

So, all analytical methods described above, namely the Fourier series method, Laplace
transform method and the Fourier transform method can be used only in the case when the
system of differential equations has constant coefficients or polynomial coefficients. It is
well-known that the most general method for solving the system of fractional partial
differential equations with dependent in 7 and in the space variables are finite difference
method.

In the last section, we consider the initial-value problem for the system of one-dimensional
fractional partial differential equations. The first and second-order of accuracy difference
schemes for the numerical solution of this problem are presented. Numerical analysis and

discussions are presented.
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CHAPTER 3
FINITE DIFFERENCE METHOD OF THE SOLUTION OF SYSTEM OF
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

When the analytical methods do not work correctly, we can use the numerical method to
get approximate solutions of the local and non-local problems for the system of fractional
partial differential equations take an important role in applied mathematics. In this section,

we present the numerical solution of the initial-boundary-value problem

oul (1,x) +a D%ul(t X) _ 0%ul (1,x)
ot

0x?
=Qt+1 £2)sin x,

+,u3‘f
o? (IX) 52
+B D} u(t, x) — ﬁlu (t, x)

2 2 3
_a ) _ (2t+ﬁ_t2 — B2 + 1*)sin x,

Ox2

0D 1§ DR, x) — 61l (1, )
a u (l‘x) — (2t+ (1 _ l)tz + 57t2)sinx, (3 1)

1
aua(ttx) +d D*u*(t,x) — d, u’(t, x)—
d, u2(l X) - 19u(lx)

= (2t + dﬁﬁ +(1 —d; —d») t*)sin x,,

0<r<1,0<x<m,
u"(0,x)=0,0 < x <mu"(t,0)=u"(t,n)=0

0<r<1l,m=123,4

for the system of one dimensional partial differential equations. The exact solution of

problem (3.1) is u” (t,x) = t*sinx, m = 1,2,3,4. For the approximate solutions of the
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problem (3.1), we consider the first order of accuracy difference scheme in ¢

Y (! 1 X Y o Yo ()
WD | b (1) = Cha2C

n h?

’3
:(Zz‘k+t + SR )smxn,

n

) () 1 k k 2) . —2(2) + ()
(), ( ), +8D; (i) ~ i ('), - (), (hz),,+( Doy
(2tk +ﬁ—t2 - Bt + t,f) sin x,,,

w? k—u3 k=l L k k u3k —2u3k u3k
( )n f )n + 6D12’T (u3)n _ 61 (ul)n _ ( )n+l (hz)n+( )nfl

= (2tk + (1 - 61)f2 + 6ﬁl’ )sinxn,

GG ani () - d () - s (2
(”4)n+1_2(”4) +(”4)n 1

= 20+ dsier + (1 -di - t,’g‘) sin x,,

i =kt, x,=nh, 1 <k<N,1<n<M-1, Nt=1, Mh=r,
m:1,293a4
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and the second order of accuracy difference scheme in ¢

Here

Mwa (ul)z_
%[(ul)i*"z(“)%(ul)’;_l (2 ) ]

h? +

= (20— 5) + (e - 3 + o5 U £)?)sinx,,

<uz>f;—<uz>z" + 8D} (u 2)" 8 <u1>,€+<u1>’;"
[<u2>,l+l—z<u2>n+(u2> (@)= z( ZY () ]

nl+

%
(200 = ) + B2 (0 = P + (1= Bt = §)?) sin x,,

(”3) (uz)k l +6D2( ‘)k 5 (”l):"'(”l)i_l
[@*),Hl—z(w),ﬁ(w) (@)~ z( 3)k L) ]

nl+

2
(20 = D)+ (1 =60t = 57 + 65526 = §)? ) sin x,,

(u“)f;—(u“)i“ . dD%( 4)k _d4, (u3>:+(u3>i* ~ (u2)f,+2(u2),€“
[<u4>,l+l—z<u4>,z+(u4> ()~ z( 4)k L) ]

nl+

1

2

(20— D) +d53= (0 = P + (1 = dy = o) (1 - 5)?) sin x,,
th=kt, x,=nh, 1 <k<N,1<n<M-1, Nt=1, Mh =n,
W’ =0,0<n<M;, =@, =0,0<k<N,

m=1,2,3,4.

(o)

LS ST ), T(p) = f e d,
m).

m=1 0
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6-1 _ 3-1
1 ( ,2) — 0 ] (10 12) T 1 |(—]2)(2_l) MZ]’ k=1,
(1-3)2-3)272 (1-3)2-3) 272 (1-he-1)202

i) u?l, k=2,

3y4 (15-3 34 20112 3\4
dI(3)? G+ (G P ut + (3 55

7_
2-3) 2-3) 2-
d [ +2(=(k = k=17 + 2k = 1)?) ul + (~4)(~(k - Dk - 1)?
22
+2(k - D + 2 4 2(=(k - Dk = D2 + 2k = D3 uk 2, k =3,4,
22

d[ki4 by (k — _M 4 _ m+l T (ke — 13
1 m) T +3 by (k—m)|uy™ +[-(k—m+ 3)2

m=1

+2by (k= m)] ! + [=bi(k = m) = 2k — m + $)7 + 2by(k — m)) u™!

@ = DT HAE - DT H (- DU - 246 - )2 + - )

A= DU (G- DT +4E - DT+ HE - DUt} k2 s,

S22
VEVE T 6EVE

b(r) = \r+1/2,d(r) = \r—-1/2.

For any m = 1,2, 3,4, we can write (3.2) and (3.3) in the matrix form

d

1
b1 (1) = b(r) = d(), by () = —3 (B(r) = ().

m,,m
A un+l

+B"uy + C"u) =Dy, 1 <n<M-1, 24
3.4

- -

uy =0, ujy, =0,
where A™, B",C™ are (N +1) X (N + 1) matrices and D = Iy, is the identity matrix ¢} and u)
are (N + 1) X 1 column vectors. Therefore, for the solution of the matrix equation (3.4), we

will use the modified Gauss elimination method. We seek a solution of the matrix equation

by the following form:
u, =ay i, +0, n=M-1,..,1, (3.5)
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where u}; :—0), a’f (j=1,...,M—=T)are (N+1)X(N+1) square matrices, ﬁ’}l (G=1..,M-1)

are (N + 1) X 1 column matrices o', B are zero matrices and

(07

U

n+1

Al=C'=

Bl

m _(Bm + CmCYZl)_lAm,

n+1

= (B" + C"a™) (D" + C"B"), n=1,...M — 1.

o

Q o O

o o O
o o o ©

-}
o
Q

o o o O
o o o O
o o o o
o o o O
S O O Q

—
o
)
(=)

b31 b32 b33 0
b41 b42 b43 b44

bN—Zl bN—22 bN—23 bN—24
bN—ll bN—lZ bN—lS bN—l4

le bN2 bN3 bN4

_bN+11 bN+12 bN+13 bN+l4

o o o O

S O o O

)
0
0
0
0
0
0
U veDxava
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
by-an-2 0 0 0
by-in—2 bn-in-1 O 0
bnn-2  Dyn-1 bww 0
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Q1 + 15+ asi= w )smxn

Qu +1 +a/%f l)smxn

¢ =
Rty + 15, 3( 1 1)smx,,
2 _8
Qty + 13, + s t )sm X, Livaer
0 0 0 0 00 0 0
0 a4 0 O 0O 0 0 O
0 0 O 0O 0 0 O
0O 0 0 & 0O 0 0 O
A*=C"=
0O 0 0 O a 0 0 O
0O 0 0 O 0 a 0 O
0 0 0 O 0 0 a O
0O 0 0 O 0O 0 0 «

J(N+1)X(N+1)
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b/
by
by
B> =
b;\/—Zl
b;\/—l 1
bl

N1
’
_bN+11

Ad=C3 =

§ .
(2t1v—1 +ﬁ%ﬁt§—1 _ﬁltf,_] + tf,_])snlxn +Bl( 1)

3 .
(21, + B350 = B2 + ) sinx, + By (u'

0 0 0 0 0
b, 0 0 0 0
b, by, 0 0 0
by by by 0 0

by byoz by by v 0
by_12 by_13 Dy_i by_in—2 Dnoin-
b, by byy - Dynea biyn-1
byiz Pyaz Py byiiv—2 Pyiin-

8 3 2 2y 1\°

(219 +/3ﬁt0 —Bity + 1) sin x, + B (u )n
3 ) |

(2t +ﬁ—3§ﬁtl2 —Bifs + £3) sinx, + B (u‘)n

N-1

n

)N

0 0 0 0 00 0 0
0 a 0 0 00 0 0
00 a 0 00 0 0
00 0 a 00 0 0
00 0 0 @ 0 0 0
00 0 0 0 a 0 0
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for the first order of accuracy difference scheme (3.2).

Here
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@’ |
(™),
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(um)ISV—l
myN-1
g(u )s dv+1)x1
for the second order of accuracy difference scheme (3.3).
NUMERICAL ANALYSIS
The errors are computed by
(mE)y, = max |u’"(tk, x,) — WM m=1,2,3,4 (3.6)

SKSIV,ISNS

of the numerical solutions, where u™(#, x,,) ,m = 1,2, 3,4 represents the exact solution and
(um)’,; ,m=1,2,3,4 represents the numerical solution at (#, x,). Numerical results are given
in Tables 1 and 2. Note that if N and M are doubled, the values of errors decrease by a
factor of approximately 1/2" for the m-th order of accuracy difference schemes in ¢ (3.2)
and (3.3), respectively. Moreover, the second order of accuracy difference scheme increases

faster than the first order of accuracy difference scheme.
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Table 3.1: Error analysis for the first order of accuracy difference scheme (3.2).

E Y /NM N =20 N = 40 N = 80
E (ul);\; 0.1617 0.0805  0.0401
E (uz);\; 0.1673 0.0833  0.0416
E (M)Z 0.1673 0.0833  0.0416
E (u4);\; 0.1766 0.0884  0.0442

EY /N,M N =20 N =40 N =80
E() 0.242 % 103 6.05 * 10 15125 10
E(w) 0.345 % 10~ 8.625%107°  2.1562% 107
E(w) 0.401 * 103 1.0025 %10 250625 # 105
E(u) 0.5213 % 1073 130325+ 104 3.2581 % 10~
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CHAPTER 4
CONCLUSION

In this thesis, we investigated the system of fractional differential equations can be solved by
Fourier series, Laplace transform and Fourier transform methods are used for the solution of
several systems of fractional differential equations. Difference schemes are presented for the
numerical solution of the initial boundary value problem for the system of one dimensional
fractional differential equations. The Matlab implementation of the numerical solution is

presented.
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APPENDIX 1
MATLAB PROGRAMMING

In this part, Matlab programs are presented for the first and second orders of accuracy difference

schemes.
1. Matlab Implementation of the First Order of Accuracy Difference Scheme of Problem
(31)

scheme for M=N

clear all; clc; close all;delete *.asv';

N=20; M= N;

a=1; bb=2; bb1=1; cc=2; ccl=1; dd=4; dd1=1; dd2=2;

h=pi/M;tau=1/N;

%%%%%%%%%%%% %% solution for ul(t,x)%%%%%%%%%%%%%%%

al=(-1/(h"2));

for i=2:N+1;

Al(i,i)=al;

end;A1;B1(1,1)=1;

B1(2,1)=(-1/tau)+(a/(pi*tau)™(1/2))*(gamma(3/2)-gamma(1/2));

B1(2,2)=(1/tau)+(a/((pi*tau)(1/2)))*gamma(1/2)+(2/(h"2));

B1(3,1)=(a/(pi*tau)(1/2))*((gamma(5/2)/factorial (2))-gamma(3/2));

for i=4:N+1;

for j=2:i-2;

B1(i,j)=(a/(tau*pi)(1/2))*((gamma(i-j+(1/2))/factorial (i-j))-(gamma(i-j-(1/2))/factorial (i-j-
1))

end;

B1(i,1)=(a/(tau*pi)*(1/2))*((gamma(i-1+(1/2))/factorial(i-1))-(gamma(i-2+(1/2))/factorial (i-
2)));

end;

for i=3:N+1;

B1(i,i)=(1/tau)+(a/(tau*pi)(1/2))*(gamma(0.5))+(2/(h"2));

B1(i,i-1)=(-1/tau)+(a/(tau*pi)*(1/2))*(gamma(3/2)-gamma(1/2));
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end;B1,;

Cl=A1;C1;

for i=2:N+1;

for j=1:M+1,;

t1=(i-1)*tau; x1=(j-1)*h;
phy1(i,j:)=(2*(t1)+((t1)"2)+(a*8*(t1"(3/2)))/(3*(pi)*(1/2)))*sin(x1) ;
end;

end;

for j=1:M+1,;

%x1=(j-1)*h;

phy1(1,j:)=0;

end;phyl,;

for i=1:N+1;

D1(i,i)=1;

end; D1;D1;

I=eye(N+1,N+1);
alphal{l}=zeros(N+1,N+1);
bethal{l}=zeros(N+1,1);

for j=1:M;
alphal{j+1}=inv(B1+C1*alphal{j})*(-Al);
bethal{j+1}=inv(B1+C1l*alphal{j})*(D1*phyl(:,j:j)-C1*bethal{j});
end;

U1{M+1}=zeros(N+1,1);

for Z=M:-1:1,
U1l{Z}=alphal{Z+1}*U1{Z+1}+bethal{Z+1};end;
for Z=1:M;

pl(:,Z+1)=U1{Z};

end;

pl(:,1)=zeros(N+1,1);

for i=1:N+1;

for j=1:M+1,
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t1=(i-1)*tau;

x1=(j-1)*h;

esl(i,j:j)=t1"2*sin(x1);

end;

end;

abs(es1-pl);

maxesl=max(max(esl));

maxappl=max(max(pl));

maxerrorl=max(max(abs(es1-pl)))

%%%%%%%%%%%% %% solution for u(t,x)%%%%%%%%%%%%%%%

a2=(-1/(h"2));

for i=2:N+1;

A2(i,i)=az;

end;A2;

B2(1,1)=1;

B2(2,1)=(-1/tau)+(bb/(pi*tau)(1/2))*(gamma(3/2)-gamma(1/2));

B2(2,2)=(1/tau)+(bb/((pi*tau)*(1/2)))*gamma(1/2)+(2/(h"2));

B2(3,1)=(bb/(pi*tau)*(1/2))*((gamma(5/2)/factorial(2))-gamma(3/2));

for i=4:N+1;

for j=2:i-2;

B2(i,j)=(bb/(tau*pi)™(1/2))*((gamma(i-j+(1/2))/factorial(i-j))-(gamma(i-j-(1/2))/factorial (i-j-
D)

end;

B2(i,1)=(bb/(tau*pi)(1/2))*((gamma(i-1+(1/2))/factorial (i-1))-(gamma(i-2+(1/2))/factorial(i-
2)));

end;

for i=3:N+1;

B2(i,i)=(1/tau)+(bb/(tau*pi)(1/2))*(gamma(0.5))+(2/(h"2));

B2(i,i-1)=(-1/tau)+(bb/(tau*pi)*(1/2))*(gamma(3/2)-gamma(1/2));

end;B2;

C2=A2;C2;
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for i=2:N+1;

for j=1:M+1,;

t2=(i-1)*tau; x2=(j-1)*h;

phy2(i,j:j)=(2*( t2)+((1-bb1)*(t2)"2)+(bb*8*(t2"\(3/2)))/(3*(pi)(1/2)))*sin(x2)+bb1*p1(i-1,j)

end;

end;

for j=1:M+1,

%x2=(j-1)*h;

phy2(1,j:))=0;

end;phy2;

for i=1:N+1;

D2(i,i)=1;

end; D2;D2;

I=eye(N+1,N+1);
alpha2{1}=zeros(N+1,N+1);
betha2{1}=zeros(N+1,1);

for j=1:M;
alpha2{j+1}=inv(B2+C2*alpha2{j})*(-A2);
betha2{j+1}=inv(B2+C2*alpha2{j})*(D2*phy2(:,j:j)-C2*betha2{j});
end;

U2{M+1}=zeros(N+1,1);

for Z=M:-1:1,
U2{Z}=alpha2{Z+1}*U2{Z+1}+betha2{Z+1};
end;

for Z=1:M;

p2(:,Z+1)=U2{Z};

end;

p2(:,1)=zeros(N+1,1);

for i=1:N+1;

for j=1:M+1,
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t2=(i-1)*tau;

x2=(j-1)*h;

es2(i,j:j)=t2"2*sin(x2);

end;

end;

abs(es2-p2);

maxes2=max(max(es2));

maxapp2=max(max(p2));

maxerror2=max(max(abs(es2-p2)))

%%%%%%%%%%%% %% solution for ud(t,x)%%%%%%%%%%%%%%%

a3=(-1/(h"2));

for i=2:N+1;

A3(i,i)=a3;

end;A3;

B3(1,1)=1;

B3(2,1)=(-1/tau)+(cc/(pi*tau)(1/2))*(gamma(3/2)-gamma(1/2));

B3(2,2)=(1/tau)+(cc/((pi*tau)*(1/2)))*gamma(1/2)+(2/(h"2));

B3(3,1)=(cc/(pi*tau)(1/2))*((gamma(5/2)/factorial(2))-gamma(3/2));

for i=4:N+1;

for j=2:i-2;

B3(i,j)=(cc/(tau*pi)*(1/2))*((gamma(i-j+(1/2))/factorial(i-j))-(gamma(i-j-(1/2))/factorial (i-j-
D)

end;

B3(i,1)=(cc/(tau*pi)(1/2))*((gamma(i-1+(1/2))/factorial (i-1))-(gamma(i-2+(1/2))/factorial (i-
2)));

end;

for i=3:N+1;

B3(i,i)=(1/tau)+(cc/(tau*pi)(1/2))*(gamma(0.5))+(2/(h"2));

B3(i,i-1)=(-1/tau)+(cc/(tau*pi)(1/2))*(gamma(3/2)-gamma(1/2));

end;B3;

C3=A3;C3;
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for i=2:N+1;

for j=1:M+1,;

t3=(i-1)*tau; x3=(j-1)*h;
phy3(i,j:j)=((2*t3)+((1-cc1)*(t3)"2)+(cc*8*(t37(3/2)))/(3*(pi)(1/2))) *sin(x3)+ccl*pl(i-1,)) ;
end;

end;

for j=1:M+1,;

%x3=(j-1)*h;

phy3(1,j:1)=0;

end;phy3;

for i=1:N+1;

D3(i,i)=1;

end; D3;D3;

I=eye(N+1,N+1);
alpha3{1}=zeros(N+1,N+1);
betha3{1}=zeros(N+1,1);

for j=1:M;
alpha3{j+1}=inv(B3+C3*alpha3{j})*(-A3);
betha3{j+1}=inv(B3+C3*alpha3{j})*(D3*phy3(:,j:j)-C3*betha3{j});end,;
U3{M+1}=zeros(N+1,1);

for Z=M:-1:1;
U3{Z}=alpha3{Z+1}*U3{Z+1}+betha3{Z+1};end;
for Z=1:M;

p3(:,Z+1)=U3{Z};

end;

p3(:,1)=zeros(N+1,1);

for i=1:N+1;

for j=1:M+1,

t3=(i-1)*tau;

x3=(j-1)*h;

es3(i,j:j)=t3"2*sin(x3);
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end;

end;

abs(es3-p3);

maxes3=max(max(es3));

maxapp3=max(max(p3));

maxerror3=max(max(abs(es3-p3)))

%%%%%%%%%%%%%% solution for u*(t,x)%%%%%%%%%%%%% %%

ad=(-1/(h"2));

for i=2:N+1;

A4(ii)=a4;

end;A4;

B4(1,1)=1;

B4(2,1)=(-1/tau)+(dd/(pi*tau)™(1/2))*(gamma(3/2)-gamma(1/2));

B4(2,2)=(1/tau)+(dd/((pi*tau)™(1/2)))*gamma(1/2)+(2/(h"2));

B4(3,1)=(dd/(pi*tau)(1/2))*((gamma(5/2)/factorial (2))-gamma(3/2));

for i=4:N+1;

for j=2:i-2;

B4(i,j)=(dd/(tau*pi)™(1/2))*((gamma(i-j+(1/2))/factorial(i-j))-(gamma(i-j-(1/2))/factorial (i-j-
)

end;

B4(i,1)=(dd/(tau*pi)*(1/2))*((gamma(i-1+(1/2))/factorial (i-1))-(gamma(i-2+(1/2))/factorial (i-
2)));

end;

for i=3:N+1;

B4(i,i)=(1/tau)+(dd/(tau*pi)*(1/2))*(gamma(0.5))+(2/(h"2));

B4(i,i-1)=(-1/tau)+(dd/(tau*pi)*(1/2))*(gamma(3/2)-gamma(1/2));

end;B3;

C4=A4;C4;

for i=2:N+1;

for j=1:M+1,;

t4=(i-1)*tau; x4=(j-1)*h;

78



phy4(i,j:j)=((2*t4)+((1-dd1-dd2)*(t4)"2)+(dd*8*(t4"(3/2)))/(3*(pi)(1/2))) *sin(x4)+dd2*p2(i-
1,j)+dd1*p3(i-1,)) ;

end;

end;

for j=1:M+1,;

%x4=(j-1)*h;

phy4(1,j:j)=0;

end;phy4;

for i=1:N+1;

D4(i,i)=1;

end; D4;D4;

I=eye(N+1,N+1);

alphad{1}=zeros(N+1,N+1);

bethad{1}=zeros(N+1,1);

for j=1:M;

alphad{j+1}=inv(B4+C4*alphad{j})*(-A3);

betha4{j+1}=inv(B4+C4*alphad{j})*(D4*phy4(:,j:j)-C4*bethad{j});

end;

U4{M+1}=zeros(N+1,1);

for Z=M:-1:1,

U4{Z}=alphad{Z+1}*U4{Z+1}+bethad{Z+1};

end;

for Z=1:M;

p4(:,Z+1)=Ud{Z};

end;

p4(:,1)=zeros(N+1,1);

for i=1:N+1;

for j=1:M+1,

t4=(i-1)*tau;

x4=(j-1)*h;

esd(i,j:j)=td"2*sin(x4);
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end;

end;

abs(es4-p4);
maxes4=max(max(es4));
maxapp4=max(max(p4));

maxerrord=max(max(abs(es4-p4)))
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