
PREDICT STUDENT PERFORMANCE USING 

DATA MINING 

AND  

MACHINE LEARNING TECHNIQUES 

 

 

A THESIS SUBMITTED TO THE INSTITUTE 

OF GRADUATE STUDIES 

 

OF 

 

 

NEAR EAST UNIVERSITY 

 

 

BY 

 

ABDUL RHEMAN SIDDIQUI 

 

 

 

 

 

In Partial fulfillment of the requirements for the 

Degree of 

Master of Science in artificial intelligence 

 

 
 

 
 

 
 

 

 

                                                  NICOSIA, 2022 

 

 

A
B

D
U

L
 R

E
H

M
A

N
 

S
ID

D
IQ

U
I 

P
R

E
D

IC
T

 S
T

U
D

E
N

T
 

P
E

R
F

O
R

M
A

N
C

E
 

U
S

IN
G

 D
A

T
A

 

M
IN

IN
G

 

M
A

S
T

E
R

 T
H

E
S

IS
 

2
0

2
2
 



PREDICT STUDENT PERFORMANCE USING 

DATA MINING 

AND  

MACHINE LEARNING TECHNIQUES 

 

 

A THESIS SUBMITTED TO THE INSTITUTE 

OF GRADUATE STUDIES 
 

OF 

 

 

NEAR EAST UNIVERSITY 

 

 

BY 

 

ABDUL RHEMAN SIDDIQUI 
 

 

 
 

 

In Partial fulfillment of the requirements for the 

Degree of 

Master of Science in artificial intelligence 
 

 

 

 

 

 

 

 

 

                                                  NICOSIA 2022 

  



 



Declaration 

 

I hereby declare that all information in this document has been obtained and presented 

in accordance with academic rules and ethical conduct. I also declare that, as required 

by these rules and conduct, I have fully cited and referenced all materials and results 

that are not original to this work. 

Name: abdul rehman 

Surname: siddiqui 

Signature: 

Date:  



Acknowledgment 

I want to express my profound gratitude to my supervisor, Prof. Dr. Fadi AL-TURJMAN, for all of 

his support, advice, and understanding during my graduate studies at Near East University. His 

oversight was crucial in giving me a well-rounded experience and helping me to project my long-

term career aspirations. He advised me to always follow up with calls, asking for regular updates on 

this work, and to be confident in all I do. Prof. Dr. Fadi AL-TURJMAN, you have my sincere 

gratitude for what you have done for me. Finally, I want to express my gratitude to my family for 

their unwavering support and prayers throughout the period I was away. 

  



Abstract 
 

Machine learning (ML) is the ability of a system to acquire and integrate knowledge based on large-

scale observations, as well as to develop and extend itself by acquiring new knowledge rather than 

being programmed with it.In today's competitive world, an individual's academic qualifications are a 

must. Employers' selection criteria of potential applicant are frequently based on the grade point 

average (GPA). Planning is an essential step in attaining a decent GPA, regardless of a student's 

intellectual capacity. Many students, on the other hand, lack the essential skills and time to plan and 

manage their GPA. An automated education planner system would be extremely beneficial in 

assisting students in achieving the best CGPA possible depending on their existing skills. Despite the 

existence of course planning systems, students continue to fall short of their objectives. Educational 

data mining tools have recently been used to learn more about the educational environment and to 

help students perform better.Artificial Neural Networks, Support Vector Machines, nave Bayesian, 

Decision trees, and other approaches are utilized in educational data mining. The goal of this thesis is 

to see how a these algorithm can help university students plan and improve their academic 

performance. The suggested personalized web-based academic planner is designed to serve as an 

online record storage system for students' academic data. The system will provide the optimal path 

for undergraduates to attain their goals utilizing GA based on their present achievement. 

KeyWords:gan, deepfakes, ml,ai,lstm, deeplearning 



                                                TABLE OF CONTENT 
 

Declaration...................................................................................................................................................... i 

Acknowledgment.............................................................................................................................................ii 

Dedication.......................................................................................................................................................iii 

Abstract...........................................................................................................................................................iv 

Table of Contents.............................................................................................................................................v 

List of Figures..................................................................................................................................................vi 

List of Tables....................................................................................................................................................x 

CHAPTER 1:INTRODUCTION............................................................................................................................1 

1.1 Background Of The Study .........................................................................................................................4 

1.2 Statement of problem. ............................................................................................................................... 5 

1.3 Purpose and Research Question................................................................................................................. 5 

1.4 Approach and Methodology...................................................................................................................... 5 

Chapter 2: LITERATURE REVIEW............................................................................................................. 8 

2.2 Related work.................................. ...........................................................................................................8 

2.3 Student Information System..................................................................................................................... 9 

2.2.1 Smart Advisory system using Machine learning................................................................................. 11 

2.3 Types of Machine Learning ....................................................................................................................13 

2.3.1 Types of Ml Algorithms .......................................................................................................................15 

2.4 Web application..................................................................................................................................... 18 

CHAPTER 3 :SYSTEM ARCHITECTURE........................................................................................... 20 

3.4 Linear Regression ...................................................................................................................................26 

3.5 Apriori ....................................................................................................................................................28 

3.5 SVM (Support Vector Machine) ............................................................................................................ 29 

CHAPTER 4:USER INTERFACE........................................................................................................... 31 

4.1 Course Selection..................................................................................................................................... 33 

4.2 Automate Selection ................................................................................................................................34 

4.3 Cgpa Calculator....................................................................................................................................... 35 

4.4 Cgpa Predictor ........................................................................................................................................36 

CHAPTER 5:RESULT ANALYSIS.............................................................................................................. 37 

5.1 Test Environment and Test Plan....................................................................................................... 37 



5.2 Browser testing................................................................................................................................ 38 

CHAPTER 6:CONCLUSION..............................................................................................................40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LIST OF TABLES 
 

 

Table 2.1: App Comparisons................................................................................................................................18 

Table 5.1: Test case………..................................................................................................................................36 

Table 5.2: linear regression test case.................................................................................................................39 

Table 5.2: SVM test case......................................................................................................................................239  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



LIST OF FIGURES 

 
 
 

FİGURE 3.4: DATA GİVEN............................................................................................................................................26 

FİGURE 3.5:  FİNAL DATA...........................................................................................................................................26 

FİGURE 3.6: LİNEAR REGRESSİON PLOT..............................................................................................................27 

FİGURE 3.7 : DATA FOR APRİORİ.............................................................................................................................28 

FİGURE 3.8: RULES...................................................................................................................................................... 28 

FİGURE 4.2 :DASHBOARD............................................................................................................................................31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 1 

INTRODUCTION 
 

1.1 Background of the Study 
 

Machine learning is a collection of techniques that, in general, allow us to "train" machines how to 

accomplish tasks by demonstrating how they should be done[1]. We want to create a system that can 

determine a student's final grade point average based on the semester they are currently enrolled in. 

Using the prior data of students who have graduated, we may try to determine the final cgpa and use 

machine learning algorithms to train the model.. 

Machine learning is a subfield of computer science that differs from traditional computational 

approaches. In traditional computing, algorithms are collections of management instructions used by 

computers to compute or solve problems[3]. Machine learning, on the other hand, allows computers 

to learn from data inputs and then use statistical analysis to provide outputs that are within a specific 

range. Machine learning makes it easier for computers to develop models using data and automate 

procedures based on inputs as a consequence. Everyone who utilizes today's technology has profited 

from machine learning. Face recognition technology can be used by social media networks to assist 

users tag and share images of friends. Optical character (OCR) technology converts text images into 

movable type[4]. Recommender system based on machine learning offer recommendations.based on 

user likes, which movies or TV series to watch next Consumers may soon be able to buy self-driving 

cars that navigate using machine learning. It's a field that's always evolving. As a result, whether 

dealing with machine learning methodology or examining the impact of machine learning 

procedures, there are a few factors to consider. 

 

 

 

 



1.2Statement of problem.: 
 

Various student management systems make use of outdated technology. Some schools still use 

paper-based or manual to store student information. 

It is possible to make these systems smarter and easier to use by utilizing machine learning and data 

mining algorithms that make use of existing data. These algorithms will make the work of student 

advisors easier by assisting students in selecting courses and providing results for their performance, 

scheduling classrooms, and assigning lecturers to courses. 

As a result, the primary goal of this research is to broaden the scope of research by exploring 

machine learning and data mining and seeing all of the possibilities that these technologies provide. 

1.3 Purpose and Research Question 
 

Machine learning and data mining technique will be utilized to predict student success in this thesis. 

Also included is a method for assessing the student's performance and the quality of the final 

product. We address two important research questions in this regard: 

• How will the student preformance be calculated, given the previous data is available? 

• How accurate will the prediction be? 

 

1.4Research Aim and Objectives 
 

This thesis focuses on evaluating student performance and predicting course choices using machine 

learning approaches and algorithms. Within the scope of this thesis, two distinct challenges will be 

addressed. First, with access to earlier records, the machine learning system will classify and assess 

previous data of students and their cgpa each semester. In a second try, an algorithm will be 

optimized for the same goal without knowing the cgpa of the student. 

The following is the procedure for this master's thesis: 



An iterative knowledge discovery process will be begun to answer the specified research questions 

based on a study on the existing techniques and metrics. This procedure entails establishing quality 

criteria for predicting cgpa, as well as implementing any necessary changes.To solve the specified 

task optimally, measurements and algorithms, as well as the optimization of machine learning 

approaches, are used. It's worth noting that this is an iterative process, as well as their impact on 

translation quality and classification possibilities, will be found by testing the algorithms' results 

against a database of past data. The data set used will span the years 2015 through 2021. 

Furthermore, the approaches and algorithms employed will be continuously modified and adjusted 

during this iterative process to produce the best potential results. Finally, the method and outcomes 

will be analyzed, assessed, and compared with other machine leaning algorithms (etc svm linear 

regression). 

1.5 Proposal Organization 

 
The dissertation is split into six chapters, plus references, conclusion, appendices.Chapter 1: Provides 

an overview of the research and its context. The study's Aim, research methods, etc) Chapter 2: 

Literature Survey: Include a review of the literature on the major subject of research.This chapter 

introduces the conceptual framework that will be used to comprehend the remainder of this thesis. 

Citation of related works and comparison Chapter 3: System Architecture, include a brief overview 

of research techniques and a description of the methodology used in this study Chapter 4: User 

Interface and Implementation, this gives an overview of how the application looks likes and also 

talks about the UI. Chapter 5: Performance and Result Analysis Conclusion and Recommedation 

 

 

 

 

 



 

CHAPTER 2 

LITERATURE REVIEW 

 

 
The literature review on the relevant studies is presented in this chapter. The chapter begins by 

reviewing related work about the AI in education, followed by Student Information System and the 

technology used in making this student management system more effective. 

 

2.1 Related Work 
 

In higher education, several studies have devoted to this project. of data mining. The researchers will 

provide an overview of a few sample studies in this section. A completea test case from the stage of 

higher education was presented by Abu Tair and El-Halees [6]. Their study’s major goal is to 

demonstrate how valuable data mining can be in the education field. Using several educational data 

mining approaches, they identified a variety of information from the graduate student dataset, 

including classification, clustering, association rules, and outlier identification. On existing higher 

education students, [7]. The major purpose of their research is to forecast the number of new students 

who will enroll in the following based on the amount of pupils per year who have enrolled in prior 

years. This research aids decision-makers in managing the resources and personnel required to 

administer a student’s results. This research also aids teachers in early detection. 

Identify the pupils who require additional attention in order to facilitate taking the appropriate action 

at the appropriate moment to reduce academic failure and improve the student’s academic 

performance. From the higher education level, Brijesh Kumar Bhardwaj and Saurabh Pal [8] used 

Baysian classification using student database. This study aimed to identify students who required 

further attention in order to lower dropout rates and take action at the appropriate moment. 

 



2.2 SIS: Student Information System 
 

This is a web application that was developed to serve a similar purpose. This web application 

(student information systemsFigure2.1, assist universities and other educational institutions in 

moving student data online for greater management and transparency. That is the essence of it.This 

web program may gather information on the entire school online so that instructors, parents, 

students, and administrators can readily access it. This contains private student data such as names, 

grades, test results, attendance, performance reviews, and many other things. In essence, a SIS gives 

the school the ability to gather data points for many different areas in one location, making it simple 

to monitor progress and performance. 

 

Figure 2.2: Near east Student information system 

 

 

 

 

 

 



2.3 Smart Advisory system using Machine learning 
 

Many academics attempted to create advising systems to simplify the registration process for 

students. There are two distinct approaches for developing advising systems: one relies exclusively 

on the advisor, while the other depends on both the counselor and the student. The first one lacks 

interaction because the student must rely on the advisor's recommendations for which courses to 

register and then follow them. [9] is an illustration of this kind. The second paradigm, in contrast, is 

more engaging because the advisor bases his or her recommendations on the preferences the student 

expresses [10]. Compared to the previous type, this one is more prevalent and typically yields 

superior results.The authors of [11] created a Web-based advising system for undergraduate CS and 

CE students that takes these preferences as input and bases its recommendations on them. The 

advisors provide their recommendations once the students input their choices using a web browser. 

As a result, the process of advising is made easier, faster, and more trustworthy. (This system is not 

automated; as a result, in order to develop its recommendations, it requires input from the students, 

which limits the system's potential.) The authors of [12] created and designed a prototype for a rule-

based expert advising system with an object-oriented database in yet another attempt to create a 

smart advising system. The authors based their system on two categories: academic rules and student 

preferences.All student choices are entered into the system, which then checks them against the 

regulations. The authors failed to use their expert system to create an automated system that 

automatically generates recommendations based on noticed patterns among previously registered 

courses taken by previous students, even though this system is an advancement towards building a 

smart system by integrating students' preferences with a process of validating these preferences 

(which refines those preferences). 

2.4 Full stack Web Application 



When working on a project, the first thing a developer should think about is the project structure, 

which includes the system's UI/UX design.React is an open and free front-end JavaScript framework 

for building user interfaces that leverage Ui[13]. It is sponsored by Meta (formerly Facebook) as well 

as a community of developers and businesses. React can be used as a foundation for single-page, 

mobile, or http applications thanks to frameworks like Next.js. Because React is mainly concerned 

with state management and displaying that state to the DOM, React apps frequently require the use 

of additional frameworks for navigation and client-side features. Node.js is a cross-platform, open-

source back-end Js runtime environment that runs JavaScript code outside of a web browser using 

the V8 engine. Node.js enables developers to construct command-line tools and server-side scripting 

using JavaScript.before transmitting the page to the user's browser, which includes running scripts on 

the server. As a result, Node.js represents a "JavaScript everywhere" paradigm, uniting online 

application development under a single programming language rather than two separate technologies 

for server-side and client-side scripts. Asynchronous I/O is possible because to Node.js' event-driven 

architecture. These design choices are aimed at increasing throughput and scalability in web 

applications with a lot of input/output activities, as well as real-time Web applications. 

2.5. Android Studio code 

This is free software designed specifically for creating Android apps. After you've installed the 

software, you'll need to download the essential plugins. The next step is to open the app and create a 

new project, as shown in Figure 2.2below. 



 

Figure 2.2: Android Studio Interface 

Each Android Studio project has one or more modules that contain source code and resource files. 

Modules can be of various types: 

• Modules for Android apps 

• Modules for libraries 

• Modules for Node Engine 

As seen in Figure 2.2, Android Studio displays your project files in the Android project window by 

default. This view is grouped by modules to make it easy to find the important source files for your 

project. 

 

2.6Tensor flow 
 

TensorFlow is a machine learning system that works in diverse situations and at scale[14]. Dataflow 

graphs are used by TensorFlow to describe computation, shared state, and the operations that modify 

it. It distributes the nodes of a dataflow graph among numerous machines in a cluster and among 



various computing units within a single system, such as multicore CPUs, general-purpose GPUs, and 

specially created ASICs known as Tensor Processing Units (TPUs)[15]. This architecture allows the 

application developer flexibility because, unlike earlier "parameter server" systems, which managed 

shared state internally, TensorFlow enables developers to test out cutting-edge optimizations and 

training techniques. With an emphasis on deep neural network training and inference, TensorFlow 

serves a wide range of applications.TensorFlow has been widely adopted for machine learning 

research and is currently utilized in several Google services. It was also made available as an open-

source project by us. In this article, we present the TensorFlow dataflow model and show the 

impressive results that Tensor-Flow produces for a number of practical applications. 

 

 

2.7 Data Mining 
 

The act of sifting through large data sets in order to find patterns is known as data mining. and tofind 

patterns and relationships that may be used to address business problems. Enterprises can use data 

mining techniques and technologies to predicting future trends and make better business decisions. 

It is an important element of data analytics and the fundamental disciplines in data science, in which 

advanced analytics techniques are used to extract meaningful information from large data sets. Data 

mining is a step in the knowledge discovery in databases (KDD) process, a data science methodology 

for obtaining, processing, and analyzing data, at a more granular level. Although data mining and 

KDD are often used interchangeably, they are more frequently considered as separate concepts. 

The four basic stages of the data mining process are as follows as shown in figure 2.3: 

1. Obtaining information. Data that is relevant to an application for data analysis is recognized 

and gathered. The data could be in many source systems, a data warehouse, which is 

becoming increasingly popular in huge data environments with a mix of structured and 



unstructured data. It's also possible to use external data sources. A data scientist commonly 

transports data to a data lake for the rest of the phases in the process, regardless of where it 

came from. 

2. Preparation of data This stage consists of a series of activities that prepare the data for 

mining. Data exploration, profiling, and pre-processing are the first steps, followed by data 

cleaning to correct mistakes and other quality issues. İf  a data scientist is attempting to 

evaluate unfiltered raw data for a specific application, data transformation is also done to 

make data sets consistent. 

3. Mining the data. determining the right technique and then implementing one or more algorithms to 

execute the mining when the data is prepared. Before being run on the entire set of data in ML 

applications, the algorithms must often be trained on sample data sets to hunt for the information 

being sought. 

4. Data interpretation and analysis,The results are used to develop models that can aid in 

decision making and other commercial activities. The data science team must also convey the 

findings to company executives and users, which is commonly accomplished through data 

visualization and data storytelling methodologies. 

 

 

Figure 2.3:  Stages of data mining. 



 
 

 

2.9 Apriori 

 
It’s a method for extracting Boolean association rules.The association rules between the data are mined from 

the generated frequent item sets, giving us decision support, and the full database is inspected after each set of 

frequent item sets is formed. An item-set is a collection of 0 or more items, and a frequent item-set is one that 

has more support than the specified minimum support count [6]. Frequently used item-set evaluation criteria: 

• Support: one of the two core components of association rules. It is the proportion of transactions in 

the dataset D’s All sample that include both x and y to all transactions. The corresponding support 

level for two data sets (x and y) that require correlation analysis is: 

 Support (x,y) = P (xy) = num(xy) / num(Samples) 

Support(X =&gt; Y) = P(X U Y) = count(XUY)/|D| 

A support rating of 28%, for example, indicates that there is a 28% chance that a person in the 

population will include both X and Y. 

• Confidence: The proportion of transactions with x and y included to those with y included is the 

conditional probability. Confidence(x=>y) = P(X | Y) = P(xy)/P(y) 

Confidence(X=&gt;Y)=P(X|Y)=Support(XUY)/Support(X) 

The confidence is 52 percent if 52 percent of the phrases containing X contain Y.&quot; 

• lift: It’s the ratio of the total number of transactions occurring in x to the number of transactions 

containing x under the assumption of include y. 

Lift(X=>Y)=P(X|Y)/P(x)= Confidence(x=&gt;y)/P(x) 

2.10 Work Comparison 

Thisthesis describes the application in terms of its functionality, user interface, and supporting architecture.  

It has six functionality 

• Automated scheduling  



• Prediction of Cgpa 

• Cgpa calculator 

• Course selection automation 

• Timetable 

• Course clash notifier 

 

Table 2.1: App Comparisons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 3 

SYSTEM ARCHITECTURE 
 

 
the archhitecture of the system will be discussed here,which technologies were uses and how it was 

implemented 

3.1The structure of Advisor system 

 

Visual studio code, nodejs, reactjs, and SQL were used to create the NEU Advisor system. The 

project is complicated, yet the user interface is simple. TypeScript, Python, and HTML files are 

included. The software uses normal web applications and Python for machine learning and data 

mining methods, with a dynamic SQL backend that allows the administrator to update and maintain 

backend data without the need for a separate server. Figure 3.1 depicts the life cycle and operation 

of an Web application. 

 

Figure 3.1: The structure of Advisor system 

 



 

3.3. Backend customization 

First create an empty folder,navigate into and open in VS Code,From the File Explorer toolbar, press 

the New File button: 

 

Figure 3.1:  Android Studio folder structure 

and name the file: 

 

Figure 3.2: Android Studio file structure 

and then open the folder in terminal and write npm init which will create the packge.json file 

which will contain all our libraries which will be used in the project. 

Now the next step is to create a a server for our app.express will be used for generating api 

endpoints, 

3.3.1 Database Architecture 

The MySQL design shows how the various components of a MySQL framework interact. MySQL 

engineering is essentially a client-server architecture. MySQL information base server refers to the 

server as well as the apps that connect to it. are customers. 



This mobile app requires an internet connection and a centralized database (MySQL). This app is a 

client/server application. Clients are Web apps, whereas the server is made up of MySQL databases 

and Typescript API scripts. The Typescript APIs script connects the Web application to the MySQL 

database. The structure of this application is shown in Figure 3.4. The Typescript API's primary 

functions are as follows: 

• Accepting the read and write request from the clients. 

• Run and manipulate the request to MySQL database 

• Formatting the output as JavaScript Object Notation (JSON) 

 

Operations that are applied on the app: The developed application presents some operations that have been 

created to make some interaction with users. These operations are: 

• Add new users 

• Add courses and background information 

• User authentication 

• Add rooms to courses 

A database is a structured collection of data that is often stored and accessible electronically through 

a computer system. Where databases are more complicated, formal design and modeling techniques 

are frequently used. The database management system (DBMS) is the software that captures and 

analyzes data through interacting with end-users, applications, and the database itself. The database 

is required for data storage in this project. A user is established after the database is setup to enable 

permissions for reading, writing, and other functions. We access the phpMyAdmin dashboard to 

build tables after we've finished creating the database and user. 



 

Figure 3.3:Adding tables to the database 

sixteen tables were created which are advisor,buildings,chairman,courseGroup,courseRooms,courses, 

departments,faculties,rooms,students,studentCourses 

 

 

3.4 Linear Regression 
 

In this project, historical data on students' cgpa was available from 2015, and the data was extracted 

using excel and javascript. The goal was to predict student’s final cgpa based on which semester they 

were currently in, and seven models were developed using python and the tensorflow library.,here 

are the following steps. 

• Get the required data from the dataset 

• Remove null values 

• Remove repeated data 

• filter column for each model 

• send the prediction using api 



 

Figure 1: data given 

 

 

 

Figure 2:  final data 

Based on the training dataset, the multiple regression analysis technique was used to create seven predictive 

models. Each forecasting model's mathematical formula is as follows: 

Students done with one semesters: 

Final = 0.64865811(cgpa_one) + 0.8702897954289899 

Students done with two semesters: 

Final = - 0.3767197 (cgpa_one) + 1.07788012(cgpa_two)+ 0. 0.7319795607738113 



Students done with three semesters: 

Final = -0.05800013 (cgpa_one) - 0.43605543 (cgpa_two) + 1.34217604(cgpa_3) + 0.3978674914422706 

Students done with four semesters: 

Final = -0.01496279 (cgpa_one) + 0.14194983 (cgpa_two) -0.59270694 (cgpa_3) + 1.3738597(cgpa_four) + 

0.2785981385730869 

Students done with five semesters: 

Final=-0.01199102(cgpa_one)-0.0020485 (cgpa_two)+0.1369418(cgpa_3)-0.68974443 

(cgpa_four)+1.51859425(cgpa_five)+0.16427075754551002 

Students done with six semesters: 

Final=--0.002209(cgpa_one)+0.02272607(cgpa_two)+0.02647803(cgpa_3)-0.09801539 (cgpa_four -

0.41102471 (cgpa_five)- 0.41102471(cgpa_six)+ 

0.07259407553354569  

 

 

Students done with seven semesters: 

 

Final=--0.00929751(cgpa_one)+ 0.00617765 (cgpa_two)+ 0.02967188 (cgpa_3)- 0.05704418 (cgpa_four + 

0.09269362 (cgpa_five)-0.57070776 (cgpa_six)+ 1.49952976(cgpa_seven)+ 0.030531324906364343 

 

 

 

 

Figure 3: Linear regression plot 

 

 

3.5 Apriori 



 

On the data set, we used an apriori technique to count the number of times each course was taken. 

The minimal support was set to 0.0050, and itemsets with occurrences that satisfy the min sup were 

found. Only courses with a score greater than or equal to min sup advance to the next iteration, while 

the others are ignored. 

The data set: 

 

 

Figure 4: data for apriori 

Only the most appealing courses, or at least 30 occurrences, are subject to the rules. 30/5745=0.0050 

is the amount of support for those things. The regulations have a minimum confidence level of 20%, 

or 0.2. In the same way, we set lift to 3 and min length to 2 because we want at least two courses in 

our rules. 

 

 Association Rules: 

 

 

Figure 5: rules 

 

 

3.5 SVM (Support Vector Machine) 



 

Scikit-learn is a popular library for implementing machine learning algorithms in Python. SVM is 

also available in the scikit-learn library, 

 

Let's have a look at how SVM can be used for categorization,the final cgpa is converted to string as 

if the cgpa is 2.2 the result will be 2 – 2.5. 

Using the following criterion, the data leads to a hyperplane that separates the seven classes: The 

data is projected onto the hyperplane in such a way that the between-class variance is maximized 

while the within-class variance is minimized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER4 



USER INTERFACE 

 
İn this section the user interface of the system and key features will be discussed here 

4.1 App features 

 

Because the room is a group to their faculty, the Advisor app interface is designed to allow users of 

small-screen devices to quickly screw down or navigate for a specific query like a courses in their 

departments. To achieve this, the app makes use of the app interaction model's main elements. The 

characteristics of student management are as follows: 

• The app will automate which courses to be chosen. 

• The app will automate timetable. 

• The app will automatically offer semester courses. 

• Automated scheduling. 

• CGPA calculater. 

• Cgpa Predector. 

The screenshots of the user interface are listed below in figure 4:1 screenshot A the login page, 

screenshot B shows the dashboard, and screenshot C shows the transcript. 



 

Figure 4.1:  login page 

 

Figure 6:dashboard 



 

Figure 4.3:Transcipt 

 

 

 

When a user first launches the app, the first screen that appears is a login screen with the app logo. 

The user then enters their credentials; if they are not approved, the app will deny access; the user's 

information will be retrieved; and the dashboard will provide a list of equipment according to the 

faculty. Users can also access the adviser system, which displays a variety of features. 

4.2 Course Selection 
 

To add a course, the student must first go to their profile, then click add courses, select the semester, 

and if there is a conflict, the system will provide an error. 



 

Figure 4.4: student profile 

 

Figure 4.5: course selection 

 

 

Figure 4.6: clash error 

 

 

 



4.3 Automate Selection 
 

Course automation will reduce advisor and student involvement in course selection. Predetermining 

decision criteria, subprocess linkages, and related activities — and encoding those predeterminations 

in computers – reduces intervention. 

Course automation entails the utilization of a variety of data, such as which semester it is, whether 

the student has met the prerequisites, whether the course opens other courses, and so on. 

To automate the user just has to click on the automation button and select the semester. 

 

Figure 4.7:automate selection 

 

 

4.4 Cgpa Calculator 
 

CGPA Calculator is a unique calculator for calculating GPA or CGPA. Calculating GPA and CGPA 

by semester or year is quite simple.How to use the CGPA Calculator is a question that many students 

have. What Does the CGPA Stand For? See also the CGPA Calculator for Honours and the CGPA 

Calculator for Degrees.I'll explain how to compute CGPA as well as the whole meaning of CGPA. 

Let's look at how to calculate CGPA and the NEU GPA/CGPA Grading System. 



 

Figure 4.8: grade points 

 

The CGPA Calculator is simple to operate. You can determine your GPA or CGPA by semester or 

year. The system compute your first-year or semester GPA before proceeding to the next year or 

semester. 

 



 

Figure 4.9:Cgpa Calculator 

4.5 Cgpa Predictor 
 

The Predictor takes inputs depending on how many semesters has been finished by the student 

Then gives the prediction. 

 

Figure 4.10: Cgpa predictor 

 

 

 

 

 

 

 

 

 

 



CHAPTER5 

RESULT ANALYSIS 
 

Programs are tested and debugged to ensure that the general operation of the program satisfies the 

overall system objectives, which will be detailed here. The computer target requirements are also 

detailed in this chapter, as are maintenance difficulties. 

Performance is crucial for every web application. We make certain that the system's performance is 

up to par.The proposed web app is properly optimized since if it is slow, the end-user will look for 

another related app that performs better. Our system is compatible with other systems.and capable of 

utilizing existing features in today's web application This is the option that was picked.Because of 

cgpa prediction and course management sections of the application,  

5.1 Test Environment and Test Plan 
 

The test environment consists of the two environments where the tests will be executed, as well as 

the tools and requisite hardware. 

The following is the test environment used in this study: 

I. Browser evaluation 

II. Monitoring tool for hardware resource consumption in devices 

The web server is equipped with 2GB of RAM, a 5GB hard drive, and a Quad-core 3.3GHz CPU. 

Table 1.2 shows the list of web browsers and specifications that were used to test the app. 

 

 

 

 

 



Device Browser Ram 

Samsung Galaxy A21s Google Chrome 3Gb 

Lenovo Desktop Microsoft Edge 8gb 

Monster Notebook Opera 8Gb 

   

Table 5.1: Test cases 

For each test, we record the amount of time it takes to complete a job, as well as the 

amount of RAM and CPU used. The tests were conducted over both a Wi-Fi and a 4G 

network. The total time required to complete the request. In addition, the processing 

time required by the server will be measured so that we can track the delay for each 

cloud request. To determine how well the server's resources, RAM, and processor are 

being used, 

5.2 Browser testing 
 

The fundamental goal of testing is to take the tiniest bit of the tested section of the application and 

evaluate whether it behaves exactly as it should and meets the thesis' objectives. 

• 5.2.1 Speed test. 

The speed test assists us in determining the ideal network conditions in which to run the application. 

The y-axis shows the application's performance in milliseconds, while the x-axis shows the devices 

and their parameters, which we call devices, as well as the browser type. We tested connection 

speeds using three distinct browsers: Google Chrome, Microsoft Edge, and Safari.We choose to use 

these browsers since they are the most frequently used and popular. After that, we execute the app in 

each of these three browsers, and the results are shown in Figure (5.1). According to our findings, the 



best connection is WIFI, which implies that our software can function at the fastest connection 

speed, but LTE connections are still within the limit.and it was tested with different  internet speed  

We used 3g fast and 3g slow which can be selected in the browser 

 

 

Figure 5.1 :Execution Time 

 

The testing were carried out on a network using the following api response speeds: 

1800kbps/100kbps for 3g fast, and 1200kbps/700kbps for 3g slow. For each test, the regular 

execution time is used. The times are displayed in milliseconds. The execution time of going to a 

component is shown in Figure 5.1 for nearby, 3g quick, and 3g slow. A cluster of predefined lengths 

is created in this test, and a component is returned to begin with. 

• 5.2.2 Results from Cgpa Prediction(linear regression). 

The application's Cgpa prediction (linear regression) algorithm allows the user to determine their 

final cgpa. It was put to the test by entering students' transcripts into the system; the algorithm 

requires 1 to 7 inputs in this procedure. 



If the student has completed two semesters, the model will be applied using the input presented in 

table 2 

Semester Cgpa Prediction(final) Actual(final) 

1 2.52 2.50 3.72 

2 3.13 3.15 3.72 

3 3.56 3.67 3.72 

4 3.66 3.69 3.72 

5 3.72 3.74 3.72 

6 3.76 3.75 3.72 

7 3.72 3.71 3.72 

Table 5.2:  linear regression tes case 

Prediction Number of error per 20 cases Percentage 

With 1 semester 15 75% 

With 2 semester 11 55% 

With 3 semester 8 41% 

With 4 semester 7 30.5% 

With 5 semester 4 20% 

With 6 semester 2 12% 

With 7 semester 1 10% 

Table 5.3:  Error analysis 

 

 

• 5.2.2 Results from Cgpa Prediction(SVM). 

SVM algorithm  was put to the test by entering students' transcripts into the test data; the 

algorithm requires 1 to 7 inputs in this procedure. 



If the student has completed two semesters, the model will be applied using the input 

presented in table 5.2 

Semester Cgpa Prediction(final) Actual(final) 

1 2.52 2 - 2.5 3.72 

2 3.13 2 - 2.5 3.72 

3 3.56 2.5 - 3 3.72 

4 3.66 2.5 - 3 3.72 

5 3.72 3 - 3.5 3.72 

6 3.76 3.5 - 4 3.72 

7 3.72 3.5 - 4 3.72 

Table 5.4: SVM test case 

Prediction Number of error per 20 cases Percentage 

With 1 semester 19 85% 

With 2 semester 17 75% 

With 3 semester 12 60% 

With 4 semester 9 45% 

With 5 semester 6 30% 

With 6 semester 4 22% 

With 7 semester 3 18% 

Table 5.3:  Error analysis svm 

 

 

 

 

 

 



• 5.2.3 Results from course selection:  

The application suggests courses to take based on the student's department and previous courses. The 

student can then choose among the suggestions, and the system will ensure that there are no 

conflicts. 

Figure 5.2 depicts the outcome. 

 

 

Figure 5.3 :Results from course selection 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 6: 

CONCLUSION 
 

This research suggests a "Smart Advisory Application" to simplify the work of students and advisers. 

We employed a linear regression technique to estimate the students' Cgpa in this study. To 

recommend courses to the students, we employed the apriori method. The program was put to the 

test on a real case study from the Faculty of Engineering at Near East University. The proposed 

application's usability and efficiency were demonstrated by the results.  

The application can be improved in the future by adding personality prediction and entirely 

automating the assignment of students to advisers. Adding different layers to the web app for 

Handling high traffic. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 References 
 

1. A.M. El-Halees, and M.M. Abu Tair, “Miningeducational data to improve students’ 

performance: A case study,” International Journal of Information andCommunication 

Technology Research, 2011, pp. 140-146. 

2. S.Karthik M.Sukanya, S.Biruntha and T.Kalaikumaran,“Mining Data mining: Performance 

improvement ineducation sector using classification and clusteringalgorithm,” ICCCE In 

Proceedings of the InternationalConference on Computing and Control Engineering,2012  

3. M. tech Er. Rimmy Chuchra. "Use of data miningtechniques for the evaluation of student 

performance: a case study". International Journal of Computer Scienceand Management 

Research, 1(3):425–433, October2012 

4. Brijesh Kumar Bhardwaj and Saurabh Pal. Datamining:" A prediction for performance 

improvement using classification". (IJCSIS) International Journal of Computer Science and 

Information Security, 9(4),April,2011.  

5. Kabakchieva, D., Predicting student performance by using data mining methods for 

classification. Cybernetics and information technologies, 2013. 13(1): p. 61-72 

6. Ikbal, S., et al., On early prediction of risks in academic performance for students. IBM 

Journal of Research and Development, 2015. 59(6): p. 5: 1-5: 14. 

7. Ktona, A., D. Xhaja, and I. Ninka. Extracting Relationships between Students' Academic 

Performance and Their Area of Interest Using Data Mining Techniques. in Computational 

Intelligence, Communication Systems and Networks (CICSyN), 2014 Sixth International 

Conference on. 2014. IEEE 



8. Bunkar, K., et al. Data mining: Prediction for performance improvement of graduate students 

using classification. in Wireless and Optical Communications Networks (WOCN), 2012 

Ninth International Conference on. 2012. IEEE. 

9. B. B. Crookston, "A developmental view of academicadvising as teaching", Journal of 

College Student Personnel,Vol. 13, No. 1, pp. 12-17, 1972.A. A. AL-SHARGABI and A. N. 

NUSARI, Discovering vital patterns from UST students data by applying data mining 

techniques, in 2010 The 2nd International Conference on Computer and Automation 

Engineering, ICCAE 2010, 2010, 2, pp. 547–551 

10. C. M. Chando, "Predicting advising style preference fromstudent characteristics", Doctoral 

dissertation, Universityof Memphis, UAS, 1997H. JIAWEI, M. KAMBER, J. HAN, M. 

KAMBER, and J. PEI, Data Mining: Concepts and Techniques, 2012. 

11. S. Hsu, O. Marques, M. Ilyas, and X. Ding, “Web-BasedUndergraduate Academic Advising 

System”, International 

12. E. N. OGOR, Student Academic Performance Monitoring and Evaluation Using Data Mining 

Techniques, in Electronics, Robotics and Automotive Mechanics Conference (CERMA 

2007), 2007, pp. 354–359. 

13. HARWATI, A. P. ALFIANI, and F. A. WULANDARI, Mapping Student’s Performance 

Based on Data Mining Approach (A Case Study), Agric. Agric. Sci. Procedia, 3, pp. 173–

177, 2015. 

14. W. Ham¨ al¨ ainen and M. VINNI, ¨ Classifiers for Educational Data Mining, Handb. Educ. 

Data Mining, Data Min. Knowl. Discov. Ser., pp. 57–71., 2010. 

15. TensorFlow: Large-scale machine learning on heterogeneous systems, 

2015. Software available from tensorflow.org. 
 

16. B. JANTAWAN and C.-F. TSAI, The Application of Data Mining to Build Classification 

Model for Predicting Graduate Employment, IJCSIS) Int. J. Comput. Sci. Inf. Secur., 11(10), 

2013. 



17. A. A. AL-SHARGABI and A. N. NUSARI, Discovering vital patterns from UST students 

data by applying data mining techniques, in 2010 The 2nd International Conference on 

Computer and Automation Engineering, ICCAE 2010, 2010, 2, pp. 547–551. 

 



APPENDIX 1 
 

const bcrypt = require("bcrypt"); 

const Advisormodel = require("../advisor/model"); 

const Annoucementmodel = require("../annoucements/model"); 

const departmentModel = require("../department/model"); 

const Student = require("./Model"); 

const StudentCourses = require("./StudentCourses.model"); 

const Notification = require("../notifications/model"); 

const Courses = require("../courses/model"); 

const CourseRooms = require("../rooms/courseRooms.model"); 

const Group = require("../courseGroup/model"); 

import GroupService from "../courseGroup/Service"; 

const GroupServices = new GroupService(); 

const user = require("../auth/model") 

const { Op, Sequelize } = require("sequelize"); 

import firestoreService from '../firestore/firebase' 

export default class DepartmentService { 

  constructor() { } 

  public WEEK_DAYS = ["monday", "tuesday", "wednesday", "thursday", "friday", "saturday"] 

  private hashPassword = async (password: string): Promise<string> => { 

    const salt = await bcrypt.genSalt(10); 

    const hash = await bcrypt.hash(password, salt); 

    return hash; 

  }; 

  private getAcademicYear = async() => { 

    const year = await firestoreService.get( 

      'academic', 

      'qYX8QXS3XW564eKdfPTP' 

  ) 

return year.data.year 



  } 

  //  Create Student 

  createStudent = async (data: any): Promise<any> => { 

    try { 

      const department = await Student.create({ ...data }); 

      if (data.user) { 

        const password = await this.hashPassword(data.user.password) 

        await user.create({ userName: data.user.userName, password: password, userStudent: 

department.id }) 

      } 

      return department; 

    } catch (error) { 

      throw error; 

      // throw new Error("An Error occurred while creating department!"); 

    } 

  }; 

  //  Get Student 

  getStudents = async (): Promise<any> => { 

    try { 

      const departments = await Student.findAll({ 

        include: [ 

          { 

            model: Advisormodel, 

            as: "advisor" 

          }, 

        ] 

      }); 

      return departments; 

    } catch (error) { 

      throw error; 

    } 



  }; 

  //  Get Transcript 

  getTranscript = async (studentId: number): Promise<any> => { 

    try { 

      const result = await Student.findOne({ 

        where: { 

          userId: studentId 

        }, 

        include: [ 

          { 

            model: Advisormodel, 

            as: "advisor" 

          }, 

          { 

            model: Group, 

            as: "Group", 

            include: [{ 

              model: Courses, 

              as: "Course", 

            }], 

          } 

        ], 

      }); 

      let transcript: any = [] 

      let totalPts:number=0 

      let totalcredits:number=0 

      const groups = result.Group 

      const academicYears = await groups.map((group: any) => group.studentscourses.academicYear) 

      const uniqueArray = academicYears.filter(function (item: any, pos: any) { 

        return academicYears.indexOf(item) == pos; 



      }) 

      await Promise.all(await uniqueArray.map(async (group: any) => { 

        let status 

        const year = await groups.filter((year: any) => year.studentscourses.academicYear === group) 

        const approved = year.filter((course: any) => course.studentscourses.approvedBy !== null) 

        const totalcrPts = await approved.map((item: any) => 

parseInt(item?.studentscourses?.CrPts)).reduce((prev: number, next: number) => prev + next); 

        const totalcredit = await approved.map((item: any) => 

parseInt(item.Course.credit)).reduce((prev: number, next: number) => prev + next); 

        totalPts=totalPts+totalcrPts 

        totalcredits=totalcredits+totalcredit 

       if(totalcrPts / totalcredit>3){ 

         status='Honours' 

       } 

       if(totalcrPts / totalcredit>3.5){ 

         status='High honours' 

       } 

       if(totalcrPts / totalcredit>2){ 

         status='Successful ' 

       } 

       if(totalcrPts / totalcredit<2){ 

         status='Unsuccessful ' 

       } 

        const data = { 

          year: group, 

          courses: approved, 

          totalcrPts: totalcrPts, 

          totalcredit: totalcredit, 

          status:status, 

          gpa: totalcrPts / totalcredit, 

          cgpa: totalPts / totalcredits 



        } 

        transcript.push(data) 

      })) 

      return transcript; 

    } catch (error) { 

      throw error; 

    } 

  }; 

  getStudent = async (studentId: number): Promise<any> => { 

    try { 

      const result = await Student.findByPk(studentId, { 

        include: [ 

          { 

            model: Advisormodel, 

            as: "advisor" 

          }, 

          { 

            model: departmentModel, 

            as: "Department" 

          }, 

          { 

            model: Group, 

            as: "Group", 

            include: [{ 

              model: Courses, 

              as: "Course", 

            }] 

          } 

        ] 

      }); 



      return result; 

    } catch (error) { 

      throw error; 

    } 

  }; 

  getTimeTable = async (studentId: number, year: string): Promise<any> => { 

    try { 

      const year = await this.getAcademicYear() 

      const result = await Student.findByPk(studentId, { 

        include: [ 

          { 

            model: Group, 

            as: "Group", 

            where: { year: year }, 

            include: [{ 

              model: CourseRooms, 

              as: "CourseRooms", 

            }] 

          } 

        ] 

      }); 

      const groups = await result?.Group 

      const timetable = await Promise.all(this.WEEK_DAYS.map(async (days: string) => { 

        let weekDay: any = [] 

        const data = await groups.filter((f: any) => 

          f.CourseRooms.some((o: any) => days?.includes(o.day)) 

        ) 

        if (data.length > 0) { 

          const x = await Promise.all(await data.map(async (day: any) => { 

            const table = await day.CourseRooms.filter((dayt: any) => dayt.day === days) 



            const week = await table.map((time: any) => { 

              return { 

                name: day.name, 

                type: "custom", 

                startTime: `2018-02-24T${time.timeStart}`, 

                endTime: `2018-02-24T${time.timeEnd}`, 

              } 

            }) 

            return week 

          })) 

 

          weekDay.push(x) 

        } 

        const result = { 

          [`${days}`]: weekDay 

        } 

        return result 

      })) 

 

      return timetable; 

    } catch (error) { 

      throw error; 

    } 

  }; 

  getStudentStats = async (studentId: number, departmentId: number): Promise<any> => { 

    try { 

      const result = await Student.findOne({ 

        where: { 

          id: studentId 

        }, 



        include: [ 

          { 

            model: Group, 

            as: "Group", 

            include: [{ 

              model: Courses, 

              as: "Course", 

            }] 

          } 

        ] 

      }); 

      const allCourses = await Courses.findAll({ 

        where: { 

          departmentId:  { 

            [Op.or]: [departmentId, 4] 

          } 

        } 

      }) 

      const stats = await result?.Group.filter((course: any) => course.studentscourses.grade !== null 

&& course.studentscourses.grade !== 'FF') 

      const totalDepartmentcredit = await allCourses.map((item: any) => 

parseInt(item.credit)).reduce((prev: number, next: number) => prev + next); 

      const totalcredit = await stats.map((item: any) => parseInt(item.Course.credit)).reduce((prev: 

number, next: number) => prev + next); 

      const data = { 

        courses: allCourses.length, 

        coursesTaken: stats.length, 

        credit: totalDepartmentcredit, 

        creditTaken: totalcredit 

      } 

      return data; 



    } catch (error) { 

      throw error; 

    } 

  }; 

  getStudentByAdvisor = async (advisorId: number): Promise<any> => { 

    try { 

      const result = await Student.findAll({ 

        where: { 

          advisorId: advisorId 

        }, 

        include: [ 

          { 

            model: Advisormodel, 

            as: "advisor" 

          }, 

          { 

            model: Group, 

            as: "Group", 

            include: [{ 

              model: Courses, 

              as: "Course", 

            }] 

          } 

        ] 

      }); 

      return result; 

    } catch (error) { 

      throw error; 

    } 

  }; 



  CalculateCrPoints = async (grade: string, credit: number) => { 

    let points: number | undefined; 

    switch (grade) { 

      case "AA": 

        points = 4 * credit 

        break; 

      case "BA": 

        points = 3.5 * credit 

        break; 

      case "BB": 

        points = 3 * credit 

        break; 

      case "CB": 

        points = 2.5 * credit 

        break; 

      case "CC": 

        points = 2 * credit 

        break; 

      case "DC": 

        points = 1.5 * credit 

        break; 

      case "DD": 

        points = 1 * credit 

        break; 

      case "FD": 

        points = 0.5 * credit 

        break; 

      case "FF": 

        points = 0 * credit 

        break; 



    } 

    return points 

  } 

  //  Update Student 

  updateStudent = async ( 

    studentId: number, 

    data: any, 

  ): Promise<any> => { 

    try { 

      await Student.update( 

        { ...data }, 

        { where: { id: studentId } } 

      ); 

      const department = await this.getStudent(studentId); 

      console.log(data.englishScore) 

      if(data.englishScore<60){ 

       await Student.update({departmentId:5},{where:{id:studentId}}) 

      } 

      return department; 

    } catch (error) { 

      throw error; 

    } 

  }; 

  addRemoveCourse = async ( 

    studentId: number, 

    data: any, 

    status: string, 

    name: string 

  ) => { 

    try { 



      let error: string | undefined; 

      const student = await this.getStudent(studentId); 

      if (data.type == "add") { 

        await Promise.all(await data.courses.map(async (course: number) => { 

          const group = await GroupServices.getGroup(course) 

          const prerequisites = group?.Course?.prerequisites 

          if (prerequisites) { 

            const allCode = student?.Group.map((group: any) => { 

              if (group?.studentscourses.grade && group?.studentscourses.grade !== 'FF') { 

                return (group?.Course?.code) 

              } 

            }) 

            if (allCode.includes(prerequisites)) { 

              if (status === 'Student') { 

                await StudentCourses.create({ studentId: studentId, courseGroupId: course, academicYear: 

data?.year }) 

              } else { 

                await StudentCourses.create({ studentId: studentId, courseGroupId: course, academicYear: 

data?.year, approvedBy: name }) 

              } 

            } else { 

              error = `student did not take the required prerequisites for ${group.Course.name}` 

            } 

          } else { 

            if (status === 'Student') { 

              await StudentCourses.create({ studentId: studentId, courseGroupId: course, academicYear: 

data?.year }) 

            } else { 

              await StudentCourses.create({ studentId: studentId, courseGroupId: course, academicYear: 

data?.year, approvedBy: name }) 

            } 

          } 



        })) 

      } 

      if(data.type==="add"){ 

        if (status === 'Student') { 

          await Notification.create({ content: `${student.name} courses are waiting for your approval`, 

receiver: student.advisorId, type: "normal" }) 

        }else{ 

          await Notification.create({ content: `Your courses has been approved`, receiver: 

student.userId, type: "normal" }) 

        } 

      } 

      if (data.type == "remove") { 

        await data.courses.map(async (course: number) => { 

          await StudentCourses.destroy({ where: { studentId: studentId, courseGroupId: course, grade: 

null } }) 

        }) 

      } 

      if (error) { 

        throw Error(error) 

      } 

      return student; 

    } catch (error) { 

      throw error; 

    } 

 

  } 

 

  updateGrade = async ( 

    studentId: number, 

    courseId: number, 

    data: any 



  ): Promise<any> => { 

    try { 

      const course = await Group.findByPk(courseId,{ 

        include:[ 

          { 

            model:Courses, 

            as:'Course' 

          } 

        ] 

      }) 

      const points = await this.CalculateCrPoints(data.grade, course.Course.credit) 

      await StudentCourses.update( 

        { 

          grade: data.grade, 

          midtermOne:data.midtermOne, 

          midtermTwo:data.midtermTwo, 

          final:data.final, 

          CrPts: points 

        }, 

        { where: { studentId: studentId, courseGroupId: courseId } } 

      ); 

      const student = await this.getStudent(studentId); 

      await Notification.create({ content: `${course.Course.name} grades has been uploaded`, 

receiver: student.userId, type: "normal" }) 

      return student; 

    } catch (error) { 

      throw error; 

    } 

  }; 

  getCourseApproval = async ( 

    studentId: number, 



  ): Promise<any> => { 

    try { 

      const result = await Student.findOne({ 

        where: { 

          userId: studentId, 

        }, 

        include: [ 

          { 

            model: Group, 

            as: "Group", 

            include: [{ 

              model: Courses, 

              as: "Course", 

            }], 

          } 

        ] 

      }) 

      const group = result.Group 

      const notAprroved = group.filter((course: any) => course.studentscourses.approvedBy === null) 

      return notAprroved; 

    } catch (error) { 

      throw error; 

    } 

  }; 

  approveCourse = async ( 

    studentId: number, 

    courseId: number, 

    name: string 

  ): Promise<any> => { 

    try { 



      await StudentCourses.update( 

        { 

          approvedBy: name 

        }, 

        { where: { studentId: studentId, courseGroupId: courseId, approvedBy: null } } 

      ); 

      const student = await this.getStudent(studentId); 

      return student; 

    } catch (error) { 

      throw error; 

    } 

  }; 

  AutomateSelection = async ( 

    studentId: number, 

    year: string 

  ): Promise<any> => { 

    try { 

      const student = await this.getStudent(studentId); 

      const department = await departmentModel.findByPk(student.departmentId); 

      const coursesTaken = await student.Group.filter((course: any) => course.studentscourses?.grade 

!== null && 

        course.studentscourses?.grade !== "FF" || course.studentscourses?.academicYear !==year 

).map((course: any) => { 

          return course?.Course.code 

        }) 

      // get offered courses 

      const allGroup = await Group.findAll({ 

        where: { 

          year: year 

        }, 

        include: [ 



          { 

            model: Courses, 

            as: "Course", 

            where: { 

            [Op.and]:{ 

              departmentId: { 

                [Op.or]: [student.departmentId,4] 

              }, 

              facultyId: department.facultyId 

            } 

            } 

          } 

        ] 

      }) 

 

      if(allGroup.length===0){ 

      const allCourses= await Courses.findAll({ 

        where: { 

          [Op.and]:{ 

            departmentId: { 

              [Op.or]: [student.departmentId,4] 

            }, 

            facultyId: department.facultyId 

          } 

          } 

      })  

        //remove courses which are taken 

        const remove = await allCourses.filter((course: any) => !coursesTaken.includes(course.code)) 

        const prerequisites = await remove.filter((course: any) => 

coursesTaken.includes(course.prerequisites) || course.prerequisites === null) 



        const totalcredit = await prerequisites.map((item: any) => parseInt(item.credit)).reduce((prev: 

number, next: number) => prev + next); 

        const prerequisitesId = prerequisites.map((group:any)=> group.id) 

        const result = await allCourses.filter((course: any) => prerequisitesId.includes(course.id)) 

        let credits: number = 0 

        const creditLimit = year.includes('Summer')? 12:21 

        const automation = await result.map((courses: any) => { 

          if (totalcredit < creditLimit) { 

            return courses 

          } else { 

            credits = credits + courses.credit 

            if (credits <= creditLimit) { 

              return courses 

            } 

          } 

        }) 

        const removeNull = await automation.filter((Course: any) => Course !== undefined) 

       return removeNull 

      }else{ 

        const CoursesOffered = await allGroup?.map((course: any) => course.Course) 

        CoursesOffered.sort((a: any, b: any) => parseFloat(a.semester) - parseFloat(b.semester)); 

        //remove repeated courses 

        const filtered = CoursesOffered.filter((v: any, i: any, a: any) => a.findIndex((t: any) => (t.id 

=== v.id)) === i) 

        //remove courses which are taken 

        const remove = await filtered.filter((course: any) => !coursesTaken.includes(course.code)) 

        //check if prerequisites is done 

        const prerequisites = await remove.filter((course: any) => 

coursesTaken.includes(course.prerequisites) || course.prerequisites === null) 

        const totalcredit = await prerequisites.map((item: any) => parseInt(item.credit)).reduce((prev: 

number, next: number) => prev + next); 

 



        const prerequisitesId = prerequisites.map((group:any)=> group.id) 

        const result = await allGroup.filter((course: any) => prerequisitesId.includes(course.Course.id)) 

        let credits: number = 0 

        const automation = await result.map((courses: any) => { 

          if (totalcredit < 21) { 

            return courses 

          } else { 

            credits = credits + courses.credit 

            if (credits < 21 && credits < 19) { 

              return courses 

            } 

          } 

        }) 

        const removeNull = await automation.filter((Course: any) => Course !== undefined) 

        return result; 

      } 

    } catch (error) { 

      throw error; 

    } 

  }; 

  //  Delete Student 

  deleteStudent = async ( 

    studentId: number, 

  ): Promise<any> => { 

    try { 

      const department = await Student.findOne({ 

        where: { 

          id: studentId, 

        }, 

        paranoid: false, 



      }); 

      department.destroy(); 

      return { message: "Advisor record deleted!" }; 

    } catch (error) { 

      throw error 

    } 

  }; 

  getStudentAnnoucements = async (studentId:number): Promise<any> => { 

    try { 

   const studentGroup = await StudentCourses.findAll({ 

    studentId:studentId 

   }) 

   let groupIds =await studentGroup.map((student:any)=>student.groupId) 

   groupIds.push(null) 

   const annoucements = Annoucementmodel.findAll({ 

     where:{  

        groupIdId: { 

      [Op.or]: groupIds 

    },   

    include: [ 

      { 

        model: Group, 

        as: "Group" 

      }, 

    ] 

     } 

   }) 

      return annoucements; 

    } catch (error) { 

      throw error; 



    } 

  }; 

} 

const user = require("./model"); 

const bcrypt = require("bcrypt"); 

const jwt = require("jsonwebtoken"); 

const Student = require("../student/Model"); 

const dayjs = require('dayjs') 

const chairman = require("../chairman/model"); 

const Advisor = require("../advisor/model"); 

const faculty = require("../faculties/model"); 

const Department = require("../department/model"); 

import firestoreService from '../firestore/firebase' 

const { Op } = require("sequelize"); 

export default class AuthService { 

  constructor() { } 

  /** 

  * Authenticate user via form input 

  * @param data { companyEmail:string, password:string } 

  */ 

 

   private getAcademicYear = async() => { 

    // let year: string ='' 

    // const month = dayjs().month() 

    // const currentyear = dayjs().year() 

    // if (month >= 1 && month <= 5) { 

    //  year =`${currentyear-1}-${currentyear} - Spring` 

    // } 

    // if (month > 5 && month <= 8) { 

    //  year =`${currentyear-1}-${currentyear} - Summer` 



    // } 

    // if (month > 8 || month < 1) { 

    //  year =`${currentyear}-${currentyear + 1} - Fall` 

    // } 

    const year = await firestoreService.get( 

              'academic', 

              'qYX8QXS3XW564eKdfPTP' 

          ) 

    return year.data.year 

 

  } 

  async loginViaForm(data: any) { 

    let status 

    try { 

      const { username, password } = data; 

     const users = await user.findOne({ 

        where: { userName: username }, 

        include: [ 

          { 

            model: Student, 

            as: "Student", 

            include: [ 

              { 

                model: Advisor, 

                as: "advisor", 

              }, 

              { 

                model: Department, 

                as: "Department", 

                include: [ 



                  { 

                    model: faculty, 

                    as: "Faculty" 

                  }, 

              ] 

              }, 

          ]}, 

          { 

            model: chairman, 

            as: "chairman", 

            include: [ 

              { 

                model: Department, 

                as: "Department", 

                include: [ 

                  { 

                    model: faculty, 

                    as: "Faculty" 

                  }, 

              ] 

              }, 

          ] 

          }, 

          { 

            model: Advisor, 

            as: "Advisor", 

            include: [ 

              { 

                model: Department, 

                as: "Department", 



                include: [ 

                  { 

                    model: faculty, 

                    as: "Faculty" 

                  }, 

              ] 

              }, 

          ] 

          }, 

        ] 

      }); 

 

      if (!users) throw Error("Invalid Credentials"); 

      const comparePassword = await this.comparePassword( 

        password, 

        users.password 

      ); 

      if (!comparePassword) { 

        throw Error("Invalid Credentials"); 

      } 

      if (users.userAdvisor) { 

        status = "Advisor" 

      } 

      if (users.userStudent) { 

        status = "Student" 

      } 

      if (users.userChairman) { 

        status = "Chairman" 

      } 

      if (users.userSuperAdmin) { 



        status = "SuperAdmin" 

      } 

      const token = await this.generateToken({ 

        userId: users.Advisor?.userId || users.Student?.userId || users.Chairman?.userId || 

users.userSuperAdmin, 

        surname: users.Advisor?.surname || users.Student?.surname || users.Chairman?.surname || 

users.userSuperAdmin, 

        department: users.Advisor?.Department || users.Student?.advisor.Department || 

users.Chairman?.Department || users.userSuperAdmin, 

        status: status, 

      }); 

 

      const result = { 

        token, 

        user: { 

          userId: users.Advisor?.userId || users.Student?.userId || users.chairman?.userId || 

users.userSuperAdmin, 

          Id: users.Advisor?.id || users.Student?.id || users.chairman?.id || users.userSuperAdmin, 

          username: users.userName, 

          name: users.Advisor?.name || users.Student?.name || users.chairman?.name || users.name, 

          surname: users.Advisor?.surname || users.Student?.surname || users.chairman?.surname || 

users.userSuperAdmin, 

          department: users.Advisor?.Department || users.Student?.Department || 

users.chairman?.Department || users.userSuperAdmin, 

          faculty: users.Advisor?.Department?.Faculty || users.Student?.Department.Faculty || 

users.chairman?.Department.Faculty || users.userSuperAdmin, 

          status: status, 

        }, 

      }; 

      return result; 

    } catch (error) { 

      throw (error); 

    } 



  } 

  protected async comparePassword( 

    input: string, 

    compare: string 

  ): Promise<boolean> { 

    const match = await bcrypt.compare(input, compare); 

    return match; 

  } 

  /** 

* verify user 

* @param param 

*/ 

  async verifyUser(userName: string) { 

    try { 

      let status:string | undefined; 

      const users = await user.findOne({ 

        where: { 

          userName:userName 

        }, 

             include: [ 

          { 

            model: Student, 

            as: "Student", 

            include: [ 

              { 

                model: Advisor, 

                as: "advisor", 

              }, 

              { 

                model: Department, 



                as: "Department", 

                include: [ 

                  { 

                    model: faculty, 

                    as: "Faculty" 

                  }, 

              ] 

              }, 

          ]}, 

          { 

            model: chairman, 

            as: "chairman", 

            include: [ 

              { 

                model: Department, 

                as: "Department", 

                include: [ 

                  { 

                    model: faculty, 

                    as: "Faculty" 

                  }, 

              ] 

              }, 

          ] 

          }, 

          {  

            model: Advisor, 

            as: "Advisor", 

            include: [ 

              { 



                model: Department, 

                as: "Department", 

                include: [ 

                  { 

                    model: faculty, 

                    as: "Faculty" 

                  }, 

              ] 

              }, 

          ] 

          }, 

        ] 

      }) 

 

      if (!users) throw Error("User Does not Exist!"); 

      if (users.userAdvisor) { 

        status = "Advisor" 

      } 

      if (users.userStudent) { 

        status = "Student" 

      } 

      if (users.userChairman) { 

        status = "Chairman" 

      } 

      if (users.userSuperAdmin) { 

        status = "SuperAdmin" 

      } 

      //  If user exist and activated 

      //  Generate jwt token 

      const token = await this.generateToken({ 



        user: { 

          userId: users.Advisor?.userId || users.Student?.userId || users.Chairman?.userId || 

users.userSuperAdmin, 

          surname: users.Advisor?.surname || users.Student?.surname || users.Chairman?.surname || 

users.userSuperAdmin, 

          department: users.Advisor?.Department || users.Student?.advisor.Department || 

users.Chairman?.Department || users.userSuperAdmin, 

          status: status, 

        }, 

      }); 

      const result = { 

        token, 

        user: { 

          userId: users.Advisor?.id || users.Student?.userId || users.chairman?.userId || 

users.userSuperAdmin, 

          Id: users.Advisor?.id || users.Student?.id || users.chairman?.id || users.userSuperAdmin, 

          username: users.userName, 

          name: users.Advisor?.name || users.Student?.name || users.chairman?.name || users.name, 

          surname: users.Advisor?.surname || users.Student?.surname || users.chairman?.surname || 

users.userSuperAdmin, 

          department: users.Advisor?.Department || users.Student?.Department || 

users.chairman?.Department || users.userSuperAdmin, 

          faculty: users.Advisor?.Department?.Faculty || users.Student?.Department.Faculty || 

users.chairman?.Department.Faculty || users.userSuperAdmin, 

          year:await this.getAcademicYear(), 

          status: status, 

        }, 

      }; 

      return result; 

    } catch (error) { 

      throw (error); 

    } 

  } 



  //  Generate jwt token 

  protected generateToken = async (data: any): Promise<any> => { 

    try { 

      const token = await jwt.sign(data, "neuAdvisor", { 

        expiresIn: 36000, 

      }); 

      return token; 

    } catch (error) { 

      throw (error); 

    } 

  }; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX 2  

SIMILARITY REPORT 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

APPENDIX 3 

CURRICULUM VITAE 

 

 

 

CURRICULUM VITAE 

Abdul Rehman Siddiqui in 2020, he received a bachelor’s degree in Computer Engineering from 

Near East University. Abdul Rehman Siddqiqui is a master’s student at Near East University 

studying Computer Engineering with a specilization of Artificial Intelligence. 

 

PERSONAL DATA  

Name: Abdul Rehman Siddiqui  

Date of Birth: 12thApril,1996 

Nationality: Pakistani 

Place of Birth: Dubai, UAE. 

Permanent Address:  

Current Address:  

Mobile Number: +90 548 8584 254 

Marital Status: Single 

Email: abdulrehmansiddiqui123@gmail.com 

 

 

mailto:abdulrehmansiddiqui123@gmail.com


 

QUALIFICATIONS 

Near East University                      Bachelors of Computer Engineering              Dates 2016-2020 

 

WORK EXPERIENCE 

GUNSEL, Nicosia— Backend Team LeaderDecember 2020 to Present 

Implemented and updated application modulesunder the direction of Senior Software Developers. 

Successfully worked at an independent level, whilealso serving as an effective and 

enthusiasticcollaborator. Currently developing a system for HR and Production using 

React.js,node.js Redux, Redis. 

SKILLS 

React 

Node js(redis.express,socket io) 

Mysql 

Nest 

typescript/javascript 

Python 

apriori 

Linear Regression 

Support Vector Machine 


