
 
 

 
 

 

NEAR EAST UNIVERSITY 

INSTITUTE OF GRADUATE STUDIES 

DEPARTMENT OF CIVIL ENGINEERING 

 

 

 

 

ENSEMBLE RAINFALL ENSEMBLE RUNOFF MODELING 

USING RAIN GAUGE AND SATELLITE BASED DATA, CASE 

OF GILGEL ABAY, ETHIOPIA 

 

 

 

 

 

Ph.D. THESIS 

 

 

 

 

Tagesse Gichamo LAFAMO 

 

 

 

 

Nicosia 

June, 2022

T
A

G
E

S
S

E
 

G
IC

H
A

M
O

 

L
A

F
A

M
O

 

 

E
N

S
E

M
B

L
E

 R
A

IN
F

A
L

L
 E

N
S

E
M

B
L

E
 R

U
N

O
F

F
 

M
O

D
E

L
IN

G
 U

S
IN

G
 R

A
IN

 G
A

U
G

E
 A

N
D

 S
A

T
E

L
L

IT
E

 

B
A

S
E

D
 D

A
T

A
, C

A
S

E
 O

F
 G

IL
G

E
L

 A
B

A
Y

, E
T

H
IO

P
IA

 

 

P
h

.D
. T

H
E

S
IS

 
2

0
2
2

 



1 
 

 
 

 

NEAR EAST UNIVERSITY 

INSTITUTE OF GRADUATE STUDIES 

DEPARTMENT OF CIVIL ENGINEERING 

 

 

 

 

ENSEMBLE RAINFALL ENSEMBLE RUNOFF MODELING 

USING RAIN GAUGE AND SATELLITE-BASED DATA, CASE OF 

GILGEL ABAY, ETHIOPIA 

 

 

Ph.D. THESIS 

 

 

Tagesse Gichamo LAFAMO 

 

 

Supervisors 

Prof. Dr. Hüseyin GÖKÇEKUŞ (Main Supervisor) 

                Prof. Dr. Vahid NOURANI (Co-Supervisor) 

 

 

Nicosia 

June, 2022 





3 
 

 
 

Declaration 

I hereby declare that all information, documents, analysis, and results in this thesis have 

been collected and presented according to the academic rules and ethical guidelines of 

the Institute of Graduate Studies, Near East University. I also declare that as required by 

these rules and conduct, I have fully cited and referenced information and data that are 

not original to this study. 

 

 

 

 

Tagesse Gichamo Lafamo 

 

10/7/2022 

 

 

 

 

 

 

 

 



4 
 

 
 

Acknowledgment 

I would like to express my deepest gratitude and sincere appreciation to my main 

supervisor Prof. Dr. Hüseyin GÖKÇEKUŞ for his patience, motivation, enthusiasm and 

immense contribution to the achievement of this goal. My deepest appreciation goes to 

my co-supervisor Prof. Dr. Vahid NOURANİ for his uncountable guidance and support, 

starting from suggesting the research topic to the publication and completion of the 

thesis.  

I would like to thank the Ethiopian Ministry of Education and Arsi University for 

their financial support and sponsorship of my study. I would like to thank Near East 

University for providing me with a 100% scholarship for my study. 

I am very grateful to my wife Martha for her unwavering support, love, and 

passion throughout my years of study and my life in general. My gratitude also goes to 

my daughters Elishaday and Malela for their patience on all the days when I was unable 

to treat and care of them. My gratitude goes to my mother and other family members for 

their prayers and encouragement during the difficult days.  

My profound gratitude goes to all my friends and colleagues who have always 

been a source of strength and aspiration. 

 

 

 

 

Tagesse Gichamo LAFAMO 

 

 

 



5 
 

 
 

 

 

 

 

 

 

DEDICATED TO MY PARENTS 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 
 

           Abstract 

Ensemble Rainfall Ensemble Runoff Modeling Using Rain Gauge and Satellite-

Based Data, Case of Gilgel Abay, Ethiopia 

Tagesse Gichamo Lafamo 

Ph.D., Department of Civil and Environmental Engineering 

Supervisors:   Prof. Dr. Hüseyin Gökçekuş (main supervisor) 

Prof. Dr. Vahid Nourani (Co-supervisor) 

June, 2022,(149) pages 

The study aimed to develop an ensemble rainfall-runoff modelby Adaptive Neuro-

Fuzzy Inference System (ANFIS), Feed Forward Neural Network (FFNN), Soil and 

Water Analysis Tool (SWAT), Hydrologic Engineering Center‟s Hydraulic Modeling 

System (HEC-HMS), Hydrologiska Byråns Vattenbalansavdelning (HBV), and Support 

Vector Regression (SVR) of Gilgel Abay watershed, Blue Nile basin, Ethiopia. Rainfall 

from 5 gauging stations (Gundel, Wetet Abay, Sekela, Dangila, and Adet) and 3 satellite 

sources (Climate Prediction Center (CPC) morphing technique (CMORPH), 3B42 and 

3B42RT which are Tropical Rainfall Measuring Mission (TRMM) products, discharge 

measured at outlet, and spatial data such as Digital Elevation Map (DEM), soil map and 

land use land cover were used for the modeling. The most sensitive parameters of rain-

runoff modeling for every model were examined, and soil curve number (CN2) and 

baseflow factor (ALPHA_BF) for SWAT, the initial abstraction and lag time for HEC-

HMS, and soil moisture storage (FC) and lower storage recession coefficient (K2) for 

HBV were obtained. The appropriate input parameters for SVR, ANFIS and FFNN 

models were also identified using the non-linear sensitivity analysis method, and 

accordingly, discharge and rainfall were sensitive for rainfall-runoff modeling. 

First, each model separately simulated runoff using rainfall datasets of gauge, 

each satellite, and their fusion. Second, each model output was imposed to ensemble 

modeling via proposed simple average (SAE), Neural Network (NNE) and weighted 

average (WAE) ensemble techniques using 3 ensemble scenarios. The scenarios applied 
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were i) an ensemble of AI-based models, ii) an ensemble of physically-based models, 

and iii) an ensemble of all models using rainfall fusion.  

From the satellite rainfall products, CMORPH indicated better performance for all 

models but it still tends to overestimate the low flows. The rainfall-runoff modeling 

results using 3B42 and 3B42RT underestimate peak flow, and in particular, 3B42 gave 

random false peaks in the dry period. It is noted that all models were good in 

apprehending the rainfall-runoff relationship; nevertheless, ANFIS perceived slight 

supremacy by Nash-Sutcliffe Efficiency (NSE) of 0.864 and 0.875 for gauge and fusion 

rainfall data, respectively at the validation phase. SWAT outperformed the other semi-

distrusted models with NSE of 0.81 and 0.821 for gauge and fusion rainfall data, 

respectively, at the validation stage. Scenario 3 ensemble modeling (fusion of rainfall 

datasets) was shown substantial improvement over modeling by satellite rainfall dataset 

owing to bias correcting capacity of rainfall dataset from the gauge over rainfall datasets 

obtained from the satellite. The NNE technique boosted the accuracy of low performed 

satellite rainfall dataset-based model by 21.2% and the rainfall datasets, fusion-based 

model, by 15.7% at the validation stage. Generally, the results of this study point out that 

the fusion of rainfall datasets from multiple satellite sources would be a worthy 

preference for rainfall-runoff simulation of data-scarce as well as un-gauged catchments. 

Keywords: rainfall-runoff modeling, ensemble- modeling, physically-based, artificial-

intelligence, gilgel -abay 
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            CHAPTER I 

             Introduction 

    General Background  

Rainfall-runoff modeling is applied as a technique to estimate methods for 

predicting runoff in real-time (Shamseldin et al., 1997). The rainfall-runoff modeling 

process is frequently used to determine the streamflow signals leaving the catchment by 

using rainfall and snowmelt signals received by the catchment. Rainfall-runoff explains 

the process that the streamflow occurred from the physical interaction of rainfall, 

evaporation, infiltration, surface runoff, groundwater flow, interflow, and transpiration 

in the hydrologic cycle that are gained to the system or lost from the system (Young et 

al., 2017). The rainfall-runoff modeling process is conceptualized for the specific part of 

the physical component called a drainage network or watershed which has a common 

outlet point. The real rainfall-runoff process could be simulated and predicted by the 

computer-based simplified representation of the hydrologic cycle which is known as 

modeling. 

  An appropriate model should be selected depending on several factors such as 

the interest of the researcher, input data availability, characteristics of the watershed, 

accuracy of the model, and its familiarity. Accurate modeling of rainfall-runoff is critical 

for various aspects of hydrology and environmental management, such as watershed 

management, siltation control, land use planning, water supply, wastewater disposal, 

flooding, and groundwater management. However, the modeling process is very 

complex due to the irregularity and non-linearity of rainfall data in time and space 

(Nourani et al., 2013). The process is also challenging because its physical processes are 

subjected to changes in space and time, revealing random and non-linear characteristics. 

In rainfall-runoff modeling, the most challenging task is the accurate 

identification of the relationship that could exist between input and output parameters. 

This situation could be the worst for ungauged catchments as it lacks appropriate records 

of datasets mainly rainfall and discharge. Input-output parameters relationship in 
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ungauged catchments is often determined by regionalization of non-flow catchment 

entities such as soil, slope of drainage path, land use, and land cover (Mathias et al., 

2016). The uncertainties in rainfall-runoff modeling could also occur due to 

inappropriate model structure, and forcing datasets (Chen et al., 2013). The model 

structures could determine their capacity to represent the physical processes of a given 

watershed and the observed data could also be less informative to present the real 

hydrologic characteristics. Measuring all the factors affecting rainfall-runoff modeling is 

not an easy task and is often impossible for unaccessible basins (Zelelew & Melesse, 

2018). Therefore, models with simple structures, that require minimal input data, and 

less complex with comparable modeling accuracy should be the best models.  

The other problem in the rainfall-runoff modeling process is the dynamic nature 

of streamflow and climatic variables in space and time and they are usually chaotic, 

random, and non-linear (Yaseen et al., 2016). Streamflow is highly variable in both 

quantity and quality at different seasons of the year and at different places along the flow 

path. The climatic variables such as rainfall, temperature, solar radiation, and 

evaporation could also be highly variable in space and time as the result of global and 

regional climate change due to natural or man-made effects. Therefore, the dynamic 

nature of input parameters and specific model structure could affect the rainfall-runoff 

modeling accuracy.  

Several models have been developed for rainfall-runoff modeling, including 

physically-based distributed models, conceptual models, and artificial intelligence-based 

(AI) black-box models. Various conventional black-box models such as Multiple Linear 

Regression (MLR), Auto-Regressive integrated moving average (ARIMA), and Auto-

Regressive Moving Average with Exogenous Input (ARIMAX) have been used for 

hydrologic modeling (Adamowski et al., 2012; Graumlich, 1987; Salas et al., 1980;  

Zhang et al., 2011). However, the underlying assumptions of conventional models are 

uniform and stationary inputs and a linear relationship between inputs and outputs, 

which is not the case for widely non-linear and non-stationary hydrologic data. The 

linear model assumes stationary input data and can lead to inaccurate results. 
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The physically-based semi-distributed models, for instance, Soil and Water 

Assessment Tool (SWAT) and Hydrologic Engineering Center‟s Hydraulic Modeling 

System (HEC-HMS) can well understand the physical relationships of the components 

and truthfully simulate rainfall-runoff, however, they need large spatial and temporal 

data and the prcess is time-consuming (Nourani et al., 2021). The linear classic models 

are simple to use and map linear relations between inputs and outputs but they are not 

effective for rainfall-runoff modeling because hydrologic processes are non-linear 

spatial and temporal phenomena. Artificial intelligence (AI) based black-box models 

have increased rainfall-runoff modeling performance because AI has the capability of 

handling spatial and temporal irregularity and non-linearity of rainfall (Nourani et al., 

2011). AI techniques such as Artificial Neural Network (ANN), Adaptive neuro-fuzzy 

inference system (ANFIS), Support Vector Machine (SVM), Genetic programming 

(GP), and Support Vector Regression (SVR) were widely used for rainfall-runoff 

modeling (Kisi et al., 2013). In the last few decades, various artificial intelligence 

models have been applied to solve hydrologic and water resource engineering-related 

problems such as rainfall-runoff modeling, streamflow forecasting, sediment transport 

prediction, rainfall forecasting, water table estimation, and groundwater flow (Abbot and 

Marohasy 2017; Altunkaynak and Nigussie 2015; Asadi et al. 2013; Evsukoff et al., 

2012; Kurtulus and Razack 2010; Rajaee, 2011; Shi et al. 2018; Si et al. 2015; Stanley 

Raj et al. 2017; Zeynoddin et al. 2018).  

SWAT is the physically-based and semi-distributed model that has been 

effectively modeling rainfall-runoff relation at daily and sub-daily periods in catchment 

level (Arnold et al., 1998; Arnold & Fohrer, 2005).  The SWAT model is verified as a 

credible and effective tool not only for runoff simulation but also for flood prediction 

and warning, nutrient transportation, soil erosion, and land use pattern change modeling 

(Busico et al., 2020; Deng et al., 2019; Zhang et al., 2020).  

HEC-HMS is also a semi-distributed hydrological model applied for rainfall-

runoff modeling at dendritic watersheds in time and space (Feldman, 2000; Kwin et al., 

2016). It discretizes the catchment into smaller catchments called sub-basins to 

incorporate the details of each entity into the rainfall-runoff simulation results. HEC-

HMS model could successfully simulate rainfall-runoff both continuous and single event 
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floods and the result could be used for urban flood control and wide-scale catchment 

hydrological management.   

 Hydrologiska Byråns Vattenbalansavdelning (HBV) is a conceptual semi-

distributed hydrological model based on a simple continuity equation to model 

streamflow and the physical processes of components (Ciupak et al., 2019). The model 

divides the watershed into smaller sub-watersheds. HBV has been practically simulated 

in numerous hydrological modeling such as rainfall-runoff, climatic variability, and 

water level forecast (Ali et al., 2018; Kazemi et al., 2019; Pervin et al., 2021).  

AI-based models are gaining popularity in rainfall-runoff modeling because they 

are user-friendly and can provide accurate results with a short convergence time using 

few input data sets. ANN has become familiar in the past few decades for modeling a 

complicated non-linear relation such as rainfall-runoff. The model's capability to handle 

large dimensionality of data, noisy and non-linear datasets has proved by many 

researchers over the past two decades (Alizadeh et al. 2017; Chua and Wong  2010; Hsu 

et al., 1995; Jain et al., 2004; Kasiviswanathan et al. 2013; Nourani 2017; Nourani et al. 

2013; Nourani et al., 2009; Piotrowski and Napiorkowski 2013; Srinivasulu and Jain 

2006).  

Adaptive Neuro-Fuzzy Inference System (ANFIS) is a data-driven black-box 

model which was presented by (Jyh Shing Roger Jang, 1993) in a combined form of 

Artificial Neural Network and Fuzzy Inference System where its main components such 

as membership function and an if-then logic rule were introduced. ANFIS can detect 

datasets through the hybrid method of least square and backpropagation gradient descent 

error techniques. A fuzzy Inference System can accurately estimate compact time 

serious datasets (Jang et al., 1997). ANFIS is categorized into Mamdani's method 

(Mamdani & Assilian, 1975), and Tuskamato's and Sugeno's (Takagi & Sugeno, 1985) 

methods based on the linguistic logic operational interface and membership function of 

the models. Mamdani‟s method applied fuzzy membership functions techniques while 

Sugeno's method uses constant or linear function techniques. ANFIS mostly relies on 

Sugeno's method more than Mamdani‟s method because Sugeno's method is more 

compact and its computational efficiency is high. Adaptive Neuro-Fuzzy Inference 

System (ANFIS) has been extensively applied to resolve non-linear and non-stationary 
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hydrological and water resource engineerings problems such as rainfall prediction, 

rainfall-runoff modeling, and water level forecasting and streamflow forecasting (Güner 

and Yumuk 2014; Noori et al., 2013; Si et al. 2015).   

SVR is the non-linear regression model that is advanced from the Support 

Regression Machine (SVM) with the basic perception of having the capacity to map 

datasets with greater dimensionality via non-linear techniques to map the relations 

between inputs and outputs. The objective function of SVR is the operational risk that is 

used to diminish the inaccuracy between observed and predicted variables (Wen et al., 

2015). As compared to the other two AI models, the SVR model is superior particularly, 

it can significantly reduce over-fitting, provide a global optimum solution, and can 

parallel distribution processing (Kalteh, 2013). The limitation of SVR is complex 

computational processes since it uses quadratic equations for computing the regression 

(Wang & Hu, 2005).  

Up to date, there is no single universal modeling approach that could provide the 

most accurate runoff simulation in every circumstance (Yaseen et al., 2016). This could 

be because of the fact that a given natural process develops exclusively over time 

whereas the modeling methodologies based on finite datasets time-series are variable in 

their structure and governed by the parametric forms that vary from one model to the 

other model. Overall, the mentioned physically-based and AI models could provide 

reliable rainfall-runoff outputs, nevertheless relying on a single model for rainfall-

runoff, the results may not always be trustworthy and accurate because the model cannot 

handle various uncertainties. It is suggested to use multiple models simultaneously as 

alternative models that can provide an optimal result. An optimum simulation result can 

be achieved by combining (ensemble) the outputs of different models together  as input 

to the ensemble model (Shamseldin et al., 1997). The assumption behind the ensemble 

technique is that the important feature from individual models' output would be modeled 

together which may reduce uncertainties and give a more reliable output. Ensemble 

modeling as post-processing techniques can increase the accuracy of prediction, 

reliability of output, and lower the error of variance (Kiran and Ravi 2008; Sharghi et 

al., 2018; Yamashkin et al. 2018; Zhang 2003) compared to individual models output. 

Ensemble modeling could ascertain and encapsulate exceptional features of each model 
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and data thus it increases the accuracy of the modeling. Various ensemble models have 

been applied such as neural network, simple linear averaging and weighted linear 

averaging methods are the most familiar ensemble techniques. 

Rainfall is the indispensable element of the earth's hydrologic cycle and it could 

play a substantial role in the redistribution and replenishment of water resources and it 

could affect the growth of agronomy, ecosystem, and economy (Li et al., 2018). For any 

hydrological modeling, the result would be accurate, if the rainfall quality is good 

enough and evenly distributed in space and time.  

Conventional rain-gauges, radars, and satellite-based rainfall measurement 

practices are the usual methods of obtaining rainfall for rainfall-runoff simulation. 

Nevertheless, ground stations for rainfall measurement are often unevenly and non-

uniformly distributed in developing countries and this condition is unlikely to advance 

shortly (Worqlul et al., 2017). In the past few decades, satellite rainfall datasets are 

identified as cheap, and consistent data sources, that are available in various temporal 

and spatial resolutions and it has been attracting the interests of hydrologists, particularly 

in areas where the conventional gauging stations are unavailable or sparsely distributed 

(Tapiador et al., 2012).  

Several space crafts have been launched aimed to estimate precipitation, for 

instance, the Climate Prediction Center (CPC) morphing technique (CMORPH), 

Tropical Rainfall Measuring Mission (TRMM), and Global Precipitation Measurement 

(GPM) Core Observatory. The CMORPH was set in motion in 1998 to record 

precipitation products as near-real-time datasets (Joyce et al., 2004) and it retrieves 

better temporal and spatial resolution precipitation records from more accurate passive 

microwave sensors.  The TRMM provides rainfall data in real-time (3B42RT) and post-

research real-time (3B42). The TRMM combines the relative merits of rainfall 

information from multi-satellite sources and provides more consistent and accurate 

precipitation over the specified grids (Prakash et al., 2018). TRMM is ideal for 

precipitation measurement with suitable spatial and temporal resolution because it 

consists of appropriate sets of measurement devices and is situated at low orbits with a 

suitable angle of inclination.  
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Although the satellite-based rainfall datasets are suitable inputs for rainfall-runoff 

simulation of non-gauged watersheds, every satellite data has its benefits, the rainfall 

datasets' consistencies in space and time are extremely affected by elevation and 

atmospheric influences (Tang & Hossain, 2012). Hence, the combination of precipitation 

datasets from several satellites sources as an input ensemble might improve rainfall-

runoff modeling through the calibration stage; the model could apprehend better weight 

for more realistic satellite rainfall datasets.  

Uncertainties in rainfall-runoff modeling that might arise from the input data were 

practically managed through calibration and assimilation of the input data (Kumar et al., 

2015). In catchments where rain gauging stations could not adequately represent the 

area, fusion of gauge and satellite rainfall data from multiple sources proved to be highly 

effective in rainfall-runoff modeling. The distortion in satellite rainfall estimates could 

be corrected by gauging rainfall during the fusion. All models have not been able to 

perform equally well in rainfall-runoff modeling, and they have their merits in one 

aspect and their shortcomings in the other. Hence, ensemble techniques could update the 

modeling by combining the advantages of each model in the calibration phase and 

enhance the overall efficiency of rainfall-runoff modeling. 

Statement of the Problem  

Information about rainfall-runoff is very crucial for any water resource and 

hydrological problems and accurate result of rainfall-runoff, good quality rainfall data in 

terms of spatial and temporal resolution is important. Natural and man-made water-

related environmental hazards especially drought and flooding are becoming more 

frequent. Rapid population increment could also increases more demands for agricultural 

land expansion and related deforestation leads to soil erosion and sedimentation 

problems. As a result of these environmental problems, water quality and quantity 

became worse, food insecurity and health-related issues and regional climate 

variabilities are aggravated.  

For the intervention of mitigation and adaptation actions, well planned 

hydrological modeling has paramount significance as a decision supporting tool. 
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Temporally and spatially well-defined hydro-meteorological time series data especially 

precipitation is required for rainfall-runoff modeling. 

In the current study area, rainfall observation gauges are inadequate, uneven, and 

short in space and time. Furthermore, the area is topographically flexible from hills to 

plains; in this case, the rainfall datasets could be subjected to orographic influences and 

cause bias and improper areal representations (Gebre, 2015). The rain gauge distribution 

in the basin is sparse and not uniform, hence the quality and quantity of climatic data 

from the gauges could not be good enough to obtain accurate rainfall-runoff modeling 

results. 

Estimation of precipitation from satellites is a good option in areas where the 

mentioned problems are common. Satellite estimated precipitation using the appropriate 

algorithm can be provided as input to effectively model rainfall-runoff. Ensemble 

modeling, fusion of using gauge and satellite estimated rainfall as an input can 

accurately model rainfall-runoff relationships and the current study approach is a poineer 

for the study area.   

Objectives of the Study  

The objectives of this study are:  

 Rainfall-runoff modeling by SWAT, HEC-HMS, HBV, FFNN, ANFIS, and SVR 

separately using the gauge and satellite rainfall datasets along with the other spatial and 

time-series datasets.  

 Rainfall-runoff modeling by SWAT, HEC-HMS, HBV, FFNN, ANFIS, and SVR using 

the fusion of gauge and satellite rainfall datasets  

 Ensemble rainfall-runoff modeling using the outputs of AI-based models (FFNN, 

ANFIS, and SVR) as inputs to further enhance the modeling performance  

 Ensemble rainfall-runoff modeling using the outputs of physically-based models 

(SWAT, HEC-HMS, HBV) as inputs to further enhance the modeling performance  

 Overall ensemble modeling using outputs of all proposed models from rainfall fusion 

stage as inputs to improve the rainfall-runoff simualtion accurecy  
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Significance of the Study 

 Accurate modeling of rainfall-runoff could be a good tool for water allocation, 

water management, and policy decisions. The exact amount of runoff generated at a 

given time could be used to plan and operate hydraulic structures such as dams, 

reservoirs, bridges, irrigation projects, and flood control facilities.  

 Therefore, real-time runoff modeling for the Gilgel Abay watershed would 

serve as an input for the planning, operation, and management of these important water 

infrastructures. Management and response to environmental disasters triggered by 

human and natural causes such as floods and droughts could also require accurate 

determination of runoff models. Flood and disaster response could require accurate 

analysis of the magnitude of peak events and lowest flows so that data can be used to 

intervene and protect against such disasters. 

Moreover, the Nile Basin is connected to 10 riparian countries, and more than 160 

million rely on it for existence (Uhlenbrook et al., 2010) and more than 60% of the river 

originates from the Ethiopian highlands, particularly the upper Gilgel Abay catchment. 

The real scientific facts supported by such studies will increase data sharing among 

riparian countries, transparency, and trust, which could lead to better water resource 

allocation, commonwealth, and regional stability.  

The results of this study could therefore provide valuable data for water 

management, current and future planning and operation of hydraulic structures, and 

flood and drought protection. It could also provide high-quality flow data for Nile Basin 

cooperation, integration, and shared prosperity. 

Scope and limitations of the study 

 This study was bounded in single and ensemble rainfall-runoff modeling by 

three AI-based (ANFIS, FFNN, and SVR) and three physically-based (SWAT, HEC-

HMS, and HBV) models using three satellite and five ground-based rainfall 

measurement data for Gilgel Abay watershed, Ethiopia. The distribution of ground-

based rainfall observation stations is not uniform but sparse. Even for existing stations, 

data records for some days were missing and incomplete. In addition, most of the 
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weather observation stations in the study area are not at a synoptic scale, making it 

difficult to obtain complete measured climate data. Moreover, the global covid-19 

pandemic and associated travel restrictions, financial resources, and time were the 

limiting factors faced during this study. 
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CHAPTER II 

          Literature Review 

Rainfall-runoff modeling determines the relationship between rainfall coming to 

the ground and the portion of that rainfall converted to runoff. Rainfall-runoff modeling 

is the standard process routinely applied for hydrological analysis in engineering, 

science, and environmental management. The rainfall-runoff process extends to river 

flow time series concerning space and time, to examine management methods and 

watershed response to land use land cover and climate change (Thorsten et al., 2003). 

Rainfall-runoff modeling is valuable for the planning, operation, and use of various 

water resources management activities such as flood control, drought management, 

irrigation, hydropower generation, water supply, and the design of various hydraulic 

structures such as dams, reservoirs, and bridges (Ghumman et al. 2011; Srinivasulu and 

Jain 2006).  

Rainfall and runoff are spatially and temporally variable and their relationship is 

likely to be non-linear, making the conversion of rainfall into a runoff a very complex 

task. The rainfall-runoff process usually includes inflow parameters to the system and 

outflow parameters from the system and assumes time-variant storage changes (see Fig. 

1). Accurate modeling of the rainfall-runoff relationship is highly influenced by the 

nature of rainfall (intensity and duration), watershed characteristics (slope, storage 

characteristics, topography, and shape), spatial and temporal variability of parameters, 

watershed morphology, incomplete and noisy data, and climatic variabilities such as 

temperature and humidity (Srinivasulu & Jain, 2006; Amin Talei, Hock, et al., 2010).  

The accurate rainfall-runoff modeling is the one that can transfer all the useful 

information of the inputs into the final output. In addition to the other factors, rainfall-

runoff modeling can be influenced by the spatial and temporal distribution of rainfall 

characteristics such as intensity, duration, quantity, and antecedent soil moisture. The 

geomorphologic setting of the watershed such as land use, soil slope, soil composition, 

vegetation patterns, and size of the watershed can influence the relationship between 

rainfall and runoff generation (Srinivasulu & Jain, 2006).  
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The best rainfall-runoff model is also the one that provides runoff more similar to 

measured values, is less complex, and utilizes fewer inputs (Devia et al., 2015). 

Hydrologic models determine rainfall-runoff relationships based on the effects of several 

hydrological cycle components such as precipitation, evapotranspiration, percolation, 

infiltration, and interception. Those hydrologic cycle components are used as inputs and 

runoff would be generated as output. 

Figure 1  

Rainfall-Runoff Processes  

 

Various methods have been presented and applied for rainfall-runoff modeling, 

which is mainly generalized into three groups: metric, parametric and mechanistic model 

structures.  

The metric models are mainly data-driven empirical and black-box models and utilize 

observed time series to infer model structure and related parameters. The metric models 

solely rely on available data to acquire information but not do not consider the 
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catchment characteristics and flow pattern, therefore they are named black-box models. 

The metric models are lumped on space that they manage a whole watershed as a single 

unit. In metric models, the rainfall-runoff relations are principally dependent on 

observed data without representing processes involved in rainfall-runoff modeling 

(Jaiswal et al., 2020). The main drawback of this model is the lack of capacity to retrieve 

spatial variability of flow and rainfall on rainfall-runoff modeling in the ungauged 

catchment.  

Parametric models are often known as conceptual models and their functional 

structure depends on storage equations (Thorsten et al., 2003). These models assume that 

the storages gain flow from rainfall, snowmelt, infiltration, and percolation, whereas it 

lost water by evaporation, runoff, and drainage. The model structure is determined by 

researchers' experience and understanding of hydrological networks and relies on the 

quality of input time series mainly streamflow data. The parametric modeling aggregates 

several processes in space and time into a single component and most of this type of 

model treats a catchment as a homogenous unit like metric units.  

The mechanistic models are often called physically-based or white-box models 

and their functional structures are based on the assumption of conservation of energy, 

mass, and momentum (Beven, 2002). The mechanistic models could produce accurate 

results however, it needs large spatial and temporal input data. Mechanistic models 

spatially discretize the catchment into smaller sub-basins such as hydrological response 

units, grids, and hillslopes.       

The physically-based models can study the spatial and temporal variations of 

hydrologic parameters such as soil, land use, and slope in a particular watershed that 

could be characterized as semi-distributed or fully nature. The physically-based models 

display the internal processes that will provide better information to understand the 

watershed system.  

Physically-based fully/semi-distributed models are used to approximate internal 

subprocesses and physical mechanisms of the hydrologic cycle. Physically-based models 

can incorporate simple linear laws and assume time-varying, non-linear and 

deterministic parameters. Some examples of physically-based models include the Soil 
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and Water Assessment Tool (SWAT), Hydrologic Engineering Center‟s Hydraulic 

Modeling System (HEC-HMS), the Storm Water Management Model (SWMM), flood 

hydrograph package of Hydrologic Engineering Center of the US Army Corps of 

Engineers' Flood Hydrograph Package (HEC-1), and the Sacramento Soil Moisture 

Accounting Model (SAC-SMA). Hydrologiska Byråns Vattenbalansavdelning (HBV) is 

a conceptual semi-distributed hydrological model based on a simple continuity equation 

to model streamflow and the physical processes of components. Black-box models use 

various approaches to determine the relationship between rainfall and runoff without 

requiring complex physical processes. Examples of black-box models include ARMAX, 

ANN, SVR, and ANFIS which are effective in capturing non-linear and non-stationary 

characteristics of hydrological processes. 

Accurate modeling of rainfall-runoff could provide important information for 

drought forecasting, flood prediction, water resources management, and planning 

(Alizadeh et al., 2017). Inaccurate runoff estimation can lead to misapplication of 

policies and loss of resources and lives. Precipitation is among the most important 

parameters in estimating runoff and river flow processes, and a good understanding of 

the quantity and characteristics of such parameters is very important for watershed 

modeling. 

The accuracy of output for the rainfall-runoff models is affected by several factors 

such as input data resolution, basin size, topographic characteristics, methods of model 

calibration, and type of model. Therefore, selecting an appropriate model which could 

provide the best result should be carefully selected based on mentioned criteria. 

According to Wittwer, (2013), lumped hydrological models are more suitable for a 

small-sized watershed with flat or plain topography and input data with daily resolution.  

Semi-distributed models are more efficient for medium size watershed with moderate to 

hilly topographic features and it needs hourly or daily input data for calibration. The 

fully-distributed models are more suitable for large catchments, which are characterized 

by mountainous topography and with hourly or sub-hourly input data sets. Selecting an 

appropriate model extremely depends on the availability and resolution of input data 

sets. Some models are freely available for use but some are not open access and need 

purchasing, therefore, users must be careful during model selection.  
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Based on randomness, the hydrologic models can be categorized into two; that are 

stochastic and deterministic types. The results generated by stochastic models are 

usually characterized by partial randomness. On the other hand, deterministic models do 

not show randomness. For the given inputs, the deterministic models reproduce the same 

outputs at the given time and space. Therefore, it is concluded that stochastic hydrologic 

models are more suitable for prediction whereas deterministic models are more suitable 

for forecasting (Te Chow, 1964). 

Physically-Based Rainfall-Runoff Models 

The SWAT  

The SWAT is a semi-distributed physically-based rainfall-runoff model developed 

to simulate applied to the model at daily time steps at the basin level (Arnold et al., 

1998; Arnold & Fohrer, 2005). The model was released after a long time proven 

experimental trial by a combination of the United States Department of Agriculture 

Research Service, United States Department of Agriculture and Natural Resource 

Conservation Service, and Texas A & M University. The model was invented to 

simulate the effects of land use land cover changes on water resources, sedimentation, 

and the release of hazardous nutrients from fertilizers and pesticides in wide-scale 

catchments with varying land use, soil types, and agricultural practices over time 

(Arnold & Allen, 1996). It has increased universal acknowledgment as a novel 

watershed modeling software and is now used in nearly 100 countries. It has been 

broadly applied to study water resource management and nonpoint source contamination 

in the environment and hydro-ecological settings (Gassman et al., 2007). It also helps to 

understand complex environments and accessibility of water resources, water quality, 

climate variability, and crop farming over the earth (Dile et al., 2016).   

SWAT is a physically-based model that uses climate, soil, terrain, vegetation, and 

land-use data to model the hydrologic characteristics of watersheds in the context of 

water management, temperature, sediment transport, and chemical exchange (Garret et 

al., 2018). For model application, the basin is subdivided into smaller sub-watersheds 

called hydrologic response units (HRUs) based on soil texture, land management 

practices, and draught, which increases the ability to model in spatial detail. Input 
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parameters to the model include hydrologic, climatic, soil erosion, nutrient, soil 

temperature, crop development, and streamflow data. The model predicts hydrologic 

conditions for each HRU by calculating the water balance, which includes daily rainfall, 

runoff, evapotranspiration, infiltration, and river discharge.  

SWAT undertakes tasks that include dividing a watershed into sub-catchments by 

combining land use, soils, and digital elevation modeling (DEM) and then further 

dividing them into lumped units called Hydrologic Response Units (HRUs). The general 

hydrologic investigation is performed at the HRU level, including ET, interception loss 

of rainfall, horizontal sub-surface within the soil matrix, and backflow from shallow 

groundwater table. The modeling procedure is achieved in the upper part of the soil, the 

intermediate zone, the shallow and deep groundwater table, and the exposed channels. 

The SWAT model is proven as a powerful and efficient tool not only for streamflow 

simulation but also for flood prediction, nutrient transporting, soil erosion, and land use 

land cover change modeling (Busico et al., 2020; Deng et al., 2019; Reza Eini et al., 

2020; H. Zhang et al., 2020). 

 Setegn et al., (2008) applied SWAT for hydrologic modeling for the prediction 

of streamflow using SUFI-2, Parasol, and GLUE sensitivity analysis tools in the Tana 

basin of Ethiopia and obtained good agreement between observed and simulated flow 

using SUFI-2 and GLUE algorithms. The hydrological response of the upper Blue Nile 

was carried out using the SWAT model and indicated that its performance was generally 

good but for extremely wet and dry seasons it was not satisfactory (Bizuneh et al., 

2021). The SWAT rainfall-runoff model was calibrated and validated for Luvuvhu river 

in South Africa and concluded that the model gave acceptable at the calibration stage but 

not at the verification stage (Thavhana et al., 2018). Busico et al., (2020) evaluated the 

performance of SWAT for runoff prediction considering various soil inputs in Italy and 

obtained a good agreement between observed and predicted runoff with changing 

climate. The hydrological responses to land uses were simulated by SWAT in Australia 

and obtained urban land use reproduced high runoff than forest and rangeland use types 

and the model output was compatible with general fact.  
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HEC-HMS  

 HEC-HMS is a computer program that contains several methods for modeling 

dendritic watersheds and channels and characterizing hydraulic structures to predict 

streamflow, water level, and flooding. HEC-HMS can generally simulate five hydrologic 

parameters such as precipitation, evapotranspiration, surface runoff, groundwater 

discharge, and channel discharge, using a separate method for each parameter. In a given 

watershed, HEC-HMS can evaluate the temporal and spatial distribution of precipitation 

using a variety of approaches, including a user-specified hyetograph, gridded 

precipitation, inverse-distance gauge weighting, and soil conservation service (SCS) 

hypothetical approach. The surface runoff routine from HEC-HMS describes the fraction 

of precipitation infiltrated and runs off that can be calculated using the initial constant, 

the SCS soil curve number (CN), the exponential method, and Green's and Ampt's 

methods. The base flow routine simulates the slow subsurface flow from the hydrologic 

cycle into the watershed using a linear reservoir, exponential reservoir, constant 

monthly, and nonlinear Boussinesq methods. The routing component simulates the 1-

dimensional discharge of an open channel and predicts downstream discharge, velocity, 

and stage hydrographs using kinematic wave, lag-time, and Muskingum approaches. The 

HEC-HMS graphical user interface includes the watershed model, meteorological 

model, control specification, simulation, and model calibration runs, as well as tools to 

verify results.  

 The HEC-HMS model is gaining popularity because it can simulate both long- 

and short-term runoff events and is user-friendly. The model is used in a variety of 

hydrologic problems, including flood forecasting and warning, rainfall-runoff 

simulation, watershed management, and project planning regardless of watershed size. 

The HEC-HMS model uses rainfall, temperature, discharge, land use, and soil data as 

inputs to generate runoff at a preferred time scale. The model has been successfully 

applied for rainfall-runoff and flood simulation in the different catchments and parts of 

the world and proved itself as powerful modeling tool (Abushandi & Merkel, 2013; 

Halwatura & Najim, 2013; Mandal et al., 2016; Young et al., 2017).  Zelelew & 

Melesse, (2018) applied HEC-HMS estimation of runoff at watershed scale in the upper 

Blue Nile, Ethiopia using constant and initial loss method with SCS unit hydrograph 
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transform method gave good agreement between observed and simulated runoff. HEC-

HMS for flow simulation at Tana basin, Ethiopia, using SCS-CN for loss, SCS-UH for 

runoff, and Muskingum method for routing estimations (Bitew et al., 2019). In this 

study, initial performance was low, but after calibration and sensitivity analysis, the 

performance was significantly improved. Young et al., (2017) applied HEC-HMS in 

combination with machine learning methods for accurate rainfall-runoff modeling in 

Chishan creek basin of Taiwan. The obtained result of the study indicated that the model 

could well simulate peak flow at the individual level and further improved at the hybrid 

level as well. HEC-HMS model was applied for rainfall-runoff simulation in the Sri 

Lankan watershed using SCS, Synder, and Clark unit hydrograph loss methods 

(Halwatura & Najim, 2013). The result indicated that the Synder unit hydrograph 

performed better than the Clark unit hydrograph in flow simulation, but SCS could not 

well capture the flow at the basin. Moreover, Abushandi & Merkel, (2013) compared the 

performance of HEC-HMS with the IHECRAS model for rainfall-runoff simulation at 

Wadi Dhuliel arid catchment. The obtained result of the study noted that the runoff 

simulation capacity of IHECRAS was lower than HEC-HMS for the particular basin. 

HBV  

The HBV is a conceptual semi-distributed model originally developed by the 

Swedish Meteorological and Hydrological Institute (Lindström et al., 1997) for 

continuous runoff simulations. The input data requirements of the HBV are very low, 

usually requiring daily precipitation and temperature. The model is simple to use but 

gives comparatively good results. The HBV model has flexible structures that can be 

used to subdivide the watershed based on different elevation bands, land use, and 

vegetation zones. The model has been used extensively used to fill the gaps in observed 

data, simulation of runoff in ungauged catchments, compute design floods, and conduct 

water quality studies. The HBV rainfall-runoff modeling procedures consist of several 

hydrologic routines representing snow, soil moisture, response, and routing. In a snow 

routine, the threshold temperature (TT) is used to define the temperature range where 

snow begins to melt. The soil routine is the main routine that controls runoff produced 

from the rainfall or snowmelt processes. In the response routine, transformation 



35 
 

 
 

functions convert the excess flow from the soil moisture box to runoff. The hydrograph 

of runoff at the outlet point is obtained in the routing routine by transforming the runoff 

from the response routine. HBV has been effectively applied for several hydrological 

modeling namely, streamflow simulation, climate change analysis, and water level 

prediction, and has shown the best modeling capability (Ali et al., 2018; Kazemi et al., 

2019; Pervin et al., 2021; Uhlenbrook et al., 2010). 

The hydrological response of the upper Blue Nile was carried out using the HBV 

model and indicated that its performance was generally good but for extremely wet and 

dry seasons it was not satisfactory (Bizuneh et al., 2021). The suitability of satellite 

rainfall datasets and the capacity of HBV and Parameter Efficient Distributed (PED) 

models for rainfall-runoff modeling were evaluated in the data-scarce upper Blue Nile 

basin, Ethiopia (Worqlul et al., 2017). The obtained result indicated that HBV could well 

reproduced the observed runoff better than PED for both gauge and satellite rainfall 

products. The watershed characteristics of the upper Blue Nile were analyzed by HBV 

using lumped vegetation zone and climatic data and it well well-reproduced bi-weekly 

and monthly flow, however, it poorly reproduced daily flow (Uhlenbrook et al., 2010). 

HBV model was applied to study temporal variability of streamflow of Hunza river in 

Pakistan and its performance was good at both calibration and validation except for 

slight underestimation of low flow during the dry season (Ali et al., 2018). Jia & Sun, 

(2012) studied the runoff prediction and modeling process in the Liao river of China 

using the HBV model and find out the model could successfully simulate streamflow in 

the basin.  

AI-based rainfall-runoff models 

ANFIS  

ANFIS is the combination of neural network and fuzzy logic that can deliver 

adequate solutions while providing qualitative and heuristic information about the 

obtained solution (Jang et al., 1997). The fuzzy if-then rule could provide a better 

understanding of non-linear rainfall-runoff relations. Fuzzy Logic (FL) states the 

methods of computation and solving the problems based on the reasoning ability of 

humans (Chandwani et al., 2015). Fuzzy logic defines the problems with no fixed 
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boundary or no crisp numbers and it uses a set of logical values from sets of numbers 

ranging from 0 (totally false) to 1 (totally true) that are called memberships and the 

functions on which the numbers represented are known as membership functions. 

Several membership functions are available for ANFIS modeling and some of them are 

trapezoidal, triangular, Gaussian, and Sigmodal types. Fuzzy logic uses the AND/OR 

logical operational functions and IF-THEN fuzzy rules each has its particular definition 

based on membership concepts.   

ANFIS has been extensively applied to resolve non-linear and non-stationary 

hydrological and water resource engineerings problems such as rainfall prediction, 

rainfall-runoff modeling, water level forecasting, and streamflow forecasting (Güner and 

Yumuk 2014; Noori, Safavi et al., 2013; Si et al. 2015).   

 Talei et al., (2013) conducted rainfall-runoff modeling by the neuro-fuzzy system 

and compared the result with HBV, Storm Water Management Model (SWMM), and 

Kinematic Wave Model (KWM) and obtained fairly comparable results with the best 

physical model and better than the least performed physical model.  ANFIS was applied 

to model multi-step ahead rainfall-runoff modeling and to capture non-linear 

characteristics of hydrologic systems in the three gorge reservoir (Zhou et al., 2019). 

The result of this study demonstrated that the ANFIS could successfully capture non-

linear relationships of hydrological parameters and effectively integrate climatic 

parameters to reproduce runoff. Talei, et al., (2010) investigated the sequential rainfall 

time series and flow inputs for the rainfall-runoff modeling process using ANFIS and the 

result indicated that modeling by sequential rainfall was less performed than modeling 

using non-sequential rainfall inputs.  

ANFIS was applied for rainfall-runoff modeling using Principal Component 

Analysis (PCA) to average out the rainfall and study its physiographic characteristics in 

the Tuscany, basin, Italy (Bartoletti et al., 2018). This study compared PCA with GIS for 

input preparation used to build the ANFIS rainfall-runoff model and the result 

demonstrated that PCA based model was more accurate in rainfall-runoff modeling. 

ANFIS was applied to forecast rainfall-runoff during typhoon events using a self-

organized mapping method to cluster radar cells of rainfall at Shihmen Reservoir in 
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northern Taiwan  (Chang & Tsai, 2016). It was noted that the proposed model can 

perfectly forecast runoff up to 4 hours ahead closely similar to observed peak flow.  

ANN  

ANN is a mathematical „black-box‟ model containing numerous non-linear 

artificial neurons operated side by side that could be created as single or multiple layers. 

It process data based on the functional operation of the human mind and it has input, 

hidden and output layers where each neuron is connected by nodes. The information 

from input nodes is first transferred to hidden neurons and then summed up to the output 

neurons by activation functions. ANN is a nonlinear regression model that has been used 

for the effective modeling of non-linear relationships of water resource parameters in 

various hydrological settings (Nourani et al., 2009). Rajurkar et al., (2004) coupled ANN 

with the simple linear model to simulate runoff in India and the result demonstrated that 

ANN better reproduced runoff than the simple linear models. Coupling further improved 

the rainfall-runoff modeling. In the rainfall-runoff modeling study by (Hosseini & 

Mahjouri, 2016), ANN was integrated with SVR to overcome the drawbacks of ANN. 

The result indicated that every single model could reproduce acceptable results but 

integrating both models further improved the result as well as the robustness and 

reliability of the coupled model.  

The ANN was applied for the prediction of the event-based rainfall-runoff process 

using a kinematic wave equation for the determination of model structure (Chua et al., 

2011). Both total and effective rainfall were used as input and the method accurately 

predict the peak flow. Kasiviswanathan et al., (2013) constructed a two-stage ANN 

model for rainfall-runoff, first, only an ANN-based model was generated, second, the 

output was used as inputs to train the model using the Genetic Algorithm (GA) as an 

ensemble modeling. The ensemble model improved the rainfall-runoff result when it 

was compared with the result of the single ANN model. ANN was combined with 

wavelet transform to predict runoff two months ahead  and demonstrated that wavelet-

ANN could effectively predict runoff two months ahead using multiple climatic input 

data (Alizadeh et al., 2017). 
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SVR  

SVR is a non-linear regression developed based on the concept of a Support 

Vector Machine (SVM) that could map the relationship between inputs and outputs with 

higher dimensionality. The SVR model considers operational risk as a target function to 

minimize risks in place of reducing the residue between observed and simulated values 

(Wen et al., 2015). Over the past 10 years, SVR has gained acceptance over other AI 

models due to its self-learning properties, parallel distributed processing, avoidance of 

overfitting problems, and provision of globally optimal results (Kalteh, 2013). The main 

disadvantage of modeling with SVR is the complex computational process for 

constrained optimization problems. These drawbacks can be offset by the application of 

least square support vector regression (LSSVR) algorithms, which use linear methods 

instead of quadratic equations (Wang & Hu, 2005).  

The SVR model was applied along with ANN for rainfall-runoff modeling and 

revealed its superiority over ANN (Ateeq-ur-Rauf et al., 2018). Hosseini & Mahjouri, 

(2016) coupled SVR with ANN for rainfall-runoff modeling and the result indicated that 

the disadvantages of ANN were well managed by SVR strength and each model could 

reproduce good outputs however, coupling both models further enhanced the result as 

well as the robustness and reliability of the coupled model. SVR was applied for real-

time flood prediction in Lan-Yang River, Taiwan  and the result demonstrated that SVR 

could predict 1 to 6 hours ahead of floods in the catchment (Yu et al., 2006).  

Satellite Estimated Precipitation Products  

 Remotely sensed rainfall products have been applied for various hydrological 

and agricultural research over the past three decades because it is verified that cheap, 

uninterrupted, and large spatial coverage for rain gauge void areas (Collins et al., 2013; 

Prakash et al., 2018; Tapiador et al., 2012). Satellite-based precipitation datasets are an 

alternative source of rainfall for ungagged and sparsely gagged watersheds.  

 TRMM was jointly launched in 1997 by the Japan Aerospace Exploration 

Agency (JAXA) and the National Aeronautics and Space Administration (NASA) to 

estimate precipitation in humid tropics (Le et al., 2020). A TRMM precipitation sensor 

comprises sets of devices such as precipitation radars, microwave imagers, and visible 

and infrared ray scanners. TRMM estimates precipitation in three steps: i) the obtained 
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raw data obtained are calibrated and geo-referenced, ii) the geographic features of the 

site are updated with the resolution and location of the raw satellite data, iii) the 

temporal average data are mapped uniformly in space and time.  

The TRMM spacecraft used for the estimation of precipitation is a unique instrument to 

observe the vertical pattern of precipitation distribution operated at 13.8 GHz frequency 

(more details are given in Table 1). It can effectively observe the quantity of 

precipitation over land and the ocean. Initially, TRMM was positioned at an altitude of 

350 km but it changed to 402.5km after August 2001 for better efficiency (Fig 2). 

Figure 2  

TRMM Precipitation Observation Arrangements  

 

TRMM contains the precipitation radar (PR), infrared and visible scanners, cloud 

and earth radiant energy system, and imaging and lighting systems (see Fig 3).  
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Figure 3  

Sets of Instruments in TRMM Spacecraft   

 

Table 1  

Main Parameters of TRMM Spacecraft  

Parameters  Specification 

Frequency  13.8 GHz 

Sensitivity  < 0.7 mm/hr 

Swath width  220 km (End to End) 

Observable range Ground to 15 km height 

Scanning angle  17
o
 

Horizontal Resolution  0.25 km 
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Vertical Resolution 4.3 km 

 

The PR is used to measure three-dimensional precipitation and measure rainfall 

quantity on earth and ocean. The infrared and visible scanners are used to sense radiation 

in 5 spectral bands available as the visible and infrared spectrum. The image sensors and 

lighting system is an optical telescope that is used to acquire in between cloud and cloud 

to ground lighting propagations. The image sensors and lighting system could also use to 

correlate the global lighting with precipitation and other storm characteristics. TRMM 

includes 3B42RT which is a near-real-time product and 3B42 which is post research 

precipitation product.      

 CMORPH is another satellite-based precipitation measurement method 

established by the United States National Oceanic and Atmospheric Administration 

(NOAA) and operated since 1998 to estimate near-real-time precipitation, which is 

regularly available after 18 hours of observation time (Gebremichael et al., 2014; Joyce 

et al., 2004) and globally, CMORPH covers 60
o
 N to 60

o
 S (Fig. 4).  
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Figure 4  

Global Coverage of CMORPH Precipitation Estimation  

 

 

 Global Precipitation Measurement (GPM) Core Observatory has been operated 

since 2014 to provide real-time rainfall and snowfall. GPM includes thirteen passive 

radiometric microwaves such as; a microwave imager, combined with Ka (26 to 40 

GHz) or Ku-band (12 to 18 GHz) dual-frequency precipitation radar (DPR) that helps as 

a benchmark to combine and modify estimated precipitation by patterning operational 

microwave sensors and research data (Prakash et al., 2018).   

 The Integrated Multi-SatellitE Retrievals for GPM (IMERG) precipitation 

measures was first introduced at the beginning of 2015 and precipitation is available 

0.1
o
x0.1

o 
spatial resolution and half-hourly temporal resolution. This method includes 

features from CMORPH, TRMM, and Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks (PERSIANN) (Hsu et al., 1995). The 
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IMERG precipitation estimation satellite is usually available in late, early, and final 

runs, based on the latency of versions and availability. The 03D is the post-research 

version of the IMERG product that was available since the beginning of 2015 (Yong et 

al., 2015) and the precipitation measurement inputs of IMERG are obtained from 

different passive and infrared microwave satellites.  

 Climate Hazards Group Infrared Precipitation with Stations data (CHIRPS) 

provides precipitation with monthly temporal resolution and 0.05
o
x0.05

o
 spatial 

resolution which available with global coverage of 50
o
 north to 50

o
 south since 1981 

(Gao et al., 2017). The CHIRPS was introduced by satellite imagery incorporation to 

measure in-situ precipitation and highly-resolution climatologic parameters. It utilizes 

cold cloud period Global Precipitation Index analysis of infrared temperature, modified 

with TRMM precipitation products. CHIRPS have been widely applied to monitor 

drought and climate change on the global and regional scales.   

 Precipitation Estimation from Remotely Sensed Information using Artificial 

Neural Networks-Climate Data Record (PERSIANN-CDR) was another precipitation 

measurement satellite that was introduced by the University of California, Center for 

Hydrometeorology and Remote Sensing (Gao et al., 2018). The PERSIANN-CDR could 

provide daily precipitation data with a spatial resolution of 0.25
o
x0.25

o
 with global 

coverage of 60
o
 south to 60

o
 north starting from 1983 to the present. The objective of 

this satellite spacecraft was to provide consistent time series precipitation products that 

could be used for studying extreme climatic and hydrological events imposed by global 

or regional climate change such as drought and flooding. To estimate precipitation, the 

satellite uses complex algorithms based on ANN usually retrieving the information from 

the thermal brightness temperature.  

 Global Satellite Mapping of Precipitation Moving Vector with Kalman filter 

(GSMap-MVK) was developed by Japan Science and Technology Agency (JST) and it 

was aimed to map the worldwide distribution of precipitation with 0.1
o
x0.1

o
 spatial and 

hourly temporal resolution (Ma et al., 2018). GSMap utilizes Kalman filters to update 

precipitation amount subsequently as it propagates each pixel laterally with the 

atmospheric signal vector.  
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 Multi-Source Weighted Ensemble Precipitation (MSWEP) was designed and 

launched to provide trustworthy and globally available precipitation that covers 1979 to 

the present time  (Ma et al., 2018). The spatial resolution of MSWEP precipitation 

measurement is 0.25
o
x0.25

o
 and its temporal resolution is 3 hours. This satellite merges 

the optimal precipitation data to obtain high-quality precipitation datasets. Bias 

correction for over or underestimation and orographic effects were applied by assuming 

catchment mean precipitation multiple in the drainage basins which was distributed 

globally. The temporal precipitation pattern of MSWEP was specified by weighted 

average precipitation anomalies of mean gauge and several satellite precipitation 

measurement methods namely, CMORPH, GSMaP-MVK, and 3B42RT.  The most 

common satellites used for precipitation measurement are summarized and indicated in 

(Table 2).  

Table 2 

 Summary of Common Satellites Used for Precipitation Measurement  

Satellite 

precipitation 

source  

Spatial 

resolution 

Temporal 

resolution  

Precipitation 

availability 

CMORPH 0.25
o
x0.25

o
 3-Hourly 1998- present 

3B42RT 0.25
o
x0.25

o
 3-Hourly 1997-present  

3B42 0.25
o
x0.25

o
 3-Hourly 1997-present 

GSMaP-MVK 0.1
o
x0.1

o
  Hourly 2014-present 

MSWEP 0.25
o
x0.25

o
 3-Hourly 1979-present 

(PERSIANN-CDR 0.25
o
x0.25

o
 Daily  1983-present 

CHIRPS 0.05
o
x0.05

o
 Monthly  1981-present 

IMERG 0.1
o
x0.1

o
 Half-hourly 2015-present 

 

Concept of Ensemble Rainfall-Runoff Modeling  

  Although several rainfall-runoff models were available, none of them were 

confirmed as the best performing model for all the catchments and under all conditions. 

The conclusion was drawn by the World Meteorological Organization by 
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intercomparison of rainfall-runoff studies carried out using diverse models (WMO, 

1992). This study suggested that there is no superior single model has been introduced 

yet for the rainfall-runoff modeling. The performance of a particular model could not be 

completely perfect in all aspects for all types of input datasets, hence for the same 

problem, different models could produce different outcomes (Abba et al., 2020). 

Trusting a single model may cause potential danger to the accuracy of rainfall-runoff 

model results because a specific model may be unlikely to reproduce accurate results for 

every watershed in all circumstances. The reason could be, that either the model's 

structural invalidity or the conditions assumed that the model should be operated are not 

fulfilled.  

 In the practical experience of model calibration, the single objective functions 

could not be good enough to well capture specific entities of inputs and transmit them 

into the output (Liu et al., 2014). Even the fully distributed physically-based models 

might successfully depict the spatial features but may not well capture the temporal 

variations of flow. The combination of several models output via ensemble modeling 

could help to capture the benefits of each model and enhance the accuracy of the 

modeling (Sharghi et al., 2018). The principle of ensemble modeling is that each model 

could capture certain beneficial information about the rainfall-runoff modeling, thus 

providing important information which may not be similar to the other models. 

Therefore, assimilating the entire model's output could provide valuable input entities 

and a source of information about rainfall-runoff modeling. The ensemble modeling may 

also help to better understand the fundamental physical processes convoluted in every 

single model thus enabling to development of efficient single models. This could be via 

the modification of the specific model structure and the assumptions where the model 

pre-designed.  

 The ensemble modeling improves the performance of models because it 

apprehends the useful patterns of each dataset and structural strength of each model and 

converts them into the unit output pattern. The ensemble techniques are mainly 

categorized into the linear and non-linear operated by regression-based algorithms. For 

instance, simple linear average and weighted average ensemble methods (linear), neural 
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network, Adaptive Boosting (AdaBoost), and Gene expression programming (GEP) 

ensemble techniques (non-linear) are among the common ensemble methods. 

 The simple average ensemble (SAE) method directly computes the arithmetic 

average of the single model's output whereas the weighted average ensemble technique 

assigns weight for each single model output based on their measure of goodness fit 

(Nourani et al., 2019). SAE method is the simplest technique that has been applied to 

combine model outputs of several single models. The SAE method needs only a little 

effort and no need for any curve fitting for combining the individual model output 

combination (Makridakis et al., 1982). In this ensemble method, equal weights are 

allocated for all model outputs during combination. The drawback of this technique is 

errors from each model involved may linearly propagate into the output. 

The wigheted average ensemble (WAE) applies weights for each model's output 

according to their significance, thus it could effectively capture the most important 

information especially since the accuracy level of the models is highly variable. The 

WAE is often subjected to multiple co-linearity which may lead to inaccurate 

determination of the weights for each model and it is considered its drawback (Winkler, 

1983). 

The neural network-based ensemble technique is a non-linear kernel ensemble 

method that could map the non-linear relationships of each model concerning the target. 

The AdaBoost algorithm considers the sample and re-assigns the weight for the 

determination of the error which is among the best ensemble techniques (Liu et al., 

2014). It was basically developed for classification problems but accurately applied for 

regression problems as well. The ensemble techniques applied in this study are presented 

in (Fig 5) which combined the outputs of all proposed models.  

 The study conducted by Nourani, et al., (2021) studied two linear and 2 non-

linear ensemble modeling of outputs suspended sediment load from multi-linear 

regression (MLR), SVM, ANFIS, and FFNN. It is noted that the non-linear ensemble 

(ANFIS) improved the output of MLR up to 37% and it improved SVM up to 19%. 
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Figure 5  

The Structure of the Developed Ensemble Model 

 

 

 The study by (Bates & Granger, 2016) proved that a combination of several 

models outputs via ensemble modeling could enhance the performance of modeling. 

GEP ensemble technique was applied to combine the rainfall-runoff modeling outputs of 

five hydrological methods namely SWAT, HBV, identification of unit hydrograph 

components from rainfall, evaporation, and streamflow (IHECRAS), Australian Water 

Balance Model (AWBM), and SMA (Esmaeili-Gisavandani et al., 2021) and the GEP 

ensemble significantly improved the modeling accuracy at both calibration and 

validation phases. Ensemble modeling of reference evapotranspiration by both linear and 

non-linear ensemble techniques using the outputs of AI-based and empirical models 

(Nourani, et al., 2019), and the result indicated that ensemble modeling enhanced the 

accuracy up to 22% for AI-based models and up to 55% for empirical models.  
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CHAPTER III 

Methodology 

Description of the Study Area 

The Gilgel Abay catchment is positioned in the upper Blue Nile basin, the 

northern-west part of Ethiopian highlands. The catchment covers an area of 1635km
2
 

and is situated at the latitude of 10
0
56՛ to 11

0
51՛ N and longitudes of 36

0
44՛ to 37

0
23՛E 

(Fig.6). It is one of the sub-catchments of Lake Tana bain, which provides more than 

60% of the flow to the basin (Wale et al., 2009). Most of the basin is dominated by 

highland topographic classes, and its elevations range from 1866 m to 3543 m above 

mean sea level.  

The watershed is characterized by plain to gentle slopes ranging from 0% to 43%. 

The basin is under the influence of a tropical highland monsoon which shows cool and 

humid climate characteristics with an average yearly temperature of 17 - 22 degrees 

Celsius. The basin has distinct wet and dry seasons, the major rainfall occurs from early 

June to mid-September which includes 70-90% yearly rainfall in the basin, while a dry 

climate prevails from October to May, with an average annual rainfall of 1420mm.  

The watershed has a hydrometric station at the outlet of the watershed. Gilgel 

Abay is the main river flowing along the flow path of a watershed and which raises from 

the mountains areas of Gojjam. The river has four small tributaries namely, Jamma, 

Kogar, Ashar, and Kelti that fed it at different locations. Gilgel Abay river is believed as 

the initiating source of the Nile river. The river is 71m wide near its mouth and its slope 

gradient is 0.7m/km in length. The river transports 22185 tonnes/year of bedload and 7.6 

million tonnes/year of suspended sediments to the lake Tana (Lemma et al., 2019). 

Besides natural erosion, anthropogenic impacts such as deforestation, intensified land 

use and associated land degradation resulting in excess sediment transport to the river.  

The geology of the basin is predominantly characterized by quaternary basalts. 

The soil textures of clay, clay loam, and silt loam are evenly distributed in the watershed 

with 33% each. Haplic luvisols are the main soil type of the watershed and there is a 

mixed land use with 74% intensive agriculture, 15% grassland, and 11% forests and 
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woodlands. The economic activities of the area are dominated by mixed rainfed 

agriculture and animal production usually less productive and destructive agriculture has 

been practiced which leads to soil erosion and associated delta growth downstream of 

the river.  

Figure 6  

The Map of the Gilgel Abay Watershed and Satellite-Rainfall Measurement Grid Lines 

 

 

Datasets 

Several temporal and spatial datasets from multiple sources have been utilized by 

the proposed models. The daily climatic time series (rainfall, maximum and minimum 

temperature), and discharge of 12 years (2007-2018) are utilized as inputs for rainfall-

runoff simulation. The rainfall datasets are used from both gauge and satellite sources. 

The fundamental spatial inputs for delineating the watershed into sub-basins and 

hydrologic response units (HRUs) are a digital elevation model (DEM), land use and 
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land cover map (LULC), and soils map. The DEM of the Gilgel Abay watershed with a 

spatial resolution of 12.5mx12.5m was downloaded from the Alaska Satellite Facility 

Service (https://search.asf.alaska.edu/#/). The LULC map for the year 2020 was 

downloaded from ESA's Sentinel-2 imagery, which is a high-resolution with a 10mx10m 

grid and includes detailed land use classes. 

Gauging-Station Datasets  

Daily rainfall and temperatures (maximum and minimum) for Adet, Dangila, 

Gundel, Sekela, and Wetet Abay stations for the mentioned periods was obtained from 

the National Meteorological Agency of Ethiopia. Daily discharge time series of the 

mainstream at the gauging station located at the outlet was collected from the Ministry 

of Irrigation, Water, and Energy. The datasets series were tested for homogeneity using 

the double mass curve method. The test indicated that there are no significant 

discontinuities between the observed data sets, so no homogeneity problems were found.  

Satellite Rainfall Datasets 

 Precipitation data could alternatively be available from special space crafts 

launched for this purpose. The satellites emit infrared and microwave rays and collect 

information from the lower atmospheric cloud then the information is received by 

special devices and translated to meaningful data. In the current study, two TRMM 

version 7 products (3B42RT and 3B42) and CMORPH satellite precipitation products 

were used for rainfall-runoff modeling. 

 The 3B42RT precipitation dataset is available in real-time after 6 hours and 

covers the earth from 60
o
N-60

o
S latitude. The 3B42RT uses the combined precipitation 

radar and microwave imager datasets to calibrate precipitation data derived from 

radiometers and microwave sensors in low Earth orbit (Ochoa et al., 2014). The gauge-

calibrated 3B42 is the research version after real-time, available two weeks later at the 

end of each month with global coverage from 50
o
N-50

o
S latitude (Li et al., 2018). 

CMORPH uses infrared ray and passive microwaves information from geostationary and 

low-orbit radiometric satellites, respectively, at worthy resolution in space and time for 

the estimation of precipitation. 

https://search.asf.alaska.edu/#/
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 Precipitation data were estimated by the CMORPH algorithm using passive 

microwave information from near-orbit infrared information and satellite radiometers 

from geostationary satellites. CMORPH estimates precipitation from the combination of 

low-orbit passive microwave satellite scans and infrared information derived from 

geostationary satellites (Joyce et al., 2004) with high spatial and temporal resolution. 

Precipitation information obtained from the passive microwaves is transmitted to space 

via motion vectors obtained from infrared ray satellites (Dinku et al., 2007).  

 Infrared data are abundant almost everywhere and at all times in the world, but 

they measure the temperature on top of a cloud, which may not always have a good 

correlation with precipitation. Cold clouds can sometimes exist in a vast region where 

there is no rain at all. If only infrared data are used to estimate precipitation, the 

precipitation estimate may be inaccurate because it captures wide areas of cold clouds 

that may be non-precipitating. Passive microwave senses the thermal radiation of rain 

and the scattering of the rising emission from the surface into the atmosphere. However, 

deploying microwave sensors in geostationary orbit is technically difficult, making it 

difficult to collect precipitation data in space and time unless they are averaged in time 

(Joyce et al., 2004). To take advantage of each sensor, precipitation data from the 

disparate sensor could be combined. 

 CMORPH estimates precipitation using the information derived from low-

orbiting microwave satellites, and this information is mediated by spatial propagation 

features derived exclusively from geostationary infrared datasets. To transmit 

precipitation information, the vector matrices were formed by computing spatial delay 

relationships on consecutive images derived from geostationary infrared sensors and 

then used to transmit precipitation acquired from passive microwave sensors in the 

absence of spatially and temporally updated passive microwave data. The infrared 

information provides transportation services for the microwave obtained precipitation 

data when microwave data are not available at a particular location. The transmission 

vector matrices are formed by calculating spatial delay relationships on consecutive 

images from geostationary infrared satellites, which are then used to transmit the 

microwave-derived precipitation data. At a given location, the intensity and shape of 

precipitation detected with passive microwaves can be determined by time-weighted 
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interpolation between measurements obtained with passive microwaves propagating 

forward from the last available measurement and backward from the next available 

microwave measurement. This process could provide complete precipitation information 

in space and known as morphing techniques. First, the temporal sequences of 

information motion are derived from the infrared ray satellites, and then they carry out 

displacement motion to morph from one microwave estimate to the next. The CMORPH 

precipitation estimation technique obtains precipitation amount from passive microwave 

information, but infrared radiation information is also used to motivate a cloud motion 

field that consequently propagates rain forming cloud pixels. The precipitation estimated 

by CMORPH is a high quality because the microwave-scanned precipitation information 

is morphed and interpolated by linear time-weighted techniques. This method of 

measuring precipitation by satellite is more flexible because any precipitation estimated 

by any microwave-based sensor can be included. The satellite rainfall datasets applied in 

this study are available on the daily time scale and with a spatial resolution of 

0.25
o
x0.25

o
. The entire watershed is represented by 8 satellite precipitation grids (Fig. 

6). The three satellite precipitation products were selected because they have shown 

good performance in previous studies (Bitew et al., 2012; Nourani et al., 2013)  for the 

Gilgel Abay and the datasets are available at a daily temporal resolution that is an 

appropriate time scale for selected models. The statistical details of both gauge and 

satellite rainfall and streamflow data sets were given in (Table 3). 

 

Table 3  

Statistics of Gauge and Satellite Rainfall and Discharge at the Catchment  

Rainfall (mm/day) 

Stations  Maximum  Minimum  Mean  Standard 

deviation  

Adet 71.2 0 3.50 7.29 

Dangila 62 0 4.42 8.61 

Gundil 90.8 0 6.74 11.81 

Sekela 73.1 0 6.05 9.92 
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Wetet Abay 71 0 5.32 9.89 

3B42 49.32 0 3.54 6.12 

3B42RT 55.10 0 3.73 6.60 

CMORPH 71.5 0 5.82 9.40 

Discharge at 

gauging 

station (m
3
/s) 

406.846 4.71 

 

58.4 

 

61.01 

 

 

 Methodology  

 In the current study, 3 AI-based (FFNN, ANFIS, and SVR) and 3 semi-

distributed (SWAT, HEC-HMS, and HBV) models were used to model rainfall-runoff 

for the Gilgel Abay catchment. The study has been carried out in 2 stages as presented in 

(Fig. 5).  In the first stage, all the proposed models individually simulate the rainfall-

runoff process using gauge-based and satellite-based rainfall data separately and the 

fusion of them as well. In the second step, the results of each model were used as input 

to the ensemble modeling methods via Weighted Average (WAE), Simple Average 

(SAE) and Neural Network (NNE) see (Fig 7) in three ensemble scenarios. Stage one 

modeling has comprised two sub-stages.  

First, each proposed model simulated runoff for both gauge and satellite rainfall 

datasets separately. Second, the fusion of rainfall from both gauge and satellite data 

sources was used to simulate runoff by each model.  

The three ensemble scenarios applied are i) ensemble of AI-based models, ii) 

ensemble of physically-based models, and iii) ensemble of all models output from the 

input fusion phase via SAE, WAE, and NNE techniques. 
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Figure 7 

 Schematic Diagram of Planned Methodology (S1, S2, S3, S4, and S5 Represent the Five 

Gauging Stations) 
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Proposed Rainfall-Runoff Models 

In this study, semi-distributed (SWAT, HBV, and HEC-HMS) and AI-based 

(ANFIS, FFNN, and SVR) models were proposed for rainfall-runoff modeling 

processes. All the proposed models are well described in the following sections. 

The SWAT Model  

SWAT is the semi-distributed and physically-based hydrologic model that 

operates in sub-daily, daily time, and monthly steps to model runoff, sediment transport, 

and nutrient cycling in complex watersheds (Arnold et al., 1998). SWAT is process-

based and effective in computation, and capable of simulating time series data. The 

SWAT splits the basin into smaller sub-watersheds that are more divided into several 

hydrological units (HRUs) where each of them is featured by distinctive soil, land use, 

and slope characteristics (Leong & Yang, 2020). Rainfall-runoff processes in SWAT can 

be executed in two distinct steps. First, all existing hydrologic and meteorological inputs 

are used to simulate runoff in each sub-basin. The second step is the routing step, where 

the outflows from every sub-basin are connected to the major channel and the 

cumulative runoff flows to the final basin outlet (Busico et al., 2020). The SWAT 

modeling process is performed in the soil upper portion, intermediate zone, light and 

deep groundwater table, and surface channels. SWAT uses the water balance equation 

for rainfall-runoff simulation as follows; 

 



t

i

groundsurfacedayf QWETQRSWSW
1

)(

                                          (1) 

where SWf is final soil moisture availability in a day (mm), SW is the initial soil 

moisture content in a day (mm), t is time (days), Rday is daily precipitation (mm), Qsurface 

is daily surface runoff (mm), ET is the combination of daily evaporation and 

transpiration (mm), W is daily percolation (mm), Qground is daily groundwater discharge 

(mm).   

The surface runoff in SWAT could be reproduced by using Soil Conservation 

Service (SCS) run-off curve number (CN) method (Welde & Gebremariam, 2017) or 

Green and Ampt‟s infiltration procedure (Gassman et al., 2007; Sardoii et al., 2012). 
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where Qsurface is surface flow per day; Rday is rainfall per day in (mm); S is retention 

storage (mm) and CN is curve number. 

The stream base flow is computed as: 

   

qshrhrshigwqshrhrsh
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 
                                      (3) 

where Qgw, i is a base flow contribution to the major stream on the day i (mm); Qgw,i-1 

is the groundwater discharge into the major stream on the day i–1 (mm); αgw is the base 

flow recession constant; Δt is the time (1 day); wrchrg, is the quantity of recharge 

inflowing the shallow soil profile on the day i (mm); aqsh is the quantity of water 

deposited in the shallow soil profile at the start of day i (mm); and aqshthr,q is the 

threshold water level in the shallow aquifer for groundwater input to the major stream 

bed to occur (mm). 

Six major land use and cover types were identified and analyzed by SWAT for the 

Gilgel Abay catchment (see Fig. 8) and the proportion of each particular land use land 

cover type was presented in (Table 4). Agricultural land use was dominating in the study 

area since the people living in the basin rely on rainfed agriculture for the production of 

cereal crops, cash crops, and vegetables.  

The major soil types identified in the study area are Haplic Luvisols, Haplic 

Alisols, Haplic Nitisols, Utric Regosols, and Utric Vertisols (see Table 4 and Fig. 8). 

The catchment is predominantly covered by Haplic Luvisols which is the family of 

Luvisols and extremely weathered soil, characterized by high accumulation of clay at 

subsurface and lower nutrient retention, crusting on the surface, and exposed to high 

erosion hazards. 
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Figure 8  

Land Use Land Cover Details of the Study Area 

 

Table 4  

Land Use Land Cover, Soil Types and their Proportions in the Study Area  

Parameters   Name FAO code Proportion 

(%) 

Soil Haplic Luvisols Vc1-2-3a-258 57.2 

Haplic Alisols Re1-1a-232 40.25 

Haplic Nitisols Ne28-2a-163 0.68 

Utric Regosols Ne10-3b-154 0.71 

Utric Vertisols Bh11-1b-27 1.16 

Land use/land 

cover 

Waterbody Wa 0.66 

Vegetation cover VcL 5 

Grass Land GL 2.8 
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Agriculture AGRL 86.64 

Scrub/Shrub SL 1.75 

Built area UrL 3.15 

 

Figure 9  

The Soil Types of Gilgel Abay Catchment  

 

In the current study, the SCS-CN has been applied to reproduce runoff simulation. The 

land use land cover and soil grids (Figs. 8 and 9) were layered to develop a rainfall-

runoff model for the catchment.  

In setting up the SWAT model, the watershed was first delineated from the DEM 

(Fig 11), then land use, soil, and slope maps were layered together (Figs. 8, 9, and 10) 

and HRUs were created (Fig 12), which are sub-basins portion that provides details 

about soil properties, slope, and land use. HRUs is the smallest basic spatial unit which 

is a unique composition of the soil, land use land cover, and slope information for the 
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particular catchment having similar hydrological properties. The HRUs lump together 

soil, land use land cover, and slope similar characteristics into a unit feature. After 

loading soil, land use land cover, and slope maps, the HRUs layer was successfully 

defined and ready for rainfall-runoff modeling. 

Figure 10  

The Slope Classification of Gilgel Abay Catchment  

 

After creating the HRUs, SWAT input tables were written, basically loading the 

weather data for each station one by one, specifying methods to calculate 

evapotranspiration, and the SWAT database was updated. Once the weather data was 

loaded, the SWAT watershed data was updated and finally, the SWAT model was run 

for the basin and the rainfall-runoff simulation was performed for the catchment. 
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Figure 11  

Watershed Delineated by the SWAT Model for the Study Area 

 

Figure 12  

The Complete HRUs Created by SWAT for Gilgel Abay 
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The HBV Model 

HBV is a conceptual and semi-distributed hydrological model for runoff 

simulations, flood planning, and climate change predictions (Lindström et al., 1997) that 

was developed by the Swedish Meteorological and Hydrological Institute (SMHI). The 

version of the HBV applied for runoff simulation in the current study is HBV light 

which updated groundwater contribution and delay factors. HBV simulates daily runoff 

using daily rainfall, evapotranspiration, temperature, vegetation, and elevation zones. 

The HBV rainfall-runoff modeling procedures consist of various hydrological routines 

representing snow, soil moisture, response, and routing (see Fig. 13 ).  

Figure 13  

Schematic View of HBV Model (Al-Safi & Sarukkalige, 2019) 

 

The runoff components are computed by three linear reservoir equations namely, 

Q0 (direct runoff component), Q1 (intermediate runoff component), and Q2 (base runoff 

component) using recession coefficients K0, K1, and K2, respectively. The soil moisture 

subroutine is based on the parameters Beta (β) (shape coefficient for non-linear storage 
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properties of the soil zone), maximum soil storage (FC), and limit of potential 

evaporation (LP). Beta controls the influence of precipitation on the response function. 

MAXBAS (length of weighing function) is used as a transformation function to compute 

outflow from the catchment. 

The snow routine represents snowmelt processes and their contribution to 

streamflow and is not appraised in this study because snow is not available in the 

catchment area. The variations in soil moisture (SM) and groundwater contribution are 

measured by soil moisture routine based on the quantity of flow approaching from 

preceding routine (P) and FC represented by Eq. 4. 
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If the ratio of SM to FC is greater than LP, the actual soil evaporation is similar to 

potential evaporation, or else the actual evaporation could be linearly minimized as: 


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                                                                                      (5)

 

The groundwater outflow is represented as a summation of two or three outflows based 

on upper zone storing (SUZ) that is located above or below the threshold zone (UZL): 

   0,max012 UZLSUZKSUZKSLZKtQgw 
                                                 (6)

 

The runoff is simulated using the MAXBAS parameter and triangular weighting 

function as: 
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 Elevation zones of the area were analyzed using a (10mx10m) DEM downloaded from 

(https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1)  SENTINEL1 database 

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1)%20downloaded
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for free. The area was divided into 5 elevation zones at appropriate intervals (Fig. 14). 

The vegetation classes of the area have been re-classified into 3 majors namely, 

Grassland, Mixed Agriculture, and Forest classes from the land use raster. 

Figure 14 

 Elevation Bands of the Watershed 

 

The HEC-HMS Model 

HEC-HMS is a semi-distributed, physically-based conceptual hydrological model 

that was developed by the US Army Corps of Engineers to simulate runoff from 

dendritic watersheds (Feldman, 2000). The model has been updated every time and 

different versions are available, therefore, the extended HEC-HMS version 4.7 was used 

in this study. HEC-HMS could effectively undertake four hydrological processes such 

as; loss, transform, base flow, and routing models. The model determines effective 

rainfall in the watershed by characterizing antecedent soil moisture situations (Young et 

al., 2017) as presented in Eq. 9. In this study, the SCS-CN loss technique was chosen to 
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define direct runoff, because it was extensively applied in several watersheds and 

revealed better outcomes as compared with initial and constant loss methods (Sardoii et 

al., 2012). 

 
SIP

IP
P

a

a
e






2

                                                                                                             (9)

 

where Pe and P are the precipitation excess and accumulated rainfall depth at time t, 

respectively, Ia is the initial abstraction (e.g., infiltration loss), and S is the potential 

maximum retention. S (mm) and Ia can be determined by the SCS method based on CN 

as: 

254
25400


CN

S
                                                                                                        (10) 

SI a 2.0
                                                                                                                    (11) 

Soil CN ranges from 1 to 100 and it is a function of land use, land cover, and soil 

hydrological group. For this study, CN was determined from the global hydrologic soil 

group and soil class texture grid using the ArcGIS zonal statistics tool. The peak flow 

(Q) is computed using Eq. (12) as: 

)(

)2.0( 2
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                                                                                                        (12)

 

HEC-HMS has numerous transform approaches to covert rainfall into runoff. In 

this study, the SCS unit hydrograph with standard graphs has been used as a transform 

method because it is simple and requires only lag time as an input parameter. The SCS 

method developed the relationship between time of concentration and lag from 

watershed features such as reach length and slope (see Eqs. 13 and 14). 
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where Tc is the time of concentration (hours), Tlag is lag time (hours) l is flow length 

(feet), Y is the average watershed slope (%). 

The developed HEC-HMS basin model was presented in (Fig. 15) and runoff was 

simulated at the outlet point. In the current study, base-flow recession and Muskingum 

methods were used for base flow and routing models respectively as the methods are 

most often applied and are more effective methods (Seong et al., 2008). The Muskingum 

method is a simple and lumped flow routing technique that could compute outflow 

hydrograph at sink point (Bitew et al., 2019). In this routing method, the propagation 

time (K) of the flood wave through reach and dimensionless weight (X) corresponding 

to the reduction of the flood wave is required (Eq. 15). 

])1([ QXXIS                                                                                                   (15) 

Figure 15  

The Catchment Model Developed by HEC-HMS (Sn Represents n Sub-Basins of the 

Catchment). 
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The watershed characteristics of the study area that provide the information for 

simulation of rainfall-runoff by HEC-HMS were analyzed (see Table 5). Accordingly, 

the longest sub-basin was sub-basin 1 which took more than 4 hours for runoff to arrive 

at the outlet point.  

Table 5  

Physiographic Features of the Watershed 

Sub-basin Area (km
2
) Slope (%) CN Lag (hr) 

Sub-basin 1 (S1) 561.34 22.5 85.2 4.43 

Sub-basin 2 (S2) 386.12 15.18 83.87 3.12 

Sub-basin 3 (S3) 233.58 14.45 84.26 2.71 

Sub-basin 4 (S4) 188.97 19.51 83.75 2.42 

Sub-basin 5 (S5) 268.24 17.33 84.57 1.92 

 

The ANFIS Model 

Fuzzy Logic (FL) explains commutative approaches to thinking and improves the 

deciding capability of humans via enhanced reasoning (Chandwani et al., 2015). ANFIS 

is the combination of ANN and FL that provides an acceptable solution and it was 

presented first by (Jang, 1993). Unlike classic models, in FL the values of the 

parameters, are defined linguistically and then linked by if-then rules, and the results of 

the fuzzy subset outputs are defuzzified to the crisp numbers.  

The ANFIS hybrid model represents a rational system that synergistically 

combines FL and ANNs by adjoining human intellectual abilities with neural networks 

and FL (Hock, et al., 2010) to circumvent of their drawbacks. The ANFIS model 

consists of Back-propagation Least Square and  Gradient Descent algorithms formed by 

a hybrid training approach and it can regulate the structures of fuzzy membership 

functions by iteration tuning. The major reason for ANFIS training is to control the 

outcome variables and optimal premises by training the Fuzzy Inference System (FIS) 

with ANFIS to modify the membership functions and match them with the training 

datasets based on the particular error criterion. The ANFIS structure contains five layers, 
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namely, the product layer, fuzzy layer, normalized layer, an output layer, and 

defuzzifiying layer similar to the multilayer FFNN and is named after its mode of 

functional operation (Fig. 16). 

Figure 16  

Schematic View of First-Order Sugeno FIS and ANFIS Structure (Jang, 1993) 

 

Calibration of ANFIS requires the specification of fuzzy language rules as 

contrasting to neural networks that tune weights. Calibration of ANFIS membership 

functions is carried out by backpropagation and/or least mean square. However the 

conventional least square method  is used  for calibration of Takagi Sugeno fuzzy model. 

Taking account of FIS with x, y inputs and f output the first-order Sugeno fuzzy model 

applied in the current study has optimal sets of rules, which are stated by if-then: 

    111111 ,:1 ryqxpfthenByandAxIfRule                                         (16) 

    222222 ,:2 ryqxpfthenByandAxIfRule                                   (17) 
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where A1 and A2 are x-input membership functions, B1 and B2 are y-input membership 

functions and the output function factors are p1, q1, r1 and p2, q2 and r2 and five-layer 

ANFIS structure with 1

iQ is input and x or y membership ranks are designated as: 

Layer 1: Every node i is an adaptive node in this layer with a node function of: 

4,3)(2,1)( 11  iforyQoriforxQ BiiAii                                                      (18) 

Layer 2: T-norm operator linking every rule in this layer between inputs „AND‟ operator 

as: 

2,1)().(2  iforyxwQ BiAiii 
                                                                             (19)                                                                   

                                                  

Layer 3: “Normalized firing strength” is the output in this layer 
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

w  is the output of layer 3 

Layer 4: Every node i in this layer is an adaptive node and realizes the outcomes of the 

rules as: 
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                                                                                       (21)                                                                          

Layer 5: In this layer, the overall output of all incoming signals is calculated:
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                                                                (22) 

The ANN Model 

ANN is an AI-based 'black-box' model that includes multiple non-linear artificial 

neurons that are run laterally and can be trained as a particular or several layers. ANN is 

a modeling tool that interconnects neurons one with another to form complex non-linear 

input-output interfaces. It is explicitly defined by network architecture, training and 

verification algorithms, and activation functions (Tongal & Booij, 2018). The greatest 

merit of ANN is that it does not require complicated physical routes, and the modeling 

routes are designated by systematic calculations (Ramana et al., 2013). 
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ANN provides a very effective approach to dealing with noisy, non-linear, and 

non-stationary data, especially in cases where the data do not conform to basic physical 

relationships, making ANN an appropriate model for time series prediction. The most 

common ANN structure in rainfall-runoff modeling is the multi-layer perceptron (MLP), 

which is trained with the back-propagation algorithm (BP) and comprises layers of 

input, and output. Among the most widely used algorithms, the Brodyen-Flecher-

Goldfarb-Shanno and Levenberg-Marquardt (LM) are the popular and most effective 

aproaches due to their fast convergence. The FFNN model calibrated with the BP 

algorithm is the widely used ANN stracture for predicting hydrologic simulations and is 

also used in this study. The FFNN topology contains inputs, hidden and output layers, as 

well as activation functions and weights (Fig. 17). The inputs are converted into outputs 

using Eq. 23. 
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where Wkj  is weight that connects input and output layers, Wlk represents the connection 

weight among the hidden and output neuron, bk and bl represents the bias of the 

corresponding hidden and output layer neurons,  f1(.) is symbolizes the linear activation 

function and f2(.) designates the sigmoidal activation function of the network.       
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Figure 17  

A Distinctive Topology of Three-Layered FFNN                                                                                                                                                          

 

The SVR Model 

SVR has been developed based on the idea of a Support Vector Machine (SVM), 

that has been applied for non-linear regression and grouping of the problems (Nourani et 

al., 2020). SVR is the AI-based model of a supervised learning method with 2 layered 

structures, unlike the other black-box forecasting models; it minimizes operational risk 

as an objective function other than decreasing the inaccuracy between the observed and 

simulated variables. The weights in the first layer of the SVR are non-linear, while in the 

second layer they are linear. Initially, the model creates a linear regression between input 

and target variables then the outputs are set to non-linear kernels to smooth the non-

linear behavior of the input data sets (Wang et al., 2013). The model uses the modified 

alternate loss function, which includes a distance measure and accurately represents the 

regression relationship between the variables. The topological view of the model is 

given in Fig. 18. Assuming the problem of approximation, with the datasets 

(x1,y1),…..,(x1,y1), xϵR
N
, yϵR having a linear relation. 
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bxwaxf  )*(),(                                                                                                     (25) 

The ideal regression equation is attained by diminishing the empirical risk is: 
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The maximum general loss function with the ɛ-insensitive zone is described as: 
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If not, the goal is to determine a function f(x,α) having the maximum ɛ deviance from 

the actual variables yi for all calibration data sets while being as smooth as possible. This 

corresponds to the minimization of the function: 
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                                                                            (28) 

where C is a predefined value and
* ,   are slack variables that are representing the upper 

and lower constraints of the outputs and it is designated by the following equations: 
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The Lagrange function would be formulated from the objective function and the 

appropriate constraint by applying a double set of variables such as the following 

equation: 
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Starting from the state of the saddle point, the partial derivatives of L with respect to the 

main variables (w, b, *

i , i ) must vanish for ideality. Substituting the result of the 

derivative into equation (28), and obtaining a dual optimization. 
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it has to be maximized subject to constraints 
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Afterward, the coefficients *

i and i  are obtained from equation (30) the compulsory 

vectors can now be defined as: 
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For the non-linear SVR model, a non-linear mapping kernel could be applied to map the 

datasets into larger dimensional features to which linear regression is fitted. The 

quadratic equation to be maximized can be rewritten as follows: 
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and the regression function is specified as: 

00)( bwxf 
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And the independent variables are defined as: 
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Figure 18  

The Architecture of the SVM Model 

 

 AI-based models (ANFIS, ANN, and SVR) could effectively map the non-

linear relationship between rainfall and runoff in fast convergent time. They can also 

generalize and smooth the noise of rainfall and flow time series. However, the AI-based 

models are usually prone to overtraining and their structures could not accurately 

apprehend the physical relation between rainfall and runoff in the catchment.  

 SWAT could model hydrologic and agricultural management processes in 

combination with climate change but it requires extensive inputs and the representation 

of HRUs in each sub-basin is non-spatial (Glavan & Marina, 2012). The groundwater 

modeling routine of the SWAT model could accurately estimate the groundwater 

contribution to rainfall-runoff modeling. The SWAT can incorporate the spatial input 

data into the modeling and that makes it a powerful tool to apprehend the effects of 

climate change on rainfall-runoff modeling (Jaiswal et al., 2020).  

 HBV model requires fewer input data; minimal convergence time and its 

results could often be comparable with complex models.  However, the structure of 
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HBV is not capable to appraise the effects of climate change on rainfall-runoff modeling 

(Fowler et al., 2016). The structure of the HBV model requires further improvements to 

comprehensively quantify the effects of climate and land-use changes that could affect 

long-term catchment water balance (Huang et al., 2019). 

 The HEC-HMS has a simple structure and comprehensively examines climatic 

conditions and could select various computational techniques adapted to various 

watersheds and datasets. The HEC-HMS is very effective in short time event-based 

simulations of peak flow hydrographs characterized by the rapid rise and recession but it 

tends to overestimate peak flows for long time series streamflow simulations (Chen et 

al., 2019). 

Ensemble of multiple models could produce a good robust simulation via better 

representation of models structure and reducing allied uncertainties (Velázquez et al., 

2011). Therefore, ensemble modeling is important to reduce uncertainties resulting from 

individual model structures, input data, and model parameters and it takes over the 

merits of each model. 

 Performance Evaluation  

The accuracy of the proposed models in this study was evaluated by two standard 

statistical tools namely; Nash-Sutcliffe Coefficient of Efficiency (NSE) and Root Mean 

Square Error (RMSE). NSE measures the relative amount of residual variance compared 

to observed variances and it expresses how simulated data fits with observed in one-to-

one line. RMSE measures the accuracy based on the difference between observed and 

simulated datasets and it aggregates the residuals into a single performance measure as 

presented in (Eq. 38).  
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 where Qo is actual flow, N is the number of observations, 


Q  is the mean of the actual 

flow and Qs is the simulated flow at time t. 

 Ensemble Modeling 

For the same data sets, one model could obviously outperform the others, and 

when multiple input data sets are used, the output of each model could be exclusively 

different. To take advantage of every model while not neglecting the overall 

characteristics of the datasets, the ensemble modeling practice has been developed, 

which uses the output of each model as input, assigning each model a certain 

prominence level owed to all with the support of relating functions to give the output 

(Kiran & Ravi, 2008). The precision of the ensemble of results of diverse single models 

would typically be superior to the precision of the preeminent particular model 

(Shamseldin & Connor, 1999). Moreover, in ensemble modeling, the outputs of every 

single model could represent the sources of input datasets that might be unique to that 

specific model then combining all those information could optimize input datasets to the 

model. In this study, one non-linear (neural network) and two linear (simple average, 

and weighted average) ensemble models are applied to boost the rainfall-runoff 

modeling efficiency of proposed individual models. In this study, 3 different ensemble 

scenarios were considered, ensemble of 3 AI-based models, ensemble of 3 physically 

based models and ensemble of all models using fusion of input data from different 

sources. 

Non-Linear Neural Network Ensemble (NNE) 

In NNE methods, the outputs of the distinct models are used as inputs of the NNE; 

each is allocated to a neuron of the input layer. The procedure of the NNE modeling is 

the same as FFNN, where the preeminent model architecture and number of iterations of 

the optimum model structure should be achieved using the trial-error method, and the 

sigmoid  activation function was used as a output and hidden activation function. The 

other non-linear ensemble kernels such as Gene Expression Programming (GEP) and 

ANFIS can also be used, but FFNN was chosen for this study because of its simplicity, 
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rapid trainability, and providing results comparable to other non-linear ensemble 

techniques. 

Simple Average Ensemble (SAE) 

In the SAE method, the outputs of separately simulated SWAT, HBV, HEC-

HMS, FFNN, ANFIS, and SVR are used as inputs. The SAE model was created by 

linear averaging of the single model outputs as: 
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                                                                                                            (39)

 

where 
_

oQ , oiQ  and n are flow from the SAE, flow from the ith individual model and the 

number of single models (n= 6). 

 

Weighted Average Ensemble (WAE) 

The WAE applies particular weights to the outputs of every single model based on 

the relative importance and its accuracy. The WAE modeling technique is given in Eq. 

40.  
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where wi is the assigned weight for the i
th 

model output and  could be defined from the 

model‟s performance measure as: 
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NSEi is the performance measure (e.g., Nash-Sutcliffe efficiency coefficient) of the ith 

single model 
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Sensitivity Analysis 

The most influential parameters of the watershed and inputs to the runoff 

simulation were determined for each of the proposed models during an early phase of 

model calibration and validation. Sensitivity analysis is an important process in any modeling 

because it identifies the critical variables and their level of importance that are used for model 

calibration and verification. 

The sequential uncertainty fitting (SUFI-2) algorithm of the SWAT-CUP tool was 

used for the global sensitivity analysis and calibration of the SWAT model (Abbaspour, 

2015). The SUFI-2 sensitivity analysis tool takes into account the suspicions resulting 

from the model conceptualization, the properties of the measured data sets, and their 

relationship to the calibration parameters (Singh et al., 2013). The sensitivity of each 

parameter was determined using the Latin hypercube sampling method and the upper 

and lower bounds of each parameter were adjusted and optimized using the SUFI-2 

uncertainty algorithm. The parameters range would be amended for entire iterations till 

the objective function is attained. The sensitive parameters are listed (Table 6) and are 

used to select the correct range of parameters that could give the best result as compared 

to the measured flow. 

Table 6 

 Lists of Parameters Used for SWAT Model Sensitivity Analysis  

Parameter Description Lower 

bound 

Upper 

bound 

Optima

l value 

Process 

CN2* * Initial SCS runoff curve 

number for moisture 

condition II 

-0.2 0.2 0.04 Runoff 

GW_DEL

AY 

Groundwater delay time 

(days) 

35 450 45 Groundwat

er 

ALPHA_B Baseflow alpha factor- 0.01 1.2 0.68 Runoff  
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F Baseflow recession constant 

SOL_AWC Available water capacity of 

soil layer (mm H2O/mm 

soil) 

-0.8 0.8 0.16 Soil 

channel 

HRU_SLP Average slope steepness 0 1 0.18 HRU  

GW_REV

AP 

Groundwater „„revap” 

coefficient 

0.02 0.2 0.05 Groundwat

er  

SURLAG  Surface runoff lag 

coefficient 

1 24 1.21 Runoff  

SOL_K Saturated hydraulic 

conductivity 

0.7 0.8 0.72 Soil 

SOL_BD Moist bulk density 0.9 2.5 0.12 Soil  

 

Rainfall-runoff modeling using HEC-HMS, the best-known approaches to 

sensitivity analysis are partial derivation and changing the ranges of each parameter turn 

by turn (Hamby, 1994). One at a time perturbation of parameters values between ±25% 

and ±30% with an interval of 5% has shown a good performance of the model (Bitew et 

al., 2019; Zelelew & Melesse, 2018) and it is the simplest method to carry out. For the 

current study, the sensitivity of parameters was investigated by altering the ranges of the 

parameters between -25% and 25% at 5% intervals until the measured and simulated 

data sets were significantly matched. In this technique, a single parameter was tested and 

optimized at a time, while the other parameters remained constant. The parameters used 

for HEC-HMS model sensitivity analysis are the curve number (CN), the initial 

abstraction, the Muskingum k and x coefficients, and the base flow.  

The automatic Monte Carlo technique was applied to detect sensitive parameters 

of the HBV model and explore the random parameters with predefined ranges and 

objective functions. Before calibration, the upper and lower limits of the parameters 

representing the watershed characteristics were established. Each parameter was 
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calibrated within the predefined range until the objective function was optimized (Table 

7). 

Table 7  

The Calibration Parameters of HBV Model 

Parameters  Explanation  Unit  Lower   Upper  

UZL Reservoir threshold mm 0 100 

MAXBAS Base of weight function Day 13 24 

LP Soil moisture threshold for 

evaporation reduction 

- 0.4 0.7 

FC Soil moisture storage  mm 100 1000 

PERC Percolation to groundwater mm/d 0 0.25 

K0 Recession coefficient  Day 
-1

 0.05 0.5 

K1 Recession coefficient (upper 

storage) 

Day 
-1

 0.01 0.1 

K2 Recession coefficient (lower 

storage) 

Day
 -1

 0.001 0.1 

β Shape coefficient  - 1 6 

 

In AI-based models (FFNN, ANFIS, and SVR), the neural network has proven to 

be an effective model for evaluating the sensitivity of input datasets to output, as the 

neural network was able to successfully capture the non-linear characteristics and 

dimensionality of hydrologic and meteorological datasets (Nourani & Fard, 2012). In 

this study, the key inputs to the runoff were identified using the ANN-based sensitivity 

assessment technique. The AI-based models, inputs such as rainfall, temperature, and 

discharge time series with different lags, were used to forecast runoff using FFNN. 
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Then, the performance of each input was evaluated by NSE goodness of fit and ranked 

according to their significance for rainfall-runoff modeling. 
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CHAPTER IV 

        Results and Findings 

The current study was conducted in two major stages. First, all the proposed models 

simulated rainfall-runoff for both gauge and the satellite rainfall datasets separately, as 

well as for the combination of both datasets. Second, the output of each model was used 

as inputs for ensemble modeling by NNE, SAE, and WAE aimed at improving the 

accuracy of the modeling. The ensemble modeling was carried out for 3 different 

scenarios for each rainfall data sources: i) ensemble of AI-based models, ii) ensemble of 

physical-based models and iii) ensemble of all proposed models using the fusion rainfall 

data sets.   

 Results of Sensitivity Analysis  

  SUFI-2 algorithm was applied to analyze the sensitivity of the parameters for 

verification and calibration of the SWAT model. The calibration parameters were 

determined based on recommendations from different works of literature. Thus, nine 

parameters were identified and ranked according to their level of prominence in rainfall-

runoff modeling (Table 8). The global sensitivity of the parameters is determined by 

automatic calibration based on t-stat and p-value. The parameter with the maximum t-

stat and minimum p-value is the most sensitive and vice versa. Accordingly, CN is the 

most sensitive and SURLAG is the least sensitive parameter for SWAT flow simulation 

(Table 8). 

 

Table 8  

Sensitive Parameters for SWAT Runoff Simulation 

Parameter P-value t-stat Rank 

CN2 0 -56 1 

ALPHA_BF 0 11 2 
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Sol_K 0 6.2 3 

HRU_SLP 0 3.72 4 

SOL_BD 0 -3.62 5 

SOL_AWC 0.24 -1.3 6 

GW_REVA

P 

0.3 -1.25 7 

GW_DELA

Y 

0.41 -0.95 8 

SURLAG 0.55 0.62 9 

 

The sensitive parameters of the HEC-HMS rainfall-runoff model were identified 

by one a time perturbation of their values. Based on their ability to improve the 

efficiency of the simulations, 4 parameters were identified as sensitive to the HEC-HMS 

runoff simulation of the watershed. Soil CN, lag time, initial abstraction, and 

Muskingum k and x coefficients were detected as the most sensitive parameters. When 

the ranges of parameters were changing to the optimum, the observed and simulated data 

sets are converged, at the same time it could optimize model performance. The result 

shows that soil CN value is the most sensitive parameter for both SWAT and HEC-HMS 

modeling in the calibration and validation phases. This could be because most of the 

runoff-causing factors such as soil, land use, land cover, and slope are lumped in the 

respective CN as also stressed by Fanta & Sime (2022). Moreover, the land-use trend 

practiced in the study area, mainly dominated by destructive farming activities that lead 

to less infiltration rate and high runoff, erosion, and siltation rate during the wet season. 

The land use pattern in the Gilgel Abay watershed is dominated by destructive 

agricultural practices that could affect the natural infiltration and runoff relationship of 

the soil. Therefore, it is logical to mention that runoff in the catchment is highly 

dependent on the CN of the soil. 
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The sensitivity of the HBV model parameters to rainfall-runoff simulation was tested 

using automated Monte Carlo optimization techniques. The maximum and minimum 

bounds for each parameter were defined and the model was set to perform 700,000 runs 

for the catchment. The result of the Monte Carlo simulation was used to spot the lowest 

possible changes in the objective function. The parameter that could cause a high range 

of change in the objective function (NSE) is the most sensitive parameter, and a 

parameter that could cause a small range of changes in the objective function is 

considered a less sensitive parameter and the sensitive parameters are presented in 

(Table 9). 

Table 9 

Sensitive Parameters and their Rank for HBV Rainfall-Runoff Model 

Parameter Change in objective 

function (%) 

Rank 

FC 22 1 

K2 16 2 

β 12 3 

LP 7 4 

 

The sensitivity of the input parameters for the AI-based model was analyzed 

using neural network modeling, and the sensitivity of each parameter was ranked based 

on its effect on the simulated runoff as evaluated by the NSE in the validation phase of 

the FFNN modeling (see Table 10). The inputs for AI-based models are discharged (Q), 

rainfall (P), and temperature (T), each with 4 lag times. From the given sets of inputs, 

the most sensitive inputs for the runoff simulation were selected by a t-student test and 

used for rainfall-runoff modeling. Accordingly, discharge and rainfall each with 4 lags 

were relevant to rainfall-runoff modeling. However, to avoid complexity of modeling 

due to too much inputs, Qt-1, Qt-2, Qt-3 , Pt, and Pt-1, combinations were used as inputs. 
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Table 10 

 Inputs Sensitivity for AI-Based Models 

Inputs Parameters Mean DC Rank 

Qt-1 0.8317 1 

Qt-2 0.8242 2 

Pt 0.7826 3 

Pt-1 0.7724 4 

Qt-3 0.7704 5 

Qt-4 0.7698 6 

Pt-2 0.7549 7 

Pt-3 0.7421 8 

Pt-4 0.7392 9 

T 0.1877 10 

Tt-1 0.1855 11 

Tt-2 0.1824 12 

Tt-3 0.1786 13 

Tt-4 0.1755 14 

 

 Results of Single Models  

The six proposed models (SWAT, HEC-HMS, HBV, ANFIS, FFNN, and SVR) 

were simulated runoff using gauge and satellite-based rainfall data sets separately. The 

models were calibrated and validated using 12 years of daily rainfall and flow data. In 

addition to climatic data, physically-based semi-distributed models used spatial data 
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such as LULC, soil, and slope maps. The result obtained for each model using both data 

sources is presented in Table 11.  

 In SWAT modeling, the watershed was delineated from DEM then sub-basins 

were generated and further divided into smaller HRUs. The SWAT model discretizes the 

watershed into smaller units by lumping LULC, soil, and slope data and reproduced 

HRUs with similar physical and hydrologic characteristics. The SWAT split the 

catchment into 6 sub-basins and 19 HRUs (see Fig 12). After the setup of the model, 4 

SWAT models (1 for each rainfall data source) were run from 2007 to 2018 of which the 

first 2 years of data were used to warm up the model. The climatic and discharge data 

series from 2009-2015 were used for model calibration and 2016-2018 were used for 

validation purposes. The model was automatically calibrated by the SUFI-2 algorithm of 

SWAT-CUP. Based on the performance criteria NSE ( see Table 11, Figs 19, and 20), 

the SWAT model using satellite and gauge-based rainfall displayed a better performance 

than HBV and HEC-HMC in daily runoff simulation at both calibration and validation 

phases, however, it less performed than AI-based models. The result obtained by SWAT 

exhibited NSE values of 0.872 and 0.81 for gauge driven dataset at the calibration and 

validation stages, respectively. It was noted that the NSE obtained as 0.836 and 0.784 

using CMORPH rainfall products at the calibration and validation stages, respectively. 

From the satellite-driven rainfall products, the CMORPH-based rainfall-runoff model 

outperformed over 3B42RT and 3B42 rainfall product-based models. The performances 

of 3B42RT and 3B42 based rainfall products were nearly similar at both calibration and 

validation phases.  

The gauge-rainfall data-based models are more accurate than satellite rainfall-based 

models; this could be because of the bias that occurred by the satellites during 

apprehending rainfall information. As presented by Nourani et al., (2021), the 3B42 and 

3B42RT underestimate most of the peak rainfall which could reduce the performance of 

the rainfall-runoff modeling. As indicated in Table 11, the performance of the SWAT 

model for both datasets was far better than the acceptable range (NSE - 0.5). Hence, it is 

normal to conclude that SWAT can effectively simulate rainfall-runoff by using 

satellite-driven rainfall products.  
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A semi-distributed physically-based hydrologic model is more appropriate for a 

medium-sized watershed with moderate to hilly topographic conditions (Wittwer, 2013). 

Gilgel Abay watershed has heterogeneous physiographic characteristics and is a 

medium-sized watershed. The result of this study shows that SWAT reproduces most of 

the observed discharges and is superior to the other physically-based models. Therefore, 

it is worth mentioning that the SWAT model is suitable for modeling rainfall-runoff in 

the Gilgel Abay catchment. 

The configuration of the HEC-HMS model began with the watershed delineation 

from DEM (Fig. 15) and the model split the catchment into 5 sub-basins and the 

physiographic characteristics of each sub-basin were determined (see Table 5). Before 

running the model, the basin, meteorological, and control specifications models were 

created. For the HEC-HMS rainfall-runoff modeling, soil CN was determined from the 

global hydrologic soil group and soil class texture grid using the zonal statistics tool of 

ArcGIS. The hydrologic soil groups for the watershed were identified as A, B, and D 

and the percentage of area for each group was 33%, 12%, and 55%, respectively, and the 

weighted CN value was computed as 83-85. Like to SWAT model, the HEC-HMS 

model was run for gauge and satellite-driven rainfall data.  Similar to the other proposed 

models, four rainfall-runoff models were created for HEC-HMS for each source of 

rainfall data. 

The daily rainfall-runoff modeling performance evaluation of the models in terms 

of NSE and RMSE are given in Table 11 for both gauge and satellite rainfall datasets. 

Concerning both performance measures, the model well-simulated runoff with the NSE 

values of 0.837 and 0.776 and for the gauge rainfall data-based model and 0.809 and 

0.759  for the CMORPH rainfall dataset-based model in the calibration and validation 

stages, respectively, (see Fig 19 and Fig 20). Nevertheless, the result reveals the minor 

overestimation of peak flows and underestimation of low flow (see Fig 19 and Fig 20). 
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Figure 19  

Observed versus Simulated Runoff by SWAT, HEC-HMS, HBV, ANFIS, FFNN, And SVR 

Using Gauge Rainfall, a) at Calibration Phase, b) at Validation Phase 

 

The HBV model was arranged for five elevation zones of the catchment (Fig 14) 

and three vegetation zones (Table 12) using nine model parameters (see Table 7). The 

Monte Carlo automatic calibration and validation were carried out using 2007-2018 

daily climatic and discharge data. The data sets 2007-2008 were used to spin up the 

model, and 2009-2015 and 2016-2018 were used for calibration and validation, 

respectively. Similar to the other models, four rainfall-runoff models were created for 

the HBV model (one gauge rainfall-based and three satellite-based). Average 

precipitation and temperature in the watershed were calculated from the recorded data 

sets of the 5 gauging stations using the Thiessen polygon method, and 
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evapotranspiration was computed using the Hargreaves method using maximum and 

minimum daily temperatures.  

The performance of HBV concerning NSE was 0.842 and 0.792 for the gauge 

rainfall-based model at calibration and validation steps, respectively, and its NSE was 

noted that 0.812 and 0.763 for the CMORPH rainfall data-based model during the 

calibration and validation phase, respectively (Table 11). The runoff simulated by HBV 

showed good agreement with the measured runoff during the calibration and validation 

phase for both the gauge and satellite-based datasets. Therefore, it is worth mentioning 

that the HBV is well calibrated and its parameter optimization is physically reasonable 

and the satellite dataset could be used for hydrological modeling in the basin. As can be 

seen in Figs. 19 and 20, the HBV model was able to accurately simulate low and mean 

flows, while slightly underestimating peak flows. This illustrates that the HBV model is 

capable of well representing the physical processes of the catchment and establishing a 

reliable relationship between precipitation and runoff. 

In this study, a Sugeno-type ANFIS was used and the membership functions 

(MFs) were determined by hybrid optimization algorithms. The Gaussian, Triangular 

and Trapezoidal types of MFs were iterated until the best runoff result and ANFIS 

architecture were obtained. The ANFIS structure and MFs that reproduced the best 

rainfall-runoff result with optimal epoch are given in Table 11 for both the gauge and 

satellite datasets. Four different ANFIS models were also created for all rainfall 

products.  

The ANFIS model produced the best result in the validation phase with NSE of 

0.885 and 0.838 for CMORPH rainfall products at calibration and validation stages, 

respectively (see Figs. 21d and 22d). The model was best performed with NSE of  0.913 

and 0.864 for gauge rainfall-based modeling at calibration and validation phases, 

respectively. For CMORPH rainfall-based models, the ANFIS performed best with NSE 

of 0.885 and 0.838 at calibration and validation phases, respectively. For both gauge and 

satellite-based rainfall data, ANFIS accurately reproduced peak runoff in the wet season, 

nevertheless; it marginally overrated low runoff in the dry season (see Figs. 19 and 20). 

In this study, the ANFIS model outperformed all the other proposed models and 
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reproduced accurate runoff that best fits with observed streamflow. This could be 

because of the strength of the model to accurately map the input-output relationships 

since the model has incorporated the strength of the neural network and fuzzy inference 

system. 

Figure 20  

Observed versus Simulated Runoff by SWAT, HEC-HMS, HBV, ANFIS, FFNN, And SVR 

Using Satellite Rainfall, a) at Calibration Phase, b) at Validation Phase 

 

The FFNN trained via BP and ML algorithm with one hidden layer and unstable 

hidden neurons were used to model rainfall-runoff. The ideal size of the hidden neurons 

was determined by trial and error in a range of 9-16 for both the satellite and gauge 

rainfall-based models. It is noted that the gauge rainfall-based FFNN rainfall-runoff 

model is superior to the satellite-driven rainfall-runoff models in both the calibration and 

validation phases.  
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The NSE of  FFNN rainfall-runoff modeling was 0.857 and 0.816 for gauge 

rainfall-based models and 0.839 and 0.805 for CMORPH rainfall-based modeling at 

calibration and validation steps, respectively. In FFNN modeling, it is practical to 

choose rainfall datasets with a smaller number of hidden neurons. Among the satellite 

datasets, the FFNN modeling based on the CMORPH rainfall dataset is superior to the 

modeling based on the 3B42RT and 3B42 rainfall datasets. Hence, FFNN modeling with 

the CMORPH rainfall dataset could model runoff with a short running time and minimal 

cost. Moreover, FFNN was able to accurately reproduce low flows, but it is less accurate 

at modeling peak flows (see Figs. 19 and 20). 

The radial base function (RBF) kernel has been used to build SVR rainfall-runoff 

models based on both satellite and gauge rainfall datasets. SVR also has other kernels 

such as polynomial and sigmoidal, but RBF was selected because it requires fewer 

tuning parameters and has already been shown to outperform over the other kernels 

(Sharghi et al., 2018). Similar to the other proposed models, four SVR rainfall-runoff 

models (one gauge rainfall-based and three satellites rainfall-based) were created for the 

Gilgel Abay catchment.  

The results of SVR modeling for gauge and satellite rainfall data were presented 

in Table 11. The performance of SVR rainfall-runoff modeling in terms of NSE value 

was 0.848 and 0.809 for the gauge rainfall-based modeling and 0.831 and 0.79 and 

CMORPH precipitation dataset-based modeling in the calibration and validation phases, 

respectively. As depicted in Fig. 19 and 20, SVR could better reproduce low flow but 

underestimated high flows for both gauge and satellite rainfall datasets based on 

modeling. It is noted that the SVR model could well reproduce the rainfall-runoff but its 

performance was slightly lower than ANFIS and FFNN modeling.   

Among the applied AI-based rainfall-runoff models, ANFIS was superior to 

FFNN and SVR in both the calibration and validation phases. This could be due to the 

fact that ANFIS incorporates the fast learning capability of ANN and the fuzzy inference 

system, which makes it a more accurate model. 
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Table 11 

Results of Proposed Single Models  

Model Rainfall 

source 

Structure  NSE RMSE (m3/s) 

Calibration Validation  Calibration Validation 

SWAT Gauge - 0.872 0.81 23.267 26.818 

 CMORPH - 0.836 0.784 25.334 29.742 

 3B42RT - 0.814 0.762 26.52 31.345 

 3B42 - 0.805 0.752 28.42 32.68 

HEC-

HMS 

Gauge - 0.837 0.776 25.837 29.701 

 CMORPH - 0.809 0.759 26.84 32.067 

 3B42RT - 0.782 0.744 27.452 33.462 

 3B42 - 0.7724 0.734 29.24 35.547 

HBV Gauge - 0.842 0.792 25.045 31.271 

 CMORPH - 0.812 0.763 26.31 32.35 

 3B42RT - 0.805 0.754 27.621 33.24 

 3B42 - 0.786 0.748 28.54 34.465 

ANFIS Gauge Gaussian 0.913 0.864 20.147 23.588 

 CMORPH Triangular  0.885 0.838 22.734 25.82 

 3B42RT Gaussian 0.862 0.812 24.52 27.52 

 3B42 Gaussian 0.846 0.794 26.52 29.25 

FFNN Gauge 5-10-1 0.857 0.816 23.454 27.814 
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 CMORPH 5-9-1 0.839 0.805 24.7 29.57 

 3B42RT 5-13-1 0.816 0.782 25.65 31.42 

 3B42 5-16-1 0.805 0.772 27.22 32.52 

SVR Gauge RBF 0.848 0.809 23.871 28.67 

 CMORPH RBF 0.831 0.790 24.927 31.333 

 3B42RT RBF 0.808 0.772 26.34 32.52 

 3B42 RBF 0.785 0.764 28.42 34.21 

 

Table 12 

The HBV Senstetive Parametrs and their Optimized Values for Each Vegitation Zones. 

Parameter Range Vegetation class 

1 

Vegetation class 

2 

Vegetation class 

3 

FC 100-1000 625.7 957.3 566.2 

K2 0.01-0.1 0.04 0.02 0.05 

β 1-6 0.91 0.54 0.47 

LP 0.3-0.7 0.37 0.41 0.53 
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Figure 21  

Scatter Plot of Observed versus Simulated Flow a) SWAT, b) HEC-HMS, c) HBV, d) 

ANFIS, e) FFNN, f) SVR, Using Gauge Rainfall Data. 
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Figure 22  

Scatter Plot of Observed versus Simulated Flow a) SWAT, b) HEC-HMS, c) HBV, d) 

ANFIS, e) FFNN, f) SVR, Using CMORPH Rainfall Data. 

 

Results of Rainfall Fusion 

In this modeling, gauge and satellite-driven rainfall products were combined to 

simulate runoff and the effects of rainfall fusion on runoff simulation were also 
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evaluated (Table 14). The fusion of rainfall datasets from the 3B42, 3B42 RT, and 

CMORPH satellite sources as well as gauges were deployed into the proposed models to 

simulate runoff. Before satellite-derived rainfall data is used for hydrologic modeling, it 

should usually be "bias-corrected" by a statistical relationship to gauge precipitation data 

(Bitew et al., 2012). The most common approaches to correcting the bias of satellite 

precipitation data are based on the following processes. First, the bias of the satellite 

rainfall dataset is calculated as the ratio of the daily average satellite rainfall products on 

the specific grid covered by the gauging station to the corresponding gauge precipitation 

records. Second, the originally obtained satellite rainfall dataset is multiplied by the bias 

obtained in step 1, and the bias could be removed. However, in the present study, the 

raw satellite dataset has been imposed into the models along with measured data, which 

could serve as a strategy to correct the bias of satellite data.  

For HBV, the weighted average of rainfall records from both data sources was 

used as a combined input because the HBV model accepts only a single climate file. The 

rainfall-runoff results of rainfall fusion (Table 14 and Fig 23) indicated that it could 

meaningfully enhance the performance of modeling when compared with individual 

satellite modeling but it only marginally improved the gauge rainfall data-based 

modeling results (see Table 11).  

The rainfall-runoff modeling using the rainfall data fusion improved the modeling 

accuracy of low-performed (3B42) satellite rainfall-based modeling by 8%, 9%, 8.4%, 

8.5%, 8%, and 8.5% for  HBV, SWAT, HEC-HMS, ANFIS, FFNN, and SVR, 

respectively, at the calibration stage. The fusion modeling also improved the modeling 

performance of HEC-HMS, HBV, SWAT, SVR, FFNN, and ANFIS by 6.5%, 8%, 

8.4%, 6.6%, 6.6%, and, 9.2%, respectively, at the validation step. 

 In the specific case of using satellite rainfall datasets, the rainfall-runoff modeling 

was significantly enhanced as it is compared with modeling using individual rainfall 

datasets. The gauge rainfall data reproduced more accurate runoff than satellite rainfall 

products. The logic behind this could be fact that gauge-based rainfall could capture the 

most accurate and valid hydrological information that can represent physical processes 

at the watershed level. The quality of satellite estimated rainfall depends on several 
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factors such as cloud coverage condition of the sky, algorithm they used, revisit time of 

rainfall measuring space crafts, and their corresponding orbital locations. The unsteady 

characteristics of the mentioned factors could cause bias in the rainfall estimation 

process. The fusion of rainfall products from several sources enhanced the robustness of 

the models when it is compared with the results simulated from single source rainfall 

data. Therefore, it is worth mentioning that gauge rainfall data have corrected the bias of 

satellite rainfall datasets and enhanced the rainfall-runoff simulation capability of the 

models. 

Table 13 

Modeling Performance for Rainfall Datasets Fusion 

Model Structure  NSE RMSE (m3/s) 

Calibration  Validation  Calibration Validation 

SWAT - 0.884 0.821 21.846 26.075 

HEC-HMS - 0.843 0.785 24.561 28.643 

HBV - 0.855 0.814 23.526 28.042 

ANFIS Gaussian  0.925 0.875 18.426 21.84 

FFNN 8-12-1 0.875 0.827 21.547 25.258 

SVR RBF 0.858 0.818 22.542 27.681 

 

The performance of all the proposed models was generally good in both 

calibration and validation stages. Nevertheless, satellite rainfall-based models indicated 

slight deviations from observed runoff thus, the modeling performance was lower in 

both the calibration and validation stages for all the proposed models (see Table 11).  
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Figure 23  

Observed versus Simulated Runoff by SWAT, HEC-HMS, HBV, ANFIS, FFNN, And SVR 

Using the Fusion of Rainfall at the Validation Phase 

 

The runoff simulation for the period of consideration indicates that the proposed 

models can reproduce most of observed runoff in the catchment for both individual 

rainfall data and rainfall fusion data (see Tables 11 and 14). However, it is noted that 

each model is not performed equally in rainfall-runoff modeling and could not 

apprehend the physical process of the watershed. For example, the performance of 

ANFIS surpassed the other models at both calibration and validation phases for both 

rainfall datasets (see Figs. 21 and 22).  

When the details of the runoff simulated by each model for each season are 

considered, the strengths and weaknesses of each model can be better identified. 

Therefore, to further evaluate the modeling capability in wet and dry seasons, two 

different points were randomly selected for each season and the runoff values simulated 

by each model were compared to the observed runoff. The details of simulated and 

observed runoff by each model on the specific day of each season are given in Table 15 

and Fig. 24.  For the dry season, February 2 and December 13, 2017 (indicated as points 

1 and 4 in Fig 14), respectively, were selected and for the rainy season, July 10 and 

August 6, 2017 (points 2 and 3), respectively, were picked up.  
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As shown in Table 14, the simulated runoff values by HBV and SVR are closer to 

the observed runoff values in dry seasons, however, HEC-HMS underestimated low 

flows. ANFIS overestimated low flows but it well-captured peak flows. It is noted that 

SWAT and FFNN are fairly good at simulating low flow but they could well capture 

average flow. From this results, the modeling performance of models are highly varying, 

hence some models are good as wet season modeling while they did not well captured at 

dry seasons.  

The result on the selected dates indicated that each model could derive different 

results at different times of the year. Therefore, combining the results of different 

models through the ensemble method could improve the simulation capacity of the 

modeling and lead to more accurate results. To this end, the results of each model were 

used as inputs, and two linear (SAE and WAE) and one non-linear (NNE) ensemble 

modeling were carried out in three ensemble scenarios and described in the following 

section. 

Table 14 

The Observed and Simulated Runoff by Each Model on Randomly Selected Days 

Date  Observed 

Runoff(m
3
/s) 

Simulated Runoff (m
3
/s) 

SWAT HEC-HMS HBV ANFIS FFNN SVR 

2/18/2017 12.9 15.03 6.2 13.19 17.4 15.01 12.8 

7/10/2017 75.9 71.2 102 55.11 83.8 98.04 86.9 

8/6/2017 147.7 158.5 145 114.5 147.5 136 121.2 

12/13/2017 17.4 18.9 7.8 17.3 19.6 17.8 17.19 
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Figure 24  

Simulated Runoff Using Gauge Rainfall via SWAT, HEC-HMS, HBV, ANFIS, FFNN, 

And SVR a) at Validation Step, b) Details for the Year 2017 

 

Results of Ensemble Modeling  

 Ensemble modeling was able to improve the rainfall-runoff modeling capacity 

of the individual models (SWAT, HEC-HMS, HBV, ANFIS, FFNN, and SVR). To 

further improve the efficiency of rainfall-runoff modeling, the ensemble technique was 

performed in 3 different scenarios. In scenario 1, the best results of the AI-based models 

(FFNN, ANFIS, and SVR) were used as input to the ensemble modeling by SAE, WAE, 

and NNE techniques. In scenario 2, the best results of physically-based models (SWAT, 

HBV, and HEC-HMS) were forced as inputs and SAE, WAE and NNE techniques were 

performed. In the scenario 3, outputs of the individual models obtained from the input 

fusion phase were forced into the SAE, WAE, and NNE ensemble methods. The weight 
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of WAE was determined by NSE at the validation stage according to Eq. 41. The NNE 

ensemble technique was developed by FFNN via BP trained with one hidden layer and 

variable numbers of neurons until the optimal epoch was reached.  

 The results of ensemble modeling are given in Tables 15, 16 and 17, for 

scenarios 1, 2, and 3, respectively. From the employed ensemble models, it is noted that 

the performance of NNE surpasses SAE and WAE techniques in both calibration and 

validation phases for all ensemble scenarios. NNE modeling of scenario 1 was improved 

the modeling accuracy of low-performed (3B42) satellite rainfall-based modeling by 

17.4%, 14.16%, 16.5% for SVR, ANFIS, and FFNN, respectively, at the validation 

phase (see Tables 11 and 15). Likewise, the NNE scenario 1 improved the fusion 

modeling of SVR, ANFIS, and FFNN by 11.6%, 5.4%, and 10.6%, respectively, at the 

validation step (see Tables 13 and 15). 

Table 15 

Results of AI-based Ensemble Modeling (Scenario 1) 

Ensemble model NSE RMSE (m3/s) 

 Calibration Validation Calibration Validation 

SAE 0.884 0.848 20.422 24.564 

WAE 0.894 0.862 19.256 23.724 

NNE 0.957 0.925 15.452 18.265 

 

 In scenario 2 ensemble modeling, NNE technique improved 3B42 rainfall-

based models 17%, 15.4%, and 14.9% for HEC-HMS, HBV, and SWAT, respectively, 

at the validation phase (see Tables 11 and 16). Similarly, it enhanced the performance of 

fusion modeling by 11.2%, 8%, and 7.1% for HEC-HMS, HBV, and SWAT, 

respectively, at the validation phase (see Tables 13 and 16). 
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Table 16 

Results of Physically-based Ensemble Modeling (Scenario 2) 

Ensemble model NSE RMSE (m3/s) 

 Calibration Validation Calibration Validation 

SAE 0.862 0.801 23.413 27.767 

WAE 0.874 0.812 22.414 26.522 

NNE 0.926 0.884 16.405 19.547 

 

The performance of the SAE and WAE techniques was better in Scenario 1 than 

in Scenario 2 because the performance of the AI-based models was better than that of 

the physical models in the individual modeling phase, so the accuracy propagated to the 

ensemble modeling as well. The NNE technique outperformed the other applied 

ensemble techniques in both the calibration and validation phases in all scenarios of the 

modeling (see Fig. 25). 

Figure 25  

Observed versus Simulated Runoff by SAE, WAE, and NNE Techniques at the Validation 

Phase for Scenario 3  
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Based on the applied performance evaluation criteria values, scenario 3 ensemble 

modeling could meaningfully enhance the rainfall-runoff modeling performance of 

single models when it is compared with modeling using separate rainfall from each 

source and rainfall fusion (see Tables 11, 13, and 17). From the employed ensemble 

models, it is noted that the performance of NNE surpasses SAE and WAE methods at 

both calibration and validation phases. The NNE modeling in scenario 3 using fusion of 

rainfall data enhanced the modeling accuracy of low-performed (3B42) satellite rainfall-

based modeling by 21.2%, 19.7%, 19.2%, 18%, 17%, and 14.7% for  HEC-HMS, HBV, 

SWAT, SVR, FFNN, and ANFIS, respectively, at the validation stage. Similarly, the 

NNE improved the gauge and satellite rainfall fusion modeling of HEC-HMS, HBV, 

SWAT, SVR, FFNN, and ANFIS by 15.7%, 12.6%, 11.8%, 12.1%, 11.2%, and, 6%, 

respectively at the validation step. The ensemble modeling also substantially improved 

the performances of the models at calibration stages.  

Comparing the accuracy of the 3 scenarios of the ensemble techniques considered 

in this study, it is noted that the ensemble technique of scenario 3 was more accurate 

than scenarios 1 and 2 in both the calibration and validation phases. In this scenario, the 

ensemble technique was able to take advantage of the individual models involved and 

the input rainfall data sets. It can be concluded that the fusion of precipitation data 

allows the models to capture the most important features of rainfall from each source. 

The physically-based models are generally able to understand the physics of hydrologic 

parameters involved in the rainfall-runoff process. AI-based models are also good at 

representing nonlinear relationships among watershed parameters.  

Table 17 

Results of Rainfall Fusion Ensemble Modeling (Scenario 3) 

Ensemble 

model 

NSE RMSE (m3/s) 

 Calibration Validation Calibration Validation 

SAE 0.935 0.881 19.221 22.467 
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WAE 0.948 0.891 18.054 21.623 

NNE 0.964 0.931 14.306 17.468 

 

The ensemble technique in scenario 3 combines the outputs of both groups of 

models and therefore could further improve modeling efficiency by combining the 

benefits of all models involved in rainfall-runoff modeling. Based on the results, it is 

worth noting that the ensemble of runoff modeling could meaningfully increase the 

simulation performance of individual models using separate rainfall data from diverse 

sources. 

Scatter plots of simulated runoff at the validation phase for a single best model 

(ANFIS) using both rainfall datasets separately; a fusion of both sources and the NNE 

model versus observed runoff are shown in Fig. 26. 

Figure 26  

Scatter Plots for a) ANFIS-Gauge, b) ANFIS-CMORPH, c) ANFIS-Fusion, d) NNE 

Ensemble of Fusion in the Validation Phase 
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As can be seen from the scatter plots, NNE significantly enhanced the 

performance of the models. It is noted that the non-linear NNE ensemble rainfall-runoff 

modeling was superior modeling over the other two linear ensemble modeling both in 

the calibration and validation stages. 

The modeling performance of SAE, WAE, and NNE at scenario 3 is also 

illustrated by the 2-dimensional transparent Taylor diagram (see Fig. 27), which can 

visualize the simulated runoff by each ensemble method and the observed runoff for 

accurate comparisons. In the Taylor chart, NSE and standard deviation were combined 

to form multiple performance evaluation matrices in a single chart that can describe the 

statistical relationship between the simulated and observed runoff. This chart aims to 

combine the different performances into a single array that assesses how close the 

simulated runoff is to the observed runoff.  

Figure 27  

Taylor Diagram Presentation of Performances for SAE, WAE, and NNE Ensemble 

Methods 
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The Taylor diagram for the three ensemble techniques is shown in Fig. 27. In this 

method, the model is more accurate when the ensemble modeling result is closer to the 

observed flow. As shown in Fig. 27, NNE is closer to the observed flow than SAE and 

WAE and is, therefore, more accurate than the other techniques. 
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CHAPTER V 

Discussions 

 The contribution of all physical components involved in rainfall-runoff 

modeling may not be necessarily the same, and the modeling requirements for these 

components may also vary. The degree of importance of each component was 

determined by appropriate sensitivity analysis during the calibration of the models. The 

modeling of the rainfall-runoff could be affected by several physical components and 

each proposed model has several methods for uncertainty analysis. However, only a few 

parameters and sensitivity analysis methods were selected and applied in this study due 

to time and logistic limitations.  

 The SWAT-CUP provides five approaches to uncertainty analysis, namely SUFI-

2, Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution 

(ParaSol), Particle Swarm Optimization (POS), and Markov Chain Monte Carol 

(MCMC). In this study, the SUFI -2 algorithm was selected for the sensitivity analysis 

of SWAT modeling because it is more efficient and less time-consuming (Zhang et al., 

2020). For the sensitivity analysis, the nine most common parameters were selected 

(Table 6) and ranked according to their order of importance and contribution to runoff 

generation (Table 8). Based on the result, the soil curve number was placed in the first 

position and the surface runoff coefficient lag was placed in the last position. The most 

influential parameters (soil curve number and base runoff coefficient) belong to the 

runoff component of the model. The soil curve number is a function of hydrologic soil 

group, land use, soil type, and soil infiltration capacity. The Gilgel Abay watershed is 

characterized by low infiltration capacity with high runoff potential. The reason why the 

soil curve number was the most sensitive could be because the study area was dominated 

by destructive agricultural land use type, which favors surface runoff.  

 The most sensitive parameters for HEC-HMS were selected by changing values 

in between the assigned ranges of each parameter sequentially. Accordingly, soil CN, 

lag time, initial abstraction, and Muskingum k and x coefficients were ranked the first to 

the fourth, respectively. Similar to the SWAT model, the most sensitive parameter for 

HEC-HMS is also the soil curve number. This could be because most of the runoff-
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causing factors such as soil, land use, land cover, and slope are lumped in the respective 

CN. A similar result was obtained in a previous study by Fanta & Sime (2022). It is 

concluded that land-use practices in the area could cause high surface runoff, sediment 

transport and deposition, low infiltration, soil erosion, and gully formation.  

The hydrologic soil group in the Gilgel Abay watershed is dominated by group 

D, which is characterized by low infiltration, high surface runoff potential, and high 

swelling potential, in which clay pans form more frequently. The CN value of the soil 

can be directly influenced by the aforementioned physical properties of the soil and is 

therefore the most sensitive parameter for both SWAT and HEC-HMS models. 

 The sensitivity of the most common model parameters for HBV was analyzed 

using the automated Monte Carlo method, with soil moisture storage (FC) or field 

capacity ranking first, followed by the lower soil box storage coefficient. FC is one of 

the components in the model's soil routine box (see Fig. 13), i.e., the main section that 

controls runoff initiation. If the soil is dry (low soil moisture), its contribution to runoff 

from rainfall could be low, and if the soil is wet, its contribution could be high.  

 The proposed models were generally classified into two main categories, AI-

based models (ANFIS, FFNN, and SVR) and physically-based models (SWAT, HBV, 

and HEC-HMS). For each model, four runoff models were simulated for gauge, 

CMORPH, 3B42RT, and 3B42 rainfall products. For hydrologic modeling, the 

validation result with NSE > 0.5 is a generally acceptable, NSE > 0.75 is a very good 

and NSE > 0.8 is the best performance (Whittemore, 2002). In general, all the proposed 

models reproduced the observed runoff well for all rainfall datasets in the validation 

phase, but their performance was not quite the same. In the group of physically-based 

models, the SWAT rainfall-runoff modeling outperformed the HBV and HEC-HMS 

modeling in both the calibration and validation phases. The reason for the better 

performance of SWAT could be its ability to better discretize the catchment into more 

detailed sub-catchments with similar spatial and hydrological characteristics. The results 

from HEC-HMS show slight variations in peak and low flows. This is the usual 

limitation of hydrological models (Zhang & Savenije, 2005) due to uncertainties arising 

from the structure of the models and the input data.  
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 Among the AI-based models, ANFIS performed better than FFNN and SVR in 

both the calibration and validation phases for all rainfall datasets. ANFIS reproduced 

more accurate runoff because its structure is a hybrid of fuzzy logic and artificial neural 

network, and it has adopted the hybrid training that uses the learning advantages of both 

models. The ANFIS model can universally approximate a given set of continuous data to 

the compact set with the required degree of accuracy (Nourani & Komasi, 2013). The 

input-output parameters and their membership functions were trained using the back-

propagation algorithm, in which the weights of each input are tuned and then connected 

with fuzzy if-then rules. FFNN and SVR models produced nearly similar performance 

compared to other models. In FFNN modeling, multiple pieces of training were 

performed by changing the number of hidden neurons until the optimal objective 

function was achieved. 

 The gauge rainfall resulted in a better runoff simulation for all proposed models 

in both the calibration and validation phases (see Table 11). This could be due to the 

accuracy of the gauges' rainfall records compared to satellite-estimated rainfall products. 

The gauges typically record each raindrop and provide the actual rainfall in the 

watershed, which should be converted to a runoff after satisfying the infiltration losses. 

However, satellites first detect information about precipitation, which is usually received 

by sensors and then converted to rainfall data. In some cases, the sensors may detect 

false precipitation signals from non-raining cold clouds covering large areas over the 

Earth. The satellite rainfall data may further be calibrated with gauge rainfall data from a 

basin-wide area. Therefore, this process is not a direct rainfall measurement method and 

errors may occur during this process that affects the next step of rainfall estimation. The 

amount of precipitation estimated by the satellite may be biassed during the detection, 

receiving of the information, or calibration of the received data. This is the reason why 

satellite rainfall-based modeling in the Gilgel Abay watershed was less accurate than 

runoff modeling using gauge-based rainfall data. 

 The result showed that there were performance differences among the 

proposed satellite-based rainfall products (see Table 11). For example, the CMORPH-

based rainfall-runoff modeling was more accurate than the 3B42RT and 3B42-based 

runoff modeling. The possible cause for the deviations in the performances could be the 
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precision of satellite sensors to retrieve rainfall information and the topographic 

heterogeneity of the study area. Gebremichael et al., (2014) presented that the 

CMORPH, 3B42RT, and 3B42 satellite rainfall sources might overrate daily rainfall in 

lowland and underrate it in plateau areas. The topography of the Gilgel watershed is 

heterogeneous and diverges between 1866m and 3543m above sea level (see Fig. 14), 

therefore, the rainfall is more prone to topographic influence. The accuracy of satellite 

rainfall estimation could also be influenced by algorithms they used to transform the 

retrieved information into the rainfall. In this regard, the sensors that used microwave-

based algorithms indicated superiority over infrared wave-based algorithms (Bitew & 

Gebremichael, 2010). As indicated in Table 11, the microwave algorithm-based 

CMORPH reproduced runoff more accurately than the infrared-microwave combination-

based 3B42RT and infrared-based 3B42 rainfall products. 

 The other modeling strategy employed in this study was a fusion of rainfall 

datasets from all sources. The gauge and the "bias-uncorrected" satellite data 

(CMORPH, 3B42RT, and 3B42) were combined and forced into the proposed models. It 

was assumed that the discrepancies and limitations of each rainfall data set would be 

updated and modified in the course of modeling. It can be seen that the input fusion 

significantly improved the performance of the rainfall-runoff modeling compared to the 

first stage modeling. The reason for the improved performance of the models could be 

that the models capture the best reliable rainfall value from each imposed rainfall 

product imposed for a given day of observation so that it could be aggregated to the final 

results of the individual models. This modeling strategy particularly improved the 

performance of satellite rainfall-based rainfall-runoff modeling, which may be due to the 

correction of biases due to rainfall fusion mechanisms. In this study, another dimension 

of the satellite rainfall bias correction technique was introduced, which is the 

combination of satellite rainfall data with gauge rainfall data. In the fusion, it is believed 

that the actual gauge rainfall data smoothed the underestimated and overestimated 

satellite rainfall products at corresponding period of observation. In other words, the 

gauge rainfall corrected the biases that occurred in the various steps of the satellite 

rainfall measurement. 
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 To further improve the modeling capacity, linear and non-linear ensemble 

techniques have been used. In principle, these methods can be used to improve rainfall-

runoff modeling by aggregating the advantages of each model into a single entity. The 

nonlinear ensemble (NNE) method reproduced runoff more accurately than the linear 

ensemble methods (SAE and WAE) in all scenarios considered in this study.  

 The linear ensemble techniques could only improve the performance of less 

performed models and showed no significant change in high performed models. It can 

be seen that both linear ensemble models perform approximately similarly for the 

corresponding scenarios. The performance of the linear ensemble techniques was better 

in scenario 1 than in scenario 2 because the individual models included in scenario 1 

showed better performance than the models in scenario 2. Therefore, the merits of the 

individual models in Scenario 1 were also applied to the ensemble techniques.   

 The superiority of NNE over SAE and WAE may lie in the ability of the 

nonlinear models to well understand the nonlinear and complicated physical relationship 

between rainfall and runoff. The linear models have shown lower performance than 

NNE for the following reasons. Unlike the NNE methods, the SAE and WAE methods 

are linear and may only work well when the direct relationship between inputs and 

outputs of the models is examined. Therefore, the drawbacks of the individual models 

could propagate and syndicate through linear ensemble models as the models linearly 

combine the outputs of the individual models. 
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CHAPTER VI 

Conclusion and Recommendations 

Conclusions  

This study was inspired on rainfall-runoff modeling by SWAT, HEC-HMS, HBV, 

ANFIS, FFNN, and SVR using 5 gauging stations (Gundel, Wetet Abay, Sekela, 

Dangila, and Adet) and three satellite-based rainfall datasets (CMORPH, 3B42RT, and 

3B42) in the Gilgel Abay catchment in the Upper Blue Nile Basin, Ethiopia. To simulate 

runoff, discharge time series, land use land cover, soil, and slope data of the catchment 

were forced into the models in addition to rainfall and temperature data. The most 

sensitive parameters of rain-runoff modeling for each model were investigated using the 

SUFI-2 algorithm for SWAT, automatic Monte Carlo for HBV, and one at a time 

preterbution for HEC-HMS. Accordingly, CN2 and ALPHA_BF for SWAT, the initial 

abstraction and lag time for HEC-HMS, and FC and K2 for HBV were obtained as the 

most sensitive parameters which could highly affect the runoff. The relevant input sets 

for AI-based models were also identified using the non-linear sensitivity analysis 

method and accordingly, discharge and rainfall were sensitive for rainfall-runoff 

modeling. 

Two-stage rainfall-runoff modeling was deployed by each of the proposed 

models. First, rainfall-runoff modeling was simulated separately by each model using 

each satellite, gauge, and fusion of rainfall datasets. Second, the runoff simulated by 

each model using the fusion of rainfall datasets was applied to the ensemble modeling 

via SAE, WAE, and NNE techniques to enhance modeling precision by considering 

three different scenarios. Among the satellite rainfall datasets, CMORPH provided better 

performance for all models still; it tends to overestimate the low flows. The rainfall-

runoff results simulated using 3B42 and 3B42RT underestimates peak flow, and in 

particular, 3B42 produced random pseudo peaks in the dry season. The accuracy of 

satellite rainfall products depends on the types of signals they used to collect information 

about rainfall. Satellites which use microwave-based algorithms are more accurate than 

those which use infrared rays -based algorithms for rainfall estimation. Accordingly, 
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CMORPH which uses microwave algorithms indicated superiority over 3B42RT which 

uses a microwave-infrared combination and 3B42 which uses only infrared rays for 

rainfall estimation.  

From the AI-based models, ANFIS, using both individual rainfalls from each 

source and their fusion, was found to be superior to the other models. This could be 

because ANFIS can combine the training capacity of neural networks and fuzzy logic in 

a given structure. The back-propagation training algorithm of the ANFIS  could be able 

to assign the weights for each input and tuned them, then connected with fuzzy if-then 

rules thus, provides the output with high accuracy.  

Among the semi-distributed models, the rainfall-runoff modeling performance of 

the SWAT model surpasses that of the HBV and HEC-HMS models, using rainfall data 

from both gauge and satellite sources. This could be due to the model's ability to well 

extricate the physical relationship at each HRU since it uses multiple layers of spatial 

datasets lumped in a single entity.   

The fusion of rainfall datasets from diverse sources showed a significant 

improvement over the rainfall-runoff modeling results using only satellite rainfall 

datasets, and it also revealed a slight improvement over gauge rainfall-based runoff 

modeling. This was due to the discrepancies and limitations of each rainfall data set that 

would be updated and modified in the course of modeling. 

To further improve modeling accuracy, two linear (SAE and WAE) and nonlinear 

(NNE) ensemble techniques were applied in 3 different scenarios. The ensemble 

scenarios were i) an ensemble of AI-based models, ii) an ensemble of physically-based 

models, iii) an ensemble of all models using the fusion of rainfall data from gauges and 

satellite sources. In all ensemble scenarios, NNE improved the performance of modeling 

in both the calibration and validation phases. The NNE technique in scenario 3 improved 

the accuracy of the low-performing modeling of HEC-HMS, HBV, SWAT, SVR, 

FFNN, and ANFIS in the validation phase by up to 21.2%, 19.7%, 19.2%, 18%, 17%, 

and 14.7%, respectively. It also improved rainfall fusion-based modeling accuracy of 

HEC-HMS, HBV, SWAT, SVR, FFNN, and ANFIS by 15.7%, 12.6%, 11.8%, 12.1%, 

11.2%, and 6%, respectively, in the validation phase. Among the ensemble techniques 
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used, NNE was a powerful and accurate ensemble method for rainfall-runoff simulation 

because the model was able to explore the nonlinear relationships of the hydrologic 

process.  

Recommendations 

Based on the results obtained from this study, the following points were 

recommended for future studies as well as implementations. 

 The outcome of the current study would be a groundbreaking step towards utilizing 

rainfall datasets combined from multiple satellite sources in data-sparse, ungagged, and 

unevenly gauged catchments.  

 The satellite rainfall products could be a good option to get reliable rainfall datasets for 

hydrological modeling, water resources management, and planning activities in 

developing countries.  

 Season-based modeling could provide better result for each rainfall data sets and it can 

help to identify the performance of each model at different seasons  

 Furthermore, future studies should focus on downscaling and validating satellite rainfall 

products using the local rain-gauge time series data as the reference data; hence the 

relevance and credibility of satellite datasets would be better verified. 

 The rating curve used for discharge measurement could be updated regularly and the 

more ground-based rain gauge and hydro-metric stations should be installed uniformly 

throughout  the watershed 

 In addition, future studies should investigate the effects of regional and global climate 

change on the rainfall-runoff process using a satellite rainfall dataset. 
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                             APPENDIX 2 

Graphical Presentation of Each Models Result 

Figure 28 

The results of SWAT Using Gauge and CMORPH Rainfall Datasets a) at 

Calibration, b) at Validation Phase 
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Figure 29 

The Results of HEC-HMS Using Gauge and CMORPH Rainfall Datasets a) at 

Calibration, b) at Validation Phase 
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Figure 30 

The Results of HBV Using Gauge and CMORPH Rainfall Datasets a) at 

Calibration, b) at Validation Phase 
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Figure 31 

The Results of ANFIS Using Gauge and CMORPH Rainfall Datasets a) at 

Calibration, b) at Validation Phase 
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Figure 32 

The Results of FFNN Using Gauge and CMORPH Rainfall Datasets a) at 

Calibration, b) at Validation Phase 
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Figure 33 

The Results of SVR Using Gauge and CMORPH Rainfall datasets a) at 

Calibration, b) at Validation Phase 
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                                 APPENDIX 3  

 

                    Graphical Summary of  Raw Data 

Figure 34  

Discharge Time Series  
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Figure 35  

Climatic Time Series of Dangila Station  

 

Figure 36  

Climatic Time Series of Adet Station 
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Figure 37  

Climatic Time Series of Gundil Station 

 

 

Figure 38  

Climatic Time Series of Sekela Station 
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                        Figure 39 

                       Climatic Time Series of Wetat Abay Station 
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                                                     Figure 40  

                                        Satellite Rainfall Time Series  
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