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ABSTRACT

The aim of this thesis is to investigate the initial boundary value problem for the telegraph
type involutory partial differential equations. This thesis deals with analytical and approxi-
mate solutions of several problems for involutory telegraph equations. Moreover, the stabil-
ity of the initial value problem for the second order differential equations with damping term
and involution is established. New absolute stable difference schemes for the approximate
solution of the one dimensional involutory telegraph differential equation are constructed
and a numerical algorithm is presented. Numerical analysis is provided. In Chapter Two, we
obtain an equivalent initial value problem for the fourth order ordinary differential equations
to the initial value problem for second order differential equations with damping term and
involution. Theorem on stability estimates for the solution of the initial value problem for
the second order ordinary linear differential equation with damping term and involution is
proved. Theorem on existence and uniqueness of bounded solution of initial value problem
for the second order ordinary nonlinear differential equation with damping term and 1nvo-
lution is established. In Chapter Three, we get exact solutions of the several problems for
involutory telegraph equations by using the result of Chapter Two and Fourier series method,
Laplace and Fourier transform methods. Involutory telegraph equations have not been inves-
tigated before. Therefore, this approach is applied for the first time in this thesis. Note that
these methods can be used for multidimensional telegraph type involutory partial differential
equations. In Chapter Four, new absolute stable difference schemes for the numerical solu-
tion of the one dimensional involutory telegraph equations are presented. For the first and
second order of accuracy difference schemes have been built, a program is written, examples
are solved, and numerical results have been tabulated. Comparisons of errors are made be-
tween the exact and numerical solutions in the maximum norm. All the computer programs

are written in Matlab.

Keyword: Involutory telegraph differential equations; Fourier series method; Laplace trans-
form solution; Fourier transform solution; Difference scheme; Numerical algorithm; Com-

puter programs.
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OZET

Bu tezin amaci, telgraf tipi kismi diferansiyel denklemler iceren baglangic sinir deger prob-
lemini incelemektir. Bu tez, telgraf denklemleri icin ¢esitli problemlerin analitik ve yaklagik
cOziimlerini ele almaktadir. Ayrica, soniim terimli ve involiisyonlu ikinci mertebeden difer-
ansiyel denklemler icin baslangi¢ deger probleminin kararlili§i kurulmustur. Tek boyutlu
telgraf diferansiyel denkleminin yaklagik ¢oziimii i¢in yeni mutlak kararli fark semalar:
olusturulmus ve sayisal bir algoritma sunulmustur. Sayisal analiz saglanmustir. Ikinci Boliimde,
dordiincii mertebe adi diferansiyel denklemler i¢in soniim terimli ve involiisyonlu ikinci mer-
tebe diferansiyel denklemler i¢in baslangic deger problemine esdeger bir baslangic deger
problemi elde ediyoruz. Soniim terimli ve involiisyonlu ikinci mertebeden adi lineer difer-
ansiyel denklemin baslangi¢ deger probleminin ¢6ziimii icin kararlhilik tahminlerine iligkin
teorem kanitlanmigtir. Soniim terimli ve involiisyonlu ikinci mertebeden adi lineer olmayan
diferansiyel denklem i¢in baslangi¢ deger probleminin sinirli ¢éziimiiniin varligi ve tekligi
iizerine teorem kurulmustur. Ugiincii Boliim’de, Ikinci Boliim ve Fourier seri yontemi,
Laplace ve Fourier doniisiim yontemlerinin sonug¢larimi kullanarak, telgraf denklemleri i¢in
cesitli problemlerin kesin ¢oziimlerini elde edilmistir. Involiisyon telgraf denklemleri daha
once arastirilmamis. Bu nedenle bu yaklagim ilk kez bu tezde uygulanmistir. Bu yontemlerin
cok boyutlu telgraf tipi kismi diferansiyel denklemler i¢in kullanilabilir. Dordiincii Boliim’de,
tek boyutlu telgraf denklemlerinin sayisal ¢oziimii i¢in yeni mutlak kararli fark semalari
sunulmaktadir. Birinci ve ikinci dogruluk mertebesi i¢in fark semalar1 olusturulmus, pro-
gram yazilmis, ornekler ¢oziilmiis ve sayisal sonuglar tablolagtirilmistir. Maksimum norm-
daki kesin ve sayisal ¢oziimler arasinda hata karsilastirmalar1 yapilir. Tiim bilgisayar pro-

gramlar1 Matlab ile yazilmagtir.

Anahtar Kelimeler: Involiisyon telgraf diferansiyel denklemleri; Fourier serisi yontemi;
Laplace doniisiimii ¢oziimii; Fourier doniisiimii ¢6ziimii; Fark semasi; Sayisal algoritma;

Bilgisayar programlari
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CHAPTER 1

INTRODUCTION

1.1Historical Note and Literature Survey

Delay differential equations are universal phenomena applied to their models in engineering
systems to behave like a real process (Vlasov & Rautian, 2016; Bhalekar & Patade, 2016;
Srividhya & Gopinathan, 2006; Sriram & Gopinathan, 2004). Initial conditions in one point
are not enough to get the solution of delay differential equations. For the first time (Falbo,
2013), in an experiment measuring the population growth of a species of water fleas, Nisbet
tried to use a delay differential model in his study. He clarified the form of the population

equation in

N'(t) = aN(t — d) + bN(t).

The obstacle in his investigation was that he did not have enough information about reason-
able history function N (¢) on [—d, 0] to get a solution to this problem. He reversed time
to get the solution of functional differential equations. He used time reversal in order to
seek the population before the initial time ¢ = 0 (Nisbet, 1997). An involutory differential
equation is a type of equation and a time reversal problem is its special case. It is called an

involutory differential equation, if it is involving an unknown function y at ¢ and d —¢.

Definition 1.1.1. Assume that u(t) is the involutory function, that is, u(u(t)) = ¢ and tg is

the fixed point of u. Then

y'(t) = ft;yt); y(ult))

is called the involutory differential equation or differential equation with involution. Really,
Falbo in 2006 has been surprised to learn differential equations with delay and involution
terms have deeply different properties of solutions. Moreover, the theory of differential

equations with involution and without involution is deeply different. Therefore, it is impor-



tant to study the properties of differential equations with involution. Involutions have been
an interesting subject of research at least since Rothe first computed the number of different
involutions on finite sets in 1800. After that, Babbage published in 1816 the foundational
paper in which functional equations are first considered, in particular, those of the form

u(u(t)) =t.

The theory and applications of ordinary differential equations with involution have been stud-
ied by many authors. The algebraic and analytic aspects of the theory of ordinary differential
equations with involution were discussed in the monographs of Przeworska-Rolewicz and
Wiener 1993(Przeworska-Rolewicz, 1973; Wiener, 1993). Spectral problems arising in con-
nection with differential operators with involution were considered in papers of Kurdyumov,
Khromov, Cabada, Tojo, (Kurdyumov & Khromov, 2008; Cabada & Tojo, 2014) for first-
order operators and in papers of Sadybekov, Sarsenbi; Kopzhassarova, Sarsenbi(Sadybekov
& Sarsenbi, 2012; Kopzhassarova & Sarsenbi, 2012) for second-order operators with in-
volution. Despite the progress of the theory of functional equations, we have waited for
Silberstein, who in 1940 solved the first functional differential equation with an involu-
tion (Silberstein, 1940). The interest in differential equations with involutions is retaken
by Wiener in 1968. Wiener, together with Watkins, will lead the discoveries in this direction
in the following decades (Aftabizadeh, Huang, & Wiener, 1988) Quite a lot of work has
been done ever since by several authors. In 2013 the first Green’s function for a differential
equation with an involution was computed by Cabada, and Tojo, 2013 and the field rapidly
expanded (Cabada & Tojo, 2013, 2017) Cabada and Tojo in the monograph cover the ex-
isting results regarding Green’s functions for differential equations with involutions (DEI).
The first part of the book is devoted to the study of the most useful aspects of involutions
from an analytical point of view and the associated algebras of differential operators. The
work combines the state of the art regarding the existence and uniqueness results for DEI
and new theorems describing how to obtain Green’s functions, proving that the theory can
be extended to operators (not necessarily involutions) of a similar nature, such as the Hilbert
transform or projections, due to their analogous algebraic properties. Obtaining a Green’s
function for these operators leads to new results on the qualitative properties of the solu-

tions, in particular maximum and antimaximum principles. The existence and uniqueness of



the bounded solution of a nonlinear one-dimensional delay hyperbolic differential equation
with constant coefficients were proved in by Shah, Poorkarimi, and Wiener, 1986 (Shah,
Poorkarimi, & Wiener, 1986). Note that for investigating a wide class of multidimensional
delay hyperbolic nonlinear differential equations the approach of this paper is not applica-
ble. Recently, delay hyperbolic differential equations have been studied in several papers by
Ashyralyev, and Agirseven, 2014, 2019; Son, Thao, 2019; Monteghetti, Haine, Matignon,
2017; Zhang, Zhang, Deng, 2014; Prakash, Harikrishnan, 2012; Vyazmin, Sorokin, 2017,
2002; Farkas, 2003.(Son & Thao, 2019; Monteghetti, Haine, & Matignon, 2017; Prakash &
Harikrishnan, 2012; Vyazmin & Sorokin, 2017; Farkas, 2003)

Ashyralyev and Agirseven 2019 studied the existence and uniqueness of a bounded solution
in a semi linear time delay hyperbolic equation in a Hilbert space (Ashyralyev & Agirseven,
2019). In applications, theorems on the existence and uniqueness of bounded solutions of
four problems for semi linear time delay differential equations of hyperbolic type are ob-
tained. The two-step difference scheme of a first order of accuracy is presented the mean
theorem on the existence and uniqueness of a uniformly bounded solution of this difference
scheme with respect to time step size is proved. In applications, theorems on the existence
and uniqueness of uniformly bounded solutions with respect to time and space step sizes of
difference schemes for four semi linear time delay partial differential equations are estab-

lished. Numerical results are presented.

In the paper of Prakash and Harikrishnan, 2012, a class of impulsive vector hyperbolic dif-
ferential equations with delays were investigated (Prakash & Harikrishnan, 2012). They
studied different sufficient conditions for H-oscillation of solutions systems subject to the
Neumann boundary condition by employing certain second-order impulsive differential in-
equality, where H is a unite vector in RY. The main results are illustrated by two exam-

ples.

Differential equations with involution appear in mathematical models of ecology, biology,
and population dynamics (Przeworska-Rolewicz, 1973; Wiener, 1993). In recent decades,
one-dimensional partial differential equations with involution in x have been investigted by

many scientists in papers (Ashyralyev & Sarsenbi, 2017b, 2015; Ashyralyev, Karabaeva, &



Sarsenbi, 2016; Ashyralyev & Sarsenbi, 2017a) In the study of Ashyralyev, Sarsenbi, 2017,
the mixed problem of one dimensional parabolic equation with involution in z was investi-
gated. Applying operator tools, the stability and coercive stability estimates in Holder norms
for the solution to this problem were established. In the paper of Ashyralyev, Sarsenbi,
2015, a mixed problem for two dimensional elliptic equation with involution was studied.
This problem was reduced to a boundary value problem for the abstract elliptic equation
in Hilbert space with a self-adjoint positive definite operator. Operator tools permit us to
obtain stability and coercive stability estimates in Holder norms, in one variable, for the
solution. In the paper of Ashyralyev, Kakabaeva, and Sarsenbi, 2016, a stable difference
scheme for the approximate solution of elliptic equations with involution was constructed.
Theorem on stability and almost coercive stability and coercive stability of this difference
scheme was established. The theoretical statements for statements for the solution of this
difference scheme were supported by the results of the numerical experiment. In the paper
of Ashyralyev and Sarsenbi, 2017, a mixed problem of one dimensional hyperbolic equation
with the involution in x was investigated. The stability estimates in the maximum norm in ¢
for the solution of this problem are established. In the Ph.D. thesis of Sarsenbi 2019 under
Turmetov and Ashyralyev’s supervise, the theory of the basic property of eigenfunctions of
second order differential operators with involution was investigated, on this basis, the Fourier
method was justified for solving direct and inverse problems for one dimensional parabolic
equations with involution in z. The applied value of these results in their importance in the
study of several mathematical models containing partial differential equations with involu-
tion in space variables. The existence and uniqueness of the solution of a mixed problem for
a parabolic equation with an involution in x in the form of a Fourier series were established.
The classes of solvability of ill-posed problems for a parabolic equation with involution in z
were considered. The questions of solvability of inverse problems for the heat equation and
their fractional analogs were investigated. The solvability of inverse problems for a parabolic

equation with an involution in x was proved.

As mentioned before we need the values of unknown functions at the previous time for
solving delay differential equations. Therefore, it is important to study hyperbolic type dif-

ferential equations with time involution. Noted that partial differential equations with time



involution are not investigated before.

Abbas, 2019, in his master thesis investigated a Schrodinger type involutory partial dif-
ferential equations (Ashyralyev & Ahmed, 2019). He obtained the solutions to several
Schrodinger type involutory ordinary and partial differential problems. The numerical so-
lution to the first order of the accuracy difference scheme for involutory one dimensional
Schrodinger type partial differential equations was investigated. Moreover, this difference

scheme was tested by an example and numerical results were given.

Mohammed, 2019, in his master’s thesis, investigated a parabolic type involuntary partial
differential equation. He obtained the solutions of the several parabolic type involuntary
partial differential problems. The numerical solutions of the initial boundary value problem
to the first and second order accuracy difference schemes were investigated. Moreover, these

difference schemes were tested by an example and some numerical results were given.

Abdalmohammed, 2020, in his master thesis, investigated hyperbolic type involuntary par-
tial differential equations. He obtained the solutions to several hyperbolic type involuntary
partial differential problems. The numerical solutions of the initial boundary value problem
to the first and second order of accuracy difference schemes were investigated. Moreover,
these difference schemes were tested by an example and some numerical results were given.
(Ashyralyev & Abdalmohammed, 2020b, 2020a)

1.2 Layout of the Present Thesis

Involutory telegraph type partial differential equation with damping term is not investigated
before. The main aim of the present Thesis is to study of the boundedness solution of several
involutory telegraph type partial differential equation with damping term. This thesis is clas-
sified in five Chapter. Chapter one is introduction. Chapter two, the second order differential
equation with damping term is investigated. We obtain equivalent initial value problem for
the fourth order ordinary differential equations to the initial value problem for second or-
der linear equations with damping term and involution. Theorem on stability estimates for
the solution of the initial value problem for the second order linear involutory differential
equation with damping term and involution is proved. Finally, Theorem on existence and

uniqueness of bounded solution of initial value problem for second order ordinary nonlinear



differential equation with damping term and involution is established.

In Chapter Three, the initial value problem for the telegraph type involutory in t second order
linear partial differential equation with damping term is investigated. The equivalent initial
value problem for the fourth order partial differential equations to the initial value problem
for this second order linear partial differential equations with involution and damping term
is obtained. Applying the operator tools, the stability estimates for the solution and its first

and second order derivatives of this problem are established.

In Chapter Four, we obtain the algorithms of numerical solution for the initial-boundary-
value problem for the one dimensional telegraph type involutory partial differential equation
with a damping term for Dirichlet and Neumann boundary conditions. We will present the
first and second order of accuracy difference schemes for the numerical solutions of in-
volutory problems. We used the procedure of the modified Gauss elimination method for
solving these difference schemes. Numerical analysis is provided. Chapter Five is the con-
clusion.

1.3 Basic concepts and definitions

This section highlights basic concepts and definitions in the theory of ordinary differential
equations with involution leading us to conduct and understand the works in this thesis.

1.3.1 Sturm-Liouville problem

(Arfken & WEBER, 1970)

We denote the Sturm-Liouville operator as

Lyl =~ [0 2] + atoy

and consider the Sturm-Liouville equation

Ly + Ay =0, (1.1)



where p > 0 and p and ¢ are continuous functions on the interval [0, /] with local boundary

conditions

a1y(0) + asp(0)y (0) = 0; Biy(l) + Bap(L)y (1) = 0, (1.2)
where of + a3 # 0 and 3? + 35 # 0 or nonlocal boundary conditions
y(0) —y(1) =0, ¥'(0) —y'(l) = 0, (1.3)

The problem of finding a complex number A = g such that the boundary value prob-
lems (1.1), (1.2) or (1.1), (1.3) have a non trivial solution are called Sturm-Liouville prob-

lems.

The value A = p is called an eigenvalue and the corresponding solution y(z, i) is called an

eigenfunction.

We will consider three type of Sturm-Liouville problem.
1. The Sturm-Liouville problem with Dirichlet condition

—u'(z) + Mu(z) =0, 0 <z <1, u(0) =u(l) =0

has solution

2
ug(x) = sinkTa: and \, = — (k—W) k=12, ...

In the case when ! = 7

ug(z) = sinkxr and A\, = —k*, k=1,2,....



2. The Sturm-Liouville problem with Neumann condition

—u'(z) + Mu(z) =0, 0 <z <1, 2 (0)=u()=0
has solution

ug(x) = cos ka and \, = (kTW), k=0,1,2,...

In the case when ! = 7
ug(z) = coskx and N\, = —k*, k=0,1,2,....

3.The Sturm-Liouville problem with nonlocal conditions

!

—u"(z) = du(z) =0, 0 <z < I, u(0) = u(l), u (0) = u (I)

has solution
ug(x) = cos2kx, k=0,1,2, ...

ug(x) =sin2kx, k=1,2, ...

and
Ne =4k% k=0,1,2,....

1.3.2Fourier series

(Arfken & WEBER, 1970)

Let [ be a fixed number and f(x) be a periodic function with periodic 2/, defined on (-, ).
The Fourier series of f(x) is a way of expanding the function f(x) into an infinite series

involving sins and cosines :

f(x) = % + ; an cos(nlﬂ) + ; by, SiH(Tllﬂ) (1.4)



where ay, a,, and b,, called the Fourier coefficients of f(x), are given by these formulas

1! 1 [
ap = —/ f(x)dx, a, = —/ f(x) cos(w)dx, n=1,2,..
L) lJ p
and

1 )
b, = —/ sin(w)dx, n=12...
L) p

1.3.3 Laplace transform

(Franklin & Trent, 1959)

Let f(t) be defined for t > 0. The Laplace transform of f(t) denoted by F'(s) or {f(¢)}, is

an integral transform given by the integral
F(s) = (£} = [ riear
0

Provided that this (improper) integral exsists i.e that this integral convergent.

The Laplace transform is operation that transforms a function of ¢ (i.e a function of time do-
main), defined on [0, co| to a function of s (i.e of frequency domain). The Laplace transform
can be used in some cases to solve linear differential equations with given initial conditions.
F(s) is Laplace transform or simply transform of f(t). Together the two functions f(¢) and
F'(s) are called a Laplace transform pair.

1.3.4 Fourier transform

(Bracewell, 1999)

The Fourier transform of a function f = f(x) denoted by F'(s) or F'{f(x)}, is an integral

transform given by the integral

F(o) = FU@) = [ fajerds



1.3.5 Dalamberts fourmula

(Wyley, Sons, 1993)

t

ult) = cos(et)p + 2 sin(ctys + [+ sin(e (e~ v) )iy

0

is the general solution of the initial value problem

u (t) + u(t) = f(t), t >0, u(0) = ¢, u'(0) =1

for second order ordinary linear differential equations with constant coefficients
1.3.6 Dalamberts formula for hyperbolic equations

(Dalambert, 1749)

In mathematics, and specifically partial differential equations (PDEs), d’ Alembert’s formula

is the general solution to the one-dimensional wave equation

92
% — Uy, (t, 1) = f(t, ).

The solution depends on the boundary conditions at t = 0 : u(z,0) = ¢(x) and u(x,0) =

() :

x4t t z+c(t—T)
Cplrtct)+p(r—ct) 1 1
(e 1) = . o [ (o [ rnedar
z—ct 0 x—c(t—T)

It is named after the mathematician Jean le Rond d’ Alembert, who derived it in 1747 as a

solution to the problem of a vibrating string.
1.3.7Banach fixed-point theorem
(Kreyszig, 1993)( Ashyralyev, 2014)

Definition 1.3.1. Let £ = (FE, d) be a metric space. A fixed point of a mapping 7 : £ — E

10



of a set F into itself is an element € E which is mapped onto itself, that is, T'x = x, the

image 7'z coincides with x.

Note that the Banach fixed-point theorem to be stated below is existence and uniqueness
theorem for fixed points of certain mappings and it also gives a constructive procedure for

obtaining better and better approximations to the solution of the equation

z="Tx.

Actually, we choose an arbitrary 2, € E and determine successively a sequence {x,},

defined by the relation

Tp=Txp_1,nEq. (1.5)

Here and in this Thesis, we will put N, = {n € Z; n > k} .

This procedure is called an iteration. Iteration procedures are used in many fields of applied
mathematics. Banach’s fixed-point theorem gives sufficient conditions for the existence and

uniqueness of a fixed point of a class of mappings, called contractions.

Definition 1.3.2. A mapping 7" : £ — E is called a contraction on £, if there is a positive

real number o < 1 such that forall z, y € E

d(Tz, Ty) < ad(z,y). (1.6)

Theorem 1.3.1. Assume that £/ # & is complete and let 7" be a contraction mapping on F£.

Then, 7" has precisely one fixed point.

11



CHAPTER 2

SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS WITH DAMPING
TERM AND INVOLUTION

2.1 Introduction
We consider the initial value problem for the second order ordinary differential equation with

damping term and involution

’

y'(t) = f(t,y(t),y (), y(u(t)), t € I = (—00,00), y(to) = Yo, ¥'(to) = ¥  (2.1)

Here u(t) is involutory, that is u(u(t)) = t, and t, is fixed point of u. Problem (2.1) does
not seem to yield directly to any techniques that ordinary differential equations without a
damping term can be used in (2.1). Therefore, in Chapter Two, we consider the second order
linear involutory differential equations with damping terms. We obtain an equivalent initial
value problem for the fourth order ordinary differential equations to the initial value problem
for second order linear differential equations with involution and dumping terms. This result
permits us to obtain bounded solutions of initial boundary value problems for involutory
telegraph equations in Chapter Three. Moreover, the Theorem on stability estimates for the
solution of the initial value problem for the second order ordinary linear differential equation
with involution and damping term is proved. Finally, the Theorem on the existence and
uniqueness of the bounded solution of the initial value problem for the second order ordinary
nonlinear differential equation with involution and damping term is established.

2.2 Linear ordinary differential equation with damping term and involution

Let C*[] be a set of all differentiable functions for all degrees.

Theorem 2.1. Let a(t), b(t), a(t) be a functions of class C'™° on I, such that b(¢) does not

vanish on the interval /, then the problem

!/

y (1) + )y (t) = a)y(t) +b(t)y(—t) + f(), t € L, y(0) = 0, y (0) =¥ (2.2)
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is equivalent to the following problem for the fourth order ordinary differential equation

[ y() = p()y() + a(t)y () +r(t) () + sty () + F(t), t € I,
y(0) = ¢, ¥ (0) = ¢,
y"(0) = a(0)p + b(0)p — a(0)¢ + £(0),
y"(0) = [~(0) [a(0) + b(0)] + a'(0) +b'(0)] ¢

|+ [0 (0) +a? (0) +a(0) = b(0)] ¥ + f'(0) = (0) £ (0),

—~

where

and

13
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Proof. Differentiating the equation (3.28) with respect to ¢, we get

y(t) = —a )y () = alt)y"(t) +a (Dy(t) +alt)y (1)

+b (t)y(—t) = b()y (=) + [ (1)

From that it follows

b(t)y(=t) + f (t)
+ 0 .

Replacing ¢ in equation (3.28) with —t, we get

y' (1) = —a(=0)y (=1) + a(=)y(~t) + b(~t)y(t) + f(~1).

Applying equation (3.28), we can write

—y (1) — )y (t) + a)y(t) + f(1)
y(_t) = —b(t) :

Differentiating the equation (3.28) two times, we get

"

Y (1) = —a" (y (1) — 2 ()y" (t) — a(t)y” (1) +a” (Oy(t) + 2 (t)y (1)

"

+a(t)y' (£) + 0" ()y(—t) — 20 (£)y (—t) + b(t)y " (—t) + f (8).

Substituting 3y (—t) and y/' (—t) from equations (2.5) and (2.6) in equation (2.8), we get

v (1) = —a(y" (t) + (alt) = 20'(1) ¥ (1) + (20'()) = " () ¥ (1)

+ () + bOB(=)) y(t) + £ (8) + bt F ()
+ (8(0) + b®)a(=1)) y(—t) = (20'(8) + bH)a(—1) ) y' (1)
= —a()y" (1) + (a(t) = 22'(1)) " (1) + (20'(t) =" (1)) ¥ (1)

14
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(t)
- (250 +sra(y) 22 O+ 00 + 00 = 0) 0
+ [(b”(t) + b(t)a(—t)) . (2@’@) + b(t)a(—t)) %} y(—1).
Using this equation and formula for y(—t) from equation (2.7) in equation (2.8), we get
w : y" (1)
" (1) = (26 +b(2) (ol 1)) — (0] )
N )~y
+ (a(t) 2 (t)) Y () (zb (1) + b(t)a( t)) o
+ {(b (t) + b(t)a(—t)) - (zb (t) + b(t)a(—t)) %} __yb (g)
+(20'(0) o' (0) y' (1) — (26 (0) + b(t)a(—1) (aft) - bo‘t()t)) y )
4 {(b (1) + bit)a(~)) — (26(5) + b(t)a(~1)) l; g” _O‘_i)(i)(t)
B B ) @ By()
+ (a0 + bb(-1)) y(t) — (2'(1) + bB)a(-1)) o
+ {(b (t) + b(t)a(—t)) - (2@’@) + b(t)a(—t)) %} “fg?g)
(@) + b f(=1) = (26'(0) + b()a(-1)) f(—%)
- {(b (t) + b(t)a(—t)> - <Qb (t) + b(t)a(—t)) %} %
=p)y(t) +q)y (t) +r(t)y () + sy () + F(2).

Using the equation (3.28) and formula (2.4) and initial conditions 4(0) = ¢ and ' (0) = 1,

we get

y"(0) = [ (0) [a(0) + b(0)] +'(0) + b’ (0) |

15



+(=a’ (0) + a” (0) + a(0) — b(0)¥ + f'(0) — a (0) £(0).
and

"

y (0) = (a(0) + b(0)p — a (0) ¥ + £(0).

So, the problem (3.29) is presented. Now, we will get (3.28) from (3.29). Denote that

/7

L(t) =y (1) + a(t)y (1) — a(O)y(t) — b(e)y(—t) — F(b), t e I.

It is easy to see that L(t) is the solution of the following problem

’ /

L' (t) + a()L'(t) = a(t)L(t) + b(t)L(—t), t € I, L(0) =0, L'(0) = 0.

From that it follows L(¢) = 0. Theorem 2.1 is proved. Now, we consider the applications of

theorem 2.1. First, we consider the initial value problem

y'(t) + o/ (t) = —5y(—t) + 4y(t) — 10sint + cost, t € I = (—00,00),
(2.9)

for the second order differential equation with damping term and involution. Noted that
it is an easy problem without involution term. But, we can not use classical methods for
solving problem without involution term directly for the problem with damping term and
involution. In this simple example, we will show how we study such kind of problem. In the
same manner as Theorem 2.1 to problem (2.9), we can obtain the following equivalent initial

value problem for the fourth order differential equation

" v T T
y(4)(t) —8y (t)—9y(t)=0,tel, y(g) =1,¢(z)=0, y”(i) = -1, y’”(§) =0.

B

The auxiliary equation is

m*—8m?>—9=0

16



We have four roots =7 and +3. Therefore, the general solution of

yD(t) — 8y (t) — Iy (t) = 0
is

y(t) = cysint + cycost + cze + e,

Therefore, the exact solution is
y(t) =sint.
Second, we consider the initial value problem

y'(t) +ay (t) = by(=t) +ay(t) + f(t).t € I,
(2.10)

y(0) = ¢, ¥'(0) =

for the second order involutory ordinary differential equation with damping term. We are
intersted in studying the stability of problem (2.10) on /. It is important to study several
problems in applicatons. In general cases of o, a and b the solution of (2.10) is not bounded

on /. Applying Theorem 2.1, we get the equivalent initial value problem

17



y(t) + (a® = 0)y(t) — (2a+ a®)y"(t) = F(t),

F(t) = —af(t) + bf(=t) —af (t) + f'(t), t € I,

y(0) = ¢, y'(0) =, (2.11)

y'(0) = (b+a)p+ f(0) — ap,

L ¥ (0)=—ad+a)p+ (~b+ata)y+ f(0) —af0)

for the fourth order ordinary differential equation. We will obtain the solution of the problem

(2.11). Assume that |b| (|a| ,a € (— ("‘TZ + 2—22) ,—%) . Then it is easy to see that

d2 2 4 d2 2 4
— (ﬁ_ (a+%+\/aa2+%+62)> (ﬁ_ <a+%_\/aa2+%+b2>)y(t).

18



Therefore, problem (2.11) can be written as initial value problem

( (%— (a+%2+\/M))y(t) =o(t)

y(0) = ¢,y (0) =,

F(t) = —af(t) + bf(—t) —af (t)+ f'(t), t € I, (2.12)

o) = (8- = oot £ 518 o4 10 - v,

v'(0) = —a(b +a)p

- (b—i—%Q—l-\/aaz—l—af—l—bQ)w—i-f/(O)—af(O)

for the system of second order differential equations. Applying the d’ Alembert’s for-

\

mula, we get

B sin(mt) Psin(m (t — s))
y(t) = cos(mt)p + T@/J + /0 Tv(s)ds, (2.13)
v(t) = cos(nt) [( - = aoz2 + %4 + b2> v+ f(0) — a¢] (2.14)

2

4 Sinln [ (b+a)p <b+%+\/aa2+%4+b2)w+f'(0)—af(0)]

sm n t—s
/0 L= sy,

19



where

a2 at
— _ 2 _ b2
m\/a+2+\/aa+4+,
2 4
n:\/a—l—%—\/aoﬂ—i—%—i—bz.

Since F(t) = —af(t) + bf(—t) — af (t) + f"(t)and

v(t) = cos(nt) [(b - %2 - \/aa2 + %4 + bQ) gp] (2.15)

+Sin(nt) [—a(b+ a)p — (b+ a_2 + \/aa2 + %4 + 62) ¢]

n 2
_a/o sin(n (t — 8))f(s)ds N b/ sin(n (t + S))f(s)ds

n _t n

—oz/O cos(n (t —s))f(s)ds + f(t) — /0 nsin(n (t — s)) f(s)ds.

Applying formulas (2.13) and (2.15) we get

sin (mt)

y(t) = cos(mt)p + (2.16)

m
cos(nt) — cos(mt) a? \/ , ot
+ R b 5 ao® + 1 +0% |
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< sin (nt) — L sin (mt)

m2 — n2

X [—a(b+a)gp— <b+%2+\/aa2+%4+b2) @b]

41 /0 [—nsin(n (t — 5)) + msin(m (t — 5))]f(s)ds

m2 — n2

(67

_—/O [cos(n (t — s)) — cos(m (t — s))]f(s)ds

m2 — n2

a

_2—/0 [—nsin(n (t — s)) + msin(m (t — s))] f(s)ds

m2 — n?

_ﬁ / [_l sin(n (t+s)) + %sin(m (t+ 5))]f(s)ds.

—t n

2 b2

Theorem 2.2. Assume that |b| < |a|, a € (— (O‘T + g) , —%2) Then the problem (2.10) is

stable and the following stability estimate holds

sup y(6) < M(ab.a) |I¢l + o] +150)] + [ 17(6)]ds
€

The proof is based on the formula (2.16) and the triangle inequality.
2.3 Nonlinear ordinary differential equation with involution

We consider the initial value problem

y' (1) + ay (t) = by(—t) + ay(t) + f(t,y(t),y'(t)), t € I,
2.17)

y(0) = ¢, ¥'(0) =

for the second order nonliner involutory ordinary differential equation with damping term.
We are intersted in studying the existence and uniqueness of bounded solution of problem
(2.17) on I. In general cases of o, a and b the solution of (2.17) is not bounded on /.We will

applied a fixed point theorem.

Let C™M(I) be metric space of all continuously differentiable functions defined on the
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interval [ with the metric d defined by

d(x,y) = sup |z(t) — y(t)| + sup
tel tel

o) _ds0)
dt dt |’

Note that C")([) is the complete space. This is first condition of a fixed point theorem in

metric space(Ashyralyev & Sarsenbi, 2015)

Theorem 2.3. Assume that |[b| < |a|, a € (— (%2 + b—22> ,—%)and f is continuous and

bounded function on the region

P={(t,z,y): —co<t<oo, |[t—p| <M, |y—1|< M}

and f(0,¢,1) = 0. Suppose that f satisfies a Lipschitz condition on P with respect to its
second and third arguments, that is, there is a constant [ such that for (¢,z,u), (¢,y,v) €

P
|t z,u) — f(t,y,0)] <1l —y|+|u—1]). (2.18)
Then, initial value problem (2.17) has a unique solution y € C"V([).

Proof. The procedure of proving theorem on the existence and uniqueness of a bounded

solution of problem (2.17) is based on reducing this problem to an integral equation

y(t) = Ty(t), (2.19)

where

sin (mt)

Ty(t) = cos(mt)p + (0

m
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cos(nt) — cos(mt) a? at
+ R [(b—T— aa2+z+b2 ©

L sin (nt) — L sin (mt)

m2 — n2

X [—a(b+a)g@— <b+%2+\/aa2+%4+b2)¢+af(0)]

—l—ﬁ/g [—nsin(n (t — s)) + msin(m (t — s))]f (s, y(s), y/(s))ds
mort [ leostin e = ) = costm (¢ = )G,/ ().
_h/o [—nsin(n (t — s)) + msin(m (t — $))]f(s,y(s), y/(s))ds

_h / [_l sin(n (t+s)) + %sin(m (t+ sN]f(s,y(s),y (s))ds.

—t n

The proof of equation (2.17) is based on the formula (2.19). Note that intergal form is
a Volterra type integro-differential equation of the second kind. Therefore, the recursive
formula for the solution of problem (2.19) is

() = cos(mt)p + S2L)

m

cos(nt) — cos(mt) a? ot
+ R b—7— aaz—l—z—i—b? ©

L sin (nt) — L sin (mt)

m2 _ n2
o? ot
X [—a(b—l—a)gp— (b—i—? + \/aa2+z —I—b2) z/;+af(0)] ,
yi(t) = yo(t) (2.20)
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1

s

m2

/O [~nsin(n (t — s)) +msin(m (t — )1/ (s, y5-1(5), y;_1(s))ds

(07

S / [cos(n (£ — 8)) — cos(m (£ — 81 (s, yj1(), 1 ())ds

m2 — n2

—L/O [~nsin(n (t = 5)) + msin(m (t = $))|f (s, yj-1(5), y;_1(5))ds

m2 — n2

_ﬁ /_t[—% sin(n (t +s)) + %sin(m (t+9)]f(s,yj-1(5), y;-fl(s))ds,j > 1.

According to the method of recursive approximation (2.20), we get

00 = 300)+ 3 o)~ )] @21
We have that
wer®)=u) =~ [ nsingo - ) +msin(m (- 9)] 222
<[ £ 305) 35(5)) = F(s5,05-1(5), 54 (5)) | ds
s [eosta =)~ costm ¢~ )
x| F(,5(), () = Fl5. 53105, w1 (5)) | ds
—h/ot[—nsm(n (t — ) + msin(m (£ — 5))]
x| S (,05(), () = Fl5. 53105, w1 (5)) | ds
—h/j[—%sm(n(t%—s))%—%Sin(m(t—i—s))]
x| S (5,05(5).5(5) = F(s,951(5), 91 (5)) | ds,
j = L

Therefore, applying the triangle inequality, formula (2.22) and Lipschitz condition (2.18),
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we get

i1 (t) =y (O] [0 (8) — (1)) (2.23)
||

< M(a,b,0)l / s () — g51(8)] + [w3(5) — o1(s)[] ds

It

for any ¢t € I and 5 > 1.Moreover, applying the triangle inequality, we get
()], |w6(1)] < Mi(a,b,a,¢,9),

[92(8) = wo ()], 192 (£) — o (D) < M(a, b, ) Jt], (2.24)

for any t € /. Applying estimates (2.23) and (2.24) , we can prove that

I OEAG] (2.25)
‘t|j+1

(4 1)!

[y (t) —yi(0)],

< [4M(a,b,a)My(a, b, a))’

forany ¢t € I and j > 1.Therefore, applying the triangle inequality, formula (2.21) and and
estimates (2.23) and (2.25), we get

ly(t) = yu ()], [y (t) — v, (0)] |
. |t|J+1

< Z [AM (a,b, @)l Ms(a,b, )]’ G+1)

j=n+1

— 0,n — o0,

(O], |y ()] < Mi(a,b, a, 0,9) + Ma(a, b, @) [t]
; ’tv+1

+ Z [4M (a, b, @)l My (a, b, «)] m

Jj=n+1

for any ¢t € /.Theorem 2.3 is proved.
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CHAPTER 3

METHODS OF SOLUTION OF TELEGRAPH TYPE INVOLUTORY PARTIAL
DIFFERENTIAL EQUATIONS

3.1 Introduction

Differential equations with involution appear in mathematical models of ecology, biology,
and population dynamics. As it noted in Introduction, in recent decades, one-dimensional
elliptic and parabolic type partial differential and difference equations with involution in x
have been investigated by many authors. A mixed problem of one dimensional telegraph
equation with the involution in x was investigated in the paper of Ashyralyev, and Sarsenbi,
2017(Ashyralyev & Sarsenbi, 2017a). The stability estimates in the maximum norm in ¢ for
the solution to this problem to be established. As mentioned before we need the values of
unknown functions at the previous times for solving delay differential equations. Therefore,
it is important to study telegraph type differential equations with time involution. Noted that
telegraph type differential equations with time involution are not investigated. Therefore,
the main aim of Chapter Three is to study the boundedness solution of several involutory
telegraph equations. Applying the results of Chapter Two and the Fourier series, Laplace and
Fourier transform methods, we obtain the exact solutions of several problems for involutory
telegraph equations.

3.2 The Fourier series method

First, we consider the initial boundary value problem
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8215&2’” + aaugt’x) — Uy (t, ) — Dugy (—t, ) = g(t, 1),

re(0,m), —oo<t< oo,
$ (3.1

w0, 2) = p(2), w(0,2) = P(z), x € [0,7],

| u(t,0) = u(t,m) =0, t € (—o0, 0)

for one dimensional telegraph type involutory equation. Here ¢(t,z) (t € I, x € (0, 7)) and

o(x), Y(x)(x € [0,7]) are given smooth functions and 0 < «. Assume that g(¢,0) =
g(t,m) =0,

t € I and p(0) = ¢(m) = 1(0) = 9(w) = 0. For solving this problem, we consider the

Sturm-Liouville problem
—u"(xz) = Mu(x) =0, 0 <z < m,u(r) =u(0) =0

generated by the space operator of the problem (3.1). As noted in Chapter 1 the solution to

this Sturm-Liouville problem is
M = K2, ugp(z) =sinkz, k=1,2,....

Then, applying formulas

™

- . 2 .
g(t,x) =Y gr(t)sinkaz, gi(t) = = g(t,y)sin kydy,
1 7o

™

e 2
= 1 k‘ y = — 1 k d 3
() ;wksm 7, o =~ ply) sin kydy

™

V() = 3 dusinke, = = Uly)sin kydy
k=1

0
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we obtain the Fourier series solution of mixed problem (3.1) by the formula

u(t,z) =Y Ap(t)sinkz, (3.2)
k=1

where Ay(t) are unknown functions. Applying this equation and initial conditions, we

get
Z Al(t)sinkx + « Z Al (t) sin kx
k=1 k=1

+a Z K Ag(t)sinkx + b Z k* Ay (—t) sin ka
k=1 k=1

= gr(t)sinkz, x € (0,7), —oo0 <t < o0,

k=1
ZAk (0) sin kz = Z o sinkx, x € [0, 7],
k=1 k=1

ZA;C (0) sin kx = Zwk sinkx, x € [0, 7).
k=1

k=1

Equating coefficients sin kz, k£ = 1,2, ...to zero, we get the initial value problems

AL(t) + A (t) + ak? Ag(t) + bE*Ap(—t) = gr(t), — oo <t < 00,
(3.3)

Ar(0) = o, A(0) =y

for the second order involutory ordinary differential equations. Applying results of Chapter

Two, we get

cos(nt) — cos(mt)
2 _ 2

Ag(t) = cos(mt)py + sin(mi)

Py +

me —n
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2 4
X [bk2 - % - \/aa2k2 + % + D2kA | o

L sin(nt) — - sin(mt)

m2 — n2

2 4
b2+ &+ \/aoﬂk? + TR

—a(bk* + ak?)py — :

el [—nsin(n (¢ — $)) + msin(m (¢ — )] ge(s)ds
s [ leostnte = 9) = costm ¢ = )] u(s)ds
_mzL—Qn? /Ot [—nsin(n (t — s)) +msin(m (t — s))] gr(s)ds
S / {_%smm (t-+ )+ - sin(m (1 + )| gu(s)ds,

where

4

2
m:\/ak2+%+\/aa2k2+%+b2k4

2 4
n:\/ak‘2+%—\/aa2k2+%+b2k;4

(3.4)

Then, applying formula (3.2), we can obtain Fourier series solution of mixed problem (3.1)

by the following formula

sin(mt)

u(t,z) = i sin kx {cos(mt)gok + Uy,

k=1
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+COS(”t) — cos(mt) [ka _ %2 — \/aa2k2 + %4 + b2kt

m2 — n?

L sin(nt) — =+ sin(mt)

m2 — n2

2 4
bE2 + % n \/m%? + O‘Z + b2k

:

X (—a(bk2 + ak?®) oy —

s [ FnsinGa (6= ) + msin(m (¢ = )] gu(s)ds
= / [cos(n (t — 5)) = cos(m (t = 5))] gu(s)ds
_%/0 [—nsin(n (t — s)) + msin(m (t — s))] gr(s)ds

bk?

__/ [—l sin(n (t +s)) + %Sin(m (t+5))| gul(s)ds}.

m2—n?J ,| n

For example, for the involutory telegraph problem

( 0%u(t,x) Ou(t,z)

52 T T — Qg (t, 1) — by, (—t, 7)

= ae 'sin (x) + be’ sin (),

r e (0,m), —oo<t< o0,

u(0,z) = sin(z), w(0,x) = —sin(z), = € [0, 7,

u(t,0) = u(t,m) =0, t € (—o0,00)
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g(t, ) = ae~'sin () + be' sin (z), ¢(x) = sin(x), P(x) = — sin(z). Therefore,

ae”t +bet, k=1,

gr(t) =
0,k # 1,
(1L k=1,

Yr =
L0 k1,
(1 k=1

Y =
| 0. k#£L

Applying formula (3.4), we get Ax(t) = 0 for k # 1 and

Ay (t) = cos(mt)p, + Slmt)

(&

2 Y1

| cos(nt) — cos(mt) [b a2 \/ i

a
R aoﬁ—l—z—l—b?

L sin(nt) — - sin(mt)

2 4
b+a—+\/aa2—|—%+b?

m2_n2 2

(—a(b +a)p; —

)

ﬁ/ﬂ [—nsin(n (t — s)) + msin(m (t — s))] g1(s)ds
_h/o [cos(n (t — s)) — cos(m (t — 5))] g1(s)ds
_h/o [—nsin(n (t — s)) + msin(m (t — s))] g1(s)ds

b or 1. 1
_m/_t {—ﬁ sin(n (t + s)) —I—Esm(m (t+5))| g1(s)ds
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sin(mt) N cos(nt) — cos(mt)

= cos(mt) — .

m m?2 — n?

L sin(nt) — L sin(mt)
2

2 4
b+%+\/aa2+%+b2

m?2 — n?

(—a(b +a)+

+m2 1_ 2 /0 [—nsin(n (t — s)) + msin(m (t — s))] (ae™ + be®) ds
_ﬁ/o [cos(n (t — s)) — cos(m (t — s))] (ae*S 4 bes) ds
—h /0 [—nsin(n (t — s)) + msin(m (¢t — 5))] (ae™® + be®) ds

b T 1 . I e g
——/ [——sm(n(t—l—s))—i—Esm(m(t—ks)) (ae +b6)d8.

m2—n?J_,| n

2 2 at
m” —n”=2y/aa? + - + %

we have that

Al (t) = G_t.

Then,
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u(t,z) = e 'sinz.

Note that using similar procedure one can obtain the solution of following initial boundary

value problem

p
0%u(t,x) Au(t,x) 9%u(t,x) &u(d—t,x)
ot? +a at —a Z Qr Ox2 —b Z T ox2 = g(t’ ‘T)’

x=(21,...,2,) €, —00 <t < 00,
3.5)

u(t,z) =0, x € S, t € (—o0,00)

for the multidimensional involutory telegraph type differential equation. Suppose that o, >
a > 0and g(tz)(t € (—o0,00),x €Q), ¥(z), p(z) (t € (—o0,00),z € Q) are given
smooth functions. Here and in future € is the unit open cube in the n—dimensional Eu-

clidean space R" (0 < z; < 1,1 < k < n) with the boundary

S Q=QuUS.

However Fourier series method described in solving (3.5) can be used only in the case when

(3.5) has constant coefficients.

Second, we consider initial boundary value problem
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8215&2’” + aaugt’x) — Uy (t, ) — Dugy (—t, ) = g(t, 1),

re(0,m), —oo<t< oo,
$ (3.6)

w0, 2) = p(2), w(0,2) = P(z), x € [0,7],

| uz(t,0) = u,(t,m) =0, t € (—00,00)

for one dimensional telegraph type involutory equation. Here g(¢,x) (t € I,z € (0,7)) and

o(x), Y(z)(x € [0,7]) are given smooth functions and o« > 0. Assume that g,(¢,0) =
gw(ty 77—) =0,

t € Iand ¢'(0) = ¢'(7w) =1'(0) = ¢'(7) = 0. For solving this problem, we consider the

Sturm Liouville problem

—u"(z) — Mu(z) =0, 0 <z < m,d/(7) =/ (0) =0

generated by the space operator of problem (3.6). As noted in Chapter 1 the solution of this

Sturm-Liouville problem is

M = K2, ugp(n) = coskx, k=0,1,2, ...

Then, applying formulas

g(t,x) = gu(t) cosk,
k=0

™

2
gr(t) = ;Og(t,y) cos kydy, k # 0,

34



™

> 2
p(r) = Z prcoskr, o = ;Ow(y) cos kydy, k # 0,
k=0

T

U(x) = Z@/Jk coskx, Y = % ¥ (y) cos kydy, k # 0,

0
k=0
s

go(t) = — g(t,y)dy,
7o

™ ™

aolt) = = ely)dy, dolt) = = vlu)dy

™0

we obtain Fourier series solution of mixed problem (3.6) by the formula

u(t,z) = Z Ag(t) cos kx, 3.7)
k=0
Here Ay () are unknown functions. Applying this equation and initial condition, we get

Z AL (t) coskx + a Z A (t) cos kx

k

00
=0 k=0

+a Z k*Ap(t) coskx — b Z k*Ap(—t) cos kx
k=0 k=0
= gr(t)coskx,z € (0,m),—00 < t < 00,
k=0

ZAk (0) coskx = ngk coskx, x € [0, ],
k=0

k=0

ZA;@’ (0) cos kx = Zwk coskzx, x € [0,7].
k=0

k=0
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Equating coefficients cos kx, k = 0, 1, 2, ...to zero, we get

AL(E) + ady(t) = go(t), — o0 <t < o0,

(3.8)
Ao(0) = o, AH(0) =1y
and
([ A7(8) + AL (t) + ak2A(t) + bE2 Ag(—£) = go(t),
— 00 <t <00, (3.9)

AR(0) = @r, A4(0) =i,k #0

\

for the second order involutory ordinary differential equations. Applying results of Chapter

Two, we get

Sin(mt)w N cos(nt) — cos(mt)

k
m?2 2

x |bk? — O‘—z — ac?k? + o + b2kA (3.10)
2 A Pr '

L sin(nt) — =+ sin(mt)

Ag(t) = cos(mt)pr + —

(—a(bk® + ak?) ey,

)

m2 — n2

2 4
bk? + % + \/aa2k2 + % + b2kA

%—ﬁ/0 [—nsin(n (t — s)) + msin(m (t — s))] gr(s)ds
_ﬁ/o [cos(n (t — s)) — cos(m (t — s))] g(s)ds
_h/o [—nsin(n (t — s)) + msin(m (t — s))] gr(s)ds
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b °r 1 . I
_2—/ {__ sin(n (t+s)) + p— sin(m (t + s)) | gr(s)ds, k # 0,

m2—n?J_,| n

The problem (3.8) is not involutory problem. It is easy to see that
(A5(t) + ado(1)) = go(t).
Then
AQ(t) + aAg(t) = AH(0) + aAg(0) + go(s)ds, —oo < t < 0o
or
AL(t) + aAg(t) = 1o + apg +4 go(s)ds, —oo < t < 00, Ag(0) = .
Solving this problem, we can obtain

Ao(t) = e g + (1o + Oz(po)f) e~V dy 41 eaa(tfy)ygo(s)dsdy

Q|+

= e "o + (1o + agp) (1 — e’at) +b é (1 — e’a(t’s)) go(s)ds

11 B 1 o
= %o + o (1 —e t) Yo +4 o (1 — ot )) go(s)ds. (3.11)

Then, applying formulas (3.10) and (3.11), we can obtain Fourier series solution of mixed

problem (3.1) by the following formula

1 1 1
u(t,z) = %o + o (1—e™) o +§ o (1 — e 7)) go(s)ds

sim(mt)l/}]C N cos(nt) — cos(mt)

+ Z cos kx {cos(mt)gpk +
k=1

2 4
X [bk:Z - % - \/<aa2k2 n O‘Z + b2k4)] on

L sin(nt) — - sin(mt)
2

m2 — n2

m?2 — n?
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2 4
bk + % + \/aa2k2 + % + b2kA

)

X (—a(bk2 + ak?)py, —

—l—ﬁ/{) [—nsin(n (t — s)) + msin(m (t — s))] gr(s)ds
_ﬁ/o [cos(n (t — s)) — cos(m (t — 5))] gr(s)ds
_h/o [—nsin(n (t — s)) + msin(m (t — s))] gr(s)ds

b °T 1. 1
_m/ |:__Sln(n<t+$)>+ESln(m(t+8)) gr(s)ds}.

—t n

For example, for the involutory telegraph problem

( %u(t,x) Ou(t,x)

a2 T o WUaa (t7 I) — by, (_ta 37)

= (ae™" —be')cos (x), z € (0,7), —oo <t < o0,

u(0, z) = cos(z), u(0,2) = — cos(x), z € [0, 7],

U (£,0) = u,(t,m) =0, t € (—00,00)

g(t,x) = (ae™" — be') cos (z) , p(x) = cos(z), ¥(x) = — cos(z). Therefore,

(ae™t 4+ be'), k=1,
gr(t) =
0, k+1,
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Applying formula (3.4), we get A;(t) =

1L, k=1,
Pr =
L0 k1,
(1 k=1
Yy, =
0. k#1L

e " and

u(t,z) = e ' cosz.

Note that using similar procedure one can obtain the solution of following initial boundary

value problem

p
0%u(t,x) au t x) 82u(t )
ot? t+a Z Or—5p2 Ox2

bz 8udtx) g(t l’)

r=(11,...,2,) €Q, —00 <t < 00, (3.12)

| g—%(t,x) =0,z€S8,te€(—o0,00)

for the multidimensional involutory hyperbolic type differential equation. Assume that o, >

a>0,0<aandg(tz)(t € (—0,0),z€Q), ¢¥(z), p(z) (t € (—00,00),z € Q) are

the smooth functions. Here and in future 72 is the normal to S. However Fourier series

method described in solving (3.12) can be used only in the case when (3.12) has constant

coefficients.
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Third, we consider initial boundary value problem

82 5 0 )
gg 2 4o ugiz) — Qg (t, )

_buxx (_t> .1') = g(ta IE),

re (0,m), —oo<t< oo, (3.13)

w0, ) = ¢(z), w(0,2) = P(z), © < 0,7,

| u(t,0) = u(t, m), us(t,0) = uy(t, ), t € (—00,00).

for one dimensional hyperbolic type involutory equation. Here ¢(t,z) (t € I,z € (0, 7)) and
o(x), Y(x)(z € [0, 7]) are given smooth functions and 0 < «. Assume that g(¢,0) = g(t, ),
9:(t,0) = g, (t,m),t € I and

©(0) = p(n), ¢'(0) = ¢'(7), ¥(0) = ¥(m), ¥'(0) = ¢'(r). For solving this problem, we

consider the Sturm Liouville problem

—u'"(z) = Mu(z)=0,0<z<m

u(m) = u(0), v (w) = v/ (0) generated by the space operator of problem (3.13). As noted in

Chapter 1 the solution of this Sturm-Liouville problem is

Mo = 4k?, up(z) = cos(2kx), k =0,1,2, ..., up(z) = sin(2kz), k = 1,2, ....
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Then, applying formulas

g(t,x) = Z gk (t) cos 2kx + Z fr(t) sin 2k,
k=0 k=1

™

2
gi(t) = ;Og(t,y) cos 2kydy, k # 0,

T

go(t) = = g(t,y)dy,
7o

T

2 )
Je(t) = %Og(t, y) sin 2kydy,

o(x) = Z o cos 2kx + Z & sin 2k,
k=0 k=1

™

Ok = ;Ow(y) cos 2kydy, k # 0,

™

& = — @(y) sin 2kydy,

70

U(x) = Z Yy, cos 2kx + Z wy, sin 2k,
k=0 k=1

™

e = 2

™o

Y (y) cos 2kydy, k # 0,

™ e

1 1
o = — (y)dy, o = — Y(y)dy,
70 o

™

2
wy = = Y(y) sin 2kydy,
™o

we obtain Fourier series solution of mixed problem (3.13) by the formula

u(t,x) = Z Ay (t) cos 2kx + Z By (t) sin 2k,

k=0 k=1

(3.14)

where Ax(t), k =0,1,2,..., and Bi(t), k = 1,2, .... are unknown functions.

Equating the coefficients of cos 2kx, k = 0, 1, 2,

initial value problems

41
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B, (t) + aB,(t) + 4ak?®By(t) + 4bk>By(—t) = fi(t),

—00 < t < 00,

Br(0) = &, By(0) =wy, k=1,2,...,

AY(E) + QAL (t) + Aak? Ay (t) + 4bk2 Ay (—t) = gi(t),

{ —00 <t < oo,

A1) + ady(t) = golt), — o0 <t < o0,

Ao(0) = o, A(0) = tho

for the second order involutory ordinary differential equations. Applying results of Chapter

\

Two and , we get

sin(mt cos(nt) — cos(mit
Ag(t) = cos(mt)py + ( )¢k + ( )2 2( )
m2—n
2 4
X [bk2 _r \/<aa2k2 + 4 b2k4>] Ok
2 4
L sin(nt) — L sin(mt)
m2 — n2

_ 2 o |2 @ o2 L &L o
X | —a(bk” + ak?)py bk—|—2+ aak:+4+bk

)

1 / [~nsin(n (t — ) +msin(m (¢ — 5))] gu(s)ds

m2 — n?
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(%

_2—/0 [cos(n (t — 5)) — cos(m (t — s))] gr(s)ds

m2 — n?

. * /0 [—n sin(n (t — s)) + msin(m (t — S))] gk(S)dS

m2 — n2

_L /t {_l sin(n (t +s)) + %Sin(m (t+5))| ge(s)ds, k # 0,

m2 — n? n

sin(mt) N cos(nt) — cos(mt)
Wk

By (t) = cos(mt)&, +

(3.15)

m2 — n2

2 4
x [bkz . % . \/<aa2k2 n O‘Z n b2k4)] &

% sin(nt) — % sin(mt)
2

m?2 — n?

X (—a(bk2 + ak®)&, —

2 4
bk? + % + \/<aa2k2 + % + b2k4)] wk>

1

s

m

/0 [—nsin(n (t — s)) + msin(m (t — s))] fr(s)ds

2

(0%

_2—/0 [cos(n (t — s)) — cos(m (t — s))] fe(s)ds

m2 — n?

a

__a /0 (—nsin(n (t — 5)) + msin(m (t — 5))] fu(s)ds

m2 — n2

m2 — n? n

_L/t [_lsm(n (t+5)) + %sin(m (t+ )| ful(s)ds,k £ 0,

Then, applying formula (3.14) and (3.11)we can obtain Fourier series solution of mixed
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problem (3.13) by the following formula

1 1 1
u(t,z) = %o + o (1—e) 9o +§ o (1-— e’o‘(t"s)) go(s)ds

> sin(mt) cos(nt) — cos(mt)
+ ; cos 2kx {Cos(mt)gok + U + 2 — 2
2 4
X [bkzZ _L \/<a0z2k2 + Gl + b2k4)] Pk
2 4
L sin(nt) — L sin(mt)
m2 — n2

2 4
bk* + % + \/aa2k2 + % + b2k

)

X (—a(bk2 + ak?)or —

1

s

m2

/0 [—nsin(n (t — 5)) + msin(m (t — 5))] gu(s)ds

Q

_2—/0 [cos(n (t — s)) — cos(m (t — s))] g(s)ds

m2 — n?

_L/O [—nsin(n (t — s)) +msin(m (t — 5))] gi(s)ds

m2 — n2

__ b /O {_l sin(n (t +s)) + %Sin(m (t+ S))} gr(s)ds}

m2—n?J ,| n

sin(mt) cos(nt) — cos(mt)

in 2k t
+;Sln x{cos(m )k + - Wi + 2 2

—n

2 4
bk* + % + \/aa2k2 + % + 0%k

:

X (—a(bk2 + ak®)&, —
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41 /0 [—nsin(n (t — 5)) + msin(m (t — s))] fu(s)ds

m2 — n2

o

G / [cos(n (t — ) — cos(m (t — 5))] fx(s)ds

m2 — n2

a

e / [—nsin(n (t — 5)) + msin(m (t — 5))] fu(s)ds

m2 — n2

b T 1. 1
cot [ | ) 4 sinon e+ 5) | o))

m2—n?J_,| n

For example, for the involutory telegraph problem

( 0%u(t,x) Ou(t,x)

St T = QU (t, 1) — by, (—t, 7)

= (4ae™" 4+ 4be')sin (2z) ,2 € (0,7), —o0 <t < 00,
(3.16)
u(0,z) = 1 +sin(2z), u(0,2) = — (1 +sin(22)), = € [0, 7],

L u(t,0) = u(t, m), ug(t,0) = us(t, m), t € (—00,00)

g(t,x) = (4dae™ + 4be)sin (22), o(x) = 1 4 sin(2z), ¥(x) = — (1 + sin(2z)) . There-

fore,
(
et k=0,
gr(t) =
| 0, k#0,
)
dae”t + 4bet, k=1,
fi(t) =
L 0, k#1,
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Pk =

0, k #0,

1, k=1,
§e =

0, k# 1,

~1, k=0,
Up =

| 0, k#0,

1, k=1,
W =

0, k# 1.

\

we obtain Fourier series solution of mixed problem (3.14)equating the coefficients of cos 2kz,

k=0,1,2,...,and sin 2kz, k = 1, 2, ... to zero, we get initial value problems

(

B (t) + Bi(t) + 4aB,(t) + 4bB,(—t)
= 4ae™t + 4bet,

—00 < t < 00,

| Bi(0) =1, By(0) = —1,

( !
Aj(t) + Ap(t) =0, —oo <t < o0,

| 40(0) =1, A4(0) = 1.

Applying formulas (3.11) and (3.15), we get B;(t) = e *, Ag(t) = e " and
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u(t,z) = Ag(t) + By(t)sin 2kx = e~ + e 'sin (27) .

Note that using similar procedure one can obtain the solution of following initial boundary

value problem

(52 n 2 n 2
0%u(t,x) Au(t,x) d%u(t,x) O?u(d—t,x)
o T me g — b e = gt o),
r=

r=1

x=(21,...,2,) €Q, —00 <t < 00,

(3.17)

Ou(t,x)

ou(t,x
L u(tvx)‘sl = u(lf,$)‘52, p — e

S op

ate_v
. (=00, 00)

for the multidimensional involutory telegraph type equation. Assume that a, > ag > 0,0 <
aand g (t,z) (t € (—00,00),2 € Q) , ¥(x) (t € (—00,00),z € Q) are smooth functions.
Here S = 571U Sy, @ = 51N S,. However Fourier series method described in solving (3.17)

can be used only in the case when (3.17) has constant coefficients.
3.3 The Laplace transform solution

First, we consider the initial boundary value problem
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( 2'LL x u €T
g ag’ ) 42 g; ) qug, (t,x) — bug, (—t, )

= (—4ae™t — 4bet)e ",

z € (0,00), t € (—00,00) (3.18)

uw(0,2) = e % uy(0,2) = —e2*, x € [0, 00),

[ u(t,0) = e, uy(t,0) = —2e7", t € (—00,00)

for a one dimensional involutory telegraph equation. For solving the problem (3.18) we

denote that
u(t,s) = L{u(t,x)}.

Appling Laplace transform of both side with respect to =, we get

ug (t,8) +ug (t,8) —a {32u (t,s) — set — (—2€_t)}

1
—b{sPu(—t,s) — set — (=2e")} = (—4ae™t — 4be’
{su( ,S) — se ( e)} (—4ae 6)5—1—2’
1 1
U(O7S)ZH—27UI€<075):_S+2‘

From that it follows initial value problem

U (t,8) +ug (t,8) — as®u (t,s) — bs’u(—t,s) =a(s)e " +b(s)e,
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Applying Theorem 2:1, we get the equivalent initial value problem.

u® (t,8) — (2a8% + 1) uy (t, 8) + (a® — b%) s*u (t, s)

= ;r;; [a%st — b2st — 2as%], t € 1,

(3.19)

2
u(0,s) = SJ%Q, u (0,8) = _5%2’ ug (0,8) = 26;—2“,

u®(0,5) = =5 (2bs + 2as> — 1)

Then it is easy to see that

u® (t,5) — (2as® + 1) uy (¢, 5) + (a® = b?) s*u (¢, s)

d 2, 1 \/2 1 24
—<%—<as —I—§+ as +1+b8
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d> 1 1
X <@— (a52+§—\/a52+1+b284>> u(t,s)

Therefore, problem (3.19) can be written as initial value problem

,
(8 - (oo 7)) e =t

U(O, S) = ;__Qa Uy (075> = _‘H_Lga

(- o+ 3= T T 00

= ;r;; [a%st — b2st — 2as%], t € 1,

o0,8) = (b5t —§ = fas? ] 5 st oy 4 1

v'(0,s) = L=t L <b32 -1 \/a52+%+b234)

Applying results of Chapter Two, we get

eft

s+ 2

u(t,s) =
Therefore,

u(t,r) =e e %,

is the exact solution of problem (3.18).

Note that using similar procedure one can obtain the solution of following initial boundary
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value problem

( n n
%u(t,x) Au(t,x) 0%u(t,x) O%u(d—t,x)
gt oy —a) ey — by g = gt a),
’)":1 s s

r=1

(3.20)

\ u(t,x) = a(t,x), ug, (t,x) =6 (t,x), 1<r<n,tel, zeSt

for the multidimensional telegraph type involutory partial differential equations. Assume
that 1 < a,a, > ap > 0 and g (¢, ) (t €l x €§+) , U(z), o(x) (x €§+) ,a(t,x),
By (t,x) (t € I,z € ST) are given smooth functions. Here and in future Q™ is the open cube
in the n-dimensional Euclidean space R™ (0 < x;, < 00,1 < k < n) with the boundary S+

and
QO =otust

However Laplace transform method described in solving (3.20) can be used only in the case

when (3.20) has constant or polynomial coefficients.

Second, we consider the initial-value problem
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( 52
0“u(t,z) Ou(t,z)
a2 T o

— QUgy (8, T) — bug, (—t, )

= —4ae % — 4be %7,

z € (0,00), t € (—00,00) (3.21)

uw(0,2) = e uy(0,2) =0,z € [0, 00),

| w(t,0) =1, u(t,00) =0, t € (—00,0)

for a one dimensional involutory telegraph equation with dumping term. For solving the

problem (3.21) applying Laplace transform of both sides with respect to x, we get

ug (L, 8) +ue (t,8) —a{s’u(t,s) —s—pB(t)}

—b{s*u(—t,s) —s—B(-t)}

4(a+0)

——(a+b)s—aB(t) = (1) -~

9

1
u(0,s) = . 2,ut(0,s) =0.

where [ (t) is unknown function and

B (t) = ua(t, 0).
From that it follows the following problem

Uy (t,8) 4+ uy (t,8) — as’u (t,s) — bs’u (—t, s)
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4(a+0b)

=—(a+b)s—aB(t)—b3(—t)— s+2

5 (3.22)

u(0,s) =

Y u; (0,5) =0

for second order involutory ordinary differential equations.We will obtain w (¢, s). In the

same manner in Chapter Two, we get equivalent to (3.21) the following problem
(
u® (t,5) — (2as% + 1) uy (t,s) + (a® — b?) s*u (t, s)

/

= —af’ (t) = 08" (—t) + 35 (t) — 6 ()

4(a?—b?)s?
+(a® — b?)s2B (t) + (a* — b?) s* + %, tel, (3.23)

w(0,5) = 5. (0,5) = 0, wy (0,5) = —(a+ b)[B(0) + 2,

s+27

u®(0,5) = (b—a)5'(0)

Then it is easy to see that

u™ (t,5) — (2as® + 1) uy (t,8) + (a* — b*) s*u (¢, s)

d? 2 1 \/2 1 2 o4
—<ﬁ—<as +§+ as ‘f‘z—i—bs
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Therefore, problem (3.23) can be written as initial value problem

(
(8- (s o T T 09 0

u(0,s) = =, u; (0,5) =0,

s+27

\ v’(O,s):%—i—lla—l—llb

It is easy to see that § (s) = —2, u (t, s) = —5. Then,
2x

u(t,r) =e"

is the exact solution of problem (3.21).

Note that using similar procedure one can obtain the solution of following initial boundary
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value problem

(52 n 2
0%u(t,z) Ou(t,x) 0% u(t,x)
oz T o @) a

—b 3, P — g1, 2),

r=1

_ (3.24)
r=(T1,...,%,) € Q+, —00 < t < 00,

u(d,z) =, w(d,2) =0, 20",

u(t,r) =a(t,x), tel, x € ST

for the multidimensional telegraph type involutory partial differential equations. Assume that
1 <a,a, >ag>0andg(t, ) (t el,x €§+) () (36 E§+> ca(t,x), B, (t,x) (te I,z e ST)
are given smooth functions. Here and in future Q% is the open cube in the n-dimensional

Euclidean space R™ (0 < x), < 00,1 < k < n) with the boundary S™ and
Q" =qtust

However Laplace transform method described in solving (3.24) can be used only in the case

when (3.24) has constant or polynomial coefficients.
3.4 The Fourier transform solution

First, we consider the initial-value problem
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( 0%u(t,x) Ou(t,z)

ot? + ot

— QUgy (8, T) — bug, (—t, )

= (2—a(42® —2)) e e ™ — b(422 — 2)e2le ",
< (3.25)

x € (—00,00), —o0<t< 00,

| w(0,2) = e, uy(0,x) = =2, z € (—00,00).

for telegraph type involutory partial differential equation. We will obtain Fourier transform

for solving problem (3.25). Taking the Fourier transform, we get initial value problem

)
uy (t,8) +uyg (¢, 8) + as®u (t, s) + bs*u (—t, s)

= 2e72q(s) + as’e2q(s) + bs*e¥q(s), (3.26)

u(0,5) = q(s), ue (0,5) = —2¢(s)

\

for second order involutory ordinary differential equation. Here

u(t,s) = F{u(t,x)}, q(s) = F {e_zZ} :

In the similar manner we get equivalent to problem (3.26) the following initial value prob-

lem
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u® (t,8) + (2a5% — 1) uy (t,8) + (a® — b%) s*u (t, 5)

= 12e72q(s) + 8as?e~2q(s) + (a® — b?)s*e2q(s),

u (0,5) = q(s), u (0,5) = —2q(s), uy (0,s) = 4q(s),

ul® (t,s) = —8q(s)

for the fourth order ordinary differential equation. It is easy to see that
u(t,s) =q(s)e * =e 2L {e‘x2} :

Therefore, the exact solution of the problem (3.25) is

u(t,z) =e e ™.

Finally, we study the stability of the solution of the initial value problem for telegraph type

involutory partial differential equation

0%u(t,x) Ou(t,x)
a2 T

— QUgy (8, 7) — buy, (—t,z) = g(t,x), t, x € I,
(3.27)

u(0,2) = ¢(x), u(0,2) =¢(z), x € 1.

Here ¢(t,z) (t,z € I) and ¢(z), ¥(x) (x € I) are given smooth and bounded functions and

2 2 b2
b <a,% <a< %+ 23,a>0.
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Problem (3.27) can be written as abstract initial value problem

Tut) 1 0D 4 g Au(t) + bAu (—t) = g(t), t € I

(3.28)
u(0) =, w'(0) =

in a Banach space C'(1) of all continuous bounded functions f(x) defined on / with norm
[flloqry = sup [f(2)] .
zel
Here, positive operator A defined by the formula
Au = —u"(x)

with domain D(A) = {u: u(z), u"(z) € C(I)}, g(t) = g(t,z) and u(t) = u(t,z) are
known and unknown abstract functions with values in C'(I) and ¢ = ¢(x), P = (x)
are unknown elements of C' (/). The normed space C (/) is the all continuous real-valud

functions f(x) on I and norm defined by

1l = / ()] d.

2 2

Theorem 3.1. Assume that |b| < a,0 < o, a € (5,9 + 2—22].Let g(t) be a smooth and

bounded abstract functions on [ and g(t), g:(t), g1(t) € C1(I) and g(t), p, v € D(A), then
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the problem (3.28) is equivalent to the following initial value problem

’

Tu 4 (20— a?) ATHD 4 (0? —1?) A%u(t) = F(1),

dt dt?

F(t) = aAg(t) — bAg(—t) — agi(t) + gu(t), t € I,
(3.29)

u(0) = ¢, u'(0) =9, u" (0) = = (a +b) Ap — arp + g(0),

| u"(0) = (—a+0b) AY + a(a +b) Ap + a1 + g,(0) — ag(0)

for the fourth order ordinary differential equation in a Banach space C'(1).

Proof. Differentiating the equation (3.28) with respect to ¢, we get

d3u (t) d*u (t)

T Tt aAu' (t) — bAu' (—t) = ¢:(¢), (3.30)

d*u (t) d3u (t)

i T aAu" (t) + bAU" (—t) = gu(t). (3.31)

Using these equations and initial condition and equation in problem (3.28), we get

(

u(0) = ¢, v'(0) = 9,

u”" (0) = —(a+b) Ap — arp + ¢(0), (3.32)

u” (0) = — (a — b) A + a (a + b) Ap + &*¢ + ¢,(0) — ag(0).

\

Putting —t instead of ¢ equation (3.28), we get

u(—t) + au(—t) + aAu (—t) + bAu (t) = g(—1). (3.33)
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Applying equations (3.28), (3.31) and (3.33), we get

d*u (t) d3u (t) d?u (t)
A
g T Tan T e

+bA [—auy (—t) — aAu (—t) — bAu (t) + g(—t)] = gu(t),

bAu (—t) = 2 ;;gt) - adilit) —adu(t) + g(t).

From these equations it follows equation

d*u (t) d3u (t) d*u (t)
s el

ar  “ar +g’*(t)}

d?u (t) du (t)
T

o [_ d3u (t) d®u (t) Adu (t)

+aA [ + aAu (t) — g(t)] — b A% (t)
= —bAg(—t) + gu(t)

or

d*u (t)
dtt

d*u (t)
dt?

+(2a—a*) A + (a® = b*) A%u(2)

= aAg(t) — bAg(—1t) — agi(t) + gu(t).
So, the problem (3.29) is presented. Now, we will get (3.28) from (3.29). Denote that

L(t) = dQCZQ(t) + O‘dizit) + adu (t) + bAu (—t) — g(t), t € 1.

It is easy to see that L(t) is the solution of the following problem

"

L' (t) + oL (t) + aAL(t) + bAL(—t) = 0, t € I, L(0) =0, L

/

(0) = 0.

From that it follows L(¢) = 0. Theorem 3.1 is proved.

Now we will obtain solution of the initial value problem (3.29). It is easy to see that
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2 4 2 4
2 _ _ @ o2 2 2 _ _O‘__\/_ 2 & 2
(a 2—|—\/ aa+4+b>,q (a 5 aa+4+b )

Therefore, problem (3.29) can be written as abstract initial value problem

.

(& +724) w(t) = v(t), u(0) = o, w(0) = ¥,
(& +q4) o) = F(0),
F(t) = aAg(t) — bAg(~1) — agi(t) + gu(t). t € 1. (3349

v(0) = (=b—a+p*) Ap — avb + ¢(0),

V' (0) =a(a+b)Ap+ (b —a+ p*) AY + o — ag(0) + ¢'(0)

\

for the system of second order abstract differential equations in a Banach space C'(I). Prob-
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lem (3.34) can be written as initial value problem

( 0%u(t,x)

SE e — DPUge (L) = v (tx), t, x €,

u(0,2) = o(x), u(0,2) =Y(x), v e€l,
82:;&752795) - QZUICL‘ (t? I’) = F<t7 :E)a F(ta .1') = _ag:z:a:(t, iL‘)
+b02u(—t, ) + gu(t,x) — ag(t,z), t, z € I, (3.35)

v(0,2) = (b+ a — p?) pu(r) — atp(z) + g(0, x),

0(0,2) = —a (@ +b) (@)

| — (b= a+p?) Yue(a) + () — ag(0,2) + ¢'(0,2), z € 1

for the system of telegraph equations. Applying the d’ Alembert’s formula, we get

u(t,7) = 3 (ol + pt) + oz — pt) (3.36)
z+pt t x+p(t—T)
o [ v+ o || ener
z—pt 0 a—p(t—)
o (t7) = % [(b+a — p?) ool + qt) — atb(z + qt) + g(0, + qt) (3.37)

+ (b4 a—p?) o (z — qt) — atp (x — qt)] 4 g(0,2 — qt)

_1_2% [—a(a+b)oan(A) = (b —a+p*) han(N) + () — ag(0,N) + ¢'(0, )] dA

4L / / F(r, \)dAdr.
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Applying formulas (3.36) and (3.37), we get

w(t,z) = = (e +pt) + oo — pt)) + — / b(E)de (3.38)

1
2

t x+p(t—r)
1 1
+%0/ / 5[(b+a—p2)¢ss(§+q7)—Oﬂ/)(é”qu)

z—p(t—T)
+(b+a—p*) e (€ — qr) — o) (€ — q7)] dédr

t z+p(t—7) E+qT

= | [ Fearbonn

c—p(t—7) E—qT

— (b= a+p*) vau(\) + *Y(N)] drdédr

. t :v+p(t*T)1
s [ 3100644 + 9006 — gl dear
0 z—p(t—7)
t | a+p(t—T) E+qr
/
+ / m / / [—ag(0,A) + ¢'(0, \)] dAd&dT
0 z—p(t—T7) E—qT
t . r+p(t—7) 7 E+q(T—7)
—i—/m / / / F(T, )\)d)\drdng.
0 z—p(t—7) 0 &—q(r—r)

Theorem 3.2. Assume that |b] < a,0 < «, a € (0‘72,%2 + 2—22] Let g(t,z) € C(I x

I),g(t,x) € Cr(IxI)and o(x), (), Pue(z),V(x) € C1(I),¢(x), ¢, (x) € C(I)and

[t| z+p(|t|—T)+qT [t| z+p(|t|—T) E4+qT
/ / 19(0, =) dzdr, / / / BN dAdgdr,
0 z—p(|t|—7)—qr 0 z—p(|t|—7) E—qT

[t| z+p([t|—T) E+qT .
/ ‘9(7 — == J\)‘ dAd&dr,
q

0 z—p(|t|—7) E—qT
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[t| z+p([t|—7)+qr

[ (N)] ddr, / (gt 2)| dydz < oo

0 z—p(|t|—7)—qr

for any ¢,z € [.Then, for solutions of problem (3.27) we have following stability esti-

mates

txel

sup u(t. )] < Mi(a.8) |sup o(o)] + [ [o(w)]dy

It| z+p(|t|—7)+q7

s [l ssw [ [ g2 dzar
txel
—00 —00 0 z—p(Jt|—7)—qT

lt| z+p(|t|=7) E+q7

+a / lp(z)| dx + o’ sup / / / [ (N)| dAdEdT
txel
—00 0 z—p(|t|—7) E—qT
[t| z+p(|t|—T) E4q7 )
+a sup/ / / ‘g(T——|§—)\|,)\)’d/\dde
teel q
0 a—plitl—r) €"ar
[t| z+p(|t|—7)+qT

+a sup / |U(2)| dzdT |,
txel
0 z—p(|t|—7)—qr

sup |ug(t, )| + sup [uq(t, 2)[ < Ms(a,b) {Sup |0z ()| + sup [¢()]
txel txel zel zel

[t| z+p([t|—7)+q7

o0
+ sup / lg(y, )| dx + o’ sup / / |(2)|dzdr
yel t,owel

—00 0 z—p(ft|—7)—qr

+a [ 1)y +aswlo@)] +a [ [ lota)dyds]
Te

—00 —00

sup |ug(t, )| + sup |ug.(t, )| + sup |uw(t, z)|

txel txel txel

< Mj(a,b) {sup |z ()| + sup [ ()] + sup |g(t, @)
xel zel t,xel
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o0

—l—asu;l)|w(a:)|+asug)]gox(x)\+a2/|w(y)\dy+a/su]?]g(y,x)]dx . (341
x€ x€ ye

—00

Throughout the present paper, M denotes positive constants, which may differ in time and
thus is not a subject of precision. However, we will use M (v, 3, ...) to stress the fact that the

constant depends only on «, f3, ....

Proof. We have that

u(t) = Ji(t,x) + Jo(t, x) + J5(t, z) + Ju(t, x),

where
1 ] T+pt
Ilt,) = 5 (el +0) +ola—p0) + 5 [ (e,
. t m+p(t—r)1
Hite) =g [ [ 510+ a=0) vels+ am) — vt +ar)
0 z—p(t-7)

+(b+a—p?) e (& — qr) — v (€ — q7)] dédr,

t z+p(t—7) E+qT

Kt = [ —o— —a(a+ Dm0
/Nﬁ/ /

0 z—p(t—7) E—qT
— (b—a+p*) Yu(A) + ?P(N)] drdédr,

t r+p(t—7) 7 E+q(T-7)

1
J4(t,fL’) == /m / / / F(T, /\)d)\deé-dT
0 z—p(t-7) 0 §—q(r—r)
. t x+p(t—T)1
s [ 5006+ )+ g0, arasar
0 z—p(t—7)
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t z+p(t—7) E4qT

n / Nﬁ / / [—ag(0,A) + ¢'(0, \)] dAdedr.

0 z—p(t—7) {—qT

We prove estimate (3.39). We will estimate Ji(t,z), k = 1,2, 3,4, separately. Applying the

triangle inequality, we get

(t,0)| < Mua(a,) [sup ()| + [ 10001 dy 64

for any ¢, x € I. Now, let us estimate J,(¢, ). We have that

t w+p(t—7)1
5 (Pee(€+a7) + e (€ — g7)) dedr
0 z—p(t—7)
1 t
=5 / [(Patpte—n) (@ + P (t = 7) +a7) + Qarper) (@ +p(t = 7) = q7))

0

Pap(t—r) (T =P (t = T) 4+ qT) + Pop—r) (& —p (t = 7) — q7))] dT

~—~

[p(z 4 pt) + ¢ (x — pt) — p(x + qt) — ¢ (x — qt)].

"

Then

aalt) = I oy ) b o (- pt) — ol at) — o (o — )] (B43)

2p
¢ atp(t—r)
(8%
=7 / | ((€ + qr) + 0 (€ — qr)) dédr.

Applying the triangle inequality, we get

[t| z+p([t|—7)+qT
|Jo(t, x)| < Mia(a,b) |sup|e(x)| + a/ / |(2)| dzdT (3.44)

zel
0 z—p(|t|-7)—qr
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for any ¢, x € I. Third, let us estimate J3(¢, ) . It is easy to see that

t z+p(t—T)

a(a+b)
Ja(t ) = YN / [Pergr(§ +qT) — Peyqr(§ — qT)] dEdT
0 z—p(t—7)
t x+pt—T7)
b—a— p? e
YWy [Verqr(§ +aT) = Vegr(§ — q7)] dédr
0 z—p(t—7)
L a+p(t-T) E+ar
o / / A)dMdéd
+
Ne i YN dAdgdr
0 z—p(t—7) &E—qr
- _f— /(Zz+—_b£20 x+pt—7)+qr) —plx—p(t—7)+q7)

—p(x+p(t—7)—qr)+ (@ —p(t—71)—qr)|dr

/[w<x+p<t—7>+q7>—w<x—p<t—7>+qf>

0

(b—a—p?)

B 4v/a? — b2

Y@ +p(t—7)—qr)+(x—pt—7)—qr)ldr
2 t T+p(t—T) E4qr
T / / DN dNdEdT.

0 z—p(t—7) &—qT

Applying the triangle inequality, we get
[t )] < Mig(a.b) | [ 10(a)]do

oo 1| w+p(Jtl—7) E+gr
+oz/|g0(x)|dx+oz2/ / / [Y(N)| dAdEdT

0 z—p(|t|—7) E—qT
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for any ¢, x € I. We have that

t atp(t=m) 7 &+q(T—r)

hit.e) = = [ [ [ ] amsteon s o= ixardcar

0 w—p(t-7) 0 ¢—p(r—r)

t a+p(t—7) 7 E+q(t—r)

cm=/ [ | | N st

0 z—p(t—7) 0 &—p(r—r)

t strp(t—T)1
1
g / = 19(0,§ +q1) + 9(0,& — q7)| dédr
D 2
0 z—p(t—7)
t . z+p(t—T) E+q7
+ [ —= —ag(0,\) + ¢'(0, \)] d\dédr.
[im= | [ Feson+ g ane
0 c—p(t—T7) E—qT
Applying formulas
7 &+q(r—r) 5
a
[—agan(r, A) + bgan (=7, A)] dAdr = ;9(77 £)
0 &—q(r—7)
a—> 2b
- (9(0,€ +p1) +9(0,€ — p7)) — EQ(—T, £),
T &+q(t—r)
[grr (Ta >‘) - O-/gr(ra )‘)] dAdr
0 &—q(r—1)
¢ TglEA

)
/ [Grr (1, N) — ag,(r, \)] dAdr

/

§—qr
§+q7— T+%(§7)‘)

s [ ) = agn drar

I3 0
= 2qg9(7, &) — q9(0,€ — q7) — qg(0,& + q7)
E+qr E+qr E+qr
- / 7 (0. 3)d\ + a / g (0, N d\ —a / g(T—$|£—)\|,/\)d)\,
§—qr §—qr §—qr
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_a—b

(900, +97) + 9(0.6 — ) — 27 5)} dedr

t z+p(t—T)

+4\/ﬁ / / [2q9(, &) — 49(0,€ — q7) — q9(0, & + g7)] dédr

0 z—p(t—7)

t x+p(t—7)
L
2p
0 z—p(t—7)

[g<0a g + QT) + 9(076 - QT)] dng

N —

t o+p(t—T) E+qT

« 1
_m/ / / o7 — 1€ = A Ndxdgar. (3.47)

0 z—p(t—7) &E—qT

Applying the triangle inequality, we get

a(t,2)] < Mia(a,b) / / 19y, )| dydz

—00 —0O0

[t| z+p(|t|—7)+qT
+ / / l9(0, 2)| dzdT

0 z—p([t|—7)—qr
[t] z+p(|tl—T) E4+qr
+a/ / / 'g(T - é 1€ — A, \)| dAdEdT (3.48)
0 z—p(|t|—7) E—qr
for any ¢, + € I. Combining the estimates for Jy(¢,z),k = 1,2,3,4, we obtain esti-
mate (3.39). Now, we prove estimate (3.40). We will estimate Ji (¢, ) and Ji (¢, z),
k =1,2,3,4, separately. First, we start with estimates for J; ;(¢,x) and .J; ,.(¢,x). We have
that

Jl,t(ty l’)
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= 2 (urel+ 1) — ool = p0) + 5 [+ pt) + oz — )], (3.49)

2
JLz(t, J?)
= 5 Poinla £ ) + ool —p) + W+ p) —Ua—p). (50

Applying the triangle inequality, we get

| Jie(t, )|, [J1.(tx)] < M (a,b) su? |0 ()| + sup |¢(x)] (3.51)
S

zel

forany ¢, x € I. Second, let us estimate .J,;(¢, ) and Jo (¢, ). Applying the formula(3.43),

we get

(b+a—p?)

JQVt(t,l') = 2p

[P@zipt (T + pt) (3.52)
—PPapt(T = Pt) = @Porqu(T + qt) + q2—qi(x — qt)]
—%O/[pwwp(t—mqﬂ+p<x+p<t—r>—q7>

+p(x —p(t —7)+qr) +p(x —p(t — 1) —q7)]dr

(b+a—p?)

J27x(t,$) = 2p

[Quipt(z + pt) (3.53)

FQupt (T = Pt) — Qagqr(® + qt) + Po_qe(z — qt)]
—%O/Wwp(t—r)+q7>+w<x+p<t—r>—qT>

—px—pt—71)4+qr)+¢(x—p(t—7)—qr)|dr.

Applying the triangle inequality, we get
et )], Vot )] < Masla8) |sup la(e)] [ (o)l dy (.54
S
for any ¢, x € I. Third, let us estimate J5,(¢,x) and J; (¢, z).Applying the formula(3.45),
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we get

alta) = =D P (oot at) + oo = at) = ol + 1) = ol = 1)
# L (pli+ ) + ol = at) = ol -+31) = ol — ) (3.55)
b—a—p*) [ p
e P o tat) + 00— ) — 0o+ )~ 0o 1)
b (o at) + 00— )~ (o + 1) — vl = )
) /t |::E+p(t7')+q7' x—p(7T)+q7
e DO + wum} dr,
War=b 0 |z+p(t—7)—qr x—p(t—T1)—qT
ualts) =~ (=l 4 40+ oo = at) = pla +t) + ol = pt)

p—q
B (b—a—7p? [ I o -
Wa—F |lptq (—tp(z + qt) + p(z — qt) — (x4 pt) + Y(x — pt))
b (S0l a) 4 0l = a0+ o+ ) — 0l — )]
o2 t | z+p(t—7)+qr z—p(t—7)+qT
+m O/ ( /) P(A)dA — ( /) P(A)dA| dr. (3.56)
z+p(t—7)—qT r—p(t—7)—qT

Applying the triangle inequality, we get

‘J3,t<t7 m)‘ ) ‘ng(t, 33)‘

It| z+p(|t|—7)+qT

< Mos(a,b) asuII) lo(z)| + suII) [(z)| + aQ/
S xe
0 z—p(t|-1)—qr

[ (E)] dde] (3.57)

for any ¢, x € 1. Fourth, let us estimate .J, ;(¢, z) and .J, (¢, ). Applying formula (3.47),we
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get

x/[(%“wq) gm0+ p(t 7)) + g(r, 5 — p(t — 7))

_Q_b[ (—raz+pt—7)+g(-mx—p(t—71))]

q
a—b
q

q
(a—b > 0,z +p(t—7)+q7) + 90,2 =p(t —7) +q7)]
3

) 0,24pt—17)—qr)+g0,x —p(t—7)—qr)]| dr

+4/[ (0,2 +p(t—7)+qr) +g(0,2 —p(t—7)+qr)

+9(0,x4+p(t—71)—qr)+ 90,2 —p(t —7) —qr)]dr

t | a+p(t—7)+qr )
ap
_4,/a2_b2/ / 9(7_5’$+p(t—ﬂ—)\],)\)d)\
0 |e+p(t—T1)—qr
z—p(t—7)+qT |
+ / 9(7_6|$—P(t—7‘)—)\|,>\)d7 dr, (3.58)
z—p(t—7)—qr
1
4va? — b2

J47x(t, I‘) =

t

x/K%aJr%) lg(r, o+ p(t— 7)) — glr, o — p(t — 7))

0

_%b lg(—T, 2 +p(t—7)) —g(—1,2 —p(t —7))]
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_ (a;bﬂ) [9(0, 2 +p(t—7)+qr)—9(0,2 —p(t —7) +q7)]

_ (a;b+Q> 90,2 +p(t—7) —q1) = 90,2 —p(t —7) — q7)]| dr

t
1

+;L/[g(0,l“+p(t—7)+<ﬁ)—9(0793—p(t—7)+q7)

+9(0,z +p(t—7) —qr) —9(0,2 —p(t —7) — q7)]dr

t | o+p(t—7)+qr

Q 1
__x F— e+ p(t—7)— A, \)dA
| o7 = ~lo+pt=7) =X,
0 |zt+p(t—7)—qr
—p(t—7)+qr )
- / gt — =z —p{t—71)—= X\, Nd\| dr. (3.59)
q

z—p(t—T)—qr

Applying the triangle inequality, we get

[ Jaa(t, 2)] [aa(t, )|

< Moy(a,b) sup/]g Y, T ]dx—iroz//]g y,x)| dydx (3.60)
yel

for any ¢, + € I. Combining the estimates for J (¢, x) and Jy.(t,z),k = 1,2,3,4, we

obtain estimate (3.40).

Now, we will prove estimate (3.41). We will estimate Ji (¢, z), Ji1 (¢, ) and Jy .. (¢, x),
k =1,2,3,4, separately. First, we will estimate J; (¢, ), J1 +,(f, ) and Jy 4. (¢, ). Using

formulas (3.49), (3.50) and taking the derivative, we get
P
Jl,tt<t7 {L‘) = ? (Spac—l—pt,ac-‘rpt(x + pt) + @z—pt,x—pt(m - pt))

+§ [Yaripr( + pt) = Yapr(z = pO)],

p
Jl,tac(t7 .7}) - 5 (§0x+pt,x+pt<x + pt) - sz—pt,x—pt(x - pt))
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1
5 [Yaspt(z 4 pt) + thope(z — pt)]

1
Jl,za:(t7 .Z') = 5 (@z-&-pt,x—i—pt(x + pt) + @m—pt,z-ﬁ-pt(m - pt))

1

oy Wt (@ +Pt) = Yoz — pt)].

Applying the triangle inequality, we get
‘Jl,tt(ta .Z')‘ ) ‘Jl,tx(ta .I')‘ ) ’Jl,xx(ta ZB)|

< M3y (a,b) su;l) |z ()] + su[l) |9, ()] (3.61)
xTE e

for any ¢, z € I. Second, we estimate Jy (¢, ), Jo1, (¢, 2) and Jo 4, (¢, ). Using formulas

(3.49), (3.50) and taking the derivative, we get

(b+a—p?

J2,tt(t7 x) = 2%

[pQSOa:ert,a:ert(fE +pt)

_‘_pzSpac—plmc—pt(a7 - pt) - q290x+qt,oc+qt<x + qt) - qzspsc—qt,a[:—qt(m - qtﬂ

—i%me+pw+p¢@—@w+p¢@+aw+p¢@—qm
_4%9 [p2¢$+p(t—7)+w<x +p (t - T) + qT) + p2"¢(33 +p (t - T) - qT)
0

—D* Vo pt—r)tqr(@ — D (t = T) + qT) + P*Vapit—r)—gr(x —p(t — T) — q7)] dT

(b+a—p°)
= T [p2§0x+pt,m+pt(37 + pt)

0P pta—pt (T — D) — @ Parqrarat(T + qt) — CPo—qroq( — qt)]
(e}
B [p(x 4 pt) + pY(z — qt) + pY(x + qt) + pp(x — qt)]

« p

p
7l B (Y(z + qt) — Pz + pt)) — mw(x —qt) — ¢¥(z + pt))

T Wl at) = 0 pt)) + L (e~ at) (e ) |
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(b+a—p?)

JQ,xt(twr) - 2p

[DPw+pto4pt (T + DE)

—DPa—pta—pt(T — Dt) = @Patgtotqt(T + qt) — @Po—qt.o—gt (T — qt)]

t

(6]
_Z / [merp(tf‘r)Jrq‘r(x +p (t - 7_) + qT) + ¢z+p(t77)fqr (ilf +p (t - 7—) - qT)
0

+¢x—p(t—7)+q7(x - P (t - T) + qT) - 77Z}90—p(t—7')—q‘r (ZE - D (t - T) - C]T)} dr

(b+a—p?)
= T (PP w+pt,o4pt (T + DE)

_pgpx—pt,x—pt(x - pt) - qg@z-‘rqt,x-ﬁ-qt(l‘ + qt) - Qsz—qt,x—qt(l‘ - qt)]

o 1 1
G s G+ a) = vla ) — o (o= at) = b ()
e (Ul ) = (o= pt) — (0 (o= at) — v o = p1) |
J2,xx(t> I‘) - M [@x—l—pt,x-&-pt(w +pt)

2p

_@Z—th—pt(x —pt) — Pa+qta+qt (z +qt) + Ww—qt,:c—qt(x — qt)]
t
(0%
_4_p / [wm—i-p(t—T)-&-qT (37 +p (t - T) + qT) + 2bac—i—p(t—-r)—qT (Z‘ +p (t - T) - qT)
0

_wxfp(t77)+tﬁ' (J: - D (t - 7—) + qT) + @Dwfp(tfr)qu (27 — D (t - 7—) - C]T)j| dr

b+a—p?
= % [Pa-tpt,atpt(T + pt)

_pr—pt,x—pt(x - pt) - @x-‘rqt,x-ﬁ-qt (37 + qt) + pr—qt,x—qt(x - qt)]

Q 1

1
o | S Wl a) — (e ) — e (0 (o~ at) — (o )

_z%q (Y(x +qt) —¥(x —pt)) +p%q(¢ (z —qt) — 1 (x —pt))] .

Applying the triangle inequality, we get

|<]2,tt(ta l‘)| ) |<]2,tx(ta I)| ) |J2,xm(tu I)|
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S M32(CL, b) sup |§0xw(x)| + asup |¢(1‘)|

xzel zel
for any ¢, x € I. Third, we estimate J3(¢,x), J5(¢,x) and J;3 ., (¢, ). Using formulas
(3.55), (3.56) and taking the derivative, we get

a(a+b)
4v/a? — b?

JS,tt<t> 33) = -

p
X ]Tq (qucc—kqt(m + qt) - qspx—qt<x - qt) - p§0$+pt(x +pt) + p@x—pt(‘r - pt))

p
A (@Pa+qt(T + qt) — @pu—qi(x — qt) — pPuip(T + Pt) + por—pi(T — pt))

(b—a+p?)

Wa? =12
x Lﬁ (qVarqt (T + qt) — qhu—gt(x — qt) — ploipe(@ + pt) + poa—p(z — pt))
+p%q (Votqt(z + qt) = qha—qi (v — qt) = phaype(x + pt) + proo_pe(z — pt))

xr+qt

pOé2 p2a2 p
+m_/t¢(A)dA+mo/[¢($+p(t—T>+QT)
—Y(@+pt—7)—qr) =@ —pt—7)+q7) +¢(x—p(t—17)—qr)]dr,

a(a+b)
4a® — 12

JS,tDJ(t7 ZE) - -

p
X []Tq (@x-{-qt(w + qt) + @x—qt(m - qt) - 90m+pt(x + pt) - Qox—pt(l' - pt))

p
to g (Patqt(T + qt) + Pr—gi(T — qt) — Puipt(T + Pt) — ope(x — pt))

(b—a+p?)
4v/a? — b?

L W+ 0) a5 = 1) — Wi ) — el — )
P+q

+p%q (Votqt(2 + ) + Yaegqe (@ — qt) = Yaspe (€ + pt) = thape(x = pt))
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t
pa?

+m/[¢($+l?(t—7)+q7)

0

@ +pt—7)—qr) —Y(@—p{t—7)+qr) + (@ —pt—7)—qr)]dr,

_ afa+b)
Faallsr) = ==
1
% {m (Parqr (2 + t) + Poqu( = qt) = Qe (v + pt) = pop(z — pt))
+p%q (Parqt(z + qt) + @ugu(x — qt) — Pagpi (T + pt) — upi(z — pt))
B (b—a+ p?)
A a2 — 12
X {]%q (¢$+qt(‘r + qt) + 77Z)ac—qt(5(: - qt> - 77Z133+pt(5(7 + pt) — ¢z—pt($ — pt))
+1% (Varqt(x + qt) + Yo gi(x — qt) — Yuppt(z + Dt) — Yy pi(x — pt))

t

042

+mo/[¢($+z9(t—7)+q7)

Pz +pt—7)—qr)—Y(@—pt—7)+qr) +P(x—pt—7)—qr)dr.

Applying the triangle inequality, we get

zel

sl 2|y [ae(ts2)] s [Jsm(ts2)] < Mas(ab) {supwx(a:n

+asup |, (z)] + o’ / w(l’)dwl (3.62)
zel

for any ¢, x € I. Fourth, we estimate Jy 4 (t, ), Ju (¢, z) and Jy .. (¢, z). Using formulas

(3.58), (3.59) and taking the derivative, we get

Jau(t, ) = Nﬁ K%a + 2q) plg(0,z +pt) + g(0,2 — pt)]

2b a—>b 1
—7 [9(0, 2 + pt) + (0,2 — pt)] — (T +q+ Z) 29(0, 2 + qt)
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p
—P+q

+

900, at) = 900, + p0)] = =2 [g(0.5 -+ 40) — 0.~ pt)]]

a—1>b 1
— - )2 —qt
(q +q+4)[g<0,:z: q)

p p
+—[g(0, 7 — qt) — g(0,z + pt)] — —— [g(0, 2 — qt) — (0, z — pt
p_q[g( qt) — g( pt)] p+q[9( qt) — 9( p)]]
z+qt .
ap /
———— [ g(t— =]z = Al,A)dA
2 K2
2V a bqut q
t
o 90,2 +p(t—7)+qr)—g(0,2+p(t—7)—qT)
4 212 ) ) - -
Va b )

—9(0,z —p(t—7)+q1) + 90,2 +p(t —7) —q7)]dr,
1

Dol ) = s [(2“ +2q>;[ (0,2 + pt) — g(0,2 — pt)]
2b a—>b 1 1
2y 902 -] - (L ra 1) [

<lo(0.+ ) = g0, + )] + 900+ at) — g0, — pm]

(a—b+ +1){ 1
— q J— —_——
q 4 p+q

x [9(0, 2 — qt) — g(0, 2 + pt)] + p%q [9(0,7 — qt) — g(0, 2 — pt)]]

g0, 2 4+pt—7)4+qr)—g0,x+p(t—7)—q7)

4\/ a2

+g(0,x—p(t—f) +q1) — 90,2 +p(t —7) — q7)] dT,
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Jiz2(t, ) = 4p\/a127 {<2a + Qq) [—2¢(t,x) + g(0, 2 + pt) + g(0,z — pt)]
_Qb

o [—2g9(—t,2) + g(0, 7 + pt) + g(0, x — pt)]

a—>b 1 1
(P a) | 00 a0 00 p0) = (00 ) = 900, 1)

() | 0 ) a0 ) - (005 = a0) = 9(0.2 - 1)

P+q pP—q

#1000 )~ (004) = (00 + 1) = 0.2 o)

—]%q (90,2 — qt) — 9(0,z + pt)) — p%q (9(0,2 — qt) — g(0,2 — pt))}

0, x4+p(t—71)+qr)—g0,z+p({t—7)—qr)

4\/a2 — b? /
+9(0,2 —p(t =7)+q7) = g(0,x + p(t —7) — q7)] dT.
Applying the triangle inequality, we get

[ ot 2)|s | Jag(t, )]s [Jaaalt, 2)] < Mas(a, b) | sup |g(t, )|

txel

o0

+a / sup |g(y, x)| dx (3.63)
yel

—00

for any ¢, x € I. Combining the estimates for Ji (¢, ), Jg (¢, ) and Ji .. (¢, ), k =

1,2, 3,4, we obtain estimate (3.41). Theorem 3.2 is proved. Note that using similar proce-

79



dure we can get the solution of following

(

0%u(t,x) 0?u(t,x) - 0%u(t,x) L ?u(d—tx)
) 00§ o Zalin) p§ o, Bt gy g,
r=1 " "

r=1
r = (r1,...,7,) €E R", —00 <t < o0,

u(%lvx) = w(x)a ut(g>x> = <p(:c), r e R"

for a multidimensional telegraph involutory partial differential equations. Assume that a, >

ap > 0and g (t,z) (t € I,z € R"), ¥(z), p(x) (x € R") are smooth functions. However

Fourier transform method described in solving (3.64) can be used only in the case when

(3.64) has constant coefficients.
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CHAPTER 4

DIFFERENCE METHOD FOR THE SOLUTION OF TELEGRAPH TYPE
INVOLUTORY PARTIAL DIFFERENTIAL EQUATIONS

4.1 Introduction

If the analytical methods do not work correctly, we can use the numerical methods to get ap-
proximate solutions of local and nonlocal problems for the telegraph type involutory partial
differential equations. In this chapter, we obtain the algorithms of numerical solution for the
initial-boundary-value the problem for the one dimensional telegraph type involutory partial
differential equation with Dirichlet and Neumann boundary conditions. We will present the
first and second order accuracy difference schemes for the numerical solutions of involutory
problems. We use the procedure of modified Gauss elimination method for solving these

difference schemes.

For the construction of the approximate solutions, we define sets of grid points

[_T7T]7_:{tk;:tk:kT,_N§k§N7NT:T}7

0,1, ={zp: 2, =nh, 0 <n< M Mh=1},
[_71—77]-]7— X [va]h
={(tg,xn) : ty =k, —N <k < N,Nt=mx,=nh, 0 <n <M Mh=mr}.

Definition 4.1.1. (Sobolevskii, 1975)
v(t,7) = o(7P) as T — 0+
means that there exists a constant M > 0 such that , we have |v(t, 7)| < M|7?.

The construction difference schemes are based on the Taylors decomposition of three points.

Theorem 4.1. (Ashyralyev & Sobolevskii, 2004) Let the function v(¢) have a fourth order

81



continuous derivative and t;, ty4+1 € [—=7,7T]_. Then the following relation holds

V(tper) — 20(tr) + v(tie1) = 720" (tggr) + o(72), 4.1)
7—2 ” 7—2 ” ”
U(thrl) — 20<tk) -+ U(tkfl) = E’U (tk) + Z [’U (tk+1) + v (tkfl) -+ 0(7’4). (42)

Now, we will give well-known (Sobolevskii, 1975) approximation formulas for first and
second order derivatives for smooth functions
" w(@ni1) — 2u(zy,) + u(z,_1)

u (z,) = 3 + o(h?), (4.3)

U,(O) _ —u(2h)+4u(h)—3u(0) + O(hQ),

2h
(4.4)
u/<7r) _ u(7r—2h)—41;(}zr—h)+3u(7r) + 0<h2),
U(T);U(O) +o(7),
v (0) = (4.5)
—v(27)+4v(1)—3v
( )+2T( )—3v(0) +o(r2).
4.2 Involutory differential equation with Dirichlet boundary condition
We consider the initial-boundary-value problem
( 2’lL x u\t,xr
2 ag ) + 8 g; ) Uzq (t,ZL‘) — DUy (_th)
= (cos(t) — psin(t)) sin (x),
re(0,m), —m<t<m, (4.6)

u(0,2) =0, u(0,2) = sin(z), = € [0, 7],

u(t,0) =u(t,m) =0, t € [, 7]
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for the one dimensional telegraph type involutory partial differential equation with Dirichlet
boundary condition. The exact solution of the equation (4.6) is u(t,z) = sintsin (z), 0 <
r < m —m <t < 7. Applying formulas (4.1), (4.2), (4.3), (4.4) and (4.5), we present the

following first order of accuracy difference scheme

( ul ' —2uk k! + upt!—uk ul T —2up T ulf ]
T2 T h2
—k—1 —k—1,, —k—1
Uy iy —2un, Fu, " . .
- = (cos(te+1) — psin(tesr)) sin (z,)

ty = k7, x, =nh, Nt =m, Mh =,
4.7
—N4+1<EZSN-1,1<n<M-—1,
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and the second order of accuracy difference scheme

1 -1 _ k k. k
( upt —2uk uk ugt —uf ™t Uy~ 2untun
T2 27 2h2
k41 k41, k+1 k—1 k-1, k—1 —k -k, —k
_un+1—2un Fu, Ty . Uy ] —2Un  FU, . Uy —2Up" +u, "y
4h? 4h?
—k+1 —k+1, —k+1 —k—1 —k—1,, —k—1
. Uy ] —2Unp, +u, ~7 . Uy iy —2Up, +u, "y
p 1h2 4h2

= (cos(tx) — psin(tg)) sin(x,),
ty =kr,x, =nh,NT=7n,Mh =,

~N+1<k<N-1, 1<n<M-1,

Uy =Y, 2T

2 1_2,0 .
MZSID(‘In)’ OS”SM;

(4.8)

They are systems of algebraic equations and they can be written in the matrix form

Aup 1+ Buy, + Cup1 =D, 1<n <M —1, ug = ﬁ, U

-0, (4.9)

Here an in future A, B, C are (2N + 1) x (2N + 1) matrices and D = Iox 1 is the identity

matrix, ¢, and u, are (2N 4 1) x 1 column vectors
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0 ug N
7 sin(x,) u Nt
De, = (cos(tg) — bsin(tg))sin (x,,) ; Us =
uN-1
_ bsi ; N
_(cos(tN,l) bsm(tN,l))sm(xn)_ N I PV
and
(0000-0 0 0-0000]
0oo0oo0o0-0 0 O 0 00O
00 a0O-0 0 0 0 d 00
000 a -0 0 0 d 0 00

o]
]
]
]
@]
o]
@]
@]
@]
]

a+d

L ' ' 1 @N+1)x@N+1)
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00 0 0 - 0 1 0 0 0 0O
00 0 0 - 0 -1 1 0 0 0O
beceO- 0 0 0-0F00
0 b c e - 0 0 0 f 0 00
B 0 0 0O e 0 f -0 0 00
00 0 0 c etf 0 -0000 ’
000 O0 - b+f c e 0 0 0O
00 f O 0 0 0 c e 00
F 00 0 0 0 -bceo
f 0 00 - 0 0 0O -0 b c e
L 1 eN+1)x(@2N+1)
a=-H5b=%c=-2%2-1d=-L e=2L+21+2andf =2 for the difference

scheme (4.7) and

(0000-0 0 0 0 0-0000]
0000-0 0 0 0 0-0000
babo-0 0 0 0 0-04dcd
Obab-0 0 0 0 0-decdo
00 0 b a bid ¢ d-000 0
A=C =
0000 -0b+d ate b+d 0 - 00 0 0
0000 -d ¢ b+d a b -0000
00dec -0 0 0 0 0-baoo
0Oded-0 0 0 0 0-babdo
dcd0O-0 0 0 0 0-00badb
i 1 envixent



(0000-0 1 0 0 0-0000]
0000 -0 -3 4 -1 0-0000
qg e f O 0 O 0 0 0 0t gt
0 g e f 0 O 0 0 0 t g t 0
L 0000 g e frt gt 0000
0000 -0 g+t e+g f+t 0 -00 0 0
0000 -t g g+t e f -000 0
00¢tg 0 0 0 0 0 -ef00
0t g t 0 O 0 0 0 q e f
|t gt 0O -0 0 0 0 0 -0 q e f—(2N+1)><(2N+1)
0= g2, b= —gm,c=—gmd=—fre=-5+5m f=5+5+g0=

L — =+ #, g = 7z, and t = 577 for the difference scheme (4.8).

For getting the solution of the matrix (4.9), we will apply the modified Gauss elimination

method. We are using the following form for getting the solution of the matrix equation
Up = QpiilUpit + Bpit, n =M —1, ... 1, (4.10)

where u); = ﬁ, a; (j=1,..,M —1)are (2N +1) x (2N + 1) square matrices, 3; (j = 1

yooy M — 1) are (2N + 1) x 1 column matrices, o, (1 are zero matrices and

Ont+1 = _(B + Oan)_1A7

Bpi1 = (B+ Cap) Y (D, +CB,), n=1, ... M —1.

NUMERICAL ANALYSIS

The different values of NV and M are recorded to the numerical solutions, and u’,ﬁ represents
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the numerical solution of these difference schemes at u(y, x,,). Table 1 is established for
N = M = 40, 80, 160 respectively and the errors are found by

N _ ok
i = _N<k<N Ten<M—1 [ulte, o) — up- (4.11)

If N and M are doubled, the values of the errors between the exact and approximate
solution are decreases by a factor of approximately 1/2 for the first order difference scheme
(4.7) and 1/4 for the second order of accuracy scheme (4.8). We presented the errors in this
table and it shows the accuracy of difference shemes. The accuracy increases with the

second order approximation.

TABLE 4.1. Error Analysis £

Difference schemes/N = M 40 80 160
“4.7) 0.1077 0.0457 0.0290
(4.8) 0.0081 0.0020 5.0462e — 04

Applying this method, we can obtain approximate solutions of several problems for one and
two dimensional the telegraph type involutory partial differential equations with dependent

coefficients.
4.3 Involutory Telegraph type differential equation with Neumann boundary condition

We consider the initial-boundary-value problem
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(%4 X ou(t,x

= (cos(t) — psin(t)) cos (x)

re(0,m), —m<t<m,

uw(0,z) = 0, uy(0,2) = cos(z), = € [0, 7],

| Ua(t,0) = uy(t,m) =0, t € [-, 7]

for the one dimensional telegraph type involutory partial differential equation with

Neumann condition. The exact solution problem (4.6)is u(t, x) = sin(t) cos (),

(4.12)

0<z<m —m<t< 7w Applying formulas (4.1), (4.2), (4.3), (4.4) and ( 4.5), we present

the following first order of accuracy difference scheme

(ubtlouk bkl uktloyk _ up = 2u Tl
72 T h2
kel o —k—1, —k—1
Up,1y —2Up +u, "7 .
—b—= > nL = (cos(tpy1) — psin(tryq)) cos (x,),

~N+1<k<N-1,1<n<M-—1,

\

and second of accuracy in t difference scheme
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k+1 k—1 k+1 k ko, k
( ukt —2uk 4k upt —uk Up 1 —2Uptup g

T2 27 - 2h2
k+1 k+1 k+1 k—1 k—1 k—1 —k —k —k
_un+1_2u" +un71 _ un+1_2u" +un71 _ bun+1_2u” +un71
4h? 4h? 2h2
—k+1 —k+1, —k+1 —k—1 —k—1,, —k—1
o Upg1 —2un U Au T Uy —2ug tu, g
p an? an?

= (cos(ty) — psin(ty)) cos(z,),
N+1<k<N-1,1<n<M—1,
W0 = 0, Mattun =S cog(p ) 0 <n < M,

2T

—ub +duf — 3uf =0, — 3k, +4uk, | — Wk, =0,

—-N<k<N.

They are systems of algebraic equations and they can be written in the matrix form

Aup 1+ Buy + Cupey = Dy, 1 <n <M — 1, ug = uq, upr = upr—q

for difference scheme (4.13) and

Aup1 + Buy, + Cupey = Dy, 1 <n <M — 1,

Sug = 4duy — ug, 3up = dupr_1—Up—o

90
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for difference scheme (4.14). For the solutions of (4.15), we will apply modified Gauss

elimination method by the following form
Up = Apr1Upt -+ /Bn+17 n=M— 1, ceey 1,

where upys = (I — an) By o (5 =1,..., M — 1) are (2N + 1) x (2N + 1) square
matrices, 5; (j =1, ..., M — 1) are (2N + 1) x 1 column matrices, «; = I, (;is zero

matrices and

i1 = —(B+ Cay,) A,

Bni1 = (B+ Ca,) YDy, +CB,), n=1, ... M —1.

For the solutions of (4.16), we will apply same modified Gauss elimination method by

formula
Up = Oén+1un+1 —+ /8n+17 n = M — 1, cens 1,

where o; (j =1, ..., M — 1) are (2N + 1) x (2N + 1) square matrices, 5, (j = 1, ...,
M — 1) are (2N + 1) x 1 column matrices defined by formula

, X1 = —(A - 30)71(3 + 40)7 61 = (A - 30)71D901 and

’

U1 = —(B+ Cay,) A, ap = —(A = 3C)"1(B + 40),

Bns1 = (B + Coy) YDy, + CBr), pr = (A—3C)""'Dypy

NUMERICAL ANALYSIS

As we consider before the numerical solutions are recorded for different values of N and
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M, and uﬁ represents the numerical solution of this difference scheme at u(ty, z,,). Table
2 is constructed for N = M = 40, 80, 160 respectively and the errors are computed by
formula (4.11). If NV and M are doubled, the values of the errors are decreases by a factor
of approximately 1/2 for the first order difference scheme (4.13) and 1/4 for the second or-
der of accuracy scheme (4.14). The errors presented in this table indicates the accuracy of
difference scheme. We conclude that, the accuracy increases with the second order approxi-

mation.

TABLE 4.2. Error Analysis E};

Difference schemes/N = M 40 80 160
(4.13) 0.1013 0.0496 0.0300
(4.14) 0.0080 0.0020 5.0452e — 04
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CHAPTER 5

CONCLUSION

This thesis is devoted to initial boundary value problem for telegraph type involutory partial

differential equations. The following results are established:
The history of telegraph type involutory differential equations is studied.

Following original results are obtained: Fourier series, Laplace transform and Fourier trans-
form are applied for the solution of several telegraph type involutory partial differential equa-

tions. The main theorem on stability estimates telegraph differential equations is proved.

The first and second order of accuracy difference schemes for the approximate solution of the
one dimensional telegraph partial differential equations with Dirichlet and Neuman condi-

tions are given.The Matlab implementation of these difference schemes are presented.

As noted these methods can be used for multidimensional telegraph type involutory partial
differential equations. These formulas for the solutions are important for the solving applied
problems involving involution term. Finally, stability of initial boundary value problem for
telegraph type involutory partial differential can be investigated. Stable difference schemes
a higher order of accuracy for the approximate solutions of these differential problems can

be presented and stability can be studied.
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APPENDIX A

APPENDIX

A.1Matlab Implementation of One Dimension First Order of Accuracy Difference Schemes
of Problem ( 3.1)

function drihlet1st(N,M);

if nargin ; 1; end;

close; close;

tau=pi/N;

h=pi/M;

p=l;a=-1/b%;b = 1/tau®;c = (—=2/tau®) — (1/tau);d = —p/h?;
e = (1/tau?) + (1/tau) + (2/h2); f = (2 % p/h2);
A=zeros(2x N+1,2%x N +1);

AIN+1,N+1)=a+d,

fork=3:N;

Ak, k) =a; A(k,2x« N +2—Fk) =d;

end,

fork=N+2:2xN+1;

Ak, k) =a; A(k,2« N +2 — k) = d;

end,

C = A,

B =zeros(2+« N +1,2% N + 1);
B(L,N+1)=1;

B(2,N +1) = —1;

B(2,N +2) =1,

fork=3:N;

B(k,k —2) =b;B(k,k—1)=c¢;B(k,k) =e; B(k,2*x N+2—k) = f;
end,

B(N+1,N—-1)=0;B(N+1,N)=¢B(N+1,N+1)=e+ f;
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B(N+2,N)=b+f;B(N+2N+1)=¢B(N+2,N+2) =¢;
fork=N+3:2xN +1;
B(k,2+«N+2—k)=f;

B(k,k —2) =,

B(k,k—1) =¢

B(k, k) = e;

end,

D=eye(2«x N+1,2% N +1);
forj =2: M;

fii(1,5) = 0;

fii(2,5) = tau * sin((j — 1) * h);
fork=3:2x N +1;

fii(k,j) = (cos((k —1— N) xtau) — px sin((k— 1 — N) xtau)) x sin((j — 1) * h);
end,

end;

alphal = zeros(2* N + 1,2 N + 1);

bethal = zeros(2+ N + 1,1);

fory=2:M;

Q = inv(B + C x alphaj — 1);

alphaj = —Q * A;

bethaj = Q * (D * (fii(:, 7)) — C * bethaj — 1);
end;

U=zeros(2x N +1,M + 1);

forj=M:—-1:1;

U(:,j) = alphaj « U(:,j + 1) + bethay;

end
'EXACTSOLUTIONOFTHISPROBLEM',
forj=1:M +1;

fork=1:2%x N +1;

es(k,j) = sin((k—1— N) xtau) * sin((j — 1) % h);
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end;

end,

maxes = max(mazx(abs(es)));
mazxerror = max(mazx(abs(es — U)));
relativeerror = mazerror /mazes;

cevapl = [N, M, maxerror, relativeerror]

A.2 Matlab Implementation of the second Order of Accuracy Difference Scheme of
Problem (3.1)

function drihlet1st(N,M);

if nargin j 1; end;

close;close;

tau=pi/N;

h=pi/M;

p=1;

a=-1/(2*h?);

b= —1/(4x*h?);

¢ = —p/(2%h2);

d = —p/(4*h?);

e = (=2/tau?) + (1/(h%));

f=(1/(tau?)) + 1/(2 x tau) + (1/(2 * h?));

g=p/h*
q = (1/(tau?)) = (1/(2 * tau)) + (1/(2 * h?));
t=p/(2%h?);

A=zeros(2x N+1,2%x N +1);

for k=3:N;
A(k,k-2)=b;
Ak k-1)=a;
A(k,k)=b;
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A(k,2*N+2-k)=d;

A(k,2*N+3-k)=c;

A(k,2*N+4-k)=d;

end;
A(N+1,N-1)=b;A(N+1,N)=a;A(N+1,N+1)=b+d;A(N+1,N+2)=c;A(N+1,N+3)=d;
A(N+2,N)=b+d; A(N+2,N+1)=a+c; A(N+2,N+2)=b+d;
A(N+3,N-1)=d; AN+3,N)=c; A(N+3,N+1)=b+d;
A(N+3,N+2)=a;A(N+3,N+3)=b;

for k=N+4:2*N+1;

A(k,k-2)=b;

Ak,k-1)=a;

A(k,k)=b;

A(k,2*N+2-k)=d;

A(k,2*N+3-k)=c;

A(k,2*N+4-k)=d;

end;

A;

C=A;

B=zeros(2*N+1,2*N+1);

B(1,N)=1;

B(2,N)=-3;

B(2,N+1)=4;

B(2,N+2)=-1;

for k=3:N;
B(k.k-2)=q;
B(k,k-1)=e;
B(k,k)=f;
B(k,2*N+2-k)=t;
B(k,2*N+3-k)=g;
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B(k,2*N+4-k)=t;

end;

B(N+1,N-1)=q;
B(N+1,N)=¢;B(N+1,N+1)=f+t;B(N+1,N+2)=g;B(N+1,N+3)=t;
B(N+2,N)=g+t; B(N+2,N+1)=e+g; B(N+2,N+2)=f+t;
B(N+3,N-1)=t;B(N+3,N)=g;
B(N+3,N+1)=q+t;B(N+3,N+2)=e;B(N+3,N+3)=f;
for k=N+4:2*N+1;

B(k.k-2)=q;

B(k,k-1)=e;

B(k,k)=f;

B(k,2*N+2-k)=t;

B(k,2*N+3-k)=g;

B(k,2*N+4-k)=t;

end;

B;

D=eye(2*N+1,2*N+1);

for j=2:M;

fii(1,))=0;

fii(2,j)=2*tau*sin((j-1)*h);

for k=3:2*N+1;
fii(k,j)=(cos((k-2-N)*tau)-p*sin((k-2-N)*tau))*sin((j-1)*h);
end;

end;

alphal=zeros(2*N+1,2*N+1);
bethal=zeros(2*N+1,1);

for j=2:M;

Q=inv(B+C*alphaj-1);

alphaj=-Q*A;

bethaj=Q*(D*(fii(:,j))-C*bethaj-1); end;
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U=zeros(2*N+1,1);

U, M+1)=zeros(2*N+1,1);

for j=M:-1:1;

U(:,j)=alphaj*U(:,j+1)+bethaj;

end

"EXACT SOLUTION OF THIS PROBLEM’;

for j=1:M+1;

for k=1:2*N+1;
es(k,j)=sin((k-1-N)*tau)*sin((j-1)*h);

end;

end;

maxes=max(max(abs(es)));
maxerror=max(max(abs(es-U)));
relativeerror=maxerror/maxes;

cevapl=[N,M, maxerror,relativeerror]

A.3 Matlab Implementation of the first Order of Accuracy Difference Scheme of Prob-
lem (3.2)

function neuman1st(N,M)

if nargin j 1;

end;

close;close;

tau=pi/N;

h=pi/M;

p=li;a=-1/h%b = 1/tau?;c = (—=2/tau?®) — (1/tau);d = —p/h?
e = (1/tau®) + (1/tau) + (2/h*); f = (2 x p/1?);
A=zeros(2x N +1,2« N + 1);
AIN+1,N+1)=a+d;

fork=3:N;

Ak, k) = a;

A(k,2x N +2—k) =d;
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end;
fork=N+2:2xN+1;
A(k, k) = a;

Ak, 2+« N +2—k) =d,

end,

C = A,

B =zeros(2+« N +1,2% N + 1);
B(1,N+1) =1,

B(2,N +1) = —1;
B(2,N+2)=1,

fork=3:N;

B(k,k —2)=b;B(k,k—1)=c¢;B(k,k) =e; B(k,2*x N+2—k) = f;
end,
B(N+1,N—-1)=0;B(N+1,N)=¢B(N+1,N+1)=e+ f;
B(N+2,N)=b+ f; BIN+2,N+1)=¢;B(N +2,N +2) =e¢;
fork=N+3:2%xN+1;

B(k,2« N+2—k)=f;

B(k,k —2) =b;

B(k,k—1) =¢

B(k, k) =e¢;

end;
D=ecye(2+« N+ 1,2% N + 1);
forj=2: M,

fii(L, j) = 0;

fii(2,7) = tau * cos((j — 1) x h);

fork=3:2x N +1;

fii(k,7) = (cos((k — 1 — N) xtau) — px sin((k — 1 — N) x tau)) x cos((j — 1) x h);
end;

end,
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alphal = eye(2* N + 1,2+ N 4+ 1);

bethal = zeros(2x N + 1,1);

forj =2: M,

Q = inv(B + C x alphaj — 1);

alphaj = —Q * A;

bethaj = Q * (D = (fii(:, 7)) — C = bethaj — 1);
end,

U= zeros(2x N+ 1,1);

U(:, M + 1) = inv(D — alphaM) * bethaM;
forj=M:—-1:1;

U(:,7) = alphaj « U(:, 5 + 1) + bethay;

end
'"EXACTSOLUTIONOFTHISPROBLEM',
forj=1:M +1;

fork=1:2%x N +1;

es(k,j) = sin((k—1— N) xtau) * cos((j — 1) x h);
end,

end,

maxes = max(mazx(abs(es)));

mazerror = max(maz(abs(es — U)));
relativeerror = mazxerror/maxes;

cevapl = [N, M, maxerror, relativeerror]

end

A.4 Matlab Implementation of the second Order of Accuracy Difference Scheme of
Problem (3.2)

function neuman2ndog(N,M)

if nargin j 1; end;

close;close;

tau=pi/N;

h=pi/M;
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p=1;

a=-1/(2*h?);

b= —1/(4xh?);

c=—p/(2*h?);
d=—p/(4*h?);

(=2/tau?) + (1/(h%));

f=(1/(tau?)) + 1/(2 x tau) + (1/(2 * h?));
g9 =p/h*

¢ = (1/(tau®)) = (1/(2 % taw)) + (1/(2 % h?));
t=p/(2%h?);
A=zeros(2x N+ 1,2 N + 1);
fork=3:N;

Ak, k—2) = b;

A(k:k—l)

Ak, k) =
sz*N+2—m_¢
Ak,2* N +3—k)=c¢;
A(k,2x N +4—k) = d;
end,
AN+1,N—1)=b
AN +1,N) = a;
AN+1,N+1)=>b+d,
AN+ 1,N +2) =g
AN +1,N +3) =d;
A(N +2,N)=0b+d;
AIN+2,N+1)=a+g
AN+2,N+2)=b+d,
AN +3,N—1)=d,
A(N +3,N) =¢;
AN+3,N+1)=b+d,
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A(N +3,N +2) =q;
A(N 4+ 3,N +3) = b;
fork=N+4:2xN +1;
Ak, k—2)=1;
A(kk—l)

A(k, k) =
A(k:?*N+2—k):d;
Ak, 2%« N +3—Fk) =c
A(k, 2%« N +4—k) =d;
end;

C = A;

B = zeros(2+« N +1,2x N + 1);

1,N) =1;

for k=3:N;
B(k.k-2)=q;
B(k,k-1)=e;
B(k,k)=f;
B(k,2*N+2-k)=t;
B(k,2*N+3-k)=g;
B(k,2*N+4-k)=t;
end;
B(N+1,N-1)=q;
B(N+1,N)=e;
B(N+1,N+1)=f+t;
B(N+1,N+2)=g;
B(N+1,N+3)=t;

106



B(N+2,N)=q+t;
B(N+2,N+1)=e+g;
B(N+2,N+2)=f+t;
B(N+3,N-1)=t;
B(N+3,N)=g;
B(N+3,N+1)=q+t;
B(N+3,N+2)=e;
B(N+3,N+3)=f;
for k=N+4:2*N+1;
B(kk-2)=q;

Bk k-1)=e;
B(k,k)=f;
B(k,2*N+2-k)=t;
B(k,2*N+3-k)=g;
B(k,2*N+4-k)=t;

end;

D=eye(2*N+1,2*N+1);

for j=2:M;
fii(1,j)=0;

fii(2,))=2*tau*cos((j-1)*h);

for k=3:2*N+1;

fii(k,j)=-p*sin((k-2-N)*tau)*cos((j-1)*h);

end;

end;

alphal=zeros(2*N+1,2*N+1);—
bethal=zeros(2*N+1,1);

for j=2:M;

Q=inv(B+C*alphaj-1);

alphaj=-Q*A;

bethaj=Q*(D*(fii(:,j))-C*bethaj-1);
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end;

U=zeros(2*N+1,1);
U(:,M+1)=inv(D-alphaM)*bethaj;

for j=M:-1:1;
U(:,j)=alphaj*U(:,j+1)+bethaj;

end

"’EXACT SOLUTION OF THIS PROBLEM’;
for j=1:M+1;

for k=1:2*N+1;
es(k,j)=sin((k-2-N)*tau)*cos((j-1)*h);
end;

end;

maxes=max(max(abs(es)));
maxerror=max(max(abs(es-U)));
relativeerror=maxerror/maxes;
cevapl=[N,M, maxerror,relativeerror]

end
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