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ABSTRACT

ECG DIAGNOSIS, ANALYSIS, AND INTERPRETATION IN CARDIOLOGY
USING DEEP LEARNING MODELS FOR CLASSIFICATION AND
PREDICTION

Oluwafemi Ayotunde OKE
PhD, Department of Computer Information System
Supervisor: Prof. Dr. Nadire CAVUS

December, 2024, 148 pages

The integration of artificial intelligence across industries has significantly
enhanced efficiency, performance, and scalability. In clinical settings, Al advancements
have demonstrated potential in improving patient outcomes and optimizing healthcare
processes. However, while hybrid Al models—combining multiple Al techniques—show
promise, there is limited research specifically addressing their application in cardiology,
particularly in real-time diagnostic and decision-making tools. This study aims to fill this
gap by leveraging innovative Al frameworks to develop scalable, hybrid Al models
tailored to the health sector, with a specific focus on cardiology. This involves the analysis
of electrocardiogram (ECG) image results using the proposed methodology comprising
of a combination of 2 standalone deep learning models (Inception V3 and VGG16)
integrated together to create a hybrid model for the prediction-classification analysis of 6
different heart conditions (abnormal heart condition, atrial fibrillation, ischemic heart
disease, myocardial infarction, normal heart condition, and sinus bradycardia). Hybrid
datasets consisting of datasets from Near East University (NEU) cardiac center and
Kaggle online database were implemented in the study. 80% of the Kaggle online datasets
were used for training and 20% for validation while 100% of the NEU datasets was used
testing. The hybrid Al model has demonstrated exceptional performance in the
classification of ECG images, achieving high accuracy, sensitivity, specificity, precision,

and Fl-score. With an achieved accuracy of 99%, 99% sensitivity (recall), 99%



\'

specificity, 99% precision, and 99% F1-Score, the model holds significant benefits and
potential for improving the diagnosis and management of heart diseases, ultimately
enhancing patient outcomes. In addition to the classification performance metrics scores
of the hybrid Al model, the research also integrates Al-driven cardiac care through the
development of a web ECG classifier application for clinical integration. All of which
play significant importance to patients, cardiologists and the field of cardiology at large
towards a faster, precise, efficient, and patient-centered approach to heart disease
diagnosis, analysis, interpretation and treatment, leading to an overall patient well-being.

Keywords: Atrtificial intelligence, hybrid Al model, classification, cardiology, clinical
implementation
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OZET

SINIFLANDIRMA VE TAHMIN iCiN DERIN OGRENME MODELLERI
KULLANILARAK KARDIYOLOJIDE EKG TESHISi, ANALIZi VE
YORUMLANMASI

Oluwafemi Ayotunde OKE
Doktora, Bilgisayar Enformatik Sistemleri Anabilim Dali
Danmisman: Prof. Dr. Nadire CAVUS

Aralik, 2024, 148 sayfa

Yapay zekanin endiistriler arasinda entegrasyonu, verimliligi, performansi ve
Olceklenebilirligi onemli Olgiide artirmistir. Klinik ortamlarda, Al gelismeleri hasta
sonuclarint iyilestirme ve saglik hizmetleri siireclerini optimize etme konusunda
potansiyel gostermistir. Bununla birlikte, birden fazla Al teknigini birlestiren hibrit Al
modelleri umut vaat ederken, 6zellikle ger¢cek zamanli tan1 ve karar alma araglarinda
kardiyolojideki uygulamalarini ele alan sinirli aragtirma vardir. Bu ¢alisma, ozellikle
kardiyolojiye odaklanarak saglik sektoriine gore uyarlanmis Olgeklenebilir, hibrit Al
modelleri gelistirmek i¢in yenilik¢i Al cercevelerinden yararlanarak bu boslugu
doldurmay1 amaglamaktadir. Bu, 6 farkli kalp rahatsizliginin (anormal kalp rahatsizligi,
atriyal fibrilasyon, iskemik kalp hastaligi, miyokard enfarktiisii, normal kalp rahatsizlig
ve sinis bradikardisi) tahmin-siniflandirma analizi i¢in bir hibrit model olusturmak {izere
bir araya getirilmis 2 bagimsiz derin 6grenme modelinin (Inception V3 ve VGG16) bir
kombinasyonundan olusan 6nerilen metodolojiyi kullanarak elektrokardiyogram (EKQG)
goriintii sonuglarmin analizini igerir. Calismada Yakin Dogu Universitesi (YDU) kalp
merkezi ve Kaggle ¢evrimigi veritabanindan alinan veri kiimelerinden olusan hibrit veri
kiimeleri uygulandi. Kaggle g¢evrimici veri kiimelerinin %801 egitim igin, %Z20'si
dogrulama igin kullanilirken, YDU veri kiimelerinin %100'i test i¢in kullanild1. Hibrit Al
modeli, yiiksek dogruluk, duyarhilik, 6zgiilliikk, kesinlik ve F1 puani elde ederek EKG

goriintiilerinin siniflandirilmasinda olaganiistii bir performans gdstermistir. Elde edilen



vii
%99 dogruluk, %99 duyarlilik (geri ¢agirma), %99 6zgiilliik, %99 kesinlik ve %99 F1
puani ile model, kalp hastaliklarinin teshisini ve yonetimini iyilestirmek ve nihayetinde
hasta sonuclarini iyilestirmek i¢in 6nemli faydalar ve potansiyel tasimaktadir. Arastirma,
hibrit AI modelinin simiflandirma performans oOlgiitleri puanlarina ek olarak, klinik
entegrasyon i¢in bir web EKG siniflandirict uygulamasmin gelistirilmesi yoluyla Al
odakl1 kardiyak bakimi da entegre etmektedir. Bunlarin hepsi, kalp hastaliginin teshisi,
analizi, yorumlanmasi ve tedavisine yonelik daha hizli, kesin, etkili ve hasta merkezli bir
yaklasima dogru hastalar, kardiyologlar ve genel olarak kardiyoloji alani i¢in 6énemli bir

Oneme sahiptir ve bu da genel hasta refahina yol acar.

Anahtar Kelimeler: Yapay zeka, hibrit model, siniflandirma, kardiyoloji, klinik

uygulama
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CHAPTER ONE
INTRODUCTION

The first chapter of this research provides a comprehensive overview of the
background of the study, the problem, aim and objectives, the significance and
contribution to the field of the study, the limitations, definition of terminologies, and

finally, the thesis overview.

1.1.Background of the Study

The prevalence of cardiovascular diseases (CVDs) has been increasing globally,
making heart disease one of the leading causes of morbidity and mortality (Amini et al.
2021), and the early and accurate diagnosis is critical for effective management and
treatment of these conditions (Ahsan & Siddique, 2022). Cardiology is the branch of
medicine that deals with the study of the heart as well as the disorders of the heart,
cardiovascular system and part of the circulatory system (Tiwari et al. 2021). The field
include medical diagnosis and treatment of congenital heart defects (Liu et al. 2022).
Physicians who specialized in cardiology are referred to as cardiologist (Nezamabadi et
al. 2023). Electrocardiograms (ECGs) are widely used diagnostic tools that record the
electrical activity of the heart, providing essential information for diagnosing various heart
conditions (Saini & Gupta, 2021). However, interpreting ECGs can be complex and time-
consuming, often requiring the expertise of trained cardiologists (Hong et al. 2022). In
recent years, artificial intelligence (Al) has shown tremendous potential in automating and
enhancing medical diagnostics (Venigandla, 2022). This study explores the use of Al
models and a hybrid approach in combining the Al models (Inception V3 and VGG16)
models, for the automated diagnosis, interpretation, and analysis of ECG images.
Furthermore, the motivation behind this research stems from the potential utilization of
Al models in ECG image diagnosis, interpretation, and analysis as there is the increasing
need for efficient and accurate cardiac health assessment (Ebadinezhad & Mobolade,
2024; Olawale & Ebadinezhad, 2023).



1.2.Problem Statement

Cardiovascular diseases are at the forefront; hence, there is a need for innovative
technologies to aid diagnostics and improve diagnostics accuracy to ensure lives are not
lost. Despite the emergence of advanced medical technologies, heart diseases are still
being diagnosed inaccurately or late because traditional ECG interpretation methods are
complex, not only mostly time-consuming-as identified by Kashou et al. (2020)-but also
susceptible and prone to human error, as discussed by Faruk et al. (2021), many times
labor-intensive-as stated by Thiagarajan et al. (2020)-and variable among clinicians,
according to Hoang et al. (2021). More than that, among the different health problems
common in Cyprus, the heart condition problems are the most prevalent health problems
(Lambros & George, 2018). These gaps have therefore made the research of Al models
necessary as a hybrid approach to address these challenges since there is a dire need for a
system that is both reliable and efficient, which can assist in the correct classification of
ECGs, so as to lighten the burden on healthcare professionals and improve patient

outcomes.

1.3.The Aim of the Study
This research aims at combining of the strengths of Inception V3 and VGG16 Al
models in clinical diagnosis and interpretation of ECG images for six different heart

conditions. The specific objectives of the study are as follows:

a) To design a hybrid Al model that will integrate the architecture of Inception V3
and VGG16 for ECG image classification.

b) To evaluate the performance of the hybrid Al model regarding accuracy,
sensitivity, specificity, precision, and F1-score.

c) Tointegrate the developed hybrid Al model into a web application named "ECG
web classifier".

d) To find the probable impact of the hybrid Al model on the classification
diagnosis and prediction analysis of heart diseases in the developed web ECG classifier

application.



1.4.Significance of the Study
The impact and significance of this study can be considered in the light of the

following aspects:

e Clinical Impact: A hybrid Al model can provide a fully automated, highly
accurate tool for ECG classification to clinical practitioners to support clinicians in more
efficient and effective diagnosis of heart diseases.

e Technological advancement: The integration of inception V3 and VGG16
models is a masterful Al model in the field of medical Al, showing the prospect of hybrid
Al models to improve accuracy.

e Accessibility: The model will be deployed as a web ECG classifier application
to ensure advanced diagnostic tools are available globally. It would facilitate areas where

specialized cardiology services are not accessible.

1.5.Contribution to the Field of the Study

This work broadly contributes to the area of computer science, more so in fields
such as artificial intelligence and analysis of medical images.

Development of a new hybrid Al model through the combination of two powerful
architectures, namely, Inception V3 and VGG16, enhances the literature understanding
on how different deep learning models can be combined with the aim of enhancing
performance. The methodology and results of this study add to the growing literature
related to hybrid Al models, thus adding insight to knowledge that may be used outside
the domain of ECG analysis. From the departmental point of view, this research also
shows the concrete application of theoretical computer science in practical health

problems.

It highlights how Al can potentially improve diagnostic processes and patient
outcomes, showcasing relevance and impact from computer science research in
interdisciplinary areas. A web ECG classifier application was developed which provides
throughput advantages in terms of overall time taken for drawing conclusions on the
diagnosis, interpretation, and analysis of heart problems in patients. Similarly, the

successful deployment of the model as a web ECG classifier application makes it



important in terms of software engineering aspects and is going to serve students and
faculty alike as an inspirational case study to be taken to the field in Al applications
involving medicine. Moreover, this serves to extend advanced technical knowledge
regarding the crucial involvement of computer science in pressing contemporary societal

issues in line with commitment to innovation excellence in research outcomes.

1.6.Limitations
The study shall focus on the development and validation of the hybrid Al model in

classifying ECG images into six conditions of the heart.

However, some of the limiting factors are the dependency on the quality and
diversity of ECG datasets used for training, computational resource constraints, the fact
that it focuses on only 6 heart problems, model choices, the use of only two standalone
Al models to make the hybrid Al model, study up until this year-July 2024, this semester,
ethical and regulatory issues that surround Al applications in the diagnosis of some

cardiac centers, and further generalization in different clinical settings is still required.

1.7.Definition of Terminologies
For the purpose of this research, "variables" can be defined as different factors

or parameters that have to do with the research study. They include:

« ECG: An electrocardiogram is a graphical record of the electrical activity of
the heart over time (Fuior et al. 2021). It is used in various diagnoses of heart conditions,
as it recognizes certain rhythms and structural abnormalities within the heart (Li &
Boulanger, 2022). These ECG traces are created when electrodes placed on the skin
measure electrical signals arising from the cardiac muscle at its contraction and relaxing
phases (Zhu et al. 2021).

* Electrocardiograph: An electrocardiograph is a medical device used to record
the electrical activity of the heart through capturing and amplifying the electrical signals
that are generated by the heart, and displays it as a waveform on a screen or prints it on

paper as stated by Aggarwal & Wei, 2021.

« Cardiologist: A cardiologist is a medical doctor specializing in diagnosing,



treating, and preventing diseases of the heart and blood vessels (Batchelor et al. 2023).
Cardiologists interpret ECGs and other diagnostic tests to assess heart health, develop

treatment plans, and manage patients with cardiovascular conditions (Al-Zaiti et al. 2022).

» Artificial Intelligence: Intelligence developed in machines could be defined as
those that think and perform like human beings, according to Dong et al. (2020). Al is a
general subject that uses technology to try to give the possibility of capabilities in
machines for reasoning, learning, problem-solving, perception, and language
understanding. According to Chen et al. (2020), in health, Al has been applied to diagnosis

and prediction, including interpretation of ECG data.

» Machine Learning: Machine Learning is a subset of Al that focuses on
developing algorithms and statistical models that enable computers to learn from and
make predictions or decisions based on data (Sarker, 2021). Machine learning techniques
are used to identify patterns in ECG image signals that may indicate specific heart
conditions (Feeny et al. 2020).

* Deep Learning: Deep Learning is a branch of machine learning concerned with
neural networks having many layers, also called deep neural networks. Dargan et al.
(2020) present that such deep neural networks learn complex patterns and abstractions
from huge data and are more effective, especially for image and signal analysis; therefore,

ECG interpretation becomes an important modality for treatment.

» Transfer Learning: Narrowly, it refers to machine learning where a model
developed for a particular task is reused as the starting point for models on a second task.

Reference can be made to Niu et al. 2020.

This especially helps in situations where data on the new task are extremely
limited. According to Zhu et al. 2021. These models, pre-trained on ImageNet, such as
Inception V3 and VGGL16, can be fine-tuned in the context of ECG analysis to improve

their diagnostic accuracy using relatively small ECG datasets.

» Dataset: A dataset is a collection of data used for training and evaluating
machine learning models (Paullada et al. 2021). In ECG analysis, datasets typically
consist of ECG recordings, along with annotations or labels indicating the presence or

absence of specific heart conditions (Nezamabadi et al. 2023).



* Preprocessing: Preprocessing refers to the various techniques and methods
applied to raw data to prepare it for analysis (Fan et al. 2021). For ECG data, preprocessing
steps may include noise reduction, normalization and segmentation of the ECG (Liu & L,
2021).

» Feature Extraction: Feature Extraction involves identifying and isolating the
most informative attributes or characteristics from raw data that will be used by machine
learning algorithms (Hajji et al. 2021). For ECG data, features may include time-domain,
frequency-domain, and morphological characteristics of the ECG waveform (Singh &
Krishnan, 2023).

» Classification: Classification is a machine learning task where the goal is to
assign input data to one of several predefined categories (Luo, 2021). In the context of
ECG analysis, classification models aim to categorize ECG recordings into classes such
as normal, arrhythmia, or other specific heart conditions.

« Prediction: In general, it is the process of inferring or estimating, from a
previously trained model in machine learning, the outcome for new unseen data. Wiemken
& Kelley, 2020. In ECG analysis, prediction simply means calculating the likelihood of
the different conditions of the heart given an input ECG image.

« Performance Metrics: These are the quantitative measures taken to determine
the effectiveness and accuracy of the performance of a machine learning model. General
metrics for ECG classification models include accuracy, sensitivity, specificity, precision,
recall, and the area under the receiver operating characteristic curve, AUC-ROC (Somani
et al. 2021).

» Support: The number of actual occurrences of the class in the dataset (Sohn et
al. 2020).

» Web Application: A web application is software that runs over the internet in a
web browser and resides in a web server. Web-based applications for ECG analysis
include remote access to diagnostic tools in which clinicians may upload, analyze, and
interpret ECG data online (Berners-Lee et al. 2023; Xu, 2020).

» PWA stands for Progressive Web Application, which is an online application



utilizing the latest web technology to create an application experience on the web.
According to Fauzan et al. (2022), it was designed to work offline and load fast in order
to enrich user experiences. These are what make the PWAs quite reliable and responsive

for medical applications.

» Human-Computer Interaction (HCI): Human-Computer Interaction (HCI) is
the study of how people interact with computers and software (Ramadoss et al. 2021). In
the context of ECG analysis, HCI focuses on designing user interfaces that are intuitive

and efficient for healthcare professionals, facilitating accurate and timely diagnosis.

1.8.Project Time Schedule

This section contains tabular and diagrammatic representation of the research

process from inception till completion as shown in Table 1.1.

Table 1.1:

Project time schedule

Work Done Duration

Literature Search December 2022 until thesis defense
Preparation of Research Proposal 12 Months

Technological Tools Acquisition 10 Months

Ethical Approval Processing 4 Months
Dataset Acquisition 5 Months
Data Analysis 4 Months
Application Build 3 Months
Writing the Thesis 2 Months

Thesis evaluation and correction 3 Weeks

Diagrammatically it is represented using Gantt Chart which shows the start and



finish dates of the different timelines, milestones, and dependencies of the project and
thereby allow for effective planning and tracking of the progress of it as indicated by
Grudzinskas et al. (2022) in Figure 1.1.

Figure 1.1:

Gantt chart diagram
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1.9.Thesis Overview

This section provides in detail the structure of the thesis as a way to help a reader
understand the line of logical disposition it has assumed and in what manner. It, therefore,
highlights what is contained in successive chapters and their individual contributions
towards the whole research study. In such a way, the thesis tries to increase
comprehension and, therefore, provides a roadmap through which a reader shall navigate

while studying the research. The structure of the thesis is the following:

Chapter One gives the background, problem statement, objectives, scope, and

significance of the study, and the definition of variables. The second chapter has a review



of related existing research in Al models on ECG analysis, including the systematic
literature review, bibliometric analysis, comparative analysis, and theoretical frameworks
used in the study. Chapter three focuses on the design, development, and implementation
of the hybrid Al model by describing data pre-processing, model training, and evaluation.
Chapter four outlines the performance metrics and comparative analysis from the findings.
It goes on to chapter five which discusses the results interpretation, implications to clinical
practice, strengths, limitations, and future directions. Chapter six summarizes key

findings, implications, and recommendations for future research.
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CHAPTER TWO
LITERATURE REVIEW

This chapter covers the theoretical framework and review of existing research on
Al models in ECG analysis, together with the strengths and limitations of various

approaches.

2.1.Theoretical Framework
2.1.1. Artificial Intelligence Models

Artificial intelligence (Al) is a broad range of computational techniques and
algorithms that enable machines to mimic human intelligence. Key Al models include
machine learning and deep learning, which have proven to be particularly good at pattern
identification and the ability to make predictions based on large datasets (Zhu, 2020).
Artificial intelligence models driven by machine learning models have huge potential for
the automation and enhancement of several diagnosis processes in medical diagnosis,

such as image analysis and disease prediction, as illustrated in Figure 2.1.

ML is a subcategory of artificial intelligence that involves the development of
algorithms and statistical models that give computers the ability to perform tasks without
explicit programming, while learning from past data to make predictions or decisions
based on the data (Soori et al. 2023). From basic methods such as supervised and
unsupervised learning to reinforcement learning that might be applied against various
challenges, image recognition, natural language processing, and diagnostics- Machine
learning is an exciting area (Habehh & Gohel, 2021).

Supervised Learning in machine learning is a form of training for an algorithm
wherein the same is trained using a labeled dataset. In other words, each of the examples
in the set is clearly matched with its correct output label (Al-Azzam & Shatnawi, 2021).
The model learns to map inputs to the desired output by finding patterns in the data.
Supervised learning is particularly useful in tasks where the objective is to predict or
classify data based on past observations (Jiang et al. 2020). It finds wide usage in
diagnostic applications where known outcomes, such as disease presence, are used to train

models for the prediction of similar outcomes in new and unseen data (Caballé et al.
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2020).

Figure 2.1:
Machine Learning Classification (Comlan & Alokpo, 2023)
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This is a subcategory of supervised learning wherein one is interested in
assigning input data to one of several pre-defined categories (Chen et al. 2020). In the
context of machine learning, classification algorithms analyze training data and develop
a model that can categorize new data points into one of the predefined classes (Seliya et
al. 2021). Classification is crucial in diagnostic systems, where it can be used to categorize
patients based on their medical images, symptoms, or other diagnostic criteria into various
health conditions (Shu et al. 2021).

Image classification, in this respect, is a special form of classification whose
inputs are images while the outputs are the classes that the image would fall into (Du et
al. 2021). The process here will involve classifying an image through its visual contents

to fall into a specific category, like distinguishing different heart conditions from ECG
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images. Advanced architectures such as VGG16 and Inception V3 have been designed to
capture complex patterns in image data, hence making them suitable for medical
diagnostics. These models are going to be trained on great datasets of labeled images to
be able to accurately classify a new image that can help diagnose several medical
conditions (Bhatt et al. 2021).

Medical diagnostics, concerning the machine learning aspects and classification
techniques, could define the diagnosis to predict several ailments or diseases that might
show signs from any medial data (Xie et al. 2021). Diagnostic analysis by various machine
learning models, where supervising usually has been conducted properly, supports in
diagnostics via their analysis in radiology images or patient records against accurate
prediction of the class results. This approach will be able to facilitate more accuracy in
medical diagnostics with better patient outcomes and personalized treatment plans
(Shehroz Khan et al. 2024).

Al models for classification and prediction, particularly those based on deep
learning architectures such as convolutional neural networks (CNNs), have revolutionized
the field of medical imaging (Singh, 2021). These models are designed to classify images
into predefined categories and predict outcomes based on input data (Wagner et al. 2021).
Image analysis of ECGs has been one of the major tasks where models such as Inception
V3 and VGG16 can be extensively used, because they are able to capture and explain
almost all complex patterns in the data and yield perfect classification for heart conditions.
Besides the use of VGG16 and Inception V3, there are many deeper learning models
showing outstanding performance in the processing of ECG images:

* ResNet (Residual Networks): ResNet is famous for its deep architecture, which could
be effectively trained without a problem of vanishing gradient thanks to the use of residual
blocks. This turns ResNet into an extremely effective means for complicated image
recognition tasks, including the classification of ECG images (Xu et al. 2023).

* Densenet: It connects each layer to every other layer in a feed-forward manner, which
promotes feature reuse and improves gradient flow. In the Dense Convolutional Network,
very remarkable results have been achieved concerning medical image analysis, including
ECG images (Li et al. 2020).

» MobileNets: The very name suggests that these models are targeted at mobile or edge



13

devices with a view toward efficiency in their computation. Its lightweight nature and
depthwise separable convolution make it good for real-time ECG image processing,
specifically in portable health applications (Kumar et al. 2021).

* AlexNet: This is one of the pioneering deep learning models that show the potentials of
CNN in image classification. While this model may be older, it laid the foundation for
other models currently being used to date in medical image processing, including ECG,
by Ba Mahel et al. in 2022.

2.1.1.1.Performance Evaluation Metrics

A number of performance evaluation metrics can be employed when assessing
the efficacy and efficiency of such hybrid Al models for the diagnosis, interpretation, and
analysis of ECG images. These metrics constitute a complete toolkit for assessing the
performance of the hybrid Al model in ECG image diagnosis, with each offering a
different look at the performance of the model. According to Pham et al. (2020), the

metrics used in this study are explained as follows:

a) Accuracy: refers to the measure of the true results, or the true positive and true
negative, ratio compared to the total number of test cases as illustrated in Equation 2.1
below. "This is the simplest overall index for general assessment of model's performance.
Zhang et al. 2020.

(Eqg. 1.2)

(TP + TN)
(TP + FP + FN + TN)

Accuracy =

b) Precision: The ratio of positive identifications that were correct represented by
Equation 2.2. It is only informative when the cost of a false positive is high (Powers &
Ailab, 2020).

(Eq. 2.2)

TP

Precision = m
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¢) Recall (Sensitivity): The ratio between actual positives-those that were found-

Is given by Equation 2.3. The measure is of considerable importance when the cost of a
false negative rate is high (Chicco et al. 2021).

(Eq. 3.3)

TP
(TP + FN)

Sensitivity =

d) F1-Score: The harmonic average of precision and recall provides a single

measure to balance both considerations given in Equation 2.4. It is useful when you need
to balance between precision and recall (Miao & Zhu, 2022).

(Eq. 4.4)

2 * (Sensitivity * Precision)

F1 — score =
(Sensitivity + Precision)

e) Specificity: The proportion of actual negatives that were correctly identified is
referred to as specificity or true negative rate. This is expressed in Equation 2.5, where it
is of practical use under circumstances when false positives are quite costly (Gray et al.
2020).

(Eq. 5.5)

TN

Specificity = m

Where:

TP = True Positives;
TN = True Negatives;
FP = False Positives;

FN = False Negatives

f) Area Under the ROC Curve (AUC-ROC): The ROC plots the true positive
rate against the false positive rate. AUC-ROC basically gives a measure of how well the
model is able to discriminate between classes. An AUC of 1 represents a perfect model,
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and an AUC of 0.5 shows a model that has no discriminative capability (Carrington et al.
2023).

g) Confusion Matrix: A tabular representation to describe a model's classification
performance. This will be able to show some metrics such as true positives, false
positives, true negatives, and false negatives of a model and will provide more in-depth

information about how the model works. (De Diego et al. 2022).

2.1.2. Electrocardiogram (ECG)

Electrocardiogram (ECG) is a critical diagnostic tool in cardiology, used to detect
and monitor various heart conditions by measuring the electrical activity of the heart. The
interpretation of ECGs requires expertise, as it involves identifying subtle changes in
wave patterns that indicate different cardiac abnormalities (Cook et al. 2020). Al models
have been increasingly applied to automate ECG diagnosis, analysis, and interpretation,
offering high accuracy and consistency which assist cardiologists in identifying
conditions such as atrial fibrillation, myocardial infarction, and ischemic heart disease,
thereby improving diagnostic efficiency and patient outcomes (Lopez-Jimenez et al.
2020).

There are many types of heart diseases identifiable through an ECG image data
as Figure 2.2 shows the cardiovascular disease incidence rate in Cyprus and Figure 2.3
depicting the world cardiovascular disease incidence rate which all cause deaths globally,
such that if the diseases are diagnosed through intelligent systems, the efficiency of the
physician diagnosis and the patient's overall health can be improved (Romiti et al. 2020).
Hence, theoretical discussions are carried out regarding the model hybridization process
and its application in clinical implementation for target users, which include theoretical
frameworks in terms of the datasets and the technological standpoints employed.
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Figure 2.2:

Cardiovascular Disease Incidence Rate in Cyprus (Lambros & George, 2018)
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Figure 2.3:

World Cardiovascular Disease Incidence Rate (Jagannathan et al. 2019)
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2.1.2.1.Hybrid Dataset Overview

The data used in this study is a combination of primary and secondary data from
two sources: one from a cardiac center and the other from an online database. A
combination of these two heterogeneous datasets from their respective sources makes up
the hybrid data consisting of ECG images for six different classes of heart problems,
namely abnormal heart condition, atrial fibrillation, ischemic heart disease, myocardial
infarction, normal heart condition, and sinus bradycardia-all of which can be detected by
the hybrid Al model.

a) Abnormal Heart Condition
Abnormal heart conditions encompass a variety of cardiac abnormalities that can
affect the heart's structure or function, leading to impaired circulation and various clinical
symptoms (Nicholson et al. 2022). These conditions can be congenital or acquired and
may include arrhythmias, cardiomyopathies, and valve diseases.

b) Atrial Fibrillation
Atrial Fibrillation (AF) is the most common cardiac arrhythmia categorized by
rapid and irregular beating of the atrial chambers of the heart. This condition leads to
increased risks of stroke, heart failure, and other cardiovascular complications associated
with the disease (Rafaqgat et al. 2022).

c) Ischemic Heart Disease
Ischemic heart disease, also known as coronary artery disease, is a condition
whereby the heart muscles are subjected to reduced blood flow because of narrowed or
blocked coronary arteries, leading to chest pain commonly referred to as angina or

myocardial infarction, popularly known as a heart attack (Hanafi et al. 2022).

d) Myocardial Infarction
The system is said to be in Myocardial Infarction-the common name 'heart
attack,' which occurs by the block of blood flow at a part of the heart damaging or dying
out due to insufficiency in blood flow and oxygen for the period of time. It may be caused
mostly by blockages in one or more of these coronary arteries (Kumar Singh & Kumar
Jat, 2021).
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e) Normal Heart Condition
A normal heart condition is a healthy state of the heart in which it functions
efficiently, having a regular rhythm and sufficient blood flow to meet the body's needs
(Tiwari et al. 2021). The electrical activity of the heart, as recorded by an ECG, presents
typical P, QRS, and T waves without abnormalities (Sahoo et al. 2020).

f) Sinus Bradycardia

Sinus bradycardia is just a below-normal heart rate, which is usually defined as
less than 60 beats per minute for adults. The condition may be normal in a healthy subject,
especially among athletes, or may indicate the presence of some underlying heart
condition or even other types of diseases. (Venkataramanaiah & Kamala, 2020).

2.1.3. Web Application Development
2.1.3.1.Software Development Life Cycle (SDLC)

SDLC is an ordered process that gives the stages involved in the development of
software right from the conception up to its deployment and its maintenance. Various
SDLC model types include waterfall, V-Model, incremental, spiral, and agile by Gupta
et al. (2021). All the models follow their unique methodology-for instance, a waterfall
follows linearity or sequentially and spiral focuses much on the risk assessments
according to Gupta et al. (2021). Agile SDLC stands out as the best due to its iterative
nature, which supports continuous feedback, flexibility, and collaboration between cross-
functional teams (Gupta et al. 2021). This facilitates quick adaptation toward changes,

making the product better in quality, meeting user requirements more precisely.

A. Agile Software Development Life Cycle

Agile SDLC is characterized by iterative development in which the requirements
and the solution evolve through collaboration between self-organizing cross-functional
teams. It advocates for flexibility, customer feedback, and delivery of functional software
as soon as possible. Agile methodology addresses breaking down the project into smaller,
manageable units known as iterations or sprints, each producing a potentially shippable

product increment.
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Key Features of Agile SDLC are:

I. Iterative Development: Agile means the web ECG classifier application
development can be performed iteratively, which denotes continuous
improvement through adaptation of feedback. Each iteration comprises phases of
planning, design, coding, testing, and review.

ii.  Flexibility: The iterative nature provides much-needed room for changes in
requirement, which in a research project is most probable as findings and insights
can alter anytime.

iii.  Customer Collaboration: The Agile process encourages close collaboration with
the stakeholders, like cardiologists and other health professionals. The approach
guarantees that the web ECG classifier application would meet the real needs of
its end users.

iv.  Continuous Feedback: Owing to regular feedback by users and stakeholders, the
features and performances are refined to make the application robust and user-
friendly.

v. Rapid Delivery: Agile aims at delivering functional portions of the application
as fast as possible, for which early identification and rectification of issues have
to be foreseen-essential in developing a reliable medical diagnosis tool.

2.2.Related Research
That covers the exiting research with an overview of others conducted research
that comprises a critical systematic literature review, a critical bibliometric study, and

critical comparative analysis.

2.2.1. Systematic Literature Review (SLR)

Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) framework approach version 2020 by Page et al. 2021, which is an evidence-
based minimum set of items for reporting in systematic reviews and meta-analyses, has
been utilized for carrying out the systematic literature review on "impact of Al, ML, and
DL on electrocardiograms in cardiology”. The search criteria of the study are the four
databases searched, and the number of records found from each database is as follows:
IEEE-1040, MDPI-422, Elsevier-376, Springer-262. This resulted as a result of the year
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boundary set during the search, which was from 2014-2024. The keyword query for

searching was formed using the logical expressions: ((Electrocardiogram OR ECG OR
EKG) AND (Cardiology OR Cardio OR Heart OR Heart Problems) AND (Atrtificial
intelligence OR Machine Learning OR Deep Learning OR Image processing)). Further,

having obtained a significant number of records within the 10-year period, there was the

need for selection composed of inclusion and exclusion criteria in such a way that for a

record to be considered, it needed to be in one of the four selected databases, published

within 2014-2024, in the English language, and related to the aim of SLR; otherwise, it

would automatically be excluded. A total of 46 records were finally included for analysis

in this research following the selection process as indicated in Figure 2.4,

Figure 2.4:
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2.2.2. Bibliometric Analysis

In similar vein, a bibliometric analysis approach is implemented in this research
to investigate the impact of Al, ML and DL technologies in Cardiology during the last 34
years spanning 1990-2024. This was done through the in-depth analysis of existing
literature published in the Clarivate Web of Science (WoS) academic research database.
The search strategy for records retrieval was done through a combination of Boolean
operators (AND & OR) with the search keywords to form the query:
((“Electrocardiogram" OR "ECG" OR "EKG") AND ("Cardiology" OR "Cardio" OR
"Heart" OR "Heart Problems™) AND ("Artificial intelligence” OR "Machine Learning"
OR "Deep Learning” OR "Image processing™)), which resulted in three thousand one
hundred and forty-two 3,142 records retrieved as represented in Figure 2.5. The selection
process included all the retrieved records which were further analyzed using VOSviewer
research software application to determine scientific mapping analysis from performance
analysis. The result of the analysis shows the positive impact Al has in the field of
cardiology in terms of publication characteristics; authors, their affiliations, countries, as

well as top funding agencies in the field and research of cardiology.
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2.2.3. Comparative Analysis

This research was performed using the method of comparative analysis, aimed at

assessing the performance of different existing transfer learning models in terms of their

individual strengths-accuracy, combination potential with other models presented in

Figure 2.6, and how potentially they can perform in real-world applications for the

classification of different heart conditions.
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The most important result of this study is that, among the pre-trained CNN
models, VGG16 had the overall performance, with 97% sensitivity, 98% F1-score, 98%
specificity, and 98% accuracy in classifying correctly the heart conditions when compared
to other transfer learning models.

The importance of the study serves as a useful guideline for the researchers and
cardiologists in advancing patient cardiac diagnosis and clinical decision-making
accuracy with artificial intelligence in a short time with minimum human errors.
Moreover, due to the presence of valuable comparative insights in the study, as a result,
the researchers can have an idea about the combinational approach towards the creation
of a hybrid Al model.

Figure 2.6:

Comparative Analysis
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2.2.4. The Gap in the Literature

Despite the huge strides that have been made in applying Al to ECG analysis,
there still remain a number of gaps within the literature. These are important to address if
the accuracy, reliability, and clinical utility of Al-driven cardiac diagnostics are to be
further improved.
2.2.4.1.Limited Generalizability

Most of the studies have proven the efficacy of the Al model on specific data
sets, normally from either controlled environments or single institutions (Ng et al. 2021).
However, the generalization of these models to diverse real-world clinical settings is
rather limited (He et al. 2020). Large-scale multicenter studies will be required to validate
Al models across different populations, healthcare settings, and varying qualities of ECG
recordings (Lin et al. 2024).
2.2.4.2.Data Diversity and Representation

Most of the Al models for ECG analysis were trained on non-representative
datasets (Noseworthy et al. 2020).

Demographic diversity, comorbidities, and variation in ECG machines and
settings are among the many factors that may affect the performance of such models,
according to (Ansari et al. 2023).

Future research should focus on creating more inclusive datasets that encompass
a wide range of demographic and clinical variables to ensure Al models perform well
across all patient groups (Barda et al. 2020).
2.2.4.3.Lack of Integration with Clinical Workflows

Most of the Al models lack seamless integration within the existing clinical
workflow. While much of the research studies dwell on the technical performances of the
Al model, little attention is paid to how best these models should be integrated into the
routine clinical practices (Yin et al. 2021).

Research is needed to explore the practical aspects of Al implementation,
including user interfaces, clinician training, and decision-support systems that
complement human expertise (Vasey et al. 2022).
2.2.4.4.Interpretability and Transparency

Al models, particularly deep learning approaches, are often criticized for their
"black-box" nature, which limits interpretability and transparency (von Eschenbach,
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2021). Clinicians need to understand how these models make decisions if they are to
trust them and use them effectively in practice (Asan et al. 2020). The development of
methods that will enhance the interpretability of Al models, such as explainable Al

techniques, is required for clinician acceptance and ethical use (Shah & Konda, 2021).

2.2.4.5.Longitudinal and Temporal Data

Most studies on Al for ECG analysis use cross-sectional data, focusing on single
ECG recordings (Chuang & Yang, 2024). However, heart conditions often evolve over
time, and incorporating longitudinal data could enhance predictive accuracy and early
detection of conditions (Liu et al. 2022). Future research should explore the use of more
temporal data and other neural networks to model the progression of cardiac diseases
(Mehmood et al. 2021).

2.2.4.6.Standardization and Regulatory Challenges

There is no uniformity in developing, validating, and reporting the results of Al
models in healthcare (Sounderajah et al. 2021). The inconsistency of the studies reduces
their reproducibility and comparability. In this regard, developing standardized guidelines
and frameworks regarding Al research on ECG analysis will be highly crucial to

guarantee the reliability and clinical applicability of Al tools (Nolin Lapalme et al. 2024).
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CHAPTER THREE
MATERIALS AND METHODS

This chapter deals with the methodology adopted to arrive at the findings
presented in this study. It includes the theoretical framework research design, data
analysis, and findings report of how the hybrid Al model was developed, optimized, and
deployed successfully thereby providing a valuable tool for ECG image diagnosis and

enhancing cardiac care.

3.1.0verview of the Research

This consists of how the gathered data are organized and processed.
Stepl: Collection of Primary datasets
Step 2: Collection of secondary datasets
Step 3: Selection of models from comparative analysis
Step 4: Splitting datasets into training, validation and testing
Step 5: Selection of parameters for model training (for example: 80%, 20%)
Step 6: Validation of model performance on dataset (performance metrics)
Step 7: Testing the model using unseen primary dataset
Step 8: Confirming the testing result with cardiologist analysis
Step 9: Saving the trained model
Step 10: Integrating the trained model into web application development
Step 11: Creation of an ECG Classifier Web Application powered with PWA

Step 12: Creation of user manual for clinical practitioners

3.2.Proposed Model of the Research
The conceptual framework for this study outlines the integration of advanced Al
models to improve the diagnosis and interpretation of ECG images. This framework

guides the development, implementation, and evaluation of a hybrid Al model that
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combines Inception V3 and VGG16 architectures, leveraging their strengths to achieve
superior performance in classifying heart conditions for clinical implementation as shown

in Figure 3.1.

Figure 3.1:
Proposed Hybrid Al Model Research Design
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3.2.1.  Hybrid Al Model Architecture Overview

The hybrid Al model developed in this study leverages the strengths of two well-
established convolutional neural network (CNN) architectures, Inception V3 and VGG16,
to enhance the accuracy and robustness of ECG image classification. By combining these
models, the hybrid approach aims to capitalize on their complementary features, thereby
improving performance metrics across various heart conditions. The hybrid Al model is
made up of VGG16 model and Inception V3 model. VGG16 model attention enhancement
further enhances the cardiologist domain knowledge by highlighting areas of pathological
interest for further detailed analysis (feature importance) and facilitates the integration
into existing hospital-end systems for use with the domain knowledge embedded modules
(Tian & Fu, 2020). Comparatively, Inception V3 focuses on reducing computational costs
and improving efficiency through modularization, factorized convolutions, and auxiliary
classifiers and it is more complex with varying convolutional filter sizes and inception
modules (Cong & Zhou, 2023). However, while VGG16 is simpler and easier to
understand by focusing on depth through many small convolutional layers, it has a
straightforward and uniform structure compared to the more intricate Inception V3 (Taye,
2023). Moreover, these architectures represent different philosophical deep neural
networks design, with VGG16 emphasizing simplicity and depth (Shah et al. 2023;
Younis et al. 2022), and Inception V3 focuses on efficiency and multi-scale feature
extraction (Niu et al. 2021). The hybrid Al model approach is a potential enhancement
repository of developed visualization strategies for identifying the exact anomalies in
ECG images, which provides the apparent diagnostic capabilities of individual diagnosis
predictions and the preferred knowledge-based path from the study to the clinical
implementation and practice. Furthermore, Figure 3.2 show the hybrid model

performance against its individual constituent models (VGG16 and Inception V3).
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Figure 3.2:
Proposed Hybrid Al Model Versus Standalone Models
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A. Inception V3

Inception V3 is a deep convolutional neural network architecture that was
introduced as an improvement as it builds on the principles introduced by the original and
previous Inception model version (also known as GoogLeNet) model (Bhavani et al.
2022). It is designed to optimize computational cost efficiency and classification accuracy
through a series of factorized convolutions and carefully crafted inception modules (Cong

& Zhou, 2023). Inception VV3's ability to capture intricate features at multiple scales makes
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it highly effective for complex image classification tasks, including medical imaging
applications.

The Inception architecture has undergone several iterations, each improving
upon its predecessor:

a) Inception v1 (GoogLeNet): Introduced in 2014, Inception v1 utilized a novel
module called the inception module, which allowed the network to learn multi-scale
features by applying convolutional filters of different sizes (Xu et al. 2022).

b) Inception v2: This version introduced Batch Normalization and optimized
inception modules, allowing for reduced computational complexity without losing
accuracy; thus, the network became faster and more efficient (Bose & Kumar, 2020).

c) Inception v3: It integrated factorized convolutions and much heavier
regularization than earlier ones. It made the model much more accurate and also more

efficient; hence, ranking as one of the best models for image recognition (Jena et al. 2022).

i.  Inception V3 Architecture

Following is the major component and features of the architecture of Inception
V3:
a) Inception Modules: The inception modules try to capture the multi-scale information
by applying different types of convolution, such as 1x1, 3x3, and 5x5, and pooling
operations in parallel as shown in Figure 3.3. The outputs from each module is
concatenated along the depth dimension (Thangaraj et al. 2024).
b) Factorized Convolutions: Inception V3 uses factorized convolutions instead of larger
convolutions to reduce the computational cost, such as breaking a 3x3 convolution into
two 1x3 and 3x1 convolutions (Sholapur & Indiramma, 2022).
c) Auxiliary Classifiers: Auxiliary classifiers are added to the intermediate layers to help
propagate useful gradients back through the network and improve training (Kumar et al.
2022).
d) Grid Size Reduction: The reduction techniques are applied to reduce the grid size
without losing the spatial dimensions. It includes the use of strided convolutions and
pooling operations. Sravani et al. (2023).
e) Batch Normalization: Batch normalization is used to stabilize the training and also
speed up the process. Meena et al. (2023).
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Figure 3.3:
Inception V3 Diagram (adopted from (Chulu et al. 2019))
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B. VGG16

VGG16 is another impactful CNN model architecture that was mainly brought
out for its simplicity for depth. Developed by the Visual Geometry Group of the
University of Oxford, VGGNet introduced its first form back in 2014 with two authors
going by the name of K. Simonyan and A. Zisserman in a paper called "Very Deep
Convolutional Networks for Large-Scale Image Recognition,” showing its emergence. It
ranked very high amongst those that placed the top lot for the challenge (Han et al. 2019;
Zou et al. 2023). The model was one of the highlights of the ImageNet Large Scale Visual
Recognition Challenge, ILSVRC 2014, where it attained a top-5 accuracy of 92.7%
(Humayun et al. 2022). VGG16 has been influential in many deep learning models that
have emerged since then. It contains 16 weight layers, consisting of 13 convolutional
layers followed by 3 fully connected layers as shown by Rao & Mahantesh, 2021. VGG16
architecture is characterized and emphasized by its simplicity and depth with small (3x3)
convolutional filters that are consistent throughout the network, allowing it to capture and
learn intricate fine-grained and hierarchical features across different layers in images
(Younsi et al. 2024). Since its inception, this architecture has been adopted into a wide
array of image recognition tasks because of its strong performance and straightforward

architecture design as represented in Figure 3.4.



32

I.  VGG16 Architecture

Following is a rundown of the main components and features of the VGG16
architecture:

a) Convolutional Layers: VGG16 solely relies on 3x3 convolutional layers
stacked on top of one another. The use of small filters ensures capturing the fine-grained
spatial details (Albardi et al. 2021).

b) Depth: VGG16 is made up of 16 weight layers: 13 convolutional layers, 5
pooling layers, and 3 fully connected layers (Mascarenhas & Agarwal, 2021).

c) Pooling Layers: Max-pooling is applied after some of the convolutional
layers to reduce the spatial dimensions (2x2 pooling with a stride of 2) (Sowmya et al.
2023).

d) Fully Connected Layers: The network ends with three fully connected layers,
where the last layer outputs the classification scores.

e) ReLU Activation: Rectified Linear Units (ReLU) are used as the activation

function for all convolutional and fully connected layers.

Figure 3.4:
VGG16 Diagram (adopted from (Barriada & Masip, 2022))
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3.2.1.1.Hybrid Al Model Integration

The hybrid Al model integrates the Inception V3 and the VGG16 Al model
architectures and leverages their respective unique strengths. The integration has been
done parallel to both networks, where the ECG images are fed independently into each
network. The two networks extract features that are then concatenated, ensembled, and
passed through additional layers to provide the final classification. This helps the
proposed hybrid Al model to represent a larger feature space, which can help in improving
its performance in the proper classification of ECG images across six different classes for
heart conditions. The integration process of these models includes:

a) Feature extraction: Inception V3 and VGG16 both input ECG images and
generate high-level features from the images.

b) Feature concatenation: Further, the output features from both the models are
then concatenated to create one full featured vector.

c) Classification Layers: The concatenated features are then fed into fully
connected layers, followed by a softmax layer for the final classification, which provides
a clear and normalized probability distribution across all classes in multiclass
classification.

This hybrid architecture is proposed to improve the generalizability and accuracy
of the model by leveraging the complementary strengths of Inception V3 and VGG16 to
enhance performance along different metrics, including accuracy, sensitivity, specificity,

precision, and F1-score.

i.  Performance and Benefits

The hybrid Al model performs much better compared to stand-alone models with
high efficiency in the classification of ECG images. The multi-scale feature extraction of
Inception V3 working in conjunction with a deepened net of VGG16 for deep feature
learning brings excellent results in the current proposed hybrid model. The hybrid Al
model is, therefore, superior in diagnosing heart conditions by integrating such

architectures hence appropriate for clinical applications.
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3.2.2.  Image Processing vs. Time Series or Signal Processing for ECG Data

While ECG data can be processed as time series or signals, using image
processing offers several distinct advantages, especially with the hybrid Al model
VGG16 + Inception V3. The hybrid Al model is better suited for ECG image processing
compared to other models and processing types due to its superior feature extraction,
multi-scale learning capabilities, high performance metrics, computational efficiency,
and the advantages of image-based analysis.

a) Rich Feature Representation: Image processing allows the model to utilize
the visual representation of ECG data, capturing not only temporal patterns but also
spatial relationships and morphological details that are essential for accurate diagnosis
(Wong et al. 2020).

b) Model Robustness: Image-based models, such as the hybrid VGG16 and
Inception V3, are robust to variations in ECG signals that might arise due to noise or
artifacts. This robustness ensures consistent performance across different data sources
and patient conditions (Mohd Sagheer & George, 2020).

c) Visualization and Interpretability: Image processing allows better
visualization and interpretability of ECG data by clinicians themselves, as stated by
Sutanto (2024). The model's visual output will directly correspond to the actual ECG
tracings and hence can be interpreted for better understanding and building trust in Al
diagnostic capability.

d) Transfer Learning and Pre-Trained Models: Image processing by Salehi

et al. (2023) allows for transfer learning on pre-trained models, such as large image
datasets like ImageNet. This reduces training time and resources greatly, which increases

model accuracy and generalization at the same time, according to Yu et al. (2022).

3.3.Datasets

By getting ethical approval from the ethics committee to be able to use available
datasets from consulting with cardiologists at NEU cardiac centre and accessing a
reputable online database, two thousand eight hundred and fifty-four (2,854) ECG image
datasets were obtained in total, with six hundred and six (606) records of randomized
heart conditions gotten from Near East University cardiac centre and two thousand two
hundred and forty-eight (2248) records of abnormal heart condition, atrial fibrillation,
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ischemic heart disease, myocardial infarction, normal heart condition, and sinus
bradycardia gotten from Kaggle online database repository

(https://www.kaggle.com/datasets/rewanhishamsultan/ecg-images-modified, and

https://www.kaggle.com/datasets/joonrisse/ecg-original-segmented-images) as shown in

Table 3.1. Both sources served as the primary and secondary data respectively, making it
possible to create a hybridized dataset with every obtained dataset anonymized and

belonging to a particular heart condition class as shown in Figure 3.5.

Table 3.1:

Dataset Sources

Sources Records
Primary Datasets 606
(Near East University Hospital)
Secondary Datasets 2248
(Kaggle database)
Total 2854
Figure 3.5:
Dataset Overview
Datasets
|
I I
Primary Data Secondary Data

(NEU cardiac center) (Kaggle Online Database)

100% Testing 80% Training

20% Validation
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3.3.1. Preprocessing

In terms of preprocessing, standard preprocessing steps were applied. They
included resizing images, normalizing pixel values, and cropping 10% of the ECG image
data at the backend in the Web App for clinical implementation. The secondary hybrid
data were labelled and categorized based on the 6 cardiac classes as shown in Table 3.2.
This was concurrently done with data cleaning by ensuring that every included ECG
image record is clearly visible and of high quality for use during training.

Table 3.2:

Secondary Dataset Cardiac Classes

Secondary Data Cardiac Classes Records
Abnormal 345
Atrial fibrillation 121
Ischemic 673
Myocardial infarction 351
Normal 396
Sinus bradycardia 362
Total 2248

By the end of the cleaning process, no data was excluded from the batch as all data
were of high quality. Furthermore, augmentation techniques were applied on both primary
and secondary data as displayed in Figure 3.6. This included, rotation of wrong image
datasets layout, scaling of the datasets, dataset flipping and in some instances, and noise
removal on some data, all of which ensure the datasets is a good fit for the hybrid Al

model training, as good quality data produces good result.
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Figure 3.6:

Model Process Cycle
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3.4. Model Development

F 9

This section comprises of the architectural build-up of the hybrid model. It
includes:

A. Inception V3 Architecture: Utilized for its efficient and effective multi-scale
feature extraction capabilities (Joshi & Nayak, 2022).

i.  Inception V3 Model Overview: Inception V3 is a sophisticated convolutional
neural network designed for efficiency and performance, incorporating inception modules
that process input at multiple scales simultaneously. It combines 1x1, 3x3, and 5x5
convolutions, leveraging different kernel sizes to capture diverse features efficiently. Its
auxiliary classifiers and batch normalization layers enhance optimization and reduce
overfitting. The model excels at extracting diverse and comprehensive features,
contributing to its effectiveness in this hybrid architecture.

ii.  Inception V3 Layers: Inception V3 relies on an inception module that processes
an image using different-sized filters all in one layer. This architecture has:

« Input layer: (224, 224, 3) (RGB image)
« Convolutional layers and MaxPooling:
— Convolution (3x3 kernels)

- Convolution (7x7 kernels)
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- Inception modules with 1x1, 3x3, 5x5 convolutions, and 3x3 MaxPooling in
parallel
« Batch normalization: Maintains stability and speeds up convergence
e Reduction modules: Dimension reduction to prevent overfitting and manage
computational complexity
« Global average pooling layer (instead of flattening in VGG16)
e Output Layer (used in pre-trained form): Fully connected layer for ImageNet classes
(1000 neurons)
Only the convolutional layers and global average pooling were used (include_top=False),

enabling feature extraction without classification.

B. VGG16 Architecture: Used for its depth and simplicity in learning fine-grained
features as mentioned by Li & Monga, 2020.

i. VGG16 Model Overview: VGG16 is a deep convolutional neural network
characteristically simple and structured, containing 16 weight layers composed of
convolutional and fully connected layers. It makes use of very small 3 x 3 filters and uses
an identical architecture in extracting low-level and high-level patterns of spatial features
from images. VGG16 performs very well on applications that involve fine-grained image
recognition because of the layer-by-layer stacking of its layers; thus, it is suitable for
feature extraction in this research.

ii.  VGG16 Layers: VGG16 architecture is a straight-forward convolution neural
network. It only follows simple stacking of convolutional layers, max-pooling layers, and
fully connected layers.

e Input layer: (224, 224, 3) (RGB image)
« Convolutional layers:
- Block 1: 2 convolutional layers, 64 filters each, kernel 3x3, followed by
MaxPooling 2x2
- Block 2: 2 convolutional layers, 128 filters each, kernel 3x3, followed by
MaxPooling 2x2
- Block 3: 3 convolutional layers, 256 filters each, kernel 3x3, followed by
MaxPooling 2x2

- Block 4: 3 convolutional layers (512 filters each, 3x3 kernel), followed by
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MaxPooling (2x2)
- Block 5: 3 convolutional layers (512 filters each, 3x3 kernel), followed by
MaxPooling (2x2)

« Flattening layer
« Fully connected layers: Three Dense layers with 4096, 4096, and 1000 nodes
« Dropout layers: Improve generalization
e Output Layer (used in pre-trained form): Final fully connected layer (1000 neurons
for classification in imagenet)
The fully connected layers were excluded (include_top=False), keeping only the

convolutional layers to generate feature maps.

C. Details of Feature Extraction: The flattened output after the feature extraction
layers of VGG16 contributes 7x7x512 = 25,088 features, while the flattened output after
the feature extraction layers of InceptionVV3 contributes 5x5x2048 = 51,200 features.

D. Hybrid Al Model Integration: The hybrid model concatenates these outputs,
resulting in 25,088 + 51,200 = 76,288 features, which are subsequently passed to custom
dense layers for classification. Combined features from both models are concatenated and
fed into additional layers for final classification.

E. Hybrid Al Model Overview: The hybrid model integrates two pre-trained deep
learning architectures, VGG16 and InceptionV3, to classify ECG images into six heart
condition categories. These architectures serve as feature extractors where their
convolutions are frozen, leveraging their diverse representations of visual patterns. The
extracted features are flattened, concatenated, and passed through a custom-built dense
network for classification followed by the final softmax output. The hybrid approach
enhances the model's ability to identify complex and subtle features in the ECG images,
ultimately leading to robust and accurate predictions.

i.  Hybrid Model Architecture Layers: The hybrid model combines extracted
features from VGG16 and Inception V3.
« Input Layer: (224, 224, 3) (RGB image)
« Feature extraction:

- VGG16: Features from the convolutional blocks were flattened.
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- Inception V3: Features from the convolutional blocks/global average pooling
were flattened.
- The custom hybrid model concatenates the flattened features obtained from the
pre-trained VGG16 and Inception V3 networks.
- Both feature sets are inputs to the subsequent custom layers.
« Concatenation Layer: Combines flattened outputs from both models.
 Fully Connected Layers (Custom Layers):
- Dense Layer 1: A fully connected layer with 256 neurons and ReL.U activation.
This layer learns the combined features from VGG16 and Inception V3.
- Output Layer: A dense layer with 6 neurons, corresponding to the number of
output classes, using softmax activation for classification.
These are the added layers (custom parts) applied after combining the pre-trained
features extracted from VGG16 and Inception V3.
The hybrid approach leverages the high-level features extracted from both VGG16 and

Inception V3 for a more robust prediction model.

3.4.1.  Model Training

This section comprises of data splitting, training the models, algorithm and
pseudocode of the hybrid model, and hyperparameter fine-tuning and optimization.
3.4.1.1. Data Splitting

In this experiment, the image dataset was divided into three subsets, namely, the
training set, validation set, and testing set. From the secondary data, it was allocated that
80% went to the training set and 20% to the validation set, while 100% of the primary
data went into the testing set. It does this because the division is adapted from Mohammad
et al. 2022, ensuring that the models were learning well from the training data while being
validated and tested on unseen data. The secondary datasets will be used for training the
model and supporting the validation of model selection and hyperparameter tuning, while
the primary datasets will be used for testing and evaluating model performance on unseen
data.
3.4.1.2. Training the Models

Models used in this paper, such as Inception V3 and VGG16, were trained with

the secondary data as training set, while the hyperparameters tuning was performed on
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the validation set of secondary data, which are represented in Figure 3.7. These models
have gone through an optimization process by minimizing the loss function, classifying
ECG images into six distinct classes for various heart conditions.
3.4.1.3. Algorithm/Pseudocode of the Hybrid Model

This section describes the step-by-step process for the implementation of the
hybrid model in classifying ECG images into six different conditions of the heart. They
include:
Input: Folder containing ECG images divided into six labelled classes

Output: Classified ECG images into six heart conditions.

A. Data Preprocessing
Load ECG images from the specified folder.
Resize images to 224x224224 \times 224224x224 resolution.
Normalize pixel values to range [0,1][0, 1][0,1].
Encode class labels using LabelEncoder.
Split the dataset into training and testing sets (80/20 split).
Convert labels to one-hot encoding format.
B. Model Construction
e Load pre-trained VGG16 and InceptionVV3 models with ImageNet weights:
e Exclude their top layers (set include_top=False).
e Freeze the pre-trained layers to retain learned features.
e Pass the input image data through both models separately:
e Inputsize: (224,224,3) (224, 224, 3) (224,224,3).
e Flatten the outputs from both models into feature vectors.
e Concatenate the feature vectors.
e Add custom dense layers for classification:
e Dense Layer 1: Fully connected layer with 256 neurons and ReL.U activation.
e Output Layer: Fully connected layer with 6 neurons (for six classes) and softmax
activation.
e Compile the model using the Adam optimizer with categorical cross-entropy loss and

accuracy as a metric.
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C. Model Training
e Fit the hybrid model on the training data:
e Epochs: 10
e Batch Size: 32
e Learning rate: 0.001
e Validation Data: Testing set.
D. Model Evaluation
e Evaluate model performance on the testing set using the following metrics:
e Accuracy.
e Sensitivity and specificity (calculated using confusion matrix).
e Classification report for precision, recall, and F1-score.
E. Prediction on Unseen Data
e Load the trained hybrid model from file (hybrid_model.keras).
e For unseen data:
e Preprocess each image (resize, normalize, batch dimension).
e Predict class probabilities for the image using the model.
e Identify the class with the highest probability as the predicted label.
e If the probability is below 50%, classify as "Unknown."
End of Algorithm.
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Figure 3.7:
Model Training
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3.4.1.4. Hyperparameter Fine-Tuning and Optimization

Hyperparameters with 0.001 learning rate, 32 batch size, 10 number of epochs,
and Adam optimizer type were tuned using the validation set. This process aimed to
improve and optimize the model's performance and prevent overfitting. Techniques like
early stopping and dropout were also employed to enhance model generalization.
a) Architectural Experiments

The hybrid Al model architecture was experimented on for the identification of
the optimal configuration for ECG image classification. This included modifying the
number of layers, the types of layers (convolutional, pooling, etc.), and their respective
parameters.
b) Hyperparameter and Optimization Algorithms

Furthermore, different sets of hyperparameters were tested systematically to find
the best combination. Adam Optimization algorithm was implemented as it provided the
best performance for the hybrid Al model.
c) Transfer Learning and Ensemble Learning

Transfer learning was utilized by leveraging pre-trained weights from the
Inception V3 and VGG16 models and this was coherently bonded together using a
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majority voting ensemble learning technique which involved combining the predictions
of both InceptionV3 and VGG16 models to create a more reliable final prediction thereby
improving the overall accuracy and robustness of the hybrid Al model.
3.5.Model Evaluation
3.5.1.  Performance Metrics

The performance of the hybrid Al model was assessed using accuracy, precision,
recall, and F1-score. These metrics gave an overall analysis of the model's ability in
correctly classifying ECG images. A confusion matrix of the different heart conditions
was drawn to analyze the performance of the Hybrid AI model VGG16 + Inception V3. It
included the true positives, false positives, true negatives, and false negatives that helped
in ascertaining the areas which the model performed well and those that needed

improvement.

3.5.2.  Superiority of the Selected Hybrid Al Model (VGG16 and Inception V3)

The VGG16 and Inception V3 combined hybrid Al model was chosen due to its
best performance in ECG image processing for several reasons:

a) Feature Extraction: VGG16, with a deep architecture and small 3x3
convolutional filters, is very effective at extracting fine-grained features from images.
This capability to extract minute image features is important in identifying subtle patterns
in ECG images indicative of specific heart conditions.

b) Multi-Scale Feature Learning: Inception V3 is designed with inception
modules that will enable the model to capture multi-scale features at the same level. This
kind of multi-scale approach enhances the model's capability in recognizing complex
patterns in ECG images over different resolutions.

c) Performance Metrics: The hybrid Al model achieved high accuracy of 99%
in metrics related to the assessment of sensitivity, specificity, precision, and F1-score.
These metrics mean that standalone models such as ResNet, DenseNet, MobileNet,
AlexNet, and U-Net, though having strength and promise in general image classification,
lack the combined strengths offered by VGG16 and Inception V3 while handling the ECG
images.

d) Computational Efficiency: The hybrid Al model uses the efficient

architecture of Inception V3 in combination with a simpler one from VGG16, balancing
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the computational demand with accuracy well enough to make practical applications

possible in clinical environments where test accuracy and speed are crucial.

3.6.Implementation and Deployment
3.6.1. Software Development Life Cycle (SDLC)

It summarizes the development life cycle of a web ECG classifier application
presented in Fig. 3.7, based on the guide about the main principles of SDLC and in the
field of ECG image classification using the Inception V3-VGG16 hybrid model. This
structured process helped to be systematic and go smoothly from initial conception to
deployment and maintenance stages. The Agile Software Development Life Cycle would
be the fittest of them all in the case of developing the web application of the ECG classifier
for image classification of ECG, as described in the research. Iterative, flexible, and
collaborative-just perfect for the vibrant dynamic evolving needs of the research project

and the delivery of a robust and user-centric diagnostic tool.

3.6.1.1. Agile SDLC Implementation in Web Application Development

This focuses on software development life cycle using the Agile methodology
approach based on its flexibility to web application development that emphasizes
collaboration, adaptability, and rapid delivery as shown in Figure 3.8.

i. Planning: Initial project planning defines the main functionalities for which
the web ECG classifier application must be used, such as image preprocessing, model
integration, classification, and result visualization.

ii. Requirements Analysis: Requirements are gathered from cardiologists and
all related stakeholders with respect to realistic demands.

iii. Design: Design the architecture of the web ECG classifier application with a
user interface and an integrated hybrid Al model. In this stage, mockups and prototype
development can also be included.

iv. Development Iterations: Divide application development into small
iterations where each iteration may be devoted to embedding some specific functionality
or feature within the application. For example,

Iteration 1: Basic Ul design and establishment of the server using Flask.
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Iteration 2: Integration of the hybrid Al model; implementation of the image
classification feature. Iteration 3: To develop the feature of results visualization and
reporting.

v. Testing: Heavy testing at each iteration to find bugs and fix them. Testing will
include unit tests, which ensure that each component works properly, and integration tests,
which ensure that the application works seamlessly.

vi. Review and Feedback: After each iteration, present the developed features
to the stakeholders and take feedback. Further refinement and improvements in the
application are done using this feedback in subsequent iterations.

vii. Deployment: The web ECG classifier application is deployed in a staging
environment for final testing. Once validated, it is deployed in a live clinical setting.

viii. Maintenance and Updates: Agile allows for ongoing maintenance and
updates as per users' feedback and requirements change. Frequent updates maintain the
applicability and usefulness of the application.

Figure 3.8:
Agile Software Development Life Cycle
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3.6.2.  Clinical Deployment

Web ECG classifier application deployment has been done via following tools
and environments:

a) Visual Studio Code Integrated Development Environment (IDE): This strong
and versatile IDE was used for writing and debugging the code of the application.

b) Jupyter Notebook: This was the interactive environment used for coding,
training, and refining the hybrid Al model.

¢) CMD: The command line interface was used for running scripts and managing

the deployment process.

3.6.2.1. Coding Frameworks
This consists of frontend and backend steps and approach process for the
development of the web application.
a) Front-End Development
The web ECG classifier application is built to be appealing and user-friendly for
clinicians and users to easily upload ECG images and retrieve diagnostic results. It was
created with a combination of HTML for structuring, CSS for presentation, JavaScript for
the interactive elements, the Bootstrap framework for responsiveness, and Python for
integrating the machine learning model. Technologies used:
i.  HTML: Organized the content and structure of web pages.
ii.  Cascading Style Sheets (CSS): Designed the web pages to ensure a professional
look and consistency throughout.
iii.  JavaScript: Designed the web pages to be interactive and dynamic.
iv. Bootstrap Framework: Boosted responsiveness and aesthetics in the web ECG
classifier application, ensuring it functions well on multiple devices.
v. Backend (Python): Integrate saved model into the frontend, process the

uploaded ECG images, show results for its classification.

b) Back-End Development
The Flask server developed the back-end of the application, which plays a very
important role in managing the logics and data processing of the application. It provides

an interface for handling requests, integrating the machine learning model, and
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communicating between the front-end and back-end. The following tasks are handled by
the Flask server:

i. Receive and handle image upload requests from the front-end.

ii. Preprocess the uploaded ECG images to prepare them for classification.

iii. Executing the hybrid Inception V3-VGG16 models to classify ECG images.

iv. Returning the classification results to the front-end for display to the user.
By integrating these technologies and adhering to the SDLC framework, the web ECG
classifier application was designed to be robust, efficient, and user-friendly, providing an
effective tool for ECG image classification in clinical practice as shown in the use case

diagram in Figure 3.9.

Figure 3.9:

Use case diagram
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Result of
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Diagnosis
Get Prediction
Patients -

3.6.3.  Saving the Model
After the model training completion, the final hybrid Al model was saved using
the Keras library: hybrid_model.save('hybrid_model.keras’). This facilitated easy

deployment and future use.
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3.6.4. ECG Classifier Application Development
The developmental requirements of the web application had to integrated to the cardiac

center using the following:
3.6.4.1. Flask Server Deployment

The model was deployed on a Flask server, making it accessible as a web ECG
classifier application. This server handled requests from users, processed the input ECG
images, and returned the classification results. Thus enabling healthcare professionals to
input ECG images and obtain predictions as displayed in Figure 3.10.
3.6.4.2. Integration with Cardiac Center

The Cardiologists employed this web ECG classifier application at the cardiac
center. 10% of image data was cropped to keep the anonymity of the patients. With this
deployment, the cardiologist was able to make use of model predictions with assured
anonymity of the patients.
3.6.4.3. Handling Uncertain Predictions

In the cases where model prediction was zero probability, the system was designed
in a way to flag for further review by a cardiologist, and none of those issues could get

passed on.

3.6.5. Computer Configuration

The computational requirements of the hybrid model had to be a judicious mix of
performance and efficiency. These were as follows:
3.6.5.1. Hardware Specifications

The operating system (OS) on which training and testing were performed was
Windows 10, on an Intel i7 processor with 8GB RAM and 512GB Storage. For real-time
usage, clinically, a GPU-based system was used to bring the inference times down.
3.6.5.2. Optimization Techniques

Some techniques that were employed to further optimize the performance of the
model without excessive computational overhead are batch normalization, learning rate
scheduling, and dropout. These methods ensure scalability without significant hardware
upgrades.
3.6.5.3. Inference Time

The average inference time per image is about 30 milliseconds, hence can be used
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in real-time diagnostic settings.
3.6.5.4. Implementation Requirements

The hybrid model was implemented using scientific computing methodology
Jupyter Notebook based on Anaconda's package management tool version 2.6, which
distributes Python programming language and other popular libraries such as TensorFlow,

Keras, and scikit-learn.

3.6.6. Implementation
3.6.6.1. User Interface

A friendly interface has been developed that would permit easy uploading of ECG
images by the healthcare professional for getting the predictions. The interface was
designed in such a way that it is easy to use, and the results were presented in an
understandable format.
3.6.6.2. Visualization

The web ECG classifier application included visualization tools to display the
classification results clearly. A Progressive Web App (PWA) version was also developed
for mobile devices, enhancing accessibility for healthcare professionals on the go.
3.6.6.3. Final Deployment

This model, after performing considerably well, was then deployed in a real
clinical environment, and an easy-to-use interface was present for real-time diagnosis and
interpretation. The deployment of the web ECG classifier application in a real clinical

environment required the application to be handy enough.



Figure 3.10:

Flask Server Development
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CHAPTER FOUR
RESULTS

The result of implementing the hybrid Al model Upon completing the
methodological processes in chapter 3 presented in this chapter. It consists of tabular

representations and visual representations to enhance the performance interpretation.

4.1.The Hybrid Al Model Performance

The hybrid Al model classification report displayed in Table 4.1 shows the overall
metrics of the 6 heart conditions in terms of accuracy, macro average (avg) and weighted
average (avg). The Accuracy shows the ratio of correctly predicted instances to the total
instances. Here, the model's accuracy is 0.99, indicating it correctly classified 99% of the
instances. The Macro avg implies the unweighted mean of precision, recall, and F1-score
across all classes. This treats all cardiac classes equally, regardless of the number of actual
occurrences of the class in the dataset (support). Hence, having a result of 99% Precision,
99% Recall, and 99% F1-score.

On the other hand, the weighted avg means the weighted mean of precision, recall,
and F1-score across all classes, where the weights are the number of instances for each
cardiac class. Thus, this gives more importance to classes with more instances. It also had
an output of 99% Precision, 99% Recall, and 99% F1-score, 99% Sensitivity, 99%
Specificity. Finally, the classification report of this study indicates that the hybrid Al
model has learned to classify each cardiac class as it performs exceptionally well across
all classes, leading to an overall high performance with very high precision, recall, and
F1-scores. The macro and weighted averages being the same suggests a well-balanced

performance across all classes, regardless of their frequency in the dataset.



Table 4.1:
Hybrid Al Model Classification Report
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precision recall fl- support
score

Abnormal 1.00 0.97 0.99 74
Atrial Fibrillation 0.95 1.00 0.97 36
Ischemic heart disease 1.00 1.00 1.00 127
Myocardial Infarction 1.00 1.00 1.00 69
Normal 0.97 1.00 0.99 72
Sinus bradycardia 1.00 0.97 0.99 72
accuracy 0.99 450
macro avg 0.99 0.99 0.99 450
weighted avg 0.99 0.99 0.99 450

4.1.1. Training and Validation Metrics

This contains the plots of the training and validation accuracy and loss over the 10

epochs. The first plot shows the accuracy, and the second plot shows the loss as displayed

in Figure 4.2 and Figure 4.3 respectively.

4.1.2. Epochs

With a batch size of 32, 10 epochs and 57 steps per epoch, overall, both training

and validation accuracies have increased significantly from the first epoch to the last

epoch as shown in Figure 4.1. The hybrid Al model shows a consistent improvement,

suggesting effective learning and convergence. Hence, the consistency between high

training and validation accuracies indicates that overfitting is minimal, meaning the model

is likely to perform well on new data.
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Figure 4.1:

Epoch Snapshot

Epoch 1/10

57/57 —————————— 1564s 26s/step - accuracy: 0.7505 - loss: 8.7488 - val_accuracy: 0.9133 - val_loss: .7711
Epoch 2/10

§7/5] ———————————— 13425 23s/step - accuracy: 0.9195 - loss: 0.7672 - val accuracy: 0.9200 - val loss: 0.9262
Epoch 3/10

§7/5] ————— 11525 20s/step - accuracy: 0.9738 - loss: 0.2000 - val_accuracy: 0.9378 - val_loss: 0.2355
Epoch 4/10

§7/57 ——————— 1120s 20s/step - accuracy: 0.9817 - loss: 8.1361 - val accuracy: 0.9867 - val loss: 6.1014
Epoch 5/10

57/57 —————————— 1094s 19s/step - accuracy: 0.9886 - loss: 0.0406 - val_accuracy: 9.9844 - val_loss: 0.1192
Epoch 6/10

57/57 —————————— 10755 19s/step - accuracy: 0.9828 - loss: 8.1706 - val_accuracy: 0.9711 - val_loss: 0.3696
Epoch 7/10

57/5] —————————— 11165 20s/step - accuracy: 0.9719 - loss: 0.2674 - val accuracy: 0.8311 - val loss: 2.3867
Epoch 8/10

57/51 —————— 10765 19s/step - accuracy: 0.9496 - loss: 0.6290 - val_accuracy: 0.9156 - val_loss: 0.5445
Epoch 9/10

§7/57 ————— 1096s 19s/step - accuracy: 0.9654 - loss: 0.4856 - val accuracy: 0.9911 - val loss: 0.0610
Epoch 10/10

57/57 ————————— 1085s 195/step - accuracy: 0.9908 - loss: 0.2336 - val_accuracy: 0.9911 - val_loss: 0.1481
15/15 ——————— 261s 15s/step

Test Accuracy: 0.9911111111111112

4.1.3. Training and Validation Accuracy

Figure 4.2 shows how the training accuracy starts at around 0.75 and increases
steadily to nearly 0.99. Validation accuracy starts at around 0.91, with a small increase
over the epochs, reaching nearly 0.99 by the end. Validation accuracy provides a good
indication of the model's performance on unseen data. The overall accuracy, particularly
the final validation accuracy, is 99.11%. This high accuracy indicates that the model
performs well on the validation set and suggests it will likely perform well on new, unseen

ECG images as well.
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Figure 4.2:

Training and Validation Accuracy
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4.1.4. Training and Validation Loss
Figure 4.3 shows how the hybrid Al model training loss starts high at around 8.75,
drops sharply in the second epoch, and continues to decrease with some fluctuations.
Validation loss starts relatively low at around 0.77, fluctuates over the epochs, but ends

up low at around 0.15.



56

Figure 4.3:

Training and Validation Loss
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4.1.5. Confusion Matrix

A confusion matrix is a summary of prediction results on a classification
problem. The matrix shows the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) for each class. With each rows representing the
true cardiac classes and each column representing the predicted classes as displayed in
Figure 4.4.

The analysis of the confusion matrix shows that for Abnormal cardiac class, 72
instances correctly predicted as Abnormal with 2 instances of Abnormal misclassified as
Normal and there were no other misclassifications. For Atrial Fibrillation cardiac class,
36 instances correctly predicted as Atrial Fibrillation with no misclassifications. For
Ischemic heart disease cardiac class, 127 instances correctly predicted as Ischemic heart

disease with no misclassifications. For the Myocardial Infarction cardiac class, 69
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instances correctly predicted as Myocardial Infarction with no misclassifications. For the
Normal cardiac class, 72 instances correctly predicted as Normal and no
misclassifications. For the Sinus bradycardia cardiac class, 70 instances correctly
predicted as Sinus bradycardia with 2 instances of Sinus bradycardia misclassified as

Atrial Fibrillation and there were no other misclassifications.

Figure 4.4:

Confusion Matrix
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4.1.6. AUC-ROC Curve

The AUC-ROC curve from Figure 4.5 shows the classification performance of
the hybrid Al model across the six heart conditions classes. Thus, the AUC scores shows
that All cardiac classes have an AUC score of 1.00 which is an indication of perfect
classification performance. This means the hybrid Al model perfectly distinguishes
between the positive and negative classes for each heart condition. There are no false
positives or false negatives for most of the cardiac classes. In addition, the ROC curve for
each class reaches the top left corner of the plot and this point represents 100% sensitivity
(True Positive Rate) and 0% false positive rate (False Positive Rate), which is the ideal
performance for a classifier. Meanwhile, the dashed diagonal line represents the
performance of a random classifier (which is not the hybrid Al model but rather a
theoretical concept to illustrate the baseline performance of random guessing). The ROC
curves for all classes being far above this line signifies the excellent performance of the
hybrid Al model, and this level of performance is ideal and indicates that the hybrid Al

model is highly reliable for classifying these heart conditions.

Figure 4.5:
AUC-ROC Curve
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4.1.7. Precision and Recall Vs Threshold Graph
The model exhibits high performance and a near-perfect precision and recall for
all classes across a wide range of thresholds. This suggests a robust classifier that is highly
effective in distinguishing between different heart conditions. In terms of the model
reliability, the high precision and recall values across thresholds indicate the model's
reliability in making accurate predictions for all heart conditions and accurate in

classifying ECG images into the respective heart conditions as shown in Figure 4.6.

Figure 4.6:
Precision and Recall Vs Threshold Graph
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4.1.8. Train-Test Split

In this study, the dataset was divided into two subsets: training and testing. The
training set comprised 80% of the data and was used to train the hybrid model, while the
testing set constituted the remaining 20% and was used to evaluate the model’s
performance. This splitting approach ensures that the model is trained on one subset of

data while its accuracy and generalizability are tested on unseen examples from the other
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subset. The absence of cross-validation in this study means the model's evaluation is
limited to a single split, emphasizing the importance of balanced and representative data

distributions in both subsets to avoid biases in performance assessment.

4.2. Testing the Hybrid Al Model with Primary Data

This entails clinically testing the trained and validated model from the secondary
data with unseen primary data obtained from the cardiac center as shown in Table 4.2.
The model clinical performance testing classification shows that the NEU cardiac center
result distributes mainly across ischemic heart disease, sinus bradycardia and atrial
fibrillation. However, there are instances in the result which is depicted as unknown
classification as a result of having a probability of 0.00% as visualized in the scatter plot
shown in Figure 4.7 and prediction statistics in Figure 4.8. Thus the hybrid Al model
recognizes the ECG image as a heart condition, however, no classification can be made.
This could be a label error with the secondary dataset as a result of the heart condition not

being part of the 6 previously trained heart conditions.

Figure 4.7:
NEU Cardiac Center Scatterplot Classification
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Figure 4.8:

NEU Cardiac Center Prediction Statistics

Predictions Count of NEU Cardiac Condition

Prediction: Ischemic heart disease

Prediction: Atrial Fibrillation

Prediction: Unknown classification. Kindly meet with the cardiologist

Count

Prediction: Sinus bradycardia

Table 4.2:

NEU Cardiac Center Prediction Statistical Data

NEU Cardiac Prediction Statistical Data Count
Prediction: Atrial Fibrillation 115
Prediction: Ischemic heart disease 190
Prediction: Sinus bradycardia 299

Prediction: Unknown classification. Kindly meet with the cardiologist 2

4.3. Clinical System Implementation
This entails testing the trained and validated model from the secondary data with
unseen primary data obtained from the cardiac center. The model testing classification
shows that 49.33% of the entire dataset comprised of Sinus bradycardia heart condition;
31.35% comprising of Ischemic heart disease, 18.97% comprising of Atrial Fibrillation,

and 0.33% being unknown and inconclusive classification. Furthermore, with respect to
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the built system in place, the results of the hybrid Al model clinical performance are
displayed below via Web App Visualization, Mobile App visualization powered by PWA
for iOS and android.

Figure 4.9a shows the developed Web App view of the system interface which
consist of the six heart conditions and information on each of them. Followed by a section
in which an ECG can be uploaded to be analysed. Figure 4.9b shows the lighthouse metric
of the system to provide information on the overall performance of the system in terms of
accessibility, search engine optimization (SEO). Figure 4.9c shows the instance of an
ECG image uploaded to the system for analysis. Figure 4.9d shows the aftermath of the
analysis which took place at the backend of the system from the server side. Hence
displaying the result of the classification analysis as Ischemic heart condition alongside

the probability of it being the heart condition.

Figure 4.9:
Snapshot of the Developed Web App
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v ECG Image Classification X H = X
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(d) Prediction and Probability

In the case of an uploaded ECG image not corresponding to the existing six heart
conditions, the system has inbuilt algorithms to determine that and produce output which
states that the prediction is inconclusive and this is followed by a recommendation to
consult the cardiologist as shown in Figure 4.10a. furthermore, in the case of uploading a
blank ECG image, an algorithm has been put in place such that as soon as the model is
unable to determine the QRS complex from the sheet, it return an error saying “uploaded
image is not an ECG image” as shown in Figure 4.10b. This error message also pertains
to instances like uploading an unrelated file or picture like a picture of a dog a cup or even
a video file format file as shown in Figure 4.10c and Figure 4.10d which reads “Error

occurred while making prediction”.
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Figure 4.10:
Web App Classification and Analysis Snapshot
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In addition, due to the fact that the system was built as a solution with for cardiac
centers, the system has been integrated with installable features for east accessibility such
that it runs as a native desktop application and due to the fact that it is installable, it can
also be pinned to taskbar just as any desktop application as shown in Figure 4.11a. in
addition, the launched application in Figure 4.11b opens directly without having to go

through a web browser.

Figure 4.11:
Desktop Application View Snapshot
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I, ECG Classifier-App - ECG Image Classification

Ischemic Cardiac Condition

Ischemic heart disease refers to heart weakening caused by
reduced blood flow to your heart. Typically, this reduced blood
flow is the result of coronary artery disease, a condition that
occurs when your coronary arteries narrow.
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(b) ECG Launched Application

The classification system was built with also a mobile first mindset such that it
integrates mobile architectural features alongside Web Server Gateway Interface (WSGI)
infrastructure, thus, turning a regular phone into a portable powerful classification device
that is capable of analyzing ECG images and performing diagnosis on patients
ubiquitously.

Furthermore, for the implementation of the system in an android powered device,
using a Samsung device as displayed in Figure 4.12a and Figure 4.12b shows how the
system operates and responds just as it did with the Web App and Desktop App. Which
shows that any android powered device can run the application.
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Figure 4.12:

Android Mobile View Screenshot
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Similarly, running the application on an iPhone 13Pro which is an iOS powered
device, the result also shows how the systems perfectly executes every classification just
as it did in other operating systems and devices as shown in Figure 4.13a. It also offers a
user with options to either take a picture of an ECG image, or upload an Existing ECG
image from handheld devices as displayed in Figure 4.13Db, after which it loads the image
and performs a classification as shown in Figure 4.13c, then output the prediction and
probability as shown in Figure 4.13d.



Figure 4.13:
iOS Mobile View Screenshot
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CHAPTER FIVE
DISCUSSION

This chapter entails a discussion of the found results presented in chapter four

with the related literature.

5.1. Clinical Implications

The findings of this study have considerable implications for clinical practice.
Most importantly, high accuracy and reliability of the hybrid Al model may bring great
improvements in heart disease diagnosis since one can identify heart conditions more
speedily and precisely (Reshan et al. 2023). This can lead to timely and appropriate
management of patients, potentially reducing the incidence of severe cardiac events
(Almansouri et al. 2024). Additionally, the model's ability to classify six distinct heart
conditions makes it a versatile tool in the clinical setting, covering a broad spectrum of
cardiac issues.

Beyond ubiquity, since this is an appropriate hybrid model Al for use in a Web
ECG Classifier Application, making a deployment as a web application with a server
based on Flask can ensure accessibility of the very application ubiquitously, basically
from any other geographical part of the world. Global access especially fosters equality
among regions suffering from poor, limited access to specialist cardiac diagnosis-related
services (Gao et al. 2022). Therefore, all that the healthcare professional needed to do was
to upload the ECG images to the web ECG classifier application and get the diagnostic
results then and there, thereby democratizing access to advanced cardiac care.

Not least, maintenance or updates: considering the technical sophistication of the
Web ECG Classifier Application, the same is pretty easy to maintain and keep its
performance at high levels. Every six months, the system needs checks that everything is
functioning right and can handle any problem that may arise. This hybrid Al model has
the advantage that, once more data is structured and categorized with respect to other
types of heart conditions, it can easily classify other types of heart problems by retraining

the model. It enhances the utility and scope of this hybrid Al model.
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5.2. Challenges and Limitations

While current Al and hybrid models give great promise, they also have inherent
challenges. These are inclusively: high computational requirements, probable difficulties
in integration with existing healthcare systems, and algorithmic bias, which raises a
question in making the model generalizable across different populations and clinical
settings (Albahri et al. 2023).

Consequently, data scarcity and variability in ECG interpretation present
significant challenges as the availability of high-quality, labelled ECG data is often
limited, and there can be considerable variability in how ECGs are interpreted by different
clinicians which can impact the training and performance of Al models (Gu et al. 2024).

Another important issue is algorithm bias, since biases in the training data can
lead to disparities in diagnostic performance across different demographic groups. Thus,
regulatory considerations are very important because the deployment of Al models in
clinical practice needs to be done according to healthcare regulations and standards to
ensure patient safety and data privacy (Morley et al. 2022).

Besides, high computational needs for the hybrid Al models might even further
restrict the deployment of these models in resource-constrained settings. Additionally,
though the performance of the model has been great in the used datasets, the

generalizability to other populations and clinical environments needs further validation.

5.3. Future Directions and Opportunities

Future research should be directed to multimodal data fusion, such as fusing
ECG data with other medical data like imaging and lab results, for improved diagnostic
and predictive capabilities. Integration of Al models with electronic health records will,
therefore, allow continuous learning and adaptation by refining algorithms in the light of
real-world data.

Equally important will be the development of APIs for seamless integration with
existing electrocardiographs, enhancing practicality and usability in clinical settings.
Further expansion to various types of ECG recordings other than the standard 12-lead
ECG will increase the applicability of the model.

In addition, further improvements can be made by training models on gender,

age, and regional variations in future research. This can help address issues of algorithm
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bias and make the model perform more equitably on diverse patient populations.

5.4. Comparisons

This includes comparison with Standalone Models hybrid Al model, relevant
research based on Kaggle data using InceptionV3 and VGG16 and comparison with
existing approaches.

5.4.1. Comparison with Standalone Models

The hybrid Al model, which combined Inception V3 and VGG16, has performed
very well, touching 99% for many metrics such as accuracy, sensitivity, specificity, F1-
score, and precision. Compared to individual models, this hybrid approach has
significantly outperformed each of the individual models, inception V3 with 4
misclassifications and VGG16 with 3 misclassifications from the comparative study in
section 2.2.3 and Figure 9 by correctly classifying the heart conditions and giving an
overall good performance. Additionally, in order to contextualize the results from the
hybrid Al model, a comparison between the hybrid Al model and other models that use
machine learning, deep learning, and transfer learning must be made.

Classical machine learning techniques for ECG data classification include, but
are not limited to, Support Vector Machines, Random Forests, and k-Nearest Neighbors.
These models typically require extensive feature engineering and are often less effective
in capturing the complex patterns present in ECG data compared to deep learning models
(Wasimuddin et al. 2020). For instance, SVM models have shown good performance in
binary classification tasks but tend to struggle with multi-class classification problems
due to their inherent limitations in handling high-dimensional data (Hsu, 2020).

Relatively, inception V3 outcompeted VGG16 and the different traditional
machine learning models. Also, inception v3 is considered an efficient architecture based
on factorized convolutions while in VGG16 its main value is regarded as simplicity
combined with its depth. Nonetheless, each has its strengths and weaknesses. Inception
V3 excels at capturing varied spatial hierarchies (Fang et al. 2022), whereas VGG16’s
deeper architecture allows it to learn more abstract features (Jiang et al. 2021). By
combining these models, the hybrid approach leverages the strengths of both
architectures, leading to improved performance metrics such as accuracy, precision,

recall, and F1-score.
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Likewise, transfer learning is also adopted for medical imaging, which
essentially pre-trains a model on a large dataset and then finetunes it on new datasets.
ResNet50, DenseNet, and MobileNet have been fine-tuned by different researchers in the
ECG classification task (Malik & Anees, 2024). Since such models are pre-trained on
large datasets, their performance becomes very high even when the training sets of
medical applications are small. Transfer learning models have occasionally demonstrated
overfitting and lack of generalization to specific domains for ECG classification. Gupta
et al. (2020) illustrated how this hybrid Al model used a form of transfer learning, which
overcame such issues by bringing together the beneficial aspects of two of the most robust
architectures and thereby enhanced further its generalizability and robustness.

5.4.2.Relevant Research Based on Kaggle Data Using InceptionV3 and VGG16

Several studies have been able to demonstrate the fact that the integration of
Kaggle datasets with advanced deep learning models, such as Inception and VGG16, has
been highly instrumental in the advancement of ECG image classification. These
collectively show the synergistic use of Kaggle datasets and the application of Inception
V3 and VGG16 models in ECG image classification.

One of the recent studies on effective ECG image classification using lightweight
CNNs incorporated with an attention module discusses converting ECG signals into
images for classification using different deep learning techniques such as AlexNet,
Inception V3, and VGG16 (Sadad et al. 2023). This study established the efficiency of
the models discussed in assisting physicians in diagnosing cardiac disorders.

Another related study on Automated ECG Image Classification using
InceptionV3 presented the fine tuning of the pre-trained Inception V3 model on PTB-XL
containing 21,799 12-lead ECG recordings, by Gitau et al. (2024). The efficiency of the
model in classifying the ECG images is huge.

Another ensemble approach was proposed using a transfer learning-based model
architecture like VGG16 and InceptionResNetV2, which is modified for ECG signal
classification. They claimed to have a great improvement in the accuracy by 99.98%
compared to the prior algorithms, with 5-fold cross-validation on the Physionet dataset
(Ovi et al. 2022).

In the direction of one such study on a robust framework that combines image
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processing with deep learning for ECG classification, a hybrid deep convolutional neural

network architecture which combines InceptionV3 and ResNet50 has been used to

classify paper-based ECG images into five classes, including myocardial infarction,

history of myocardial infarction, normal heartbeat, abnormal heartbeat, and COVID-19.

The proposed model achieved a testing accuracy of 98.34%, demonstrating the

effectiveness of combining multiple deep learning models for ECG classification (Fatema

et al. 2022). Furthermore, a related studies comparison using Kaggle dataset, Inception
module and VGG16 model is displayed in Table 5.1.
Table 5.1:

Related Studies Using Kaggle, Inception V3 and VGG16

Referen | Model Heart Hybrid Train Literature Results
ce Problem Dataset Ratio
(Fatema | VGG16, Myocardial | Kaggle + 70:20:10 | A robust 98.34%
et al. Inception | Infarction, | Paper- framework Accuracy
2022) V3 Normal Based ECG combining
Heartbeat, Dataset InceptionV3
Abnormal and
Heartbeat, ResNet50 for
COVID-19 ECG
classification
(Sadad et | Inception | Myocardial | Kaggle 80:20 Efficient 98.39%
al. 2023) | V3, Infarction, | ECG classification | Accuracy
VGG16 Atrial Dataset of ECG
Fibrillation, images using
Sinus lightweight
Bradycardia attention
, Normal CNN (MDPI:
Rhythm, Sensors)
Abnormal
Heart
Rhythm
(Gitau et | Inception | Various PTB-XL 80:20 Automated 40% F1-
al. 2024) | V3 Cardiac ECG ECG image | scoree
Conditions | Dataset classification
(CinC
Archive)
(Oviet | VGG16, Cardiac Physionet + | 80:20 Transfer- 99.98%
al. 2022) | Inception | Abnormaliti | Modified 5 fold learning accuracy
ResNetV2 | es ECG Cross- based
Dataset validation | ensemble

architecture
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5.4.3. Comparison with Existing Approaches

The hybrid models have gained much popularity in the field of ECG analysis
because it can take the best of several architectures, making the classification performance
increase. However, when compared with the existing approaches in the literature, the
proposed study with a hybrid Al model performs much better. Manual feature extraction
and simpler machine learning algorithms are generally used to classify the ECG, and
mostly with much lower accuracy. Among other effective deep learning approaches of the
day are those that do not typically combine models to leverage complementary strengths
as effectively as the hybrid Al model in this research. This therefore presents a very
important landmark in the fusion of Inception V3 and VGG16 for Al-based diagnostics
of the heart. VVarious other hybrid models have been proposed in the literature, combining
different architectures with various techniques. For example, Islam et al. (2022) proposed
a hybrid model for arrhythmia detection that was based on the combination of BiGRU-
BiLSTM and Multilayered Dilated CNN, which achieved 96.25 % in terms of accuracy.
Similarly, Hasbullah et al. 2023 used a hybrid model combining CNNs and RNNs for the
analysis of sequential ECG data, thereby enhancing the capability of the model to capture
temporal dependencies in the data with an overall accuracy of 89%. However, compared
to these existing hybrid models, the combination of Inception V3 and VGG16 offers
distinct advantages. It does this by exploiting the hybrid Al model's strength in effectively
modeling spatial hierarchies and fine-grained features using the Inception V3 component,
with the depth needed for abstraction given by its VGG16 component to learn higher-
order and fine patterns in ECG data. This synergistic combination indeed leads to not just
a high-accuracy model but also one exhibiting better sensitivity and specificity for several
heart conditions. The hybrid Al model's performance, with 99% in accuracy and other
metrics, outperforms many existing hybrid approaches, hence highlighting its potential
for clinical application. A comparison of hybrid models from comparative analysis-related

research is shown in Table 5.2.
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Hybrid Al Model Comparison with Existing Studies from Related Research

forest

Reference | Model Heart Hybrid Literature Results
Problem Dataset
(Alfaras et| Echo Arrhythmias | MIT-BIH | A Fast Machine| Accuracy
al. 2019) | State AR +| Learning Model for| 86.1%
Networks AHA. ECG-Based
Heartbeat
Classification and
Arrhythmia
Detection
(Al-lssa &| CNN  +| Heart Sound | Open A lightweight| F1-score
Alqudah, | LSTM Abnormaliti | heart hybrid deep| 85.59%
2022) es sound learning system for
dataset + | cardiac  valvular
PhysioNe | disease
t/Computi | classification
ng in
Cardiolog
y 2016
challenge
dataset
(Al MLP Normal an( Cleveland | MLP-PSO Hybrid| Accuracy
Bataineh &| +PSO abnormal Heart Algorithm for| 84.61%.
Manacek, heart disease | Disease Heart Disease
2022) dataset Prediction
(Phametal.| CNN Arrhythmia | MIT-BIH + Electrocardiogram | F1-score
2023) ConvlD +| and PTB Heartbeat 86.71%
Evo_nor | Myocardial Classification for|
m Infarction Arrhythmias  and
Myocardial
Infarction
(Haq et al.| Logistic | Normal an¢ Cleveland | A Hybrid| Accuracy
2018) regression| abnormal heart Intelligent System| 89%
+ K-NN + disease Framework for the
ANN + dataset Prediction of Heart
SVM + 2016 Disease Using
NB + DT Machine Learning
+ random Algorithms
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(Nagavelli | SVM  +| Ischemic PhysioNet | Machine Learning| Accuracy
etal. 2022) | DO heart disease | database Technology-Based | 89.4%
Heart Disease
Detection Models
(Hassab Meta- Arrhythmi MIT-BIH 4 ECG Heartbeat| Sensitivity
allah et Heuristic | a EDB 4 Classification 99.81%
al. 2023) Optimiza INCART | Using Machine

tion Learning and

(MOH) + Metaheuristic

ML Optimization  for,

classifier Smart Healthcare

S Systems

(Khan et al.| Single Myocardial | Health Cardiac  Disorder| Accuracy
2021) Shoot infarction care Classification by 98%

Detectio ’ institutes | Electrocardiogram

n (SSD) | abnormal Sensing Using

MobileN heartbeat Deep Neural

et v2- ’ Network

based previous

Deep .

Neural history  of

Network | M,

architect
normal class

ure

Hybrid Hybrid Abnormal Cardiac ECG Diagnosis, | 99%
model Al centre + . .

Model heart Kaggle Analysis, And | Specificity,

(Inceptio | rhythm, online Interpretation in | 99%

n V3 ¢+ atrial database Cardiology Usin recision
fibrillation, Deep  Learning | 99% F1-
ischemic Models for | score
heart Classification and | 99%
disease, Prediction accuracy,
myocardial 99% Recall
. . Sensitivity
infarction,

normal heart
rhythm, and
sinus

bradycardia
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CHAPTER SIX
CONCLUSION AND RECOMMENDATIONS

This chapter presents the important conclusions extracted from the research

alongside recommendations for future research.

6.1.Conclusion

This study has demonstrated that the hybrid Al model, combining the strengths of
Inception V3 and VGG16, achieves exceptional performance in classifying ECG images
into six distinct heart conditions. In contrast, the hybrid Al model returned results with
99% accuracy on all key metrics concerning sensitivity, specificity, F1-score, and
precision-considerably outperforming standalone models and many state-of-the-art
approaches. This very high diagnostic accuracy is of serious consequence to clinical
implications. In providing reliable and precise diagnoses, the model can assist
cardiologists in informed decision-making, with a view to reducing diagnostic errors and
ensuring timely intervention for heart disease patients.

All of this gets implemented into an even greater impact by deploying this model
as a web ECG classifier application on a Flask server. Further, making the web ECG
classifier application globally accessible means high-quality cardiac diagnostic equipment
shall be at the fingertips of different health practitioners across the world, especially in
settings with limited access to specialized cardiology services. This opens up better
prospects for improving patient outcomes due to early detection and management of heart

diseases, thereby resulting in reduced morbidity and mortality.

6.2.Recommendations

Though promising, the results of this study point to a number of avenues for
further research and development that can extend the usefulness and impact of the hybrid
Al model.
6.2.1. Recommendations for Researchers
6.2.1.1. Refinement of Model Architecture: The hybrid Al model architecture should be
further refined in future research. Further deep learning techniques, such as attention

mechanisms or transformer models, could be explored for possible further improvements
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in the performance of the model.

6.2.1.2. Prospective Clinical Trials: In addition, large-scale prospective clinical trials
will be performed to validate the performance of the hybrid Al model in various clinical
settings, which is an important factor for the generalization and reliability of the model in
various patient populations and healthcare settings.

6.2.1.3. Integration with Multimodal Data: Investigations into integrating the hybrid Al
model with other types of medical data, such as genetic information, patient history, and
other diagnostic tests, are encouraged. Such a multimodal approach might yield a more
holistic understanding of heart conditions and increase predictive accuracy.

6.2.1.4. Making Algorithms Free from Bias: A very important fact is that such a hybrid
Al model needs to be trained with diverse datasets representative of different
demography. A researcher should progress toward creating data that reflects inclusive
diversity.

6.2.1.5. Other forms of ECG: This hybrid Al model will be used to extend its clinical
feasibility by investigating further whether it could be applied to some other forms of
ECG studies other than those already defined 12-lead, single-lead or 3-lead ECGs.
6.2.1.6. Regulatory and Ethical Considerations: It becomes of great importance that
regulatory and ethical considerations be taken into account for the successful translation
of Al models into clinical practice. Conformity with healthcare regulations and standards
will need to be adhered to, and ethical concerns regarding data privacy and algorithmic
bias also need consideration in order to gain trust and acceptance among healthcare
providers and patients.

6.2.1.7. Interpreting Results: If an application interface is used, then the result section or
page should give an explanation of the condition predicted, with recommendations for

further action if any. This may be made possible by incorporating Grad-Cam technique.

6.2.2. Recommendations for Cardiologists

6.2.2.1. Adoption of Al Tools: Cardiologists should be advised to adapt and use Al-based
diagnostic tools, such as the hybrid Al model, in clinical diagnosis and practice to enhance
their performance and efficiency. Such tools can thus act like decision-support systems in
complicated cases.

6.2.2.2. Continuous Training and Education in Al/Machine Learning: A cardiologist
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should be updated about all recent advances related to Al and machine learning.
Continuous training and professional development programs will help them in putting
these technologies into effective use in their practice.

6.2.2.3. Patient Data Privacy: Cardiologists should ensure the privacy and security of
patient data when using Al tools. Best practices in data anonymization and adherence to
regulatory standards are important in maintaining patient trust and confidentiality.
6.2.2.4. Collaborative Approach: Multidisciplinary collaboration with Al researchers
and data scientists could help cardiologists understand the capabilities and limitations of

Al models, thus being able to integrate them more effectively into clinical workflows.

6.2.3. Recommendations for Patients

6.2.3.1. Informed Participation: A patient should be informed about the application of
an Al tool in his or her diagnosis and treatment. Understanding the benefits and limitations
of these technologies will help the patients make better decisions regarding their
healthcare.

6.2.3.2. Data for Research: Patients can contribute by giving consent to share
anonymized medical data for research into Al in medicine, with the view to helping
enhance robustness and accuracy in Al models.

6.2.3.3. Al Diagnosis -Trust: Many patients will require an understanding of the fact that
this diagnostic tooling is meant to assist their healthcare professional rather than replace
the doctor. Extra layers of accuracies can be provided, ensuring more precise diagnoses.
6.2.3.4. Engagement and Feedback: The active contact and feedback provided by the
patients after experiencing Al-based diagnosis can surely be one way hospitals and

researchers alike perfect their tools in serving the needs of such patients effectively.

6.2.4. Recommendations for Hospitals

6.2.4.1. Infrastructure Investment: The basic infrastructure investment for installing
high-performance computing systems, data storage solutions, and secure networks to
support Al-driven diagnostic tools.

6.2.4.2. Training Programs for Staff: It would be upon the hospitals to institute training
programs, which would train both their medical and administrative staff on how to use Al

tools. This will definitely enhance the rate at which such tools are adopted and also
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confidence in integrating Al technologies into the staff's workflow.

6.2.4.3. Standardized Implementation Mechanisms: Harmonized protocols and
workflows are being developed to embed the Al model into clinical use for consistency,
reliability, and safety in patients' interests.

6.2.4.4. Regular Audits and Updates: Regular review and updating of Al tools are
necessary in order for the performances to conform to the medical standards currently at
stake and that problems, such as algorithmic bias or data inaccuracy, are detected as early
as possible.

6.2.4.5. Al Ethics Committees: It is worth mentioning the establishment of specialized
ethics committees focused on Al implementation in clinical applications, which will
improve most issues related to the consent of patients, personal information privacy, and

ethical dilemmas.

6.2.5. Recommendations for Policymakers

6.2.5.1. Regulatory Frameworks: Policymakers have mandates to enact complete and
appropriate regulatory frameworks that assure safety, responsibility, and equity in the
establishment of Al applications in health services.

6.2.5.2. Funding and Grants: More funds and grants for Al-based medical research
increase the pace and quality of Al models in use today within the medical field.

6.2.5.3. Interoperability Standards: Policymakers need to encourage efforts toward
standards of interoperability so that the use of Al tools is shared with ease, just like
incumbent systems and platforms of EHRs.

6.2.5.4. Public Awareness Campaigns: There is a dire need to educate the general public
about the role, benefits, and limitations of Al in healthcare through appropriate campaigns
to ensure greater trust and acceptance among patients and health professionals regarding
these technologies.

6.2.5.5. Data Privacy Legislation: Strict data privacy legislation with respect to Al in
health would go a long way in safeguarding patient information, thus inspiring
responsible innovation.

6.2.5.6. Incentives for Adoption: Tax breaks or subsidies of some kind in financial terms
will go a long way in incentivizing hospitals and healthcare providers to integrate Al-

based solutions into their services.
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APPENDIX C: Dataset Permissions

ATTACHMENT 2: Permission Letter from Near East University Hospital staff to use the
dataset
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The data will be trained and integrated with Artificial Intelligence models and algorithms for
accuracy and prediction of results related to my thesis topic titled “ECG DIAGNOSIS,
ANALYSIS, AND INTERPRETATION IN CARDIOLOGY USING MACHINE
LEARNING MODELS FOR CLASSIFICATION AND PREDICTION™. The permissions
include, rights to use the data and rights of publication of research related to the thesis study.
The data will not be used in other researched unrelated to the thesis.

The needed data description includes heart problems and reading results of patients gotten
from any ECG monitoring device for more than 1500 patients. The confidentiality of the
patients in terms of name, age, sex, and any personal information is not needed and
would not be used in the research.

I would like to greatly appreciate your consent to my request.

Three copies of this request has been provided for your records. If you agree with the above
terms, please sign the release form below.

Sincerely,

Oke Oluwafemi Ayotunde

Permission granted for the use of the data as described above:

Agreed to: Oke Oluwafemi
described above.

otunde to Use the ECG result dataset for thesis research as

Dr. Name: Job Title: Signature:
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APPENDIX E: Sample Code for the Model

isport os
import cv2
import nuspy 35 np

from sklearn.mode]_selection import train_test_split
from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import accuracy_score, classification_report
from keras. applisations import InceptionV3, 5

from keras sodels isport Model

from keras.layers isport Flatten, Dense, Input, concatenate

from kerps.utils import to_categorical

# Function to load and preprocess images

def load_images(folder_path, isg sizes
X~
y=
labels = os.listdir{folder_path)
for label in label
1abel_path - os.path.join(folder_path, label
for img file in os.listdir(label path):
ing_path = os.path.join(label_path, isg file
ing = cv2.imresd(ing path) # Read
img - cv2.resize(ing, ieg st

return np.array(X), np.arr

# Path to

r containing ECG 1

folder_path = “main_dataset™

# Load and preprocess isages
X, y - 10ad_tmages(folder_path, L
X = X.astype("flost32") /
¥ = LabelEncoder().fit_transfors(y) # Encode labels

1 values to range (0, 1]

# Convert labels to one-hot encoding

y_train - to_categorical(y_train)
y_test = to_categorical(y_test

ad pre-trained Incept

and VEGIS models
inception base - InceptionVd(weights-'isagenet’, include_top-false, input_shape-(224, 224, 3))

vgg_base ~ VGG16(weights"inagenet’, include_top-False, input_shape-(224, 224

tmport os
import cvz

import numpy as np

from kerag.models import load_model

# Load the hybrid model
wodel = load_model(hybrid_model. keras')

# Path to the folder containing ECG images
folder_path = “Cropped

# Function to preprocess images

def preprocess_imsge(image_path, target_sizes(224, 224)):
img = cv2.inread(image_path)
img = cv2.resize(img, target_size)
img - ing.astype('float32’) / 255.2 # Mormalize pixel values
img = np.expand_dims(img, axis=B) # Add batch dimension
return img

# Function to make predictions for all images in a folder
def pradict_folder_images(model, folder_path)

class_names = [“Apnormal®, "Atrial Fibeillatior
results = []

Ischemic heart disease”, “Myocardial Infarction”, "Normal®, "Sinus bradycardi

for filensme in os.listdir(folder_path)
if Filename.endswith((*.png’, '.ipg’, ".ipeg’))

#ile_path - os.path. Jein(folder_path, £ilename)

preprocessed_imsge = preprocess_imsge(file_path)

# Make prediction
predictions - model.predict(preprocessed_image)

predicted_class = np.argrax({predictions, axis=1)
predicted_probability = np.max(predictions) * 168

# Check if the predicted probability is below a threshold

1# predicted_probability < 58: # Threshold for unknown classification
predicted_lsbel = "Unknown classification. Kindly mest with the cardiologist”
predicted_probability - 0.0

else:
predicted_label = class_names[predicted_class[8]]

® Append result
results.append(
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APPENDIX F: User Manual of the Developed ECG Classifier Application

User Manual for ECG Classification Web ECG Classifier Application
. Introduction
This user manual provides detailed instructions for using the ECG Classification
web ECG classifier application, developed as part of the research on “ECG Diagnosis,
Analysis, and Interpretation in Cardiology Using Deep Learning Models for
Classification and Prediction” The application is designed to classify ECG images into

six heart conditions using a hybrid Al model.

Il.  System Requirements
e Operating System: Windows, macOS, or Linux
e Web Browser: Latest versions of Chrome, Firefox, Safari, or Edge
e Internet Connection: Stable internet connection for accessing the web ECG

classifier application.

I11.  Installation Instructions
a) Clone the Repository
Clone the project repository from GitHub:
git clone https://github.com/BrosFemo/ECG-Classification-WebApp.git
b) Navigate to the Project Directory
Open a terminal or command prompt and navigate to the project directory:
cd ECG-Classification-WebApp
c) Install Dependencies
Install the required Python libraries using pip:
pip install -r requirements.txt
d) Run the Flask Server
Start the Flask development server:
flask run
e) Access the Web ECG Classifier Application
Open a web browser and go to http://localhost:5000 to access the application.

f) Alternate Web ECG Classifier Application Access (for non-developers)
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Open a web browser and go to http://10.62.4.216:5000/ to access the application

V.

VI.

User Interface Overview

Home Page: Provides an overview of the application and instructions for
uploading ECG images.

Upload Section: Allows users to upload ECG images for classification on the
home page.

Results Section: Displays the classification results, including the predicted heart

condition.

Using the Application

Uploading an ECG Image

Navigate to the Upload Section by clicking on the “Choose File” button to select
an ECG image from your computer.

Once, selected, click the “Upload” button to submit the image for classification.

Click the “Clear Selection” button to cancel a selection.

Viewing Classification Results

After uploading, the application will process the image and display the
classification results in the Results Section.

The results include the predicted heart condition (one of the six predefined
conditions), along with a probability score indicating the model’s confidence in

the prediction.

Routine Maintenance

Data Privacy: The system has been fitted with anonymity algorithm to ensure that
all uploaded ECG images are anonymized to protect patient privacy.

Software Updates: The developers of the system regularly update the software
dependencies and the hybrid Al model to ensure optimal performance and
accuracy.

Model Retraining: In ensuring that the hybrid Al model is on par, a periodic
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retrain of the hybrid Al model with new data would be carried out to improve its

generalizability and accuracy.

VII.  Troubleshooting

e Server Issues: If the Flask server does not start, ensure all dependencies are
correctly installed and there are no port conflicts.

e Upload Problems: If the ECG image fails to upload, check the file format and
size. The application supports standard image formats (JPEG, PNG) and files up
to 10MB.

e Classification Errors: If the classification results are inconsistent or incorrect,
verify the quality and clarity of the ECG images or contact the cardiologist.

Contact Information

For further assistance, please contact the research team:

« Email: oke.oluwafemi_a@yahoo.com, 20206831 @std.neu.edu.tr,

« Phone: +90-ECGClassification

o Address: Near East University, Department of Computer Information Systems, Nicosia
99138, Cyprus

o Address2: Computer Information Systems Research and Technology Centre, Turkey

Conclusion

This user manual aims to guide users through the installation, usage, and maintenance of
the ECG Classification web ECG classifier application. By following the instructions
provided, users can effectively utilize the application for accurate and reliable ECG image

classification, contributing to improved cardiac care and diagnosis.
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