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Abstract 

 

 Comparison of Intracranial Hemorrhages Detection Performances of Deep 

Learning Models on CT Images 

 

MOHAMEED Sedra  

M.Sc., Department of Biomedical Engineering 

January, 2025, 55 pages 

 

          Early detection of Intracranial hemorrhage (ICH) is crucial to prevent life-

threatening conditions and mortality. Computed Tomography (CT) is the primary 

imaging system used to diagnose intracranial hemorrhages, which provides distinct 

differences between epidural, subdural, and subarachnoid pleurae. However, the 

occurrence of ICH could be indistinct and might cause misdiagnosis. Recent 

advancements in Artificial Intelligence (AI) and deep learning technologies provide 

effective and rapid analysis of low and high-level features of images, even though 

the appearance of the region of interest is indistinct. This efficacy of the deep 

learning methods is also improved by transferring the knowledge obtained in 

another domain to different tasks. In this thesis, we implemented three state-of-the-

art pretrained deep learning models, EfficientNetB0, DenseNet201, and ResNet101, 

using a transfer learning approach to detect ICH in order to help and assist medical 

doctors. The DenseNet201 outperformed ResNet101 and EfficientNet B0 models 

and achieved 0.8076, 0.8451, and 0.981 Sensitivity, F1, and ROC AUC scores. The 

results showed that deep learning models can be used to detect ICH accurately; 

however, further improvements are required to increase the sensitivity. 

 

Keywords: intracranial hemorrhage, brain bleeding, hemorrhagic stroke, ct imaging, 

neurosurgery 
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Özet 

 

 BT Görüntülerinde Derin Öğrenme Modellerinin İntrakranial Kanama Tespit 

Performanslarının Karşılaştırılması  

 

MOHAMEED Sedra  

Yüksek Lisans, Biyomedikal Mühendisliği Bölümü 

Ocak, 2025, 55 sayfa 

 

             Kafatası içi kanamanın (ICH) erken teşhisi, yaşamı tehdit eden durumları ve 

ölüm oranını önlemek için çok önemlidir. Bilgisayarlı Tomografi (BT), kafatası içi 

kanamaları teşhis etmek için kullanılan birincil görüntüleme sistemidir ve epidural, 

subdural ve subaraknoid plevralar arasındaki belirgin farklılıkları sağlar. Ancak, 

ICH'nin oluşumu belirsiz olabilir ve yanlış tanıya neden olabilir. Yapay Zeka (AI) ve 

derin öğrenme teknolojilerindeki son gelişmeler, ilgi alanının görünümü belirsiz olsa 

bile, görüntülerin düşük ve yüksek seviyeli özelliklerinin etkili ve hızlı bir şekilde 

analiz edilmesini sağlar. Derin öğrenme yöntemlerinin bu etkinliği, başka bir alanda 

elde edilen bilginin farklı görevlere aktarılmasıyla da artırılır. Bu tezde, tıp 

doktorlarına yardımcı olmak ve desteklemek amacıyla ICH'yi tespit etmek için bir 

transfer öğrenme yaklaşımı kullanarak, EfficientNetB0, DenseNet201 ve ResNet101 

olmak üzere üç adet son teknoloji önceden eğitilmiş derin öğrenme modeli uyguladık. 

DenseNet201, ResNet101 ve EfficientNet B0 modellerinden daha iyi performans 

gösterdi ve 0,8076, 0,8451 ve 0,981 Duyarlılık, F1 ve ROC AUC puanlarına ulaştı. 

Sonuçlar, derin öğrenme modellerinin ICH'yi doğru bir şekilde tespit etmek için 

kullanılabileceğini gösterdi; ancak duyarlılığı artırmak için daha fazla iyileştirmeye 

ihtiyaç var. 

 

Anahtar kelimeler: İntrakraniyal kanama, Beyin kanaması, Hemorajik inme, BT 

görüntüleme, Nöroşirürji 
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CHAPTER I 

Introduction 

 

         This chapter presents a brief background that includes medical information about 

intracranial hemorrhage, the role of CT technology in diagnosing intracranial 

hemorrhage, the evolution of intracranial hemorrhage detection and analysis systems, 

and an overview of the proposed AI-powered innovations for CT scan analysis. 

Background 

         Intracranial hemorrhage is the collective term for accumulation of blood within 

the skull, most commonly from ruptured blood vessels. Early detection of hemorrhages 

is essential for their treatment. There are various categories of intracranial 

hemorrhages according to their location, such as epidural, subdural, subarachnoid and 

intraparenchymal types. They all have their individual information and structural 

imaging appearances, which can make the diagnosis challenging for each of them. 

Intracranial hemorrhages, unlike other medical conditions needed timely identification 

to avoid life-threatening situations like brain damaged or even death. In particular, new 

technology has made it clear that intracranial hemorrhage needs to be diagnosed via 

CT scans because they can detect subtle bleeds quickly and in a way that isn't practical 

when you are dealing with patients in an acute emergency (Piao al., 2023).  

         CT scanning - which enables quick, precise images of blood that has been 

scattered over the brain - is paramount in diagnosing each kind of cerebral hemorrhage. 

CT ANGIOGRAPHY: - It is performed by generating 3D X-rays of brain originating 

from different angles and later they are integrated to give detailed image Intracranial 

hemorrhages, for example, generally appear as regions of increased density or 

whiteness on a CT image because blood absorbs more X-rays than the brain tissue 

surrounding it (Chang et al., 2018). Doctors can more easily identify the extremity and 

volume of a hemorrhage along with its impact on surrounding tissues based on this 

degree of contrast between images. The key advantage of CT scanning is an automated 

process that breaks the complex task of infarct segmentation down to low-dimensional 

feature representations, and its subsequent use by a trained machine learning model 

for efficient stroke detection in real-time under emergency conditions. Moreover, the 
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CT is able to give differential diagnoses between all kinds of brain hemorrhage 

including subdural and epidural for appropriate treatment (Piao al., 2023). 

         The different sizes, shapes and locations of intracranial hemorrhages are 

challenges for estimating CT image. Knowing where and why an intracranial 

hemorrhage is happening is critical to providing timely care. Various AI-powered 

techniques have been proposed and realized including automated deep learning model-

based foot print excavation (MacIntosh et al., 2023), fuzzy entropy cloning for 

accurate region identification (Meng et al., 2022). In addition to incorporating level 

set approaches with AI capabilities by (Gibson at el., 2022).  AI algorithms have been 

taught to help detect and classify placement of hemorrhages in order to provide 

assistance for critical healthcare decisions. Although manual measurement analysis of 

CT images may result in human error, more advanced AI-based systems are required 

to improve diagnosis to accurately and quickly generate the parameters (Piao al., 

2023).  

         With the rapid growth of artificial intelligence (AI) and deep learning, the 

analysis of CT images to detect intracranial hemorrhage (ICH) has had substantial 

progress. Diagnostic accuracy can be improved by using many methods including 

hybrid and deep learning approaches. For example, Mohammed et al. (2022) presented 

a multi-method diagnostic system by combining three pretrained CNNs, GoogLeNet, 

ResNet-50, and AlexNet, with SVM for feature extraction and classification, 

complemented by Principal Component Analysis (PCA) for dimensionality reduction. 

The subtle appearance of ICH in CT images is a difficulty that these systems seek to 

overcome.  Additional studies prematurely encourage evolving CNN-based 

architectures in combination with other deep learning methods such as LSTM, while 

also adding GLCM features as has been done by Mucha and Babu (2024). Improving 

classification accuracy is important, as well, and helps mitigate training failures due to 

hematic pooling regions that may normally appear in the same volume as an actual 

intracranial hematoma. Sengupta et al. The use of bidirectional LSTM networks with 

genetic algorithms which are capable of improving detection in 3D scans was 

successfully presented by Zhang et al. (2023). Moreover, Yeo et al. Search for Net 

Anatomy: (2023): CNN-based applications outperformed necessity gen-based 

methods, analyzing CNN’s hierarchical structure as an important feature for 

optimizing deep learning algorithms by refining feature extraction processes. Cortés-
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Ferre et al. (2023) reaffirm deep learning's future role in automating the detection of 

ICH, and that its performance is superior to that of manual and task-oriented 

approaches. 

         Detection and classification of intracranial hemorrhage (ICH) regions are key in 

order to distinguish between different types of hemorrhages, thus justifying further 

work in this domain. In this thesis, we introduced a system that employs deep learning 

models to effectively detect and classify ICH in computed tomography (CT) images. 

The study used deep pretrained models with transfer learning to improve performance 

for ICH detection. The system works with 2-D axial images from computed 

tomography (CT) scans in which it detects and segments hemorrhage areas. This not 

only improves the feature extraction but also can be used as a framework for future 

extraction. The proposed techniques enhance the accuracy of ICH detection by 

concentrating on the visual coherent regions in the input images, leading to better 

computer-aided diagnostic tools in future clinical implementations. Overall, this thesis 

demonstrates the promise of deep learning in the field of medical imaging, in particular 

with respect to the rapid and reliable diagnosis of critical illnesses such as intracranial 

hemorrhage. 

The problem statement and limitations: 

         Intracranial hemorrhage (ICH) detection poses several challenges mainly owing 

to the intrinsic complexity of brain anatomy and the limitations of the generations of 

imaging methods available today. These problems may result in missed diagnoses, 

especially in high-pressure health-care environments. In the subsequent sections, we 

describe the main issues related to ICH detection. The potential adverse effects of ICH 

management are large, and due to the complexity of ICH these effects occur on all 

levels, diagnosis and treatment outcome. These give rise to its challenges are accurate 

prognostication, early care decisions and the challenges within the condition. Early 

care limitations like as effect of DNR "The DNR order informs healthcare providers 

not to perform CPR if a person's heart stops beating or their breathing stops": Early 

DNR orders are associated with approximately doubled hazard of death, with studies 

suggesting poor prognostication associated with them and subsequent mortality 

(Zahuranec et al., 2007). 
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Challenges in Detection and Classification: 

         Due to the fact that the manual diagnosis method is time-consuming and 

laborious, automatic ICH recognition and classification techniques from AI models 

are absolutely needed (Meng et al., 2022). Early diagnosis improves ICH scan 

scheduling and improves treatment. Therefore, numerous research studies are 

developing computer-aided diagnosis (CAD) for ICH segmentation. The CAD system 

based on (i) manual diagnosis where experts have to be present in order to provide 

accurate input (ii) automated diagnosis  where hemorrhage has been diagnosed with 

no medical intervention (Kidwell et al., 2004). Recent advancements of computer 

vision methods, particularly deep learning (DL), have demonstrated great potential to 

learn meaningful representation from healthcare images (J. Ljungqvist et al., 2017). 

         Prognostic Challenges: Existing prognostic tools like the ICH Score suffer from 

biases and weaknesses in treatment decision-making (Chu & Hwang, 2016).  

        Perspectives: Subjective clinical judgments: Clinical assessments made by 

health care providers (HCPs) early on may not positively correlate with outcomes and 

affect decisions about critical care (Chu & Hwang, 2016). 

         Data Scarcity and Annotation Challenges: There is also a scarcity of labeled 

data for training Deep learning (DL) models, which greatly hinders the establishment 

of reliable detection algorithms (Sengupta et al., 2023). 3D CT images is resource-

intensive, and inaccurate bounding boxes can negatively impact model performance 

(Sanner et al., 2024). Classification Accuracy for clinical applications, attaining high 

classification accuracy is paramount (Sengupta et al., 2023). 

        Treatment Complexity: This diversification means that ICH can occur from 

different etiologies, leading to diagnostic challenges and treatment versatility. 

Hypertension and cerebral amyloid angiopathy are among conditions that call for 

customized management strategies (Schaefer & Edjlali, 2024). Surgical Options: 

While surgical options exist, they are usually limited to the condition of the patient 

and the timing of the surgery, which may impact the overall prognosis (O’Carroll et 

al., 2021). 

        Time Constraints in Emergency Settings: Trauma cases require rapid assessment 

and treatment and there is often not enough time to review CT images in detail, which 
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can result in missed hemorrhages. This dependence on clinical students and junior staff 

can worsen the situation since they may fail to notice subtle signs of ICH (Sanner et 

al., 2024). 

Therefore, this thesis is conducted according to the following objectives: 

• This is followed by the detection of Intracranial hemorrhage (ICH) regions and 

then enhancing these regions using proposed  methods. 

• Optimal success rates are achieved, in both single and combined datasets, for 

detection of areas related to Intracranial hemorrhage (ICH). 

• Make deep learning architectures detection better by giving them clearer and 

more distinct hemorrhage regions to classify. 

 

Thesis Layout  

         The thesis chapter 1 summaries the basics and layout of this thesis. Introduction 

In this second chapter, as literature review. The basics of Intracranial Hemorrhage 

(ICH) are introduced in Chapter 3. In chapter 4, the methodology of thesis is described. 

Subsequently in Chapter 5 the results and discussions are shown. Finally, conclusion 

is stated in chapter 6. 
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CHAPTER II 

Literature Review 

 

             This chapter review the previous works and advancements related to deep 

learning-based intracranial hemorrhage detection. It outlines the used methods and 

datasets, as well as the evaluation result realized in prior work, summarizing progress 

and recognizing gaps to help guide future research. 

 

            Mohammed et al. (2022) proposed the multi-method diagnosis system in which 

identifies intracranial hemorrhages using CT images instantly. This system was 

decomposed into three different methods in classifying CT images reliably. To classify 

the dataset using deep learning techniques, initially the first system used three 

pretrained knowledge models in Convolutional Neural Networks (CNN), i.e., 

GoogLeNet, ResNet-50 and AlexNet. In our second system, we developed a hybrid 

technique by integrating these deep learning models with Support Vector Machine 

(SVM) for better feature extraction and classification accuracy. Third, the third system 

used an Artificial Neural Network (ANN) which included features learned by 

aforementioned deep learning models and dimensionality reduction was made as 

principal component analysis. Further, Gray Level Co-occurrence Matrix (GLCM) and 

Local Binary Patterns (LBP), a pair of patterns in the convolutional layer were 

extracted as features to enhance classification performance using ANN. As a dataset 

to demonstrate the capabilities of our proposed system, we used CT data obtained from 

Near East Hospital in Cyprus. The best ANN network considering the fusion with 18 

deep features from AlexNet in GLCM and LBP, which achieved an accuracy of 

(0.993) precision of (0.9936), sensitivity was equal to %99.5, specificity was greater 

than percent (%99/57%), AUC (%98/84%). 

            Majeed et al. (2023) presented an approach to the identification and 

classification of intracranial hemorrhage (ICH) on CT images with ML methods. The 

study highlighted the critical role of early diagnosis for brain diseases, particularly 

ICH, and proposed a triage algorithm to promote rapid identification and treatment. A 

brief description of the proposed method: 4 Main steps Before any of the deep learning 

models could be trained, a preprocessing pipeline was created and used to remove bone 
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from each skull in order to automatically segment out brain tissue within CT images. 

The second step involved performing feature extraction from CT to extract the 

pertinent features followed by preparing this data for further classification. Thirdly, 

we applied a right feature selection model which is Principal Component Analysis 

(PCA) to improve performance of models by reducing redundancy in features selected. 

The dataset was then grouped in non-normal and normal patterns following the 

standard procedure for classification with machine learning, such as Support vector 

machine (SVM), Random Forest (RF) and Decision Tree. Its accuracy in detection on 

Random Forest Model showed much higher value of 92.5 % that proved the 

effectiveness of detecting ICH by it. The machine learning models were trained and 

tested on a CT-scan dataset, but the specific details for the data set are not provided. 

This high accuracy of the Random Forest model (92.5 %) in detecting ICH relative to 

other methods used for this study. 

             Mucha et al. (2024) presented a hybrid approach to classify ICH in CT images 

employing both image-based GLCM features and deep learning methods, namely 

CNN and LSTM. This system was designed to automatically classify radiological data 

for ICH diagnosis, where CNN and LSTM units were combined using a logistic 

function. A large dataset consisting of 12,852 radiological reports was preprocessed 

first: it comprised 8,738 for training and another set to be used as validation (1,543) 

and testing. Afterward, the dataset was annotated by a grad student to produce ground-

truth. In the first stage, preprocessing of input images was performed using Discrete 

Wavelet Transform (DWT) for feature extraction from image. Then the image-based 

features using GLCM was calculated like contrast, energy and homogeneity followed 

by subsequent feature vector generation from images Discrete Cosine Transform 

(DCT). In the last phase of this code, we tried to link back those result with how well 

our classifier was working on highly imbalanced dataset and for that purpose used 

ROC curve. The dataset that the study employed was comprised of 12,852 radiological 

reports; specifically, there were 10,966 negatives and approximately only ICH positive 

(1,886 cases in total). The performance assessment of the classifier included specific 

measures including Accuracy, Recall, and F1-score with ROC curve to ensure a 

holistic evaluation. 

         Yeo et al. (2023) To automatically detect intracranial hemorrhage (ICH) and its 

subtypes on non-contrast CT (NCCT) head studies, proposed a deep learning model 
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This was intentionally implemented as a system for benchmarking different 

preprocessing and model design to improve the detection accuracy. At first, the DL 

model was based on a Convolutional Neural Network (CNN) architecture and more 

specifically accessed to ResNet models pretrained on ImageNet. The regime was 

divided among three stages. The model was trained in stage one with a training dataset 

of 21,744 NCCT head studies––40.8% were positive for intracranial hemorrhage. We 

used the FORCE11 trust-sample of university emails, with test datasets from India 

which uses a different flow and training sets on multiple institutions across USA, 

Canada, Brazil. The second stage optimized model training using different techniques 

such as input image-windowed and concatenated inputs. Furthermore, a recurrent 

neural network (RNN) has been added after the CNN to discover interslice 

dependencies which improves overall performance of our model. Finally, the 

performance of our model in terms of metrics such as area under receiver operating 

characteristic curve (AUC-ROC) and micro averaged precision (mAP), was evaluated. 

This improved the performance a lot, and (mAP) increased from 0.77 to 0.93; AUC-

ROCAUC-ROC rose from 0.854 to 0.966 At the balanced operating point, the model 

achieved an accuracy of between 0.86 to 0.96 that converted into further number 

correct classifications for test samples region. The model successfully identified cases 

of ICH and accurately discriminated negative from positive for all included studies 

while maintaining sensitivities that ranged between 0.87–1.00 and specificities ranging 

between 0.85–0.96 at an operating point with high-sensitivity capabilities. Evaluation 

of the system was conducted on a multi-center retrospective dataset and validated in 

an independent cohort to ensure robust performance across different populations. Once 

pre-processing techniques and the use of RNN framework were performed, this 

resulted in area under ROC curve (AUC-ROC) to be ≥0.949 for all classes, a 

significant improvement.              

             Cortés-Ferre et al. (2023) for detection concerning intracranial hemorrhages 

on CT images in human deep-learning based approach using EfficientNet, this shall 

support diagnostic decisions by clinicians. It was trained to classify CT scan slice for 

whether there is hemorrhage from scans. In the first stage, we trained models to predict 

whether or not small slices of CT scans contained hemorrhage using an accuracy of 

92.7% and ROC AUC score 0.978 At the second stage, Grad-CAM method was 

applied to interpret this classification and highlighted in CT images where it focused 
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on. It was also trained on a pre-processed version of the original Kaggle dataset, with 

classification labels transformed to binary format (ICH or not ICH). In the case of ICH 

detection, model performed well with a 92.7% accuracy and also gave attention via 

Grad-CAM which improves interpretability of decisions by deep learning models. 

Note that as of this point the model is for research use only -- we recommend technical 

expertise to run it effectively, while its positive diagnostic identification capability 

reached 92.3%, indicating high discriminative power for detecting ICH; it successfully 

identified a significant proportion of true-positive cases. Its specificity was 97.7%, 

indicating its excellent ability to avoid false positive predictions by correctly 

identifying patients without ICH 

               Thalhammer, M. et al. (2023) conducted a study exploring the benefits of 

deep learning-based artifact reduction in sparse-view cranial CT scans as well as their 

influence on automated hemorrhage detection. The system was separated into two 

fundamental methodologies. For artifact reduction in simulated sparse-view cranial 

CT scans of 3,000 patients with a public dataset, we initially trained a U-Net model. 

Subsequently, the EfficientNetB2 model was trained using CT full-view data of 17,545 

patients for automatic hemorrhage detection. Detection performance was evaluated 

using the area under the receiver operator characteristic curve (AUC), with differences 

assessed through the DeLong test and confusion matrices. Before comparing with a 

TV postprocessing approach. Compared to no processing, both U-Net and TV 

postprocessing led to much higher image quality. Also in detection, U-Net 

postprocessing enabled achieving 0.97 AUC with only 512 (vs 4096) and even just at 

most half of these views (256; AUC:0.97), whereas number of hemorrhages detected 

was minimally reduced when compared across architectures The mean structural 

similarity index measure significantly increased compared with the unprocessed 

images, suggesting an improvement in image quality. The results were significant at a 

cluster-corrected significance threshold of 0.00017 adapted to Bonferroni-correction 

of multiple comparisons on voxel level (Tables S3, S4). In summary, we found that U-

Net-based artifact reduction markedly improved automated hemorrhage detection in 

sparse-view cranial CTs and could possibly be beneficial for clinical use. 

             Nizarudeen, S. et al. (2022) developed ConceptionNet, a new automated 

algorithm for detection and classification of intracranial hemorrhage by means of deep 

learning techniques. It is built using modern transfer learning techniques where the 
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base pre-trained model has been trained on ImageNet. More Initially, the algorithm 

used pre-trained networks (in this case Inception and EfficientNetB0) with fixed 

weights to process CT images. Subsequently, these models' last layers were fine-tuned 

on a hemorrhage dataset with an aim to correctly identify the most likely class of 

hemorrhage in the next stage. Next, the ConceptionNet was trained on this dataset as 

well to improve detection and classification. We trained a system on 2,848 CT images 

from 82 subjects (46 males and 36 females). The results of this study are an Area Under 

the Curve (AUC) assessment, evaluating algorithm performance for five hemorrhage 

types: Epidural (0.983), Intraparenchymal (1.0), Intraventricular (.968), Subarachnoid 

(1.0), and Subdural (1.0). The accuracy of the models was 0.96, for EfficientNetB0 

and ConceptionNet it is 95% about from InceptionV3. The results prove that the 

algorithm was performed well and may have a place in aiding junior radiologists to 

diagnose intracranial hemorrhage. Although not to specific level of sensitivity and 

specificity, high overall performance must be implied since the AUC classification 

accuracy are good.  

             Sengupta et al. (2023) presented a method on 3D CT brain images to detect 

intracranial hemorrhage, but this research is targeted at the difficulties in collecting 

labeled data required for recognition. The approach has been divided into several key 

steps. Images used were first obtained from the image acquisition stage of RSNA 2019 

dataset. Forward of this process, an Otsu's thresholding method was used for step 2 to 

get the region of interest (RoI) as follows. After segmentation, the region of interest 

(RoIs) regions was fused to convert into vectors using Tamura features (directionality; 

contrast and coarseness), local ternary pattern with gradient descriptor (GLTP 

descriptors). A reduction from the redundancy of the extracted vectors, due to their 

dimensionality is implemented in this model by a modified genetic algorithm with 

infinite feature selection technique which was used to enhance efficiency. The optimal 

vectors were then passed through a Bi-directional Long Short-Term Memory (Bi-

LSTM) network to classify different subtypes of intracranial hemorrhage -subdural, 

intra-parenchymal, subarachnoid and epidural hemorrhages as well as intraventricular 

bleed. A dataset from the RSNA 2019 database provided required 3D CT brain images 

for analysis, and the system was tested using this specific data. Results: The modified 

genetic algorithm- Bi-LSTM method exhibited promising performance, with 

sensitivity 99.40%, accuracy 99.80% and specificity 99.48%. The weak results were 
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overcome because the proposed method works better than classical machine learning 

models like Naïve Bayes, Random Forest and Support Vector Machine (SVM), 

Recurrent Neural Network (RNN) with LSTM networks. 

        Abrigo et al. (2023) The study developed an AI model for detecting acute ICH on 

CT scans, in which to evaluate the diagnostic performance of this model within clinical 

practice among a population from Hong Kong crisis healthcare system. We trained the 

model on a private dataset based on publicly available CT volumes of around 750,000 

expert-labeled images. It predicts the ICH status associated with each CT scan and 

returns five potential ICH-positive slices for further evaluation. They validated the 

model in a retrospective database of 1372 unenhanced head CT scans from an 

institutional archive (84 ICH, 6.1% positive). The AUC of diagnostic performance 

with the model was 0.842 (95%, confidence interval, CI: 0.791-0.894; P<0.001). This 

model reached a sensitivity of 73%, specificity of 79% and showed an accuracy, 

positive predictive value & negative prediction rate was: > The model detected 62 true 

positive scans with that of 22 false-negative scans. If the slices chosen by 10 different 

users are reintroduced into model evaluation, this could translate to as few as six false 

negatives. These findings underscore the potential utility of this model as an adjunct 

in clinical settings to identify ICH, although additional adjustments may be necessary 

to increase sensitivity and decrease false negatives. 

             Agrawal et al. (2023) Based on deep learning techniques, with attention to 

convolutional neural networks (CNN), Hagerty et al., Further investigated the 

automatic identification of intracranial hemorrhage (ICH) using head CT images in his 

performed study. The analysis comprised of a few stages: First, literature about 

detection of ICH in head CT with automatic methods was searched. In the following 

phase, the effectiveness of AI algorithms in ranking radiology worklists to decrease 

ICH triage time was assessed. Additionally, the study determined AI algorithms to be 

capable of identifying small ICH that may go unseen by radiologists. This comparison 

demonstrates the efficiency of different CNN-based deep learning methods in 

detecting ICH. While detailed lists of datasets used in each study are not provided 

within this context, the review identified 15 studies that develop and validate 

algorithms using head CT scans. They conclude that AI algorithms can greatly 

improve the ICH detection efficiency, which may potentially result in better clinical 

outcomes. 
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          Rashid, M. H. O et al. (2023) An automated deep learning-based method for the 

detection of ICH from CT images in this study. This is a step-by-step procedure, first 

of all the data were prepared and I trained one image model from large data set patient 

CT scans. This includes preprocessing such as normalization, windowing and 

augmentation to improve the quality of images. To fine-tune the model during training, 

30% of train data was left for validation. The research used the Radiological Society 

of North America's (RSNA) dataset, with 752803 training images and 121232 test 

images. This large dataset is important for learning a model generalized enough to be 

reliable with new data. The accuracy of proposed model is able to classify ICH in test 

data with an astonishing 98%. Sensitivity and specificity are not available but higher 

accuracy suggest better ability to diagnose ICH. 

 

         Ozsahin et al. (2021) in this study was made of the mechanism from the 

application of Deep Convolutional Neural Network (DCNN), to classify people with 

Alzheimer's Disease (AD), Mild Cognitive Impairment (MCI) and Cognitively 

Normal (CN) by tau protein Positron Emission Tomography (PET) images. The 

Alzheimer's Disease Neuroimaging Initiative (ADNI) database, which included 

around 40,000 2-dimensional images from 1097 baseline and follow-up tau positron 

emission tomography (PET) scans (AV-1451), consisting of 86 Alzheimer's Disease 

(AD), 442 mild cognitive impairment (MCI) and 569 cognitively normal (CN) 

subjects. The processing was standardized, and image enhancement techniques such 

as sharpening and contrast adjustment were performed in order to minimize variations 

due to different imaging devices. Then, two deep convolutional neural network (CNN) 

models were utilized; the first included two convolutional and two dense layers, while 

the second included three convolutional and three dense layers.In binary classification 

experiments (AD vs. CN, MCI vs. CN), Receiver Operating Characteristics Area 

Under the Curve (ROC AUC) scores were 0.9943 and 0.9908, respectively. For the 

three-class classification experiments (AD vs. MCI vs. CN), the convolutional neural 

networks reached a macro-averaged F1 score of 0.9827, reflecting high concordance 

rate across the three categories. The findings of this study suggest that deep 

convolutional neural network architecture is an efficient method for classifying AD, 

MCI, and CN subjects based on tau PET images alone. 
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Sekeroglu, B. et al.  (2021) proposed A hybrid model combining Support Vector 

Regression (SVR) and Emotional Artificial Neural Networks (EANNs) for body fat 

percentage (BFP) predictive modeling with good accuracy. It aimed to outline this 

common data restriction in BFP where new data dominates, even though we are not 

aware of this from the state of knowledge (traditional BFP estimation methods). The 

model was trained, with eight important features/attributes per individual from a 

dataset consisting of 2000 such people and showed excellent predictive performance 

in the return metrics: R² = 0.991, RMSE = 0.0125, and rRMSE = 3.15%, 

outperforming seven other baseline models (decision trees, random forest, and 

XGBoost, among them). The strongest predictor was abdominal circumference, while 

age was a weak factor. To the best of our knowledge, the SVR-EANN model 

represents the first new prediction model for predicting BFP to improve obesity 

management programs on a large-scale survey of data. 
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Chapter III 

Intracranial Hemorrhage (ICH) 

 

             This chapter presents an overview of the intracranial hemorrhage disease, 

The types, Causes and risk factors, Diagnostic Techniques, Symptoms and 

Clinical Presentation  

Intracranial Hemorrhage (ICH) review: 

        The disease of intracranial hemorrhage occurring in the brain due to the blood 

vessel leaking which causes inactive body functions such as memory loss, speech, and 

eyesight (Li et al., 2022). The most significant risk factors in intracranial hemorrhages 

are infected blood vessel walls and leakages in the vein (Remedios et al., 2020). CT 

imaging is the preferred modality in intracranial hemorrhage detection as compared to 

other imaging modalities owing to its low cost, high sensitivity, speed, and wide 

availability (Kuo et al., 2019). The lesions of intracranial hemorrhage are brightly 

defined in the CT imaging modality. Intracranial hemorrhage lesions are manually 

detected based on the CT scan, which is difficult due to artifacts in the CT scan, uneven 

boundaries, noise, and overlapping pixel intensities (Karki et al., 2020), (Duperron et 

al., 2019). Thus, the manual delineation is subjected to the intra-observer and inter-

observer, and it relies heavily on the physician's know-how (Sengupta et al., 2022). 

Bleeding types have different severity degrees and interventions (Ye et al., 2019). 

Intraparenchymal hemorrhage (IPH) Subdural hemorrhage represents around 15% of 

all strokes (Sacco et al., 2009). The predominant causes in older individuals are 

elevated blood pressure, cerebrovascular amyloid angiopathy, anticoagulation, 

hemorrhagic transformation of acute ischemic strokes, and primary or secondary 

malignancies, contingent upon their size and location. Common vascular 

abnormalities, including arteriovenous malformations, cavernous malformations, 

cerebral venous sinus thrombosis, as well as uncommon conditions like moyamoya 

and dural arteriovenous fistulas, should be contemplated in younger individuals and 

children. Infrequent etiologies of IPH including Reversible Cerebral Vasoconstrictive 

Syndrome (RCVS), posterior reversible encephalopathy syndrome (PRES), vasculitis, 

pharmacological toxicity, and infections including mucormycosis and aspergillosis. 
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inflammation and permeability of the blood brain barrier (Fischbein et al., 2010). 

Given that subdural and epidural hemorrhages are typically associated with head 

trauma, it is crucial to provide a history of head injury. Nonetheless, spontaneous 

hemorrhages may occur even in individuals on anticoagulant or antiplatelet treatment. 

Additionally observed in patients with coagulopathies, dural and osteodural 

arteriovenous fistulas, cerebral hypotension, and dural or calvarial metastases 

(Fischbein et al., 2010). Subarachnoid hemorrhage (SAH) ranks as the third most 

common subtype of stroke. A fall in the incidence of SAH has been reported over the 

previous few decades possibly due to lifestyle influences, the cessation of smoking 

and improved control of hypertension. Approximately one in four patients with SAH 

doesn’t live long enough to be admitted to the hospital. But those who reach the 

hospital tend to have better outcomes, though they remain at elevated risk for long-

term neuropsychiatric problems such as depression. With the average age of onset 

around mid-50 s, this condition still has a tremendous public health burden, as patients 

suffer downstream for many years (Claassen et al., 2022). Subarachnoid hemorrhage 

(SAH) is defined by the presence of blood in the cerebrospinal fluid (CSF) between 

the basal cisterns and subarachnoid spaces of the cerebral hemispheres, situated 

between the arachnoid mater and pia mater. The yearly occurrence of nontraumatic 

subarachnoid hemorrhage (SAH) is 9 per 100,000 persons. This rare yet critical 

occurrence has an estimated fatality rate of 40% within the initial 48 hours and is 

associated with the rupture of an intracranial aneurysm in 85% of instances (Fischbein 

et al., 2010). Hypertensive Hemorrhage Chronic, inadequately managed hypertension 

is a prevalent cause of cerebral bleeding. These individuals have a distinctive 

hypertensive vasculopathy characterized by lip hyalinosis of small- and medium-

caliber vessels, including the lenticulostriate, thalamoperforating, pontine perforating 

arteries, and cerebellar arterioles. The rebleed rate from microaneurysms is 2% 

annually, with hemorrhages predominantly occurring in the basal ganglia (35–40%), 

thalami (10–20%), pons (5–10%), and cerebellum (5–10%) (Kranz et al.,218). And 

literally, hemorrhages are sometimes seen at the subcortical white matter (1–2%) 

Symptoms present differently based on the location of the hemorrhage. 

Microhemorrhage and lacunar infarction in the deep gray nuclei, brainstem, and 

cerebellum, together with generalized leukoaraiosis, corroborate the diagnosis 

(Fischbein et al., 2010). A little presence of blood product is noted in the occipital 

horns, without actual intraventricular hemorrhage. Patients usually have stable clinical 
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conditions and clear consciousness (Fischbein et al., 2010). As Figure 1. Showes the 

different types of hemorrhages and their corresponding location within the skull (Li, 

Y. et al., 2012). 

 

Fig. 1. Different types of hemorrhages and their corresponding location within the skull (Li, 

Y. et al., 2012) 

Complexity of Hemorrhage Subtypes 

         Detection is challenging due to the wide variety of morphology of hemorrhagic 

lesions; these different subtypes (e.g., subdural, epidural) exhibit varying 

characteristic. There are more sophisticated models including those with deep learning 

that showed promise but were still not sufficient enough for accurately localizing and 

classifying these subtypes (Cheng et al., 2023). Nevertheless, the ongoing 

improvements in deep learning and automated detection methodologies are enhancing 

diagnostic precision and efficiency and have the potential to transform the standard of 

ICH management in clinical practice. 

Causes and Risk Factors and Prediction Scores: 

         Common etiologies of spontaneous intracranial bleeding encompass injuries: 

incidents resulting in significant trauma to the cranium. Vascular disorders, 

intracranial arteriovenous malformations, dural arteriovenous fistulas, vein sinuses 

thrombus, cavernous malformations, hemorrhagic conversion of ischemic infarction, 

coagulopathy, and underlying cancers (Fischbein et al., 2010). Several clinical, 

laboratory, and radiographic factors that correlate with the risk of ICH following 
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alteplase have surfaced. The strength of evidence for these associations varies, with 

some evidence consistently observed in large studies and other associations only 

observed in small, single-center cohort studies. Older age, more severe stroke, a higher 

initial glucose level, hypertension, congestive heart failure, renal impairment, diabetes 

mellitus, ischemic heart disease, atrial fibrillation, baseline antiplatelet use, 

leukoaraiosis, and visible acute infarct on brain imaging were all associated with 

increased risk of ICH in a systematic review and metanalysis of 55 studies but current 

smoking was associated with reduced risk (Whiteley et al., 2012). Also, the authors 

showed a signal for a statin use and ICH in this meta-analysis based on a few subjects 

that could, however, not be confirmed in a follow up study of >20 000 patients (Messé 

SR et al., 2013). In this meta-analysis time from symptom onset to alteplase was not 

associated with ICH risk, consistent with other studies (Emberson et al., 2014), 

(Whiteley WN et al., 2016). Microhemorrhages on pretreatment magnetic resonance 

imaging have also been associated with a higher risk of ICH after alteplase, although 

the absolute increase in risk is modest (Charidimou A et al., 2015). The comprehensive 

nature of many ICH risk factors means that they are often highly interrelated, which 

complicates the estimation of the independent additive risk of each factor, particularly 

in small studies with insufficient power to perform comprehensive multivariable 

analyses. Atrial fibrillation, warfarin use (independent of prothrombin time), age and 

clinical stroke severity have all been associated with increased risk of ICH, but each 

is usually correlated with the other variables (Kimura et al., 2005). Moreover, the 

increase in absolute risk of ICH conferred by each of these factors also widely differs, 

which is an essential consideration in evaluating their clinical significance (Yaghi et 

al., 2017). Thrombolytic therapy induced hemorrhage can be the result of breakdown 

of the blood-brain barrier and reperfusion of damaged cerebral tissue (Chen et al., 

2023).  

Symptoms and Clinical Presentation: 

        The four most frequent symptoms of the disease are decreased consciousness 

level (47.5%), headache (38.1%), coma (9%), and seizure (5.4%). The initial diagnosis 

of patients with reduced level of consciousness was lobar (54%) and putamen 

hemorrhage (30.4%) in most cases (Bahrami et al., 2022). Symptom severity may 

increase during the initial 24–72 h after onset, requiring immediate emergency 

department evaluation (Lee et al.,2018). There is regional variation in the clinical 
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features, but signs of increased intracranial pressure are commonly detected, resulting 

from the mass effect of the hematoma (Carhuapoma et al., 2009). 

Diagnostic Techniques: 

        Intracerebral hemorrhage is often diagnosed via imaging modalities such as brain 

computed tomography (CT), magnetic resonance imaging (MRI), as well as blood 

tests, coagulation profiles, and angiography (CT, MRI, or selective). These techniques 

can elucidate the etiology and evaluate the risk of rebleeding (Anusha Bai et al., 2023). 

Traditional diagnostic methods are time-consuming and require high level of expertise 

and training, but deep learning techniques such as convolutional neural networks, 

transfer learning and others can analyze such datasets for efficient and effective 

diagnosis (Kulesh et al., 2020). In the treatment of intracerebral hemorrhage, 

minimally invasive surgery, including procedures such as MISTIE and 

neuroendoscopic surgery, is preferred. With early treatment and advanced devices like 

Apollo and Artemis™ that improve hematoma evacuation, the outcomes may be 

potentially improved. Emerging minimally invasive devices. (A) NICO BrainPath 

system and myriad handpiece (NICO Corp, Indianapolis, IN, USA). (B) The Apollo 

system. The Wand and aspiration–irrigation system (Penumbra Inc. Alameda, CA, 

USA). (C) Artemis Neuro Evacuation Device and Pump MAXTM aspiration system 

(Penumbra, Alameda, CA, USA) (Kobata et al., 2021). Endoscopic surgery 

Neuroendoscopic surgery allows for direct visualization of the area of ICH and 

removal via a less invasive approach than traditional craniotomy. Unlike the 

stereotactic procedure, it is also possible to achieve hemostasis at the bleeding point. 

ICES (Intraoperative Stereotactic Computed Tomography-Guided Endoscopic 

Surgery), a multicenter RCT, revealed substantial safety and efficacy (Vespa P et al., 

2016). Stem cells can reproduce unlimited and can be matured into specialized 

function cells. Based on their differentiation capacity, they are classified into 

totipotent, pluripotent, and multipotent stem cells (Gage et al., 2000), (Jaenisch R et 

al., 2008). However, with the mobilization of regenerative medicine, more and more 

researchers have paid attention to stem cell and exosome therapy, which as a new 

method for the treatment of intracerebral hemorrhage, because of their potential 

intrinsic neuroprotection and neurores-toration. The regenerative, differentiation or 

secretory effects of stem cells can participate in the treatment of intracerebral 

hemorrhage directly or indirectly according to many animal studies (Zhou et al., 2022).  
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CHAPTER IV 

Deep learning 

 

         This chapter explores deep learning principles, focusing on convolutional neural 

networks (CNNs) and their architectures, including LeNet, AlexNet, and ResNet. Key 

components, applications in image processing. 

Deep learning  

         A subset of machine learning and consists of neural networks with multiple 

levels of abstraction to learn representations of data, particularly images. Deep 

Convolutional Neural Networks (DCNN): Used for image classification, image 

enhancement, and denoising) Automatically learn hierarchies of patterns from large 

datasets. CNNs are a cornerstone of using the principles behind deep learning to solve 

high-performance problems such as image processing, contributing to advances in 

fields such as medical imaging, autonomous driving, and game development. (Hsieh 

et al., 2024). Deep learning enables these computational models consisting of multiple 

processing layers to learn representations of data with many levels of abstraction. 

These approaches have dramatically improved in state-of-the-art performance in, 

among other things, speech recognition, visual object recognition, object detection, 

and a wide range of other fields such as drug discovery and genomics. Deep learning 

discovers complex structure in massive data sets, by applying the backpropagation 

algorithm to indicate how the machine should adjust its inner parameters, which are 

used to calculate the representation in each layer from the representation in the prior 

layer. Deep convolutional nets have delivered breakthroughs for processing images, 

video, speech, and audio while recurrent nets have revealed the power of deep 

learning for sequential data such as text and speech. (LeCun et al., 2015). Since the 

emergence of deep learning (DL), researchers have developed various convolutional 

neural network-based models that classify and analyze medical images including 

cancer, tuberculosis, and diagnostic radiological images. A Convolutional Neural 

Network (or CNN) is a kind of ANN that utilizes a multi-layer perceptron, where every neuron 

from one layer has links to all the neurons in the subsequent layer. CNN. They are networks, 

which apply the series of mathematical operations “Convolution. A number of neural 

network architectures being developed. 
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 The regression, classification and denoising of images has been better in certain 

architectures than others. To train NNs, a backpropagation algorithm adjusts the 

weight contained in the NNs structure according to the data pattern while optimizing 

the error between predicted output and actual output (Simonyan et al., 2014), (He et 

al., 2016). That being said, convolutional neural networks are very similar to the 

traditional neural network, which can be considered as a neuron mapping which 

produces a graph that is acyclic. the sole distinction between this and a neural network 

is characterized by a neuron in a buried layer being linked only to a subset of the 

neurons in the preceding layer. This limited connectivity gives a potential good signal 

for the implicit learning of features. It is able to extract features on various levels due 

to the deep structure of the network. The filters learnt in the first layer may be 

interpreted as boundaries or masses of colors, the secondary layer can learn simple 

forms, the filtration of the consequent layers can learn parts of objects and finally, the 

last layers can recognize the whole objects (Aloysius et al. 2017). 

 

Key Components of Deep Learning Architectures:  

A. Convolutional Layer 

Convolutional layer serves as the fundamental component of a ConvNet, where the 

majority of computations occur. This is a compilation of feature maps including 

neurons. The layer parameters are a number of trainable filters or kernels. These filters 

are convolved with the feature maps, generating a unique 2-dimensional activation 

map, grouping that only imagining the groups together along the depth dimension 

produces the output volume. 1D CNN On each feature map, neurons that lies at the 

same position in the kernel share the weight (parameter sharing) thereby decreasing 

the complexity of network by keeping number of parameters low (G.E. Hinton et al., 

2012). The hyperparameter that regulates the degree of sparse connection within 

neurons in the two layers is referred to as the receptive field. The hyperparameters that 

dictate the dimensions of the output volume include depth (the number of filters in a 

layer), stride (the movement of the filter), and no padding (to manage the spatial 

dimensions of the output). Backpropagation used to train ConvNets The forward pass 

is convolution operation and the reverse pass is likewise a convolution but the filters 

are spatially flipped. Figure 2. illustrates core easier exercise of convent.. 
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Fig. 2. A schematic structure for an elementary convolutional neural network (CNN) 

(Phung et al., 2018). 

B. Pooling Layer 

The Basic ConvNet architecture alternate with pooling layer and the pooling layer 

serve to reduce the spatial dimension of the activation maps (without losing 

information) as well as the number of parameters present in the net and thus decrease 

the computational complexity. This helps in controlling the overfitting issue. Max, 

average, stochastic pooling (M. D. Zeiler et al., 2013), spectral pooling (O. Rippel et 

al., 2015), spatial pyramid pooling (Nguyen A et al., 2015) and multiscale orderless 

pooling (Gong, Y et al., 2014) are some of the popular pooling functions. Figure 3. 

demonstrates the operation of max pooling (Minfei et al., 2022). Lastly, the work of 

(Alexey Dosovitskiy et al., 2015), inquiries about the necessity of a lot of ConvNet 

components and Demonstrated that max pooling layers may be substituted with 

convolutional layers featuring a stride of two. This is just meant for the basic networks 

that have demonstrated superior performance. a large amount of the evaluated complex 

architectures. 
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 Fig. 3. Max and average pooling layer (Minfei et al., 2022).   

C. Fully Connected Layer 

In a conventional Neural Network, each neuron in this layer is entirely linked to every 

neuron in the preceding layer. This is the locus of high-level thinking. As the neurons 

are no longer organized spatially (1D), there is no way of telling if a convolutional 

layer is applied after the fully connected layer. As for example, "Network in Network" 

(NIN) developed by Zeiler et al. (2014) can replace the fully connected layer with the 

global average pooling Figure 4. 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

 

Fig.4. Fully connected layer (Rguibi et al., 2022). 
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D. Loss Layer 

It is used for calculating loss or error (which is an penalty for the difference between 

expected output and actual output) in the loss layer, which is the last fully connected 

layer. SoftMax loss is used to predict a single class from K number of mutually 

exclusive classes. This is the most widely used loss function. In effect, it is 

multinomial logistic regression. It uses those predictions and makes them normal and 

feeds into a non-negative value function to produce a class probability distribution. It 

is a margin based classifier, Support Vector Machine is trained using Hinge loss. 

Using Euclidean loss allows for regression to real-valued labels (Aloysius et al., 

2017). 

Common CNN Archıtectures: 

A. LeNet 

LeCun et al. created one of the first Convolutional Neural Networks. In 1990 (LeCun. 

et al., 1990) and improved it later in 1998 (Y. LeCun et al., 1998). In this work 

Handwritten Digit Recognition task was solved using ConvNets. It is used for 

reading zip codes, digits, etc. At that time, there were not many high computing 

machines available, thus suspending the used of CNN. 

B. AlexNet 

It is the first work in Convolutional Networks with a significant impact and was widely 

used in the Computer Vision domain The Convolutional Network that was the first 

research done and was widely used in the Computer Vision domain was proposed in 

(Alex Krizhevsky et al., 2012) by Alex Krizhevsky, Ilya Sutskever, and Geoffrey 

Hinton. AlexNet, on the other hand, stacked all the convolutional layers on top of each 

other instead of interleaving convolutional and pooling layers like in LeNet. This 

network is also larger and more complex than LeNet. AlexNet won the ILSVRC-2012 

competitions achieving the lowest top-1 and top-5 error rates on test data. 

C. GoogleNet 

Szegedy et al. reported that this ConvNet architecture was the winning architecture in 

the ILSVRC 2014 competition. (2014) from Google. They also recently introduced 

new Inception (v1) architecture allows for much better usage of the processing power 



24 
 

in the various regions of the network. One realization of Inception module is 

GoogleNet with 22 layers and lower number of parameters than AlexNet 

Improvements to Inception-v1 eventually culminated in the introduction of Inception-

v2 by (Ioffe et al., 2015), when it used more handwritten notes (among other things). 

We refer to this architecture as Inception-v3 (C. Szegedy et al., 2016) and introduced 

further refinements to it. 

D. VGGNet 

Karen Simonyan and Andrew Zisserman conducted an experiment that very carefully 

analyze the depth effect of a ConvNet with all other parameters held constant. It seems 

that this try has a huge number of parameters in the network however it was 

sagaciously overseen by applying very small 3X3 convolution filters on all layers. 

This work culminated in a new, more accurate ConvNet architecture, VGGNet. It had 

achieved second-place (Aloysius et al., 2017) in the ImageNet Large Scale Visual 

Recognition Challenge ILSVRC 2014. 

E. Inception V4 

Szegedy et al. later outlined a model that came out on top of GoogLeNet in 2017. This 

archicture utilizing Inception modules (Szegedy et al. 2014) with residual 

connections (G.E. Hinton et al. 2012). In 2015, it passed the ILSVRC (IMAGENET) 

Challenge with flying colors and won the competition as well. 

F. EfficientNet 

EfficientNet includes models ranging from B0 to B7, which can be used in image 

classification, object detection, segmentation, etc. Hence, EfficientNet is an important 

resource for deep learning practitioners (Tan et al., 2019). These components were all 

encapsulated in a baseline network depicted in Figure 5., specified as EfficientNet-B0, 

and a collection of scaled variants, Appendix F hereafter to use EfficientNet-B1, B2, 

B3, etc. in increments of φ with increasing can set depth, width, and resolution as a 

single coefficient. In general, this is achieved through adding layers, channels and 

more resolution to the input data (Tan et al., 2007). 
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 Fig.5. EfficientNet base architecture (Singh et al., 2024) 

G. DenseNet 

A suggested CNN design exhibits a notable connectivity pattern: Each layer is entirely 

interconnected with all other layers inside a thick block, as seen in Figure 6. In this 

scenario, every layer has access to the feature maps of all preceding levels, facilitating 

extensive feature reutilization. This enables the model to be more compact and exhibit 

reduced overfitting. Furthermore, the bypass connections may be seen as offering the 

individual layers direct oversight from the loss function, so facilitating implicit deep 

supervision. The advantageous characteristics of DenseNet render it a suitable choice 

for per-pixel prediction tasks. A simultaneous study achieved state-of-the-art 

performance in semantic segmentation utilizing DenseNet, without pretraining or 

supplementary post-processing (Gao Huang et al., 2016) (Jégou, S. et al., 2015). 

Traditional CNNs, like FlowNetS, compute the output of the 𝑙th  layer by passing a 

nonlinear transformation H over the output of the previous layer 𝑥𝑙−1, 

𝑥𝑙 = 𝐻𝑙(𝑥𝑙−1) 
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The spatial invariance of the network result is realized through cascading convolution 

and pooling, while the top layers obtain coarse semantic features. But with the very 

top of the network, detailed image information tends to get disappear. 

To facilitate information flow between layers, DenseNet (Gao Huang et al., 2016) 

offers a simple connectivity pattern: the 𝑙th  layer receives the feature maps of all 

preceding layers as inputs: 

𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, … , 𝑥𝑙−1]) 

where [𝑥0, 𝑥1, … , 𝑥𝑙−1] is a single tensor formed by concatenation of output feature 

maps from preceding layers. This way, even the last layer can have access to the first 

layer input information. And every layer is directly supervised by the loss function 

through the shortcut connections. The 𝐻𝑙(⋅) is a composite function of four operations 

in consecutive order, batch normalization (BN), leaky rectified linear units (LReLU), 

a 3×3 convolution, and dropout. We call this composite function a layer.  

 

Fig.6. block used in the DenseNet architecture (Alshazly et al., 2021). 

 

H. ResNet 

ResNet is a common convolutional neural network that researchers have used in 

recent years to address computer vision tasks. This module prevents gradient 

vanishing caused by increasing the depth of the networks through the introduction of 

incomplete modules, and it avoids redundancy in data while providing high accuracy. 

It is simple and practical. Block ResNet operation is illustrated in Figure 7.(Alzubaidi 

et al., 2021). (K. He et al., 2015) introduced a residual learning framework. (2015), 

in which the layers learn residual functions concerning the input of the layers rather 
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than unreferenced functions. They showed that their work specifically is important to 

train deeper networks because residual networks are easier to optimize and achieve 

much higher accuracy. The only drawback of this network is that it is quite costly to 

evaluate because of the high number of parameters. However, we could have limited 

the number of parameters to some degree without affecting the performance 

significantly, by eliminating the first Fully-Connected layer (most of the params are 

due to this layer). 

 

Fig.7. The block diagram for ResNet (Alzubaidi et al., 2021) 

 

 

 

 

 

 

 



28 
 

CHAPTER V 

Methodology 

 

             Chapter outlines the methodology of the thesis. Methodology is divided into 

two sections. In the first part, we describe our proposed system in detail. In section 

two, are illustrated the performance measures used to evaluate the performance of the 

proposed system. 

Materials and Methods 

Dataset 

        In this thesis, we considered the Computed Tomography Images for Intracranial 

Hemorrhage Detection dataset (Hssayeni, M. et al., 2019). The dataset consists of 2500 

brain and bone window head CT images for 82 patients. The brain images are used to 

detect the ICH using pretrained models. The total number of images for positive cases 

is 318, while the number of negative images is 2,183. Figure 8 presents the sample 

images for positive and negative cases. 

 

 

Fig. 8. Example images of the dataset (a) Normal and (b) ICH image. 
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Pretrained Models 

This section presents brief information about the considered pretrained models. 

EfficientNetB0 

         The baseline model provided in the EfficientNet (Tan et al., 2019) series, 

EfficientnetB0, features a core structure of MBConv blocks with integrated SE 

(Squeeze-and-Excitation) modules for improved accuracy. Figur 9 presents 

thearchitecture of EfficientNetB0 (Barman et al., 2024(. The effectiveness of SE-based 

models was demonstrated in different types and combinations (based on re-positioning 

or not) of SE modules that were adjusted concerning a base architecture configuration, 

training them onto the ImageNet dataset. The EfficientNetB0 model is well-known for 

its robust and effective design, which has achieved state-of-the-art accuracy on the 

ImageNet dataset with 66 million parameters at only nearly 37 billion FLOPS. It is up 

to 8.4× more compact and 6.1x faster in making predictions than leading CNNs.  

 

 Fig. 9. EfficientNetB0 model architecture (Barman et al., 2024(. 

ResNet101 

         The models on top of CNNs, such as ResNet101 (He et al., 2016), consist of 101 

convolutional layers and utilize residual connections within the design to make it 

effortless for information to get transmitted or passed from one layer to another 

without getting attenuated/vanishing during training. With the help of this depth and 

residual connections, the ResNet101 achieved 77.37% accuracy on the ImageNet 

dataset, making it an effective model for image classification tasks. Besides, its 
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parameterization process is efficient, which makes it beneficial in different use cases . 

The typical architecture ofthe ResNet101 is summarised in Figure 10. (Kalshetty et al., 

2023). 

 

Fig. 10. Resnet101 model architecture (Kalshetty et al., 2023). 

DenseNet201 

         The DenseNet201 (Huang et al., 2017) model has dense connections between 

layers for efficient information flow, and the high parameter usage helps to avoid 

gradient vanishing. It addresses the vanishing gradient problem by adding 

convolutional layers, pooling, batch normalization, ReLU, transition layers, and a 

classification layer as showen in figuer 11. (Kumar et al., 2021). This is a part of the 

DenseNet201, which provides flexibility and scalability to learn complex patterns in 

image classification tasks, with fewer computational resources reaching high 

performance without overfitting the ImageNet dataset. 

 

Fig. 11. DenseNet201 model architecture (Kumar et al., 2021) 
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Experimental Design 

        The experiments are performed using 5-fold cross-validation, and each model is 

trained for 100 epochs using the ImageNet weights to provide transfer learning. The 

batch size is set to 32, and the Adam Optimized is used with a fixed learning rate 1 × 

10−4. Even though the dataset is imbalanced and the number of positive cases is low, 

an augmentation is not applied to analyze the actual performances of the models. The 

mean of the fold results are calculated to assess the model performances. Figure 12. 

shows the block diagram of the experiments performed in this thesis. 

 

Fig. 12. Block diagram of the experiments. 

         Since the dataset is strongly imbalanced, we considered seven evaluation metrics 

to analyze the results. We used the accuracy metric to analyze the general detection 

ability of the models; however, due to the limitations of the accuracy metric in 

assessing the imbalanced data, we also considered the F1 score and Receiver Operating 

Characteristics (ROC) Area Under the Curve (AUC) for consistent analysis. Equations 

1 and 2 show the formulae for the accuracy and F1 score. 

    Accuracy 

          It is an important metric to evaluate classification model performance. This 

equation shows that true positives (TP) and true negatives (TN) are significant in 

identifying the overall effectiveness of a model, false positives (FP), and false 

negatives (FN) also play a role. It is mathematically defined  in Equation (1). 
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Where, 

True Positives (TP): Instances correctly identified as positive. 

True Negatives (TN): Instances correctly identified as negative. 

False Positives (FP): Instances incorrectly identified as positive. 

False Negatives (FN): Instances incorrectly identified as negative. 

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                 (1) 

     

    F1-Score 

          It is the harmonic mean or the weighted average of precision and recall. It is, by 

definition, a measure of a test’s accuracy, and you can calculate it from a test’s 

precision and recall. Recall, as explained earlier, is true positive divided by the sum of 

true positive and false negative and precision, as we have seen, is true positive divided 

by sum of true positive and false positive (Obi et al.,  2023) It is for this reason that 

the F1-score considers false positive and false negative. F1-score is preferred over 

accuracy especially where there is cost or uneven classes are present. Accuracy is 

preferred when the false positive and false negative are equally costly. Symbolically 

in Equation (2), 

 F1 Score =
2× Precision × Recall 

 Precision + Recall 
                                                             (2) 

    In addition to the general assessment of the models, we used recall, specificity, 

precision, and negative predictive value (NPV) to analyze the ability of the models to 

detect particular classes. Equations 3-6 present the sensitivity, specificity, precision, 

and NPV formulae. 

    Recall 

         Known as sensitivity or true positive rate, is the ability of a model to find all 

relevant cases (find true positive) (Obi et al.,  2023). It is a mathematically defined in 

Equation (3), 

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                   (3) 
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Specificity 

         A rate that tells us how many true negatives were correctly identified as negatives 

by a particular classifier. For example, suppose we have a model for classifying 

headache (positives) vs no-headache (negatives). In general, if the specificity is high, 

there is a good model, since it separates people without disease from those with the 

disease (Obi et al.,  2023). Symbolically defined in Equation (4), 

  Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                            (4) 

 

   Precision 

         Known as Positive Predictive Value is a ratio of true positive divided by all the 

positives that were observed. We have true positives found (TP) and true negatives 

incorrectly classified as positives (FP); all of the positives here (Obi et al., 2023). 

Symbolically defined in Equation (5), 

Precision (𝑃𝑃𝑉) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                     (5) 

 

   Negative Predictive Value (NPV)  

      Is the proportion of cases predicted by a model to be negative that are indeed 

negative. It assesses how trustworthy the model’s negative predictions are. The NPV 

is calculated by the following formula in Equation (6), 

True Negatives (TN): Cases that were accurately predicted as negative. 

False Negatives (FN): Predicted Negative but are actually Positive. 

 

 𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                                                                                       (6) 

 



34 
 

CHAPTER VI 

Results and Discussion 

             This chapter presents the experiments and their results carried out for the 

evaluation of the system, comparison analysis and the discussion about advantages and 

limitations of the thesis is explained in this chapter. 

Results  

            The results for each fold of the models are presented in Tables 1-3. However, 

the mean scores are considered for the final evaluation of the models. 

            In the first experiment, demonstrates strong and consistent performance for 

most metrics, as shown in Table 1. The average accuracy and specificity of the model 

is 96.36% and 98.59%, respectively, which are both proficient in correctly classifying 

positive and negative cases. As the average AUC is 98.15%, demonstrating very good 

discriminatory power. Although, we notice a certain variability in recall (sensitivity) 

which, after three folds, has a lowest value of 71.64% in Fold 2 and a highest value of 

91.67% in Fold 4, giving us a mean of 80.76%. Positive Predictive Value (PPV) is 

relatively stable, with an average of 89.10% and the highest value found in Fold 2 

(96.00%). Negative predictive value (NPV) consistently strong and its average across 

folds is 97.30%. The F1-score balances precision and recall at 84.51% which is a good 

value for overall performance. 

Table 1. Fold results for DenseNet201. 

Fold Accuracy Recall Specificity PPV NPV F1-Score AUC 

1 0.9720 0.8421 0.9887 0.9057 0.9799 0.8727 0.9896 

2 0.9581 0.7164 0.9954 0.9600 0.9579 0.8205 0.9718 

3 0.9600 0.8485 0.9770 0.8485 0.9770 0.8485 0.9754 

4 0.9820 0.9167 0.9930 0.9565 0.9861 0.9362 0.9941 

5 0.9460 0.7143 0.9752 0.7843 0.9644 0.7477 0.9764 

Average 0.9636 0.8076 0.9859 0.8910 0.9730 0.8451 0.9815 
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         The EfficientNetB0 performs relatively stable in almost all metrics as presented 

in Table 2, as part of this experiment. The model achieves an average accuracy 95.84% 

of positive cases with a specificity of 97.99%, signifying reliable negative case 

classification. The AUC is particularly high, with an average AUC of 98.01%, 

indicating strong overall discriminatory ability. Variability is observed in recall, with 

the lowest value recorded in Fold 5 (71.43%) to the highest in Fold 3 (89.39%) with a 

combined average of 80.73%. Similarly, Precision (PPV) varies from Fold 4, with the 

highest value of 92.65%, to Fold 5 with the value of 75.47%, leading to a mean of 

85.09%. The F1-score balances these metrics to 82.71%, and the highest value in Fold 

4 is noted (90.00%). The negative predictive value (NPV) across all folds is also 

strong, with an average of 97.28%. 

Table2. Fold results for EfficientNetB0. 

Fold Accuracy Recall Specificity PPV NPV F1-Score AUC 

1 0.9580 0.8070 0.9774 0.8214 0.9752 0.8142 0.9894 

2 0.9561 0.7463 0.9885 0.9091 0.9619 0.8197 0.9762 

3 0.9640 0.8939 0.9747 0.8429 0.9837 0.8676 0.9757 

4 0.9720 0.8750 0.9883 0.9265 0.9792 0.9000 0.9940 

5 0.9420 0.7143 0.9707 0.7547 0.9642 0.7339 0.9655 

Average 0.9584 0.8073 0.9799 0.8509 0.9728 0.8271 0.9801 

 

         In this experiment, presents stable performance across most metrics as shown in 

Table 3. The model has achieved average accuracy of 95.68% and 98.31% of 

specificity indicating good classification ability in both positive and negative cases. 

The AUC was also quite impressive, in fact the average AUC was 97.20%, showing 

excellent model discriminatory power. A slight variation can be observed in recall 

(sensitivity)amongst folds with 70.15% being resulted in Fold 2 and 82.14% in Fold 

5, thus totaling an average result of 77.94%. Precision (PPV) depends too, with a 

maximum value of 98.21% in Fold 4 and a minimum of 77.05% in Fold 2 (mean 

87.19%). The F1-score is 82.17% which balances all these variations with the best 

score obtained in Fold 4 (85.94%). 
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Table3.Fold results for ResNet101. 

Fold Accuracy Recall Specificity PPV NPV F1-Score AUC 

1 0.9680 0.8070 0.9887 0.9020 0.9755 0.8519 0.9917 

2 0.9321 0.7015 0.9677 0.7705 0.9545 0.7344 0.9187 

3 0.9600 0.8030 0.9839 0.8833 0.9705 0.8413 0.9799 

4 0.9640 0.7639 0.9977 0.9821 0.9617 0.8594 0.9921 

5 0.9600 0.8214 0.9775 0.8214 0.9775 0.8214 0.9779 

Average 0.9568 0.7794 0.9831 0.8719 0.9679 0.8217 0.9720 

 

The EfficientNetB0 obtained similar results with ResNet101; however, these models’ 

ability to detect positive and negative cases was different. The EfficientNetB0 model 

obtained a higher recall (sensitivity) result (0.8073) than the ResNet101 model 

(0.7794) by detecting a higher number of positive cases; however, the ResNet101 

model was more capable of correctly classifying the negative cases with a 0.9831 

specificity. Even though the sensitivity results of all models were low, the DenseNet 

model achieved the highest sensitivity (0.8076) and specificity (0.9859). Similarly, the 

DenseNet201 model achieved the highest PPV and NPV results, which provided more 

consistent predictions for the dataset. 

When the models are compared for the general detection ability for the ICH, the 

DenseNet201 achieved the highest F1 and AUC scores (0.8451 and 0.9815) and 

outperformed other models. Table 4 presents the obtained results of this thesis in detail. 

Figure 4 presents the ROC curves of all models and folds. 

           In this thesis,  DenseNet201, EfficientNetB0, and ResNet101 showed the most 

alike and sustained performances concerning different metrics. DenseNet201 showed 

a high average accuracy of 96.36%, a mean specificity of 98.59% and a high AUC of 

98.15%. For recall, we noticed some variance from fold to fold with a low of 71.64% 

in Fold 2 to a high of 91.67% in Fold 4 yielding a mean of 80.76%. This average F1-

score of 84.51% is indicant of balanced performance. An average of 95.84% overall 

accuracy, 97.99% specificity, and 98.01% AUC were reached with EfficientNetB0 as 
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well. Mean recall  was 80.73%, ranging from 71.43% (Fold 5) to 89.39 (Fold 3). The 

F1-score average was 82.71%, with a maximum value of 90.00% in Fold 4. 

ResNet101 yielded good result with 95.68% average accuracy, 98.31% specificity and 

an AUC of 97.20% The recall ranged from 70.15% (Fold 2) to 82.14% (Fold 5), with 

a mean of 77.94%. F1-score averaged 82.17% with the highest found in Fold 4 

(85.94%). 

Table 4. Mean results obtained for each model. 

Model Accuracy Recall Specificity PPV NPV F1-Score AUC 

DenseNet201 0.9636 0.8076 0.9859 0.8910 0.9730 0.8451 0.9815 

EfficientNet B0 0.9584 0.8073 0.9799 0.8509 0.9728 0.8271 0.9801 

ResNet 101 0.9568 0.7794 0.9831 0.8719 0.9679 0.8217 0.9720 
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The ROC curve (Receiver operating characteristic) 

        Is a statistical tool used to evaluate the performance of binary classifiers by plotting true 

positive rates against false positive rates as showen in figuer 13. It helps gauge the ability of a 

classifier while considering confounding variables for better calibration (Machado e Costa et 

al., 2021). And that can be simply defined as a plot of (F P F), (1- specificity) and (T P F) 

(Sensitivity) pairs obtained by calculating for varying values of threshold c as (x,y) axis 

respectively.  

 

Fig. 13. ROC curves of models for each fold. 

 

Figure 14 shows the confusion matrices obtained from all folds for all models. 

The considered pretrained models achieved reasonable results in terms of general 

detection ability, which provide effective distinguishment of the negative and positive 

cases. However, it was observed that the models require improvements in detecting 

positive cases due to the lower number of training images for ICH-positive cases. This 
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could be overcome by applying data augmentation to the positive class in order to 

increase the training samples; however, scientists have different opinions about the 

positive effect of data augmentation in the generalization. 

Even though the DenseNet201 obtained superior results, it is clear that the clinical use 

of deep learning systems requires more investigation using different datasets with 

external validation sets. 

The abovementioned problems and challenges are the primary limitations of this 

thesis. 

 

Fig. 14. Confusion matrices obtained in this thesis. 
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Grad-CAMs 

      Are class activation maps generated using gradients to highlight important features 

in neural network predictions (Buono et al., 2024). As showen in figuer 15. CAM(s) 

are computed by looking at the feature maps and yields per-instance, class-specific 

attention maps, that highlight important regions of the original input that influenced 

the classifier (Selvaraju et al., 2020). Following this idea, Grad-CAM and its variants 

recover from the raw formula by calculating the linear weights as the average of 

backpropagated gradients of target class for each feature map. With this generalization, 

one can use the method and apply it to the model without any changes or retraining 

(Simonyan et al., 2013). 

 

Fig. 15. Grad-CAMs obtained from the superior model. 

Discussions 

        The challenge to accurately differentiate the hemorrhages in the CT images arises 

when the hemorrhages are subtle, and are using low contrast or features that are 

difficult to identify. Such challenges emphasize the need of using advanced deep 

learning architectures for accurate classification and diagnosis.  

        The use of pretrained models (DenseNet201, EfficientNetB0, and ResNet101) in 

this study allowed robust feature extraction from CT images. All models had their 

distinguishing qualities with DenseNet201’s improvement of information flow and 

feature reuse through dense connectivity, EfficientNetB0’s effective architecture 

balancing between accuracy and other resources, and ResNet101’s residual 
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connections addressing the vanishing gradient problem. This performance is in fact 

enabled by its superior ability to classify ICH cases accurately, with DenseNet201 

reflected the best results (accuracy of 96.36%, with sensitivity of 80.76% and AUC 

of 98.15%). 

        In this thesis, no data augmentation was performed, which preserved the integrity 

of the initial dataset, however, this might have affected the ability of the models to 

generalize to unseen data. Nonetheless, with transfer learning, the models were able to 

learn from images from the ImageNet dataset, further increasing their performance, 

dataset of 2,500 CT images. Additionally, the 5-fold cross-validation method applied 

provided strong validation and prevented the model from overfitting. 

        Highlights One of the key findings is models, especially DenseNet201, can 

balance sensitivity and specificity. Although sensitivity was comparatively lower, all 

models achieved high specificity (~99%), indicating that there is still room for 

improvement in the detection of positive cases. This is fundamentally due to the class 

imbalance in the dataset where only 318 positive classes are present in the 2500 

images. Complimentary techniques such as data augmentation or oversampling for 

this imbalance could have further increased the models’ sensitivity. 

        A further important observation is the efficiency of the models. EfficientNetB0 

is computationally efficient, therefore, can facilitate real-time application of clinical  

where speed and low resource consumption is needed. Its relatively inferior 

performance metrics when compared to DenseNet201 would make it a stronger 

complimentary tool as opposed to a standalone solution for ICH detection. 

        The research also noted restrictions within the dataset and model structure. 

Finally, as the publicly available dataset includes only single-modality CT images, 

models trained on it cannot generalize to other imaging modalities or to multi-class 

classification problems. Also, the lack of clinical and demographic data limits the 

diagnostic capacity of the models. Future work should investigate combining multi-

modal imaging data and clinical data to further enhance diagnostic performance. 

        Additionally, the nominated system does not facilitate mini case, such as, with 

more than one visible hemorrhagic area, or multiple hemorrhagic regions appearing in 

only a few pixels. This limitation can be addressed by developing sophisticated 
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localization methods to recognize multiple areas of a single image. Thus, the outcome 

of this study indicates that pretrained deep learning models can really help to improve 

the performance of ICH detection in CT images. Specifically, DenseNet201 

demonstrated the best ability for accurate and robust classification. The result reveals 

the need for such experiments rigorously considering data flaws and with regards to 

decision support in a multi-modal clinical setting. 
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CHAPTER VII 

Conclusion 

 

              Intracranial hemorrhage is life-threatening and vital if it cannot be detected 

early. The diagnosis and detection of ICH rely on CT scans; however, indistinct 

patterns in the images might prevent accurate diagnosis, particularly in regions lacking 

expert personnel. Therefore, the use of an AI-based system could help with the rapid 

and accurate detection of ICH. 

In this thesis, three pretrained deep learning models, EfficientNetB0, DenseNet201, 

and ResNet101, were implemented and trained using a transfer learning approach to 

detect ICH. The results were analyzed using several evaluation metrics. 

The DenseNet201 showed superior performance than other models and outperformed 

other models. The results showed that deep learning models can accurately determine 

negative cases. However, further improvements are required to increase the recall, 

which is crucial in preventing mortality. The release of more comprehensive and 

balanced datasets might provide more comprehensive detection and analysis of the 

ICH. 

Our future work will include combining different datasets to overcome challenges 

created by different data sources. Additionally, we aim to develop a multi-modal 

model to combine the demographic or histological information of the patients to 

improve the recall (sensitivity) of the models. 
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