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ABSTRACT 

 

The human retina plays a fundamental part in the vision process, it receives light using 

special retinal receptors and transforms it to electrical impulses that are sent to the brain 

which makes it a fundamental organ for detecting various ocular pathologies. Retinal imaging 

modalities, and notably colour fundus photography, are widely employed for the non-invasive 

screening of eye diseases that can be very burdensome in healthcare. Some of these eye 

conditions include diabetic retinopathy, cataract, and glaucoma. The integration of advanced 

computer-aided diagnosis frameworks that enables the usage of artificial intelligence-based 

technologies like convolutional neural networks had a great effect on impacting the analysis 

of medical scans considering that it provides an enhanced accuracy and efficiency in 

diagnosing retinal conditions. This study proposes an automated diagnostic tool combining 

artificial intelligence and internet of medical things innovations to classify retinal images into 

four categories of normal images, diabetic retinopathy images, cataracts images, and 

glaucoma images. Using transfer learning by implementing previously trained convolutional 

neural network architectures, such as ResNet-50, ResNet-101, VGG16, and DenseNet121 

transfer learning, this diagnosis tool aims to support ophthalmologists in clinical settings by 

enabling a fast, accurate, and scalable diagnosis modality to assist and support early detection 

of ocular diseases. The aim of this proposed work is to contribute to advancing ocular health 

globally by integrating these technologies into healthcare systems and using them with the 

aim for facilitating early diagnosis and therefore allowing for more effective treatment 

strategies. 

 

Key words: Artificial intelligence, colour fundus photography, ocular pathologies, diagnosis, 

internet of medical things. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

The human eye is an intricate organ, with the retina located at the back part of the eye 

which acts as a vital component for visual perception, it converts the incoming light into 

neural impulses and then transmits them to the brain’s visual cortex. This thin layer of tissue 

plays a crucial role for recognizing objects and scenes visually (Abràmoff et al., 2010). The 

deep understanding and analysis of the retinal tissue is fundamental for revealing important 

details and information related to the presence of various ocular pathologies and maintaining 

overall health (Gour & Khanna, 2021). In order to analyse retinal images, the processing of 

different imaging modalities is required; these include colour fundus photography, fundus 

fluorescein angiography (Burlina et al., 2017), and Optical Coherence Tomography (OCT) 

(Alsaih et al., 2017). Fundus imaging stands out among these modalities for its non-invasive 

nature as well as its cost-effectiveness, making it an extremely useful tool when it comes to 

the detection and screening of eye conditions. This imaging modality is heavily relied on by 

ophthalmologists when it comes to diagnosing a wide range of eye conditions such as diabetic 

retinopathy, cataract, hypertension, glaucoma, and other abnormalities (ODIR-2019 - Grand 

Challenge, 2020).  

In recent years, the area of retinal imaging has known significant advancements 

encouraging the development of Computer-aided Diagnosis (CAD) based tools specifically 

developed to detect various eye conditions. These tailored systems’ main goal is to assist 

medical professionals by facilitating the diagnosis process while enhancing its accuracy, 

thereby reducing time and effort. Fundus images are able to depict the 3-dimension retinal 

structure into a 2-dimension coloured Red, Green, and Blue (RGB) format, therefore 

providing essential visual indicators that are necessary to detect diseases (Yannuzzi et al., 

2004). In order to prevent vision loss and blindness, early detection of ocular disease is a 

fundamental concept. The progression of ocular pathologies is mainly tracked through 

abnormal changes occurring in anatomical structures within the retina where we can find the 

fovea, optic disc, the macula, and the retinal blood vessels. These abnormalities can appear in 

the three coloured channels of fundus images, holding invaluable diagnostic information 

(Gour & Khanna, 2021). Implementing deep learning-based algorithms has become 
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significantly common in the field of medical image diagnosis considering the resulting 

remarkable performance across multiple tasks such as features recognition, medical scans 

classification (J. He et al., 2021b), and disease detection (Alam & Khan, 2021). Deep learning 

has emerged in the past few years as a popular technology of computer vision in several fields 

including eye disease diagnosis, attracting considerable interest from scholars considering the 

promising outcomes in the evolution of advanced technologies for medical image processing 

and analysis (Z. Li et al., 2018; Ouda et al., 2022; Richards et al., 2019; Z. Wang et al., 2022).  

As opposed to machine learning techniques, the segmenting lesions and extracting 

features manually is not needed in deep learning, and this can prove to be inefficient when it 

comes to examining retinal fundus images (Ouda et al., 2022). But using deep learning also 

enables the creation of CAD algorithms in a highly efficient manner. Convolutional Neural 

Networks (CNNs) played a fundamental role in this shift considering how it enabled the 

extraction of disease characterizing features directly from image data (Sultan et al., 2020). 

These emerging networks are able master the identification of subtle patterns and image 

structures from basic edges to complex features indicating multiple ophthalmic pathologies 

(Diaz-Pinto et al., 2019; Simonyan & Zisserman, 2015).  

Internet of Medical Things (IoMT), which is known as the combination of Internet of 

Things (IoT) and healthcare (Maitra & Chatterjee, 2006), provides unprecedented 

opportunities to detect and classify diseases in multiple fields including ocular health. The 

seamless integration of IoT devices with cloud computing resources, IoMT gives access to 

remote patient monitoring and facilitates real-time collaboration between doctors and medical 

professionals (Sriram et al., 2015). The combination of IoMT with the cloud virtualizing 

capabilities can prove to be very useful in handling practical constraints such as storage, 

power, and the efficient processing of data, which eventually enhances the scalability and 

efficiency of diagnosing and detecting diseases. This combination opens new doors and 

opportunities for the creation and development of novel healthcare services and applications 

specifically designed for particular needs and medical purposes. The healthcare industry is 

currently witnessing transformative changes in medical imaging analysis that is being 

reinforced and facilitated by the IoMT advancements along with their cloud computing 

infrastructures which provide reliable big data analytics and Artificial Intelligence (AI) 

assistance (Rajasekaran &Indirani, 2021).   

The aim and objectives of this presented thesis is to propose an automated diagnostic 

modality with the aid of AI and IoT, that can classify retinal fundus images and identify some 
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of the most significant ocular diseases such as diabetic retinopathy, cataracts, and glaucoma 

that are burdensome and greatly affect global vision health. This proposed thesis study aims to 

develop a four-class ocular disease classification tool of: normal images, diabetic retinopathy, 

glaucoma, and cataracts.  The used data is retrieved from the Kaggle database, which provides 

a rich repository of labelled fundus images publicly available for research usage.  By using 

IoT and pretrained deep learning architectures such as ResNet-50 and ResNet-101, VGG-16 

and VGG-19, and DenseNet121, the ultimate goal of the work proposed in this thesis extends 

beyond research and development, aiming to implement the result of this work as a diagnostic 

modality in real-world medical settings to assist ophthalmologists in detecting and classifying 

ocular pathologies in a fast and more accurate and effective way. 

1.2 Overview of Ocular Diseases 

1.2.1 Fundus Anatomy 

The fundus is a fundamental area of the eye when it comes to understanding eye 

diseases like diabetic retinopathy, glaucoma, cataract, and others. It mainly consists of the 

retina, the macula, the optic disc, and retinal vascular structures. The retina is the 

photoreceptive component that is located at the posterior segment of the eye, using 

photoreceptor cells (called rods and cones), it detects the light and transforms it into electrical 

and neural signals initiating the process of vision. Its anatomy allows for the tracking of 

microcirculation is highly essential for vision. The retina contains several layers including a 

layer of photoreceptors which are responsible for detecting light and colour. The health of the 

retina is critical and any damage to it can cause serious vision complications and even vision 

loss (Shabbir et al., 2013). 

The optic disc is another component of the fundus and it’s the point where all the retinal 

veins and arteries originate from and where ganglion cell axons exit the eye. It has a circular 

or oval shape appearance in fundus images. Detecting the optic disc is vital when it comes to 

diagnosing ocular diseases; it serves as a reference point to locate other structures of the 

fundus. The anatomical relationship between the optic disc and the other fundus components 

is also significant for an accurate disease diagnosis (Shabbir et al., 2013).  

The macula is the small area on retina that mainly enables central vision and colour 

perception and is very crucial for tasks such as reading or features recognition which require 

detailed vision. Anatomical and structural changes in the macula can be a sign of multiple eye 
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diseases which further emphasises the importance of examining it for disease analysis. Eye 

blood vessels including arteries and veins act as a supply medium to provide the essential 

nutrients and oxygen to the retina and discard any waste products. Ensuring the health of 

retinal blood vessels is critical considering that any blockage or damage to them can lead to 

serious vision problems due to conditions such as retinal artery or vein occlusion. The 

analysis of blood vessels is a key component when it comes to diagnosing and investigating 

retinal diseases. Understanding fundus components including the retina, optic disc, macula, 

and blood vessels and their functions serves has a vital part in the early diagnosis of ocular 

disease including glaucoma, cataract, diabetic retinopathy, and other eye diseases which can 

be very burdensome for vision healthcare and can lead to severe impairment if not addressed 

properly (Shabbir et al., 2013). 

1.2.2 Diabetic Retinopathy 

Diabetic retinopathy can be identified as the most prevalent complication among 

patients suffering from diabetes as well as the primary microvascular threat to people 

diagnosed with diabetes (Madsen-Bouterse & Kowluru, 2008; W. Wang & Lo, 2018). If not 

diagnosed early and treated properly diabetic retinopathy can lead to various eye disorders 

including an impaired vision and partial blindness. Therefore, a good understanding of the 

mechanisms behind diabetic retinopathy is significantly important for an accurate diagnosis 

and assessment of the disease as well as its management (Porta & Bandello, 2002). 

 The progression of diabetic retinopathy starts with mild abnormalities which are 

usually characterized by leaking, advancing to moderate and then severe non-proliferate 

diabetic retinopathy that is marked by an increasing fluid leakage or loss/damage of retinal 

blood vessels, which eventually leads to parts of the retina not getting enough blood and 

therefore resulting in retinal ischemia. This progression may eventually lead to proliferate 

diabetic retinopathy which is a condition that is mainly distinguished by the emergence of 

new vascular structures on the retina. These newly emerged vessels usually trigger the 

formation of fibrous tissue leading to vitreous haemorrhage, which refers to the bleeding into 

the gel inside the eye, and the deviation of the retina from its normal position which is also 

called tractional retinal detachment. Regardless of whether proliferate diabetic retinopathy is 

treated or left untreated, it will eventually reach an inactive stage. The resulting level on 

clarity of vision, also referred to as visual acuity, is highly dependent on the degree of damage 

occurring at that particular region of the retina (Patz et al., 1978). 
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 Regarding symptoms, patients suffering from non-proliferate diabetic retinopathy are 

usually asymptomatic. The patient may experience a sudden loss of vision due to vitreous 

hemorrhage if the condition develops further. Patients may also notice a more prolonged loss 

of vision if there is fluid buildup in the retina (Fung et al., 2022). 

 Diabetic retinopathy is known to be primarily divided into non-proliferate diabetic 

retinopathy (NPDR) which involves changes occurring in the capillaries inside the retina, and 

proliferate diabetic retinopathy (PDR) that is primarily distinguished by the emergence of new 

retinal veins and arteries on different parts of the retina (Wilkinson et al., 2003). The swelling 

that occurs in the central area of the retina is called diabetic maculae edema (DME), and can 

occur in both NPDR and PDR (Amoaku et al., 2020). Classification of diabetic retinopathy 

can be listed as follows (Wilkinson et al., 2003). 

• No retinopathy: No abnormal indicators found on dilated ophthalmoscopy 

• Mild NPDR: The presence of only small abnormal bulges in blood vessels called 

microaneurysms. 

• Moderate DR: the presence of more abnormalities other than microaneurysms that are 

overall less severe than NPDR 

• Severe NPDR: no new blood vessel growth but shows one of the following: 

▪ Over 20 area of intraretinal hemorrhage in each of four sections. 

▪ Visible abnormalities in the retinal veins in two or more sections 

▪ Prominent abnormal blood vessels inside the retina in one or more quadrants. 

• PDR:  Shows new vascular growth (angiogenesis) outside the retina, including 

hemorrhage in the vitreous gel or in the front of the retina. 

• Mild DME: The retina thickens, or deposits are present out of the central part of the 

macula. 

• Moderate DME: The retina thickens or deposits near the macula centre are present. 

• Severe DME: Swelling or deposits reaching the macula’s central part. 

Diagnosis of Diabetic Retinopathy 

 

A thorough eye examination for a person with diabetic retinopathy usually involves 

testing vision by checking visual acuity, and intraocular pressure, evaluating the front part of 

the eye by performing slit-lamp biomicroscopy, as well as performing dilated funduscopic test 

to check the back of the eye after dilating the pupil. Using an ophthalmoscope, even non-

specialists can check and examine the fundus. Doctors are then able to diagnose and classify 
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diabetic retinopathy mostly by searching for specific abnormalities during the test (Fung et al., 

2022). For NPDR, indicating signs include microaneurysms, small bleeding spots, and 

residues referred to as exudates.  In some cases, cotton wool spots indicating patches of 

damaged nerve fibres, as well as swollen veins and an abnormal capillary growth can be 

present. Meanwhile in PDR, new blood vessels may grow on the optic nerve or elsewhere in 

the retina. Growth of fibrous tissue can occur in severe cases causing the retina to deviate 

from its normal position and thus distort vision (Fung et al., 2022). 

1.2.3 Glaucoma 

Glaucoma is a serious eye condition which can contribute to significant visual 

impairment and even vision loss if not diagnosed and managed early and properly. It is 

mainly characterised by progressive degeneration to the optic nerve which eventually also 

affects the transmission of visual information from the retina to the brain. This damage results 

most of the times from the increased eye pressure, also referred to as intraocular pressure 

(IOP), although other factors can also be responsible for the disease progression (H. S, 2017; 

Jayaram et al., 2023; Sahu, 2024). 

The symptoms of glaucoma can be quite subtle and often developing gradually as time 

progresses.   Many patients may not notice any vision changes until later stages of the disease. 

The most common symptoms of glaucoma include peripheral vision loss, which is considered 

as one of the first signs, where patients may notice that they’re losing their side vision 

gradually. Another symptom of glaucoma is blurred vision and halos around lights, where 

patients may experience blurriness in low light conditions and see halos especially at night. 

Patients with glaucoma can also experience eye pain or discomfort in the eye, particularly in 

acute forms of glaucoma. (Cohen & Pasquale, 2014; Supuran, 2019) Because of the insidious 

nature of the disease regular eye examinations are essential for early diagnosis and 

appropriate control of this condition. (Lee & Higginbotham, 2005) 

The underlying mechanisms behind glaucoma involve multiple cellular complex 

interactions withing the eye. The hypothesis that is generally accepted states that an elevated 

IOP exerts force and tension on the head of the optic nerve that leads eventually to the 

degeneration of the retinal ganglion cells through a process called apoptosis (Sahu, 2024). In 

addition to that, other factors contributing to this disease include: 

• Oxidative stress: refers to the damage to retinal cells caused by free radicals. 
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• Inflammation: chronic inflammation in the eye can also cause significant harm to the 

optic nerve. 

• Neurotrophic Factor Deficiency: has potential to hinder the survival of retinal ganglion 

cells due to a lack of essential growth factors. 

• Mitochondrial Dysfunction: impaired production of energy in retinal cells can lead to 

cell death and cause further glaucoma progression (Sahu, 2024). 

Diagnosis of Glaucoma 

 Diagnosing glaucoma requires a thorough eye examination process. Intraocular 

pressure measurement is a critical test considering that intraocular pressure can increase 

the likelihood of development of eye conditions like glaucoma. Visual field testing is 

another diagnosis approach used to assess peripheral vision and identify any loss that may 

be a sign of glaucoma (Lim, 2022). Optic nerve evaluation can also be conducted using 

imaging techniques such as ophthalmoscopy, also known as fundus photography, 

fluorescein angiography, or optical coherence tomography which allow for a detailed 

examination of the optic nerve and detect any structural changes or damage (Borrás, 

2012). 

1.2.4 Cataract 

Cataracts are a major cause of reversible blindness and visual impairment worldwide. 

These conditions are mainly characterized by blurring in the ocular lens, which causes a 

decreased transparency and clarity of vision. Cataract can be identified by an abnormality in 

the eye’s lens that is essentially marked by a reduced transparency and  increased cloudiness 

(Lam et al., 2015). This condition can manifest in different forms; mature cataracts can 

usually be classified into two classes: brunescent cataract and white cataract. This 

classification is mainly determined by whether it is the nucleus or the cortex of the lens that 

was affected and became opaque (Chakrabarti et al., 2000; Song et al., 2014; Vasavada et al., 

1998). 

The development of cataract involves complex mechanisms that cause structural 

changes in the crystal lens. Proteins inside of the lens tend to denature over time leading to the 

formation of opacities that prevent the light from reaching retina (Chakrabarti et al., 2000; 

Vasavada et al., 1998). If not treated properly cataract can worsen progressively and 

eventually compromise visual function leading to secondary diseases such as glaucoma or 
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uveitis. Common signs of this disease include a hazy vision, trouble seeing in low-light 

conditions, an increased sensitivity to bright lights, and the perception of light halos. Some 

patients may also experience changes in colour perception with colours appearing faded or 

yellowed. At later stages of the disease, these symptoms can impair daily activities and 

quality of life significantly (Lam et al., 2015). 

Diagnosis of Cataract 

The diagnosis of cataracts generally includes a detailed eye examination conducted by 

specialized physicians (ophthalmologists). This may involve tests to measure visual acuity, 

slit-lamp exams, and assessments of the lens’s clearness (Chuck et al., 2021). Additionally, 

some advanced imaging modalities like optical coherence tomography, fundus photography, 

or fluorescein angiography can be utilized as well to evaluate the extent of cataract formation 

and its impact on the eye structure (Gus et al., 2000; Rocha et al., 2007). 

1.3 AI and Deep Learning in the Detection of Ocular Diseases 

1.3.1 AI in Ocular Disease Detection 

 AI has known several advancements during last decades increasing the interest in the 

computer science and medical fields. AI involves the design and creation of systems that are 

able to imitate human-like cognitive abilities and solving problems. During last years, the area 

of retinal imaging has known significant advancements encouraging the development of CAD 

based tools specifically designed for the detection of various eye conditions. These tailored 

systems’ main goal is to assist medical professionals by facilitating the diagnosis process 

while enhancing its accuracy and therefore reducing time and effort. Fundus images are able 

to depict the 3-dimension retinal structure into a 2-dimension coloured RGB format, therefore 

providing essential visual indicators that are necessary to detect diseases (Yannuzzi et al., 

2004).  

In relation to the prevention of vision loss and blindness, we can say that early diagnosis 

of ocular disease is a fundamental concept. The progression of ocular pathologies is mainly 

tracked and monitored through abnormal changes occurring in the anatomical structures 

within the retina including the macula, fovea, optic disc, and retinal vascular structures. These 

abnormalities hold invaluable information and details about potential eye diseases and can be 

visualised in the three coloured channels of fundus images (Gour & Khanna, 2021). The 

process of implementing deep learning-based systems has become significantly common in 
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research related to the analysis and processing of medical images considering their ability in 

demonstrating remarkable performance across different tasks such as features detection, 

recognition of objects,  medical scans classification (J. He et al., 2021b), and disease detection 

(Alam & Khan, 2021). Deep learning has emerged in the past few years as a popular 

technology of computer vision in several fields including eye disease diagnosis, capturing 

considerable interest from scholars inn research considering its potential and promising 

outcomes in the development of advanced algorithms that can be able to analyse medical 

images process them (Z. Li et al., 2018; Ouda et al., 2022; Richards et al., 2019; Z. Wang et 

al., 2022). 

 As opposed to the usual machine learning methods, deep learning discards the need for 

segmenting lesions and extracting features manually which can prove to be inefficient when it 

comes to examining retinal fundus images (Ouda et al., 2022). Using deep learning enables 

the innovation and evolution of CAD algorithms in a highly efficient manner. CNNs played a 

fundamental role in this shift considering how it enabled the extraction of disease 

characterizing features and patterns directly from image data (Sultan et al., 2020). These 

emerging networks are able to master the identification of subtle patterns and image structures 

from basic edges to complex anatomical features indicating multiple ophthalmic pathologies 

(Diaz-Pinto et al., 2019; Simonyan & Zisserman, 2015). 

 One of the applications of AI in ophthalmology is the diagnosis and detection of 

diabetic retinopathy. While previous attempts have been made to integrate and make use of 

computerized systems into diabetic retinopathy detection process, recent advancements in 

deep learning have encouraged many countries to renew their approach in diagnosis of using 

AI for diabetic retinopathy diagnosis. The advantages and promising results of these research 

works speak for themselves seeing how the outcome often exceed standard screening 

guideline recommendations in terms of sensitivity and specificity (Wong & Bressler, 2016). 

 

1.3.2 Deep Learning  

 A rapidly growing area within machine learning models are deep learning models. 

They use artificial neural networks (ANN) to extract subtle features and patterns from image 

data with architectures of multiple layers (Dutta et al., 2018). These models have proven 

highly effective across various tasks in computer vision and biomedical imaging analysis like 

it was demonstrated by various studies (Guo et al., n.d.; Zhang et al., 2019). One of the most 
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popular choices for researchers was deep CNNs as they’ve emerged as a favourite, especially 

for the classification of natural images and success in medical image classification. For 

instance, CNN models have shown promising results by successfully classifying fundus 

images into NPDR achieving high performance metrics percentages. Diabetic retinopathy 

grading systems have been made more efficient, accessible, and cost-effective through some 

added improvements that have been validated across large datasets of high-quality images and 

various settings which surpassed traditional tailored methods based on features (Abbas et al., 

2018; Galveia et al., 2018).  

Deep learning is significantly important for enhancing intelligence by automating 

various processes such as environmental control and simplifying disease detection within the 

medical industry. Recently, several automated methods were developed with the aim of 

detecting diabetic retinopathy (Islam et al., 2020). When specialists diagnose fundus images 

manually, they search for blood vessels abnormalities, deposits, and leaking of substances 

such as blood and other fluids. As a consequence, much of research studies have been directed 

towards the automated identification and classification of these lesions without human 

intervention (Ahmad et al., 2014). 
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CHAPTER II 

RELATED WORK 

 

2.1 Literature Review 

Multiple studies have been conducted in the research area related to ocular disease 

classification to detect and predict several eye conditions with the usage of deep learning and 

machine learning algorithms. These were conducted using different approaches and datasets. 

Table 2.1 summarizes the work done on multiple papers. 

 

Table 2.1 Summary of related work 

References Type of Images Classes Approach Performance 

Tayal et al. 

(2022) 
OCT 4 

Five-layered CNN 

Seven-layered CNN 

Nine-layered CNN 

Accuracy: 96.5% 

sensitivity: 94.47% 

specificity 98.16% 

F1 Score: 95.80% 

Gour & 

Khanna (2021) 
Fundus images 8 

ResNet-50, 

InceptionV3, 

MobileNet, VGG16 

Accuracy: 85.34%, 

precision: 84.5%, 

recall: 83.7%, 

F1-score: 84.1%, 

AUC 84.93% 

J. He et al. 

(2021) 
Fundus images 8 

ResNet-18, ResNet-

34, ResNet-50, 

ResNet-101, SCM 

AUC: 93% 

F1-score: 91.3%. 
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J. Wang et al. 

(2020) 
Fundus images 8 EfficientNetB3 

Accuracy: 89%, 

precision: 63%, 

recall: 58%, 

AUC: 73%, 

F1-score: 89% 

Cheng et al. 

(2020) 
Fundus images 

8 (diabetic 

retinopathy 

lesions) 

ResNet-101, GCN 

 

Average overall F1-

score: 80.8% 

Dipu et al. 

(2021) 

 

Fundus images 8 

ResNet-34, 

MobileNetV2, 

EfficientNet 

 

Accuracy: 97.23% 

F. Li et al. 

(2022) 
Fundus images 2 Inception-V4 

AUC: 97.2%, 

sensitivity: 92.3% for 

referable diabetic 

retinopathy. 

 

Reguant et al. 

(2021) 
Fundus images 5 

Inception-v3, 

ResNet50, 

InceptionResNet50, 

Xception 

Accuracy: 95%, 

AUC: 98%, 

specificity: 0.96%, 

sensitivity: 0.86% 

Pektaş, M. 

(2023). 
Fundus images 8 

MobileNet, 

EfficientNet, 

SqueezeNet 

Accuracy: 96.64%, 

F1-score: 0.6870 
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Ryu et al. 

(2021) 
OCTA 4 

ResNet101, 

Machine learning-

based classifier 

 

Accuracy: 95.4%, 

AUC: 96.7%  

sensitivity: 98.1%, 

specificity: 98.1%  

 

 Tayal et al.  proposed an approach to develop a diagnostic tool using deep learning-

based models to automatically recognise and sort ocular diseases into four categories: Normal, 

DME, choroidal neovascularization, and drusen by analysing OCT scan images. The data set 

of OCT retinal scans used in this study were retrieved from a public source (Mendeley 

database) which was published in Kermany et al. ‘s work. Three different CNN models were 

employed with a varying number of layers (five, seven, and nine layers). These models were 

trained on the pre-processed OCT retinal scans to recognize patterns and detect different 

features characterizing each ocular pathology. The pre-processing steps involve resizing 

images to 150×150 pixels, then center-cropping them to 128×128 pixels. The images were 

divided into training (90.16%), validation (1.84%), and testing (8%) sets. All models used 

Rectified Linear Unit (ReLU) functions to improve gradient flow, they also reduced special 

dimensions using max pooling and at the they used dense layers to combine the learned 

features and make final predictions. A training rate of 0.001 was also set using the Adam 

(Adaptive Moment Estimation) optimizer (Kingma, 2014)  . The trained CNN models were 

then evaluated on separate sets of OCT scans to evaluate their capability in categorizing the 

four ocular diseases. Comparison of the presented approach with manual ophthalmological 

diagnosis was also conducted demonstrating a high classification accuracy of 96.5%, an F1 

score of 95.80%, 94.47% in sensitivity, and 98.16% in specificity. The limitations of this 

work include: 

• Data Diversity: The dataset used in this research was retrieved from a single 

population and this limits the diversity of the ocular structures that were presented. 

This lack of diversity can also affect the model's generalizability to different 

populations and races and therefore lead to biased results. 

• Image Type Specificity: This study focused exclusively on OCT scans, where other 

types of imaging like fundus photographs or angiographic images were not included. 
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This indicates that the model may need retraining to effectively classify diseases using 

these different imaging modalities. 

• Uniform Scanning Techniques: All scans in the dataset were taken using the same 

scanning settings and techniques. This may not realistically represent the variability 

encountered in real-world clinical settings that make usage of different equipment and 

techniques. 

• Model Efficacy: The current model's efficacy across different systems and conditions 

is not yet proven. The study suggests that more research is still needed to try and test 

multiple options for dimension reduction and enhance the models’ robustness. 

• Limited Disease Analysis: The presented approached focuses on a limited set of 

ocular pathologies. While it successfully identifies DME, drusen, and choroidal 

neovascularization, it still doesn’t include other significant diseases including diabetic 

retinopathy, glaucoma, or age-related macular degeneration. Expanding this approach 

to include the above mentioned conditions can further improve its clinical utility. 

• Image Size Reduction: This study reduced the input image size to (128,128) 

dimension to optimize input variables. While this approach can help with reducing 

computational load it can also lead to a loss of critical and essential information that 

could be important for an accurate diagnosis. 

Gour & Khanna presented a study with an automated CNN-based approach to detect eye 

pathologies from retinal fundus images which is a common modality employed in clinical 

ophthalmology. This study uses an 8-class classification modality by automatically detecting 

cataract, diabetic retinopathy, age-related macular degeneration, myopia, glaucoma, and 

normal images. The proposed method involves the usage of four pre-trained CNNs on a 

dataset of fundus images acquired from the Organizational for Development Innovation & 

Research (ODIR) database using transfer learning. Notably, this approach mainly focuses on 

multi-classification and multi-labelling of fundus image pairs of both eyes of each patient. A 

double approach was presented in this work: Model-1 processes individually the right and left 

eyes of each patient in the dataset using pre-trained CNN frameworks while Model-2 puts the 

left and right eyes concatenated as an input. The extraction and classification of the final 

features was performed using global average pooling (GAP) along with the sigmoid activation 

and loss functions. The preprocessing for this approach involves resizing all images to 

224x224 pixels, applying normalization, and augmenting the dataset by applying rotation, 
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flipping, and zooming operations to reduce overfitting. The images were divided into training, 

validation, and testing using a (70: 15: 15) ratio to evaluate the model's performance, ensuring 

the reproducibility by setting a random seed of 42.The final results of this study have 

demonstrated that VGG16 with the Stochastic Gradient Descent (SGD) optimizer performs 

best across all labels and categories, with a promising outcome for a clinical practice 

integration as a CAD tool to detect and classify ocular pathologies. The results demonstrated 

an accuracy of 85.34%, a precision of 84.5%, a recall of 83.7%, and an F1-score of 84.1%. 

Those results emphasize the effectiveness of the model in classifying ocular diseases, 

demonstrating its potential for reliable application in clinical environments. The limitations of 

this study can be listed as follows: 

• Generalization Capability: The MobileNet model does not generalize well for the 

ODIR database despite being lightweight. On the other hand, the VGG16 architecture 

despite being heavier, provides a better outcome in terms of performance for this 

specific dataset. 

• Class Imbalance: The ODIR database shows a class imbalance problem considering 

that certain disease classes such as glaucoma and cataract, have significantly less 

images compared to others like diabetic retinopathy. This imbalance can lead to a 

biased model performance in which the model may generalize well on classes with 

more data but poorly on under-represented classes. 

• Overfitting: This study mentioned that the concatenated input approach leads to 

overfitting, which is a common problem when using deep learning. This can also be a 

sign that the model may not generalize effectively to unseen data which can limit its 

practical application in clinical settings. 

• Limited Testing Set: The test data set for evaluation does not contain ground truth 

labels and this issue can affect the reliability of evaluation parameters like the F1-

score and the Area Under the Curve (AUC). This limitation puts in question the 

validity of the results reported. 

• Performance Evaluation: The class-based performance analysis is conducted on a 

limited validation set, which might not accurately reflect the model's true capability 

across all classes. This can also lead to misleading conclusions about the model's 

effectiveness. 
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• Complexity of Multi-label Classification: The paper transforms a multi-labelling 

task of identifying multiple diseases in a single image into a multi-class task where 

only one disease can be identified from a single image. And this might not actually 

reflect the complexities of the image features. This simplification can also limit the 

effectiveness of the model when it comes to classifying images having multiple 

diseases. 

 

J. He et al. proposed a CAD approach where they presented a dense correlated network 

(DCNet) to categorize coloured retinal fundus images. Their work used the ODIR-2019 

database which contains seven classes of ocular pathologies. They employed a DCNet 

architecture consisting of a backbone CNN that is primarily assigned to extract features, in 

addition to a Spatial Correlation Module (SCM) which computes pixel-wise correlations 

between left fundus and right fundus features sets to refine and update them, along with 

classifier that uses fully connected layers to produce an eight-category output of ocular 

diseases. The pre-processing of fundus images in this work includes resizing them to 224x224 

pixels, and normalizing them, applying rotation, shifting, zooming, and flipping to add more 

the diversity to training set and enhance the model’s robustness. The images were also split 

into a (70: 15: 15) ratio for training, testing and validation respectively. Their approach 

mainly relies on trying various backbones of pre-trained architectures consisting of multiple 

versions of the ResNet model with varying depths (18 layers, 34 layers, 50 layers, and 101 

layers). The model with the ResNet101 backbone showed the best results with an AUC of 

93%and an F1 Score of 91.3%. This study faced a major data imbalance issue that can 

potentially affect the resulting performance of the used models. The advantage of this study is 

its applicability to multi-modal image analysis; however, their use of a patient-based 

methodology made the comparison with other related studies challenging and not possible. 

The limitations of this study can be listed as follows: 

• Limited Training Samples: The study acknowledges that the performance of the 

models may be hindered by the limited set of available training images. This can lead 

to inadequate training of the network, affecting its ability to generalize effectively 

when introduced to unseen images. 

• Network Depth and Performance: The research indicates that increasing the depth 

of the backbone CNN does not always lead to improved performance. Specifically, the 
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transition from ResNet-50 to ResNet-101 shows only minor enhancements, suggesting 

that deeper networks may not always be beneficial due to issues like gradients 

becoming too small to effectively learn and features not being used efficiently. 

• Computational Complexity: This paper highlights the fact that deeper networks, 

even if potentially they’re more powerful, they also come with an increased 

computational complexity. For instance, using a ResNet-101 backbone may not be 

necessary if computational resources are limited, which can potentially limit the 

model's applicability in low resources environments. 

• Focus on Specific Ocular Diseases: The model in this study primarily addresses 

certain ocular diseases and this can limit its applicability to a wider range of 

conditions. This study also highlights that existing works often focus on a single or a 

few disease categories which doesn’t necessarily reflect the challenges of real-life 

scenarios where patients are likely to carry multiple eye diseases. 

• Image Quality: The performance of the proposed model is mainly dependent on the 

quality of colour fundus photographs. Poor image quality can significantly impact the 

model's performance by making it less reliable in practical settings where conditions 

of image acquisition may vary. 

J. Wang et al. presented a transfer learning modality to extract features from coloured 

fundoscopy images from the ODIR5K dataset that are labelled into eight categories. The 

images were divided into 90% as a training set, and 10% as a validation set, they additionally 

underwent normalization, cropping to a 1:1 ratio, and resizing to 448x448 pixels. They 

additionally employed data augmentation to enhance the dataset by applying rotations of 45 

and 90 degrees as well as random translations and histogram equalization to improve contrast. 

This study used the EfficientNetB3 pre-trained CNN architecture and was integrated into a 

transfer learning framework with adjusted weights to better capture the specific features for 

multi-label classification. They additionally integrated two weak classifiers independently 

trained as an approach to improve generalization and improve the overall performance. The 

model showed promising results when tested on 40 fundus images from the ODIR images 

with an accuracy of 89%, a precision of 63%, 58% recall, an AUC of 73%, and an F1-score of 

89%. The challenge of data imbalance was also addressed in this paper; however, its major 

disadvantage is the issues with low network performance due to the “other diseases” category 
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and the uncommon optic discs in the images of their used dataset. The limitations of this work 

include: 

• Dataset Limitations: The ODIR-2019 dataset is used in this work. this dataset has a 

limited amount of data for certain eye diseases. One of the labels, 'O' which represents 

(other diseases) class, includes a variety of uncommon fundus diseases. This also 

makes it challenging to improve the model's performance for these cases. 

• Overfitting: It was indicated that the model might be overfitting during training. The 

results of the validation set were significantly higher than those on the testing set 

which suggests that the model learned too well from the training data and may not 

generalize effectively to new data. 

• Black Box Nature of Deep Learning: A fundamental limitation of deep learning 

networks, including the ones used in this study, is their "black box" nature. Even if the 

network can automatically learn features from images, the specific features it learns 

remain unknown. This unpredictability issue can limit the clinical understanding of the 

model's decision-making procedure. 

Cheng et al. employed a graphical convolution network for to classify eight diabetic 

retinopathy lesions from colour fundoscopy images. The data used in this study was collected 

from multiple hospitals with a total of 7459 fundus images. Each image was labelled by two 

ophthalmologists into their respective diabetic retinopathy lesion. Using the ResNet-101 CNN 

architecture to extract features from the retinal images, the data were split into a ration of (70: 

15: 15) for training, testing, and validation respectively, and were resized to 1024x1024 pixel 

sizes. The SGD optimizer was employed with the loss function. The model achieved a 

superior performance with a highest F1-score of 80.8%, and a highest AUC score of 98.6% 

for the laser scars lesion. This study succeeded in achieving better accuracy for specific 

lesions but struggled in detecting others due to their appearance characteristics. The 

limitations of this study can be listed as follows: 

• Detection Challenges for Specific Lesions: The model in this paper demonstrated 

better detection results for certain lesions compared to others. This indicates that the 

model's ability to detect all types of lesions in an accurate way is inconsistent which 

can potentially lead to misdiagnosis in clinical settings. 
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• Visual Similarity of Microaneurysms: Microaneurysms are particularly hard for the 

model to detect because they appear as small red spots in the blood vessels of the 

retina. This visual similarity to the background can make it confusing for the model to 

point them out especially when the original images are resized for input. 

• Complexity of Coexisting Lesions: The presence of multiple lesions in a single 

fundus image complicates the model's capability to extract features in an efficient 

way. As an example, soft and hard exudates are often present along with other lesions 

and can obscure their detection and make it difficult. 

• Dependence on Image Quality: The quality of fundus photographs used in this work 

can significantly affect the model's performance. If the images are blurry, noisy, or 

poorly lit, the model may struggle to correctly identify and classify lesions. Similar 

issues have been noted in previous research, where image imperfections reduced the 

accuracy of detecting specific features because of the added difficulty of 

distinguishing between noise and meaningful patterns. 

Dipu et al. showed a transfer learning approach using several deep learning models’ 

architectures to detect and classify eight ocular pathologies from retinal fundus images 

acquired from the ODIR2019 database. In their work, they have reported the accuracy 

obtained from each model, however their evaluation was limited to the accuracy metric alone. 

F. Li et al. proposed a work where they improved the Inception-V4 structure to make it 

compatible with the task of classifying two ocular pathologies: Diabetic retinopathy and 

DME. They used retinal fundus images from 2,966 patients and applied some data 

augmentation including flipping and rotations after cropping them to remove borders. The 

images were then divided into training, validation, and testing splitting with no overlap 

between patients across the splits. They succeeded in achieving a high performance with an 

AUC of 97.2% and a sensitivity of 92.3% for referable diabetic retinopathy. The limitations of 

this study can be listed as follows: 

• Grader Bias: In this study, six experienced ophthalmologists graded the retinal 

images, and their majority decision was used as the reference standard for training and 

validating the model. While this ensures expert input, it might also introduce biases 

based on the graders' individual perspectives or tendencies, which could affect the 

accuracy of the true labels the model learns from. 
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• Pre-screening by Human Graders: Before adding images to the dataset, human 

graders checked them for quality and signs of other diseases. While this ensured a 

clean dataset, it might have excluded images that could have been helpful for training, 

reducing the variety of the training data. 

• Insufficient Representation of Clinical Practice: Even though the dataset is high 

quality, it might not fully represent the challenges and conditions seen in real-world 

clinical settings. This could limit how well the model performs in actual clinical use. 

• Dataset Size and Performance: The study suggests the model could perform better 

with a larger dataset. The current dataset might not be big enough to fully evaluate the 

model’s potential, highlighting the importance of further validation using bigger and 

more varied datasets. 

In Reguant et al.’s work, they visualized the decision process of neural network and 

they assessed features of retinal images in order to classify diabetic retinopathy into five 

stages. The images from the datasets had varying quality, dimensions, and aspects ratios, so 

the pre-processing step involved removing blurred, overly dark and bright images. The fundus 

images were then resized to 512x512 pixel values after experimentation with different 

dimensions, and the non-symmetric images were cropped to square shape. A ratio of 80:10:10 

was used to divide the dataset into training, testing, and validation respectively. Data 

augmentation was also implemented to address class imbalance by applying oversampling and 

undersampling techniques to even out the number of images in each class, adjusting their 

number to 500 images per class. Other techniques for augmentation like rotation, height shift, 

width shift, scaling, and flipping were also applied to increase the diversity in the dataset. 

This study experimented with four CNN architectures: Inception-v3, ResNet50, 

InceptionResNet50, and Xception. They employed transfer learning for models’ initialization 

by loading pre-trained ImageNet weights. Weights were also initialized using Glorot uniform 

initializer with the top layers of the base CNN architectures. Evaluation metrics showed that 

the Inception-v3, ResNet-50, InceptionresNet50, and Xception models achieved accuracies 

between 89% to 95% and AUCs ranging from 95% to 98%, with Xception being the model 

with the winning performance as it achieved 95% in accuracy, and an AUC of 98%. The 

limitations of this study can be listed as follows: 

• Limited Datasets: The training and validation datasets in this study were quite small. 

While transfer learning helped improve the model's performance, the small dataset 
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size meant the models relied heavily on pre-trained weights. This suggests that using 

larger datasets could lead to significantly better results. 

• Model Architecture Constraints: The study faced some limitations with the design 

of the model. In order to make the model easier to understand, the CNN layers were 

placed near the output of the models which made it impossible to combine multiple 

CNN models. This issue may have restricted the model’s overall performance for the 

sake of simplifying its structure. 

• Image Quality Issues: This study worked with high-quality images, but these don’t 

always match the kind of images seen in real-world situations. Since the tool doesn’t 

check for image quality, low-quality images could then result in wrong predictions. 

This shows the importance of having tools that can assess image quality before 

making predictions. 

• Predictive Variability Across Classes: The models performed differently depending 

on the diabetic retinopathy grade. For example, the models struggled with grade zero, 

where the features are very subtle. This uneven performance means the models might 

not be as reliable for lower grades, which could impact clinical decisions. 

In Pektaş's study, they experimented with multiple versions of three CNN architectures: 

MobileNet, EfficientNet, and SqueezeNet. This study used retinal fundus images from the 

ODIR-5K database to classify them into eight categories. The images were pre-processed and 

resized to 224x224 pixels and normalized to a 1:1 aspect ratio, to split them later into 70% for 

training and 30% for testing. The CNNs were trained using Adam optimizer along with early 

stopping with the goal of preventing any potential overfitting. Different data augmentation 

methods were tested; however, the best results were achieved without data augmentation. The 

best performing model was EfficientNetB3 with a training/testing split ratio of 90:10 and was 

selected based on the accuracy and F1-score metrics with values of 96.64% and 0.6870 

respectively, outperforming both the MobileNet and SqueezeNet models. The limitations of 

this study can be listed as follows: 

• Dataset Limitations: The study highlights that many researchers face challenges in 

achieving good performance for diabetic retinopathy classification because of limited 

training data and inconsistent annotations. This issue can make it harder for the model 

to perform well on different datasets. 
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• Focus on Specific Models: This research mainly focuses on the EfficientNetB3 

model, which showed high accuracy and good performance. However, it doesn’t 

explore other models or architectures that might work better in different situations or 

with other datasets. 

• Hyperparameter Tuning: While this study mentions plans to use automatic 

hyperparameter tuning in the future, the current approach may not fully optimize the 

model. This means the results might not show the model’s best possible performance. 

• Generalizability of Results: The findings are based on the ODIR-5K dataset, which 

may limit how applicable they are to other datasets or real-world settings. The study 

doesn’t explore how the model would perform on different populations or imaging 

conditions, which is important for its clinical use. 

• Potential Overfitting: The model’s high reported accuracy (96.94%) raises concerns 

about overfitting, especially since the dataset used for training is relatively small. 

Without thorough validation on new, unseen data, the model’s reliability isn’t fully 

clear. 

Ryu et al.  proposed a diabetic retinopathy diagnostic approach using a CNN model by 

detecting features from optical coherence tomography angiography (OCTA) scans, and they 

succeeded in achieving a relatively high performance. Their approach included preprocessing 

the images to remove scans of low quality and using different OCTA image resolutions (3 × 3 

mm² and 6 × 6 mm²). A four-fold cross-validation was employed to train and assess the two 

models they experimented with: a ResNet101-based classifier with OCTA images as an input, 

and a machine learning classifier using extracted local features from the OCTA scans. The 

model which achieved the best performance was the ResNet101-based model with accuracies 

and AUCs of 95.4% and 96.7% respectively for diabetic retinopathy, and 97.5% and 97.6% 

for referable diabetic retinopathy. The sensitivity and specificity of the model were notable as 

well, reaching 98.1% sensitivity and 98.1% specificity for referable diabetic retinopathy 

detection. The limitations of this study can be listed as follows: 

• Small Sample Size: A relatively small group of patients was included, which might 

limit how well the results apply to other populations. While the sample size is similar 

to other studies using OCTA, it’s still a factor that could affect the reliability of the 

findings. 
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• Potential for Misclassification: The study included a relatively small group of 

patients, which might limit how well the results apply to other populations. While the 

sample size is similar to other studies using OCTA, it’s still a factor that could affect 

the reliability of the findings. 

• Subjectivity in Traditional Methods: Traditional methods for diagnosing diabetic 

retinopathy can be subjective, leading to inconsistent results. This shows the need for 

automated tools but also highlights the weaknesses of current manual approaches. 

• Generalization Issues: This work mentions that models based on handcrafted features 

may not perform well on different datasets due to overfitting. While the CNN model 

shows potential, its ability to work in a variety of clinical settings may still be limited. 

2.2 Limitations of Existing Studies 

The existing studies on ocular disease detection and classification that were mentioned 

above face various limitations. First, several studies rely on limited datasets in terms of them 

not representing the full range of ocular pathologies that a patient may have. This can be 

challenging for AI systems to accurately detect and correctly classify eye conditions. 

Secondly, even though some of these studies focus on specific conditions such as glaucoma, 

diabetic retinopathy, or AMD, they do not consider the possibility that some patients may be 

carrying multiple eye disease at once, which indicates that the developed AI systems in these 

studies are incapable of handling cases where multiple eye pathologies are present. In addition 

to that, some of the existing studies in this area use deep learning-based approaches without 

necessarily validating their effectiveness on diverse datasets, and this can make it challenging 

for other researchers to build upon their findings.  

Another limitation is class imbalance; several studies used datasets that show significant 

imbalances with certain diseases (e.g., diabetic retinopathy in the ODIR-5K database) more 

represented than others. This issue can lead to models performing better on the more 

represented diseases while struggling with the underrepresented diseases, which can 

significantly affect the overall performance. Overall, despite the fact that deep learning 

classification-based systems prove to be very promising in detecting and diagnosing ocular 

pathologies, more search is needed to address these challenges and make sure that these 

emerging technologies are effectively used in clinical environment. 
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CHAPTER III 

METHODOLOGY 

 

3.1 Overall Methodology 

This section covers the overall methodology/experimental set-up which is divided into 5 

stages. Stage 1 revolves around data collection from publicly accessible domains such as 

Kaggle, stage 2 will involve data preparation and pre-processing. Stage 3 will involve models’ 

construction, evaluation, training and visualization. Pre-trained deep learning architectures 

that are used in this work are ResNet-50, ResNet-101, VGG-16, VGG-19, and DenseNet121. 

Stage 4 will focus on evaluation of the generalizability of the proposed approaches using 

performance metrics and final stage will involve the development of IoT-based framework. 

The general methodology is summarized in figure 3.1. 

 

Figure 3.1 Overall methodology 
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3.2 Data Description 

 The dataset is curated from Kaggle repository title “eye_diseases_classification”. The 

dataset comprises 4,217 retinal colour funduscopy retinal images retrieved from diverse 

databases like the Indian Diabetic Retinopathy Image Dataset (IDRiD) (Porwal et al., 2018), 

High-Resolution Fundus (HRF) image database (Budai et al., 2013), and other sources. The 

retinal fundus images in this dataset are organized in 4 folders: normal, diabetic retinopathy, 

glaucoma, and cataract. Table 2 provides the website source where the data was collected 

from and gives a brief description of the characteristics of the collected data.  

 

Table 3.1 Description of dataset 

Repository Characteristics Website 

“eye_diseases_classification” 

Colour fundus images 

grouped into 4 classes: 

normal, diabetic retinopathy, 

cataract, and glaucoma 

https://www.kaggle.com/data

sets/gunavenkatdoddi/eye-

disease 

3.3 Data Visualisation 

A sample image from each class was displayed as shown in figure 3.2 to give a quick 

visual confirmation of data structure. The dataset contains a total number of 4,217 images of 

the retina, with 1038 images belonging to cataract, 1098 images to diabetic retinopathy, 1007 

images belonging to glaucoma, and 1074 to normal fundus. To better understand the dataset 

distribution, the number of images in each disease folder is calculated and visualized using a 

bar plot as shown in figure 3.3. This step is important to verify that the classes are balanced 

and gives insight into potential class imbalances that could affect training. Additionally, 

images in this dataset have varying size dimensions; a bar plot is also used to display the 

number of fundus images in each size dimension as shown in figure 3.4. It shows how this 

dataset contains images with pixel sizes of (512×512), (256×256), (2592×1728), 

(2464×1632), and (1848×1224).  
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Figure 3.2 Samples of colour fundus retinal images from the dataset where (a) represents normal; (b) 

represents cataract; (c) represents diabetic retinopathy; and (d) represents glaucoma 

Figure 3.3 Shows the number of fundus images in each class 
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3.4 Data Pre-processing 

The repository containing the dataset was stored in a drive file which was then 

mounted to access the dataset from the dataset folders “dataset4cat” which contains images of 

four classes: Normal, Diabetic Retinopathy, Cataract, and Glaucoma. The dataset directory is 

defined as a starting point for the loading and following processing steps. The code iterates 

through each class folder reading the images. Images in this work are resized to 224×224 

pixels to ensure that all images conform to the expected input size for the deep learning 

models intended to use in this work like the ResNet, VGGNet, and DenseNet models that 

require size inputs of this dimension. The next step involves the conversion of images into a 

NumPy arrays where each resized image is appended to an array ‘x’, while its corresponding 

class label is added to an array ‘y’. This step ensures that images are in a uniform format 

suitable for the models’ input layers.  

 

The preprocessing procedure are listed and explained in the following steps: 

Figure 3.4 Shows the different image sizes in the dataset and number of images with each size dimension 
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1. Loading images; the code iterates through each class folder and reads images with 

OpenCV. 

2. Reading files from the directory 

3. Resizing images into (224×224) pixel size using OpenCV to adjust their size to the 

required input size for the models. 

4. Conversion of images into Arrays for use in the models 

3.5 Data Splitting and Label Encoding 

The data was initially divided into a conventional splitting of 80% images for training, and 

10% for testing and validation each, however, the results we got from this ratio were 

unsatisfactory, so a splitting of 67% for training and 33% for testing was opting to try a 

different approach. A 10% split was then taken from the training data for validation. This 

resulted in splitting the whole data into 60% for training, 7% for validation, and 33% for 

testing. To train the models, the images from the training data were used, the validation set 

was used to evaluate the model during training, while the test set is reserved for the final 

evaluation after training. Label encoding or binarization is then performed to prepare for the 

classification where labels for each image representing a disease class are encoded into one-

hot format using Label Encoder. The class labels in ‘y’ are encoded as integers (from 0 to 3, 

one for each class) and are then one-hotcoded.  

3.6 Proposed CNN Models using Transfer Learning 

The idea of CNNs which was initially introduced by Lecun et al., uses convolution 

operations rather than simple matrix multiplications. CNNs have become essential for 

achieving high performance in medical image classification, and other procedures like 

enhancement and segmentation. CNN architectures involve the usage of convolutional layers, 

batch normalization (BN), activation functions such as ReLU, and other convolutional 

operations such as pooling operations for deep feature extraction and complex data analysis. 

To achieve high and better performance, CNNs often require large datasets like ImageNet for 

pre-training especially when dealing with complex tasks like medical image classification 

(Gour & Khanna, 2021). Transfer learning enables the collection and usage the acquired 

knowledge and of learning om these previously trained models regardless of the area or field 

they were trained on intially (Gour & Khanna, 2021).  
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 In this study, the pre-trained CNN architectures that we aim to implement are the 

ResNet models (50 and 101 layers) (K. He et al., 2016), VGGNet models (16 and 19 layers) 

(Simonyan & Zisserman, 2015), and the DenseNet (121 layers) (Huang et al., 2017) in order 

to classify coloured images of the retina into four classes: normal, cataract, diabetic 

retinopathy, and glaucoma. These CNNs are usually set to train using big databases such as 

ImageNet in order to achieve a high classification performance (Gour & Khanna, 2021). The 

proposed CNN architectures are briefly explained in this section. 

3.6.1 ResNet-50 and ResNet-101 

ResNets, also known as Residual Networks are a modality of convolutional neural 

network frameworks consisting of multiple layers each containing a residual unit. This 

introduced the concept of residual connections that allow the training of complex multi-

layered networks resulting in better learning and improving the quality of image recognition 

(H. He et al., 2016).  

 ResNet-50 is another layered version of the ResNet architecture with 50 convolutional 

layers including shortcut connections and batch normalization that enables more effective 

training and a higher performance on recognition tasks. On the other hand, ResNet-101 

extends ResNet-50 with 101 convolutional layers in total, which allows for the extraction of 

more complex patterns and features, and therefore resulting in a better performance with more 

difficult tasks (H. He et al., 2016). 

3.6.2 VGG-16 and VGG-19 

This is another CNN algorithm, also known as Visual Geometry Group (VGG) 

architectures that are mostly renowned for their simple and uniform framework, which 

consists of several convolutional and pooling layers (Simonyan & Zisserman, 2015).  

 VGG-16 is also a variant of VGGNet consisting of 16 convolutional layers as well as 

some max-pooling layers. The convolutional units of VGG-16 are able to reduce image 

dimensions due to the fact that they contain several layers with small filter sizes of 3 versus 3, 

some ReLU functions, and max-pooling layers. VGG-19 on the other hand contains three 

more layers than the VGG-16 with 19 convolutional layers in total. This extension results in a 

deeper architecture which facilitate the extraction of more complex patterns and a better 

performance of challenging tasks (Simonyan & Zisserman, 2015). 
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3.6.3 DensNet121 

 DenseNet is also a CNN architecture that is mainly characterized by its dense 

connections between its layers, where each layer gets feature maps from the preceding layers, 

and passes down its own generated maps to all the following layers within a dense unit. This 

structure facilitates reusing features and strengthens their propagation and flow throughout the 

system resulting in high level performance with fewer parameters (Huang et al., 2017). In this 

work, the 121-layer version of DenseNet is used. 

3.7 Models Implementation and Training 

In this work Tesla T4 GPU was used, and models were implemented and trained using 

TensorFlow and Keras with data processing steps including resizing, array conversion, and 

test-train-validation splitting at specified ratios. The training employed the Adam optimizer 

for its efficient convergence properties. The metrics that the models were analysed and 

evaluated based on are accuracy, precision, recall, F1 score, and AUC in order to provide a 

comprehensively evaluation of the classification performance across different eye disease 

categories.  The ResNet50 model used in this work has 50 layers with 3.67M trainable 

parameters, the ResNet101 model with 101 layers and 3.67M trainable parameters, 

respectively, VGG16 (16 layers and 2.1M trainable parameters), VGG19 (with 19 layers, and 

2.1M trainable parameters), and DenseNet121 (121 densely connected layers and 2.6M 

trainable parameters). These architectures provide a range of parameters and network depths 

and enables the assessment of model’s effectiveness according to its layer complexity. 

The pre-trained CNNs were loaded with pre-trained weights to identify and extract key 

patterns and recognize characterizing features in the images. The initial pre-trained layers of 

the CNN models are frozen in order to prevent their weight from being updated during 

training. The model is the customized by adding several layers on top of the models’ base. 

The input shape (224, 224, 3) is also specified to ensure compatibility with the images being 

used after resizing them and including the 3 colour channels (RBG). GAP layer is added to 

decrease the dimensions of the feature map and condensing it into a single vector by 

averaging the feature values across the spatial dimensions. Three fully connected dense layers 

are also added with 1024, 1024, and 512 neurons for each layer accordingly, and each using a 

ReLu function to allow further learning on more complex patterns. A fully connected (dense) 

layer with 4 neurons is included along with the Softmax activation function in the output layer 



31 

 

to represent the four possible predictions and present the probability distribution across all 

four classes. A learning rate of 0.0001 was set to compile the models using the Adam 

optimizer along with loss function, making it suitable for tuning (Meng et al., 2018). Training 

accuracy and loss are mainly tracked during the training process through every epoch. 

Verbose output was included to show training progress for each epoch, and validation 

accuracy and validation loss were also monitored through the 30 epochs that the training 

process went through.  

The models’ implementation and training process are listed and explained in the 

following steps: 

1. Loading the pre-trained CNNs 

2. Freezing the top layers of the models 

3. Adding Custom Layers: GAP layers, fully connected layers, Softmax Activation 

layers. 

4. Model compilation: Adam optimizer/ Cross-Entropy Loss 

5. Model training 

3.8 Performance Metrics 

 The evaluation of the proposed models was conducted using some performance 

evaluation parameters and metrics. These include accuracy, F1 score, precision, and recall. 

Plots of the confusion matrices and the Receiver Operating Characteristic (ROC) curves were 

also generated for each model to further evaluate their performances across all classes. The 

evaluation metrics are briefly explained and discussed in this section.  

Accuracy: An evaluation metric that assesses the rate of correctly classified images among all 

the classifications in the datasets (Sokolova & Lapalme, 2009). 

Area Under the Curve (AUC): Determines to which extent models are able to set apart and 

distinguish between various classes. The higher the value, the better the assessment ability 

(Fawcett, 2006) 

F1-Score: Offers a comprehensive evaluation of false positives and negatives by combining 

both precision and recall into one single value. It basically determines how well the model is 

doing in identifying positives and at the same time avoiding false positives (Powers, 2020).  
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Precision: Gives an evaluation of the correct positive predictions among all the classes 

predicted as positive (Sokolova & Lapalme, 2009). 

Recall: Also known as sensitivity, it’s used for calculating the rate of how many actual 

positive predictions the model succeeded in identifying among all the true positives. 

(Sokolova & Lapalme, 2009). 

 As a summary of the methodology process, a flow chart diagram is presented in 

Figure3.5 to describe the steps conducted from step one of inputting data to the step of 

evaluating the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Flow Chart Diagram summarizing the Methodology Process 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 Evaluation Metrics and ROC Curve 

Five CNN models were used in this study to classify coloured fundoscopy images into 

four categories: normal, diabetic retinopathy, cataract, and glaucoma. The results shown in 

this section are of the performance metrics including the accuracies, F1 score, precision, 

recall, AUC, ROC curves and confusion matrices plots of each model. The results are 

compared and discussed in this chapter. 

The evaluation metrics and performances of each model (ResNet50, ResNet101, 

VGG16, VGG19, and DenseNet121) are compared in Tables 4.1, 4.2, and 4.3; where Table 

4.1 displays the evaluation metric values of each CNN architecture. The performance of each 

CNN model and their ability to classify fundus images into four categories: normal, cataracts, 

diabetic retinopathy, and glaucoma has been analysed through the above mentioned 

evaluation metrics as shown in Table 4.1. 

Overall, the ResNet50 and ResNet101 models delivered the top results in accuracy, 

precision, recall, and F1 score with ResNet50 slightly outperforming ResNet101. ResNet50 

achieved a test accuracy of 91.25%, while ResNet101 reached a similar percentage of 

91.04%. Both models showed very high AUC scores (ResNet50 at 0.9858 and ResNet101 at 

0.9863), which indicates strong classification ability and model robustness. VGG16 also 

performed well and achieved a test accuracy of 90.34% and an AUC value of 0.9825, 

demonstrating a competitive performance despite having fewer layers than the ResNet 

models. However, VGG19 which is an extended version of VGG16 with more layers, 

achieved slightly lower accuracy and AUC values, possibly due to overfitting with additional 

layers that did not improve the model’s generalization ability. This demonstrates that layer 

depth doesn’t necessarily guaranty a big gap in terms of good performance. As for 

DenseNet121, while achieving good accuracy for certain classes, it demonstrated the lowest 

overall accuracy and AUC values, and this highlights potential limitations when using this 

model architecture for the provided dataset. 
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Table 4.1 Evaluation metrics 

Model Accuracy Precision Recall F1 Score AUC 

ResNet50 0.9125 0.9133 0.9125 0.9126 0.9858 

ResNet101 0.9104 0.9114 0.9104 0.9105 0.9863 

VGG16 0.9034 0.9057 0.9034 0.9022 0.9825 

VGG19 0.8880 0.8890 0.8880 0.8884 0.9820 

DensNet121 0.8684 0.8709 0.8684 0.8686 0.9678 

 

Table 4.2 highlights the training, validation, and testing accuracies for each CNN 

architecture. It can be observed that in terms of training accuracy, all models achieved very 

high accuracies (approximately around 99%), which demonstrates that they learned the 

training data effectively. However, there is a noticeable gap between the training and 

validation/test accuracies, particularly with VGG19 and DenseNet121, which suggests that 

these models may likely suffer from slight overfitting. For example, VGG19 have shown a 

training accuracy of 99.96% but a test accuracy of only 88.80%, while DenseNet121 had the 

lowest test accuracy of 86.84%, reflecting a significant difference between training and 

validation/test accuracy. On the other hand, the ResNet models demonstrated more stable 

performance across training, validation, and test sets with minimal gaps, which demonstrates 

that these models generalize better on unseen data compared to the rest of the models. 

 

Table 4.2 Training, validation, and test accuracies 

Model Training Accuracy Validation Accuracy Test Accuracy 

ResNet50 0.9996 0.9172 0.9125 

ResNet101 0.9996 0.9207 0.9104 

VGG16 0.9992 0.8897 0.9034 

VGG19 0.9996 0.8793 0.8880 

DensNet121 0.9854 0.8483 0.8684 

 

Table 4.3 provides the accuracy of each model across the four specific disease 

categories. For the normal class, VGG16 has clearly achieved the highest accuracy in the 

normal category, reaching a value of 95.65%, and indicating a high ability to accurately 

classify healthy fundus images. ResNet101 followed closely with an accuracy of 94.63%, and 
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ResNet50 also performed well at 93.61%. DenseNet121 had performed the least in this 

category with an accuracy of 85.93%. For cataract, all models performed remarkably well in 

detecting cataracts with DenseNet121 achieving the highest accuracy of 99.17%. ResNet50 

and VGG16 also showed high performance and achieved high accuracies of 98.90% and 

98.34%, respectively. This high performance suggests that cataracts is easier to detect and 

distinguish in fundus images considering that all models, regardless of their architecture’s 

depth, showed high accuracy in this category. 

 

Table 4.3 Accuracy values of each class across all five models 

 

In diabetic retinopathy the models had an overall moderate performance, with VGG16 

achieving the highest accuracy of 91.23%. ResNet50 and ResNet101 performed similarly at 

88.89% and 88.60%, respectively, and DenseNet121 had the lowest performance at an 

accuracy of 85.96%. These results indicate that the models faced challenges in accurately 

identifying diabetic retinopathy. As for classifying glaucoma, it has proved to be challenging 

for all models considering the lower accuracy values compared to the other categories. 

ResNet50 and ResNet101 achieved accuracies of 82.63% and 82.04%, respectively, showing 

relatively better performance in this category. VGG16 achieved an accuracy of 74.55%, as 

DenseNet121 struggled with an accuracy of only 75.45%.  

This performance difference could be due to the discretion and variability of glaucoma 

features in fundus images, and this may require more specific features for a more accurate 

classification. To better visualize the model’s ability to tell apart different classes and 

distinguish between them, a graphical representation of the diagnostic ability is illustrated in 

Figure4.1 which shows the ROC curve plots of each CNN architecture. The ROC curve of the 

Model Normal accuracy Cataracts accuracy 
Diabetic retinopathy 

accuracy 
Glaucoma accuracy 

ResNet50 0.9361 0.9890 0.8889 0.8263 

ResNet101 0.9463 0.9779 0.8860 0.8204 

VGG16 0.9565 0.9834 0.9123 0.7455 

VGG19 0.9207 0.9669 0.8450 0.8084 

DensNet121 0.8593 0.9917 0.8596 0.7545 
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normal class is represented in yellow, the curve for diabetic retinopathy is represented in 

green, the cataract curve is portrayed in red, and the glaucoma curve is portrayed in blue. 

4.2 Confusion Matrix 

As demonstrated in Figure 4.2, the confusion matrices for each of the five CNNs used in 

this study (ResNet50, ResNet101, DenseNet121, VGG16, and VGG19) indicate their ability 

to classify the four eye disease categories: Normal, Cataract, Diabetic Retinopathy, and 

Glaucoma. ResNet50 demonstrates excellent performance with the highest accuracy in 

classifying the "Normal" class with 366 true positives, and the "Cataract" class with 356 true 

positives. However, there are still some misclassifications observed in “Glaucoma” with 13 

false negatives as well as "Diabetic Retinopathy" with 6 false negatives. Nonetheless, these 

errors remain minimal compared to the overall classification performance. 

ResNet101 shows a slightly higher performance than the ResNet50 model in terms of 

classifying "Normal" with 373 true positives and "Cataract" with 353 true positives. It also 

performs similarly to the ResNet50 model in the other classes with a minimal number of 

misclassification where it has a small number of false positives for "Glaucoma" and "Diabetic 

Retinopathy." DensNet121 on the other hand, has a somewhat lower performance than both 

ResNet models. While it has a relatively high number of true positives for "Normal" with 370 

and for "Cataract" with 354 classifications, it still struggles more with the "Glaucoma" and 

"Diabetic Retinopathy" classes, showing higher incorrect positive and incorrect negative 

rates. This suggests that DensNet121 has some trouble in distinguishing between images 

belonging to these specific diseases. 

VGG16 has also demonstrated competitive results notably with the "Normal" and 

"Cataract" classes being well-classified, with 362 and 356 true positives respectively. 

However, it has shown a confusion between the "Glaucoma" and "Diabetic Retinopathy" 

classes with some noticeable misclassifications, especially in "Glaucoma" where 19 images 

were misclassified as "Normal." VGG19 provides the lowest performance among the models, 

notably in the "Glaucoma" class, where there are significant misclassifications of 33 false 

positives and 13 false negatives. It has also shown some struggles with "Diabetic 

Retinopathy"   which indicates that it might have a higher generalization error for the dataset. 
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4.3 General Discussion of Results 

The overall performance of the models generally indicates that deeper, more complex 

architectures like ResNet50 and ResNet101 provide the best classification accuracy, 

precision, and recall. Both models have shown high accuracy in distinguishing between the 

four classes, especially in the Normal and Cataract classes since it demonstrated a relatively 

low misclassification rate. This is also confirmed from the confusion matrices that 

demonstrated that these models maintain fewer false positives and false negatives. 

DensNet121 and VGG16 also have shown a solid performance, however they exhibit more 

challenges particularly with distinguishing between Glaucoma and Diabetic Retinopathy. 

DensNet121's slightly lower performance can be because of its fewer training parameters and 

possible higher generalization error, considering that it performs worse in certain categories, 

especially with Glaucoma. VGG19 has shown a lower overall accuracy despite having a 

deeply layered structure and appears less effective for the classification task at hand. This is 

further demonstrated by its relatively high misclassification rates in Glaucoma, having the 

highest rate of false positive and false negative predictions. This may generally indicate that 

VGG19 faces issues with the fine-grained classification of certain classes despite its deep 

architecture. 

From the results obtained by the performance metrics, it can be deduced that ResNet50 

and ResNet101 stand out with the highest performance on test and validation datasets, which 

makes them the most reliable models for this four-class eye disease classification task. The 

AUC values for these models further demonstrate their strong performance, by highlighting 

their ability to correctly classify input images in terms to their most probable true class. 
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Figure 4.1 ROC curves for each CNN model; where (a) represents ROC curve of ResNet50, 

(b) ResNet101, (c) VGG16, (d) VGG19, and (e) DensNet121. 
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Figure 4.2 Confusion matrix for each CNN model; where (a) represents the confusion matrix 

of ResNet50, (b) ResNet101, (c) VGG16, (d) VGG19, and (e) DensNet121. 
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4.4 Implementation of Results into Web App 

4.4.1 Introduction to WebApp 

In this work, a web application ‘I-SCANNER’ was developed to facilitate the usage and 

complement the deep learning model of this study for the eye disease classification task. This 

web app is developed to assist healthcare professionals with the detection and diagnosis of 

ocular pathologies. The utilisation of a command-line interface (CLI) to predict eye diseases 

can be a tedious process considering that it requires typing commands for each prediction. 

This web-based application simplifies the whole process by providing an intuitive and user-

friendly dashboard where images can be uploaded by a user and interact with the model in a 

seamless way to promote an easy interpretation. In addition to allowing users to get a 

prediction of eye disease that may be represented in an uploaded retinal image, I-SCANNER 

also allow users to securely register or login to access their personalized account as displayed 

in figures 4.3 and 4.4. This framework also saves all the predicted results of each patient 

automatically for future analysis and reference, making it much more manageable, accessible, 

and user friendly.  

This web application combines the usage of different technologies including Flask, 

TensorFlow/Keras, JavaScript and others to create a smooth experience to predict eye 

diseases. It uses an application programming interface (API) to connect the backend models 

with the frontend interface, which allows users to see and work with the predictions visually. 

 

 

 

 

 

 

 

 

Figure 4.3: Figure showing the registration feature of I-SCANNER 
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4.4.2 The API 

The model for eye disease classification was built using Python along with a popular 

framework used around machine learning, called TensorFlow. To keep things simple and 

compatible, the models were saved as Keras .h5 files without compression or format changes 

ensuring the API can access them easily without running through compatibility issues.  

The API was developed using Flask, a widely used Python platform for building web 

applications and APIs, TensorFlow/Keras which allowed the loading of the trained CNN 

model, and Werkzeug Security to provide a secure password and authentication for users. The 

frontend sends a request carrying image data to the backend server that processes the image 

and generate the predictions. These results are stored in a database along with relevant 

metadata in a database for future refence. To optimize efficiency, the input image size is 

adjusted to 224×224 pixels in order to reduce processing time and ensure a quick generation 

of response.  

4.4.3 The Frontend 

The frontend operates as the interface for users navigating the web application and 

displays elements such as buttons, text, and images. It dynamically updates the content using 

JavaScript depending on the predicted results that were received from the API. HTML The 

application begins with a login page where users can authenticate themselves to gain access. 

This ensures that data is secured and prevents any unauthorised access that can compromise 

Figure 4.4: Figure showing the login feature of I-SCANNER 
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the system or disrupt API calls. The frontend technologies that were used include HyperText 

Markup Language (HTML) and Jinja2 to create a dynamic template, Cascading Style Sheets 

(CSS) which was used to ensure a clean and appealing stylistic design to the web application, 

and JavaScript was used to ensure a good management and handling of file uploads and 

updating results. 

After registering and the logging in, users are then directed to a personalized dashboard 

where they can upload medical images that are the sent to the server where the AI model 

analyses them, figures 4.5 and 4.6 display the dashboards where users can upload and analyse 

retinal images. Predictions and the confidence scores (probabilities) of each class are then 

displayed, and the class with the highest confidence is highlighted as the primary prediction 

that is most likely represented in the uploaded image as shown in figure 4.7. This design 

enables users to easily navigate the application in an efficient way. These details and results 

are then saved to the database for future reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Figure displaying the dashboard for image uploading 
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Figure 4.6: Figure displaying the dashboard for image analysis 

 

 

4.4.4 The Database 

The I-SCANNER web app uses SQLite, which is a reliable SQL-based database to 

manage and store data efficiently. This database allows for quick searches and effectively 

handles powerful join calls through tables enduring the application runs smoothly.  

Each prediction is stored with a unique identifier for each patient. This setup helps users 

track their previous predictions. Each user is made sure to have their own account to ensure 

that all predictions and settings are personalized. This guarantees privacy and creates a better 

overall user experience making this WebApp practical and powerful as a tool to assist medical 

professionals for automated eye disease classification and analysis. 

Figure 4.7: Shows the primary disease prediction and its confidence along 

with all class probabilities 
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CHAPTER V 

LIMITATIONS AND FUTURE WORK 

 

5.1 Limitations and Future Work 

A major limitation that was observed in the proposed modality is the imbalanced 

performance of the classification models across different disease classes. While most models 

achieved high accuracies in distinguishing normal fundus images and cataract cases, they still 

found some difficulties to distinguish between the glaucoma and diabetic retinopathy 

categories. This confusion is mainly due to the complexity and similarity of the visual features 

in these two classes. Glaucoma and diabetic retinopathy may also present overlapping 

characteristics with other conditions, such as subtle vessel abnormalities or optic nerve 

changes, and this can reveal to be harder for the model to distinguish. This emphasises the 

need for a more refined approach like using class-specific data augmentation or more 

advanced feature extraction techniques to enhance the classification accuracy for these 

challenging categories.  

Another notable issue was overfitting, especially in VGG19 and DenseNet121. These 

models achieved high training accuracies exceeding 90%, however their performance on the 

testing sets was lower in comparison, and this also indicates that the models memorized 

training data patterns rather than generalizing to unseen data. The overfitting can also be due 

to the high complexity of these architectures considering that they include a significant 

number of parameters. To solve this problem, further optimization such as simplifying the 

models, using less layers, and more fine-tuning may be required to achieve better 

generalization.  

There is also the issue of limited dataset size and variety; even though the dataset that 

was used had over 4,217 fundus images, the size may still be considered limited especially 

when training deep learning models that require vast amounts of data to operate efficiently. 

Additionally, the images may not represent all the variations seen in real-world clinical cases, 

such as differences in imaging devices, lighting conditions, or patients’ demographics (e.g., 

age, ethnicity, clinical history). This limitation could affect the model’s ability to generalize to 

actual clinical environments. Therefore, a bigger and more diverse dataset would help with 

improving the robustness and applicability of the proposed models.  
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Another disadvantage is that this work focused solely on coloured fundoscopy images, 

which are commonly used and moderately accessible as a diagnosis modality in eye care. 

However, they don’t always provide a complete picture of the eye condition and capture all 

the relevant pathological features needed to achieve an accurate diagnosis. Other imaging 

procedures, such as OCT or fluorescein angiography may show additional and more explicit 

details of the retinal structure that could improve diagnosis accuracy. Including these imaging 

techniques and using a multimodal dataset in future works, could make the models more 

versatile and reliable in clinical practice. 

Despite the promising overall performance, the models have shown a non-negligible 

rate of misclassifications, especially in the glaucoma and diabetic retinopathy classes. These 

misclassifications may be due to multiple factors including insufficient feature representation, 

noise in the dataset, or overlap in features between classes. These missteps indicate the need 

for further refinement of the models. Improvements such as focusing on critical regions and 

areas of the images, or using more advanced deep learning pre-trained architectures, or 

including some expert-labelled regions to better guide the learning process of the models. 

By addressing these limitations and proposing potential solutions, future studies could 

significantly improve the models’ effectiveness, robustness, and clinical applicability, which 

may greatly contribute to more accurate and reliable automated eye disease diagnosis. 
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CHAPTER VI 

CONCLUSION 

 

6.1 Conclusion 

In summary, the ResNet50 and ResNet101 models emerge as the top-performing 

models, which shows and reinforces their effectiveness in classifying medical images of 

ocular diseases with high accuracy and low misclassification rates. On the other hand, 

DenseNet121, VGG16, and VGG19 have shown some weaknesses regarding the 

classification of the more challenging classes like Glaucoma and Diabetic Retinopathy. These 

results may suggest that deeper architectures with more layers, like the ResNet models, 

provide better domain adaptation and generalization for medical image classification tasks. 

Despite the limitations of the other models, all the architectures show overall promising 

results in terms of evaluation metrics, highlighting their potential for utilization in automated 

diagnostic systems in healthcare. The best performing model was integrated into a web 

application ‘I-SCANNER’ that was specifically developed and designed to assist 

ophthalmologists in the detection and classification of ocular pathologies into normal, 

cataract, glaucoma, and diabetic retinopathy. The I-SCANNER platform aims to facilitate the 

accessibility to diagnostic tools when it comes to eye diseases by contributing to the early 

detection and therefore, early treatment of these burdensome conditions that can greatly affect 

life quality. 

 

 

 

 

 

 

 



47 

 

REFERENCES 

 

Abbas, Q., Ibrahim, M. E., & Jaffar, M. A. (2018). Video scene analysis: An overview 

and challenges on deep learning algorithms. Multimedia Tools and Applications, 77(16), 

20415–20453. 

Abràmoff, M. D., Garvin, M. K., & Sonka, M. (2010). Retinal Imaging and Image 

Analysis. IEEE Reviews in Biomedical Engineering, 3, 169–208. IEEE Reviews in 

Biomedical Engineering. https://doi.org/10.1109/RBME.2010.2084567 

Ahmad, A., Mansoor, A. B., Mumtaz, R., Khan, M., & Mirza, S. (2014). Image 

processing and classification in diabetic retinopathy: A review. 1–6. 

Alam, K. N., & Khan, M. M. (2021). CNN Based COVID-19 Prediction from Chest X-

ray Images. 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile 

Communication Conference (UEMCON), 0486–0492. 

https://doi.org/10.1109/UEMCON53757.2021.9666508 

Alsaih, K., Lemaitre, G., Rastgoo, M., Massich, J., Sidibé, D., & Meriaudeau, F. (2017). 

Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT 

images. BioMedical Engineering OnLine, 16(1), 68. https://doi.org/10.1186/s12938-017-

0352-9 

Amoaku, W. M., Ghanchi, F., Bailey, C., Banerjee, S., Banerjee, S., Downey, L., Gale, 

R., Hamilton, R., Khunti, K., & Posner, E. (2020). Diabetic retinopathy and diabetic macular 

oedema pathways and management: UK Consensus Working Group. Eye, 34(Suppl 1), 1–51. 



48 

 

Borrás, T. (2012). Advances in Glaucoma Treatment and Management: Gene Therapy. 

Investigative Ophthalmology & Visual Science, 53(5), 2506–2510. 

https://doi.org/10.1167/iovs.12-9483o 

Budai, A., Bock, R., Maier, A., Hornegger, J., & Michelson, G. (2013). Robust vessel 

segmentation in fundus images. International Journal of Biomedical Imaging, 2013, 154860. 

https://doi.org/10.1155/2013/154860 

Burlina, P. M., Joshi, N., Pekala, M., Pacheco, K. D., Freund, D. E., & Bressler, N. M. 

(2017). Automated Grading of Age-Related Macular Degeneration From Color Fundus 

Images Using Deep Convolutional Neural Networks. JAMA Ophthalmology, 135(11), 1170. 

https://doi.org/10.1001/jamaophthalmol.2017.3782 

Chakrabarti, A., Singh, S., & R, K. (2000). Phacoemulsification in eyes with white 

cataract1. Journal of Cataract & Refractive Surgery, 26(7), 1041–1047. 

https://doi.org/10.1016/S0886-3350(00)00525-3 

Cheng, Y., Ma, M., Li, X., & Zhou, Y. (2021). Multi-label classification of fundus 

images based on graph convolutional network. BMC Medical Informatics and Decision 

Making, 21(2), 82. https://doi.org/10.1186/s12911-021-01424-x 

Chuck, R. S., Dunn, S. P., Flaxel, C. J., Gedde, S. J., Mah, F. S., Miller, K. M., Wallace, 

D. K., & Musch, D. C. (2021). Comprehensive Adult Medical Eye Evaluation Preferred 

Practice Pattern®. Ophthalmology, 128(1), P1–P29. 

https://doi.org/10.1016/j.ophtha.2020.10.024 

Cohen, L. P., & Pasquale, L. R. (2014). Clinical Characteristics and Current Treatment 

of Glaucoma. Cold Spring Harbor Perspectives in Medicine, 4(6), a017236. 

https://doi.org/10.1101/cshperspect.a017236 



49 

 

Diaz-Pinto, A., Morales, S., Naranjo, V., Köhler, T., Mossi, J. M., & Navea, A. (2019). 

CNNs for automatic glaucoma assessment using fundus images: An extensive validation. 

BioMedical Engineering OnLine, 18(1), 29. https://doi.org/10.1186/s12938-019-0649-y 

Dipu, N. M., Shohan, S. A., & Salam, K. M. A. (2021). Ocular Disease Detection Using 

Advanced Neural Network Based Classification Algorithms. Asian Journal For Convergence 

In Technology (AJCT) ISSN -2350-1146, 7(2), Article 2. 

https://doi.org/10.33130/AJCT.2021v07i02.019 

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 

27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010 

Fung, T. H., Patel, B., Wilmot, E. G., & Amoaku, W. M. (2022). Diabetic retinopathy 

for the non-ophthalmologist. Clinical Medicine, 22(2), 112–116. 

https://doi.org/10.7861/clinmed.2021-0792 

Galveia, J. N., Travassos, A., Quadros, F. A., & da Silva Cruz, L. A. (2018). Computer 

aided diagnosis in ophthalmology: Deep learning applications. Classification in BioApps: 

Automation of Decision Making, 263–293. 

Gour, N., & Khanna, P. (2021). Multi-class multi-label ophthalmological disease 

detection using transfer learning based convolutional neural network. Biomedical Signal 

Processing and Control, 66, 102329. https://doi.org/10.1016/j.bspc.2020.102329 

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (n.d.). Deep learning 

for visual understanding: A review. 

Gus, P. I., Kwitko, I., Roehe, D., & Kwitko, S. (2000). Potential acuity meter accuracy 

in cataract patients. Journal of Cataract & Refractive Surgery, 26(8), 1238. 

https://doi.org/10.1016/S0886-3350(00)00409-0 



50 

 

H. S, R. (2017). Prevalence and Risk Factors in Primary Open Angle Glaucoma of 

Patients Attending Ophthalmology OPD at Kims Hubli [M.S., Rajiv Gandhi University of 

Health Sciences (India)]. 

https://www.proquest.com/docview/2866083516/abstract/E8C99CE536974659PQ/1 

He, H., Boyd-Graber, J., Kwok, K., & Hal Daumé, I. I. I. (2016). Opponent Modeling in 

Deep Reinforcement Learning. Proceedings of The 33rd International Conference on 

Machine Learning, 1804–1813. https://proceedings.mlr.press/v48/he16.html 

He, J., Li, C., Ye, J., Qiao, Y., & Gu, L. (2021a). Multi-label ocular disease 

classification with a dense correlation deep neural network. Biomedical Signal Processing 

and Control, 63, 102167. https://doi.org/10.1016/j.bspc.2020.102167 

He, J., Li, C., Ye, J., Qiao, Y., & Gu, L. (2021b). Self-speculation of clinical features 

based on knowledge distillation for accurate ocular disease classification. Biomedical Signal 

Processing and Control, 67, 102491. https://doi.org/10.1016/j.bspc.2021.102491 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image 

Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

770–778. https://doi.org/10.1109/CVPR.2016.90 

Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely 

Connected Convolutional Networks. 4700–4708. 

https://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolu

tional_CVPR_2017_paper.html 

Islam, M. M., Yang, H.-C., Poly, T. N., Jian, W.-S., & (Jack) Li, Y.-C. (2020). Deep 

learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A 

systematic review and meta-analysis. Computer Methods and Programs in Biomedicine, 191, 

105320. https://doi.org/10.1016/j.cmpb.2020.105320 



51 

 

Jayaram, H., Kolko, M., Friedman, D. S., & Gazzard, G. (2023). Glaucoma: Now and 

beyond. The Lancet, 402(10414), 1788–1801. https://doi.org/10.1016/S0140-6736(23)01289-

8 

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C. S., Liang, H., Baxter, S. L., 

McKeown, A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M. K., Pei, J., Ting, M. Y. L., 

Zhu, J., Li, C., Hewett, S., Dong, J., Ziyar, I., … Zhang, K. (2018). Identifying Medical 

Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, 172(5), 1122-

1131.e9. https://doi.org/10.1016/j.cell.2018.02.010 

Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv Preprint 

arXiv:1412.6980. 

Lam, D., Rao, S. K., Ratra, V., Liu, Y., Mitchell, P., King, J., Tassignon, M.-J., Jonas, 

J., Pang, C. P., & Chang, D. F. (2015). Cataract. Nature Reviews Disease Primers, 1(1), 1–15. 

https://doi.org/10.1038/nrdp.2015.14 

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning 

applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. Proceedings 

of the IEEE. https://doi.org/10.1109/5.726791 

Lee, D. A., & Higginbotham, E. J. (2005). Glaucoma and its treatment: A review. 

American Journal of Health-System Pharmacy, 62(7), 691–699. 

https://doi.org/10.1093/ajhp/62.7.691 

Li, F., Wang, Y., Xu, T., Dong, L., Yan, L., Jiang, M., Zhang, X., Jiang, H., Wu, Z., & 

Zou, H. (2022). Deep learning-based automated detection for diabetic retinopathy and 

diabetic macular oedema in retinal fundus photographs. Eye, 36(7), 1433–1441. 

https://doi.org/10.1038/s41433-021-01552-8 



52 

 

Li, Z., Keel, S., Liu, C., He, Y., Meng, W., Scheetz, J., Lee, P. Y., Shaw, J., Ting, D., 

Wong, T. Y., Taylor, H., Chang, R., & He, M. (2018). An Automated Grading System for 

Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color 

Fundus Photographs. Diabetes Care, 41(12), 2509–2516. https://doi.org/10.2337/dc18-0147 

Lim, R. (2022). The surgical management of glaucoma: A review. Clinical & 

Experimental Ophthalmology, 50(2), 213–231. https://doi.org/10.1111/ceo.14028 

Madsen-Bouterse, S. A., & Kowluru, R. A. (2008). Oxidative stress and diabetic 

retinopathy: Pathophysiological mechanisms and treatment perspectives. Reviews in 

Endocrine and Metabolic Disorders, 9(4), 315–327. https://doi.org/10.1007/s11154-008-

9090-4 

Maitra, M., & Chatterjee, A. (2006). A Slantlet transform based intelligent system for 

magnetic resonance brain image classification. Biomedical Signal Processing and Control, 

1(4), 299–306. https://doi.org/10.1016/j.bspc.2006.12.001 

Meng, X., Xi, X., Yang, L., Zhang, G., Yin, Y., & Chen, X. (2018). Fast and effective 

optic disk localization based on convolutional neural network. Neurocomputing, 312, 285–

295. https://doi.org/10.1016/j.neucom.2018.05.114 

ODIR-2019—Grand Challenge. (2020). Grand-Challenge.Org. https://odir2019.grand-

challenge.org/ 

Ouda, O., AbdelMaksoud, E., Abd El-Aziz, A. A., & Elmogy, M. (2022). Multiple 

Ocular Disease Diagnosis Using Fundus Images Based on Multi-Label Deep Learning 

Classification. Electronics, 11(13), Article 13. https://doi.org/10.3390/electronics11131966 

Patz, A., Fine, S., Finkelstein, D., Prout, T., Aiello, L., Bradley, R., Briones, J. C., 

Myers, F., Bresnick, G., de Venecia, G., Stevens, T. S., Wallow, I. H. L., Chandra, S. R., 



53 

 

Norton, E., Blankenship, G., Harris, J., Knobloch, W., Goetz, F., Ramsay, R. C., … Rand, L. 

(1978). Photocoagulation Treatment of Proliferative Diabetic Retinopathy: The Second 

Report of Diabetic Retinopathy Study Findings. Ophthalmology, 85(1), 82–106. 

https://doi.org/10.1016/S0161-6420(78)35693-1 

Pektaş, M. (2023). Performance Analysis of Efficient Deep Learning Models for Multi-

Label Classification of Fundus Image. Artificial Intelligence Theory and Applications, 3(2), 

105–112. 

Porta, M., & Bandello, F. (2002). Diabetic retinopathy. Diabetologia, 45(12), 1617–

1634. https://doi.org/10.1007/s00125-002-0990-7 

Porwal, P., Pachade, S., Kamble, R., Kokare, M., Deshmukh, G., Sahasrabuddhe, V., & 

Meriaudeau, F. (2018). Indian Diabetic Retinopathy Image Dataset (IDRiD) [Dataset]. IEEE 

Dataport. https://doi.org/10.21227/H25W98 

Powers, D. M. W. (2020). Evaluation: From precision, recall and F-measure to ROC, 

informedness, markedness and correlation (No. arXiv:2010.16061). arXiv. 

https://doi.org/10.48550/arXiv.2010.16061 

Rajasekaran, A., & Indirani, G. (2021). IOT BASED GLAUCOMA DETECTION AND 

CLASSIFICATION USING FUNDUS IMAGES-COMPARISON. 2249–6661. 

Reguant, R., Brunak, S., & Saha, S. (2021). Understanding inherent image features in 

CNN-based assessment of diabetic retinopathy. Scientific Reports, 11(1), 9704. 

https://doi.org/10.1038/s41598-021-89225-0 

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., 

Clopath, C., Costa, R. P., de Berker, A., Ganguli, S., Gillon, C. J., Hafner, D., Kepecs, A., 

Kriegeskorte, N., Latham, P., Lindsay, G. W., Miller, K. D., Naud, R., Pack, C. C., … 



54 

 

Kording, K. P. (2019). A deep learning framework for neuroscience. Nature Neuroscience, 

22(11), 1761–1770. https://doi.org/10.1038/s41593-019-0520-2 

Rocha, K. M., Nosé, W., Bottós, K., Bottós, J., Morimoto, L., & Soriano, E. (2007). 

Higher-order aberrations of age-related cataract. Journal of Cataract & Refractive Surgery, 

33(8), 1442–1446. https://doi.org/10.1016/j.jcrs.2007.03.059 

Ryu, G., Lee, K., Park, D., Park, S. H., & Sagong, M. (2021). A deep learning model for 

identifying diabetic retinopathy using optical coherence tomography angiography. Scientific 

Reports, 11(1), 23024. https://doi.org/10.1038/s41598-021-02479-6 

Sahu, M. K. (2024). A review on glaucoma: Causes, symptoms, pathogenesis & 

treatment. Journal of Clinical Research and Ophthalmology, 11(1), 001–004. 

Shabbir, S., Tariq, A., & Akram, M. U. (2013). A Comparison and Evaluation of 

Computerized Methods for Blood Vessel Enhancement and Segmentation in Retinal Images. 

International Journal of Future Computer and Communication, 600–603. 

https://doi.org/10.7763/IJFCC.2013.V2.235 

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-

Scale Image Recognition (No. arXiv:1409.1556). arXiv. 

https://doi.org/10.48550/arXiv.1409.1556 

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures 

for classification tasks. Information Processing & Management, 45(4), 427–437. 

https://doi.org/10.1016/j.ipm.2009.03.002 

Song, E., Sun, H., Xu, Y., Ma, Y., Zhu, H., & Pan, C.-W. (2014). Age-Related Cataract, 

Cataract Surgery and Subsequent Mortality: A Systematic Review and Meta-Analysis. PLOS 

ONE, 9(11), e112054. https://doi.org/10.1371/journal.pone.0112054 



55 

 

Sriram, R., .s, G., Madhusudanan, J., Perumal, I., Venkatesan, V., & Murugesan, G. 

(2015). A Study on Context-aware Computing Framework in Pervasive Healthcare (p. 5). 

https://doi.org/10.1145/2743065.2743104 

Sultan, A. S., Elgharib, M. A., Tavares, T., Jessri, M., & Basile, J. R. (2020). The use of 

artificial intelligence, machine learning and deep learning in oncologic histopathology. 

Journal of Oral Pathology & Medicine, 49(9), 849–856. https://doi.org/10.1111/jop.13042 

Supuran, C. T. (2019). The management of glaucoma and macular degeneration. Expert 

Opinion on Therapeutic Patents, 29(10), 745–747. 

https://doi.org/10.1080/13543776.2019.1674285 

Tayal, A., Gupta, J., Solanki, A., Bisht, K., Nayyar, A., & Masud, M. (2022). DL-CNN-

based approach with image processing techniques for diagnosis of retinal diseases. 

Multimedia Systems, 28(4), 1417–1438. https://doi.org/10.1007/s00530-021-00769-7 

Vasavada, A., Singh, R., & Desai, J. (1998). Phacoemulsification of white mature 

cataracts. Journal of Cataract & Refractive Surgery, 24(2), 270–277. 

https://doi.org/10.1016/S0886-3350(98)80210-1 

Wang, J., Yang, L., Huo, Z., He, W., & Luo, J. (2020). Multi-Label Classification of 

Fundus Images With EfficientNet. IEEE Access, 8, 212499–212508. IEEE Access. 

https://doi.org/10.1109/ACCESS.2020.3040275 

Wang, W., & Lo, A. C. Y. (2018). Diabetic Retinopathy: Pathophysiology and 

Treatments. International Journal of Molecular Sciences, 19(6), Article 6. 

https://doi.org/10.3390/ijms19061816 

Wang, Z., Keane, P. A., Chiang, M., Cheung, C. Y., Wong, T. Y., & Ting, D. S. W. 

(2022). Artificial Intelligence and Deep Learning in Ophthalmology. In N. Lidströmer & H. 



56 

 

Ashrafian (Eds.), Artificial Intelligence in Medicine (pp. 1519–1552). Springer International 

Publishing. https://doi.org/10.1007/978-3-030-64573-1_200 

Wilkinson, C. P., Ferris, F. L., Klein, R. E., Lee, P. P., Agardh, C. D., Davis, M., Dills, 

D., Kampik, A., Pararajasegaram, R., & Verdaguer, J. T. (2003). Proposed international 

clinical diabetic retinopathy and diabetic macular edema disease severity scales. 

Ophthalmology, 110(9), 1677–1682. https://doi.org/10.1016/S0161-6420(03)00475-5 

Wong, T.-Y., & Bressler, N. (2016). Artificial Intelligence With Deep Learning 

Technology Looks Into Diabetic Retinopathy Screening. JAMA, 316. 

https://doi.org/10.1001/jama.2016.17563 

Yannuzzi, L. A., Ober, M. D., Slakter, J. S., Spaide, R. F., Fisher, Y. L., Flower, R. W., 

& Rosen, R. (2004). Ophthalmic fundus imaging: Today and beyond. American Journal of 

Ophthalmology, 137(3), 511–524. https://doi.org/10.1016/j.ajo.2003.12.035 

Zhang, W., Zhong, J., Yang, S., Gao, Z., Hu, J., Chen, Y., & Yi, Z. (2019). Automated 

identification and grading system of diabetic retinopathy using deep neural networks. 

Knowledge-Based Systems, 175, 12–25. https://doi.org/10.1016/j.knosys.2019.03.016 

 

 

 

 

 

 

 



57 

 

APPENDIX X 

Similarity Report 

 

 


