

I

NEAR EAST UNIVERSITY

INSTITUTE OF GRADUATE STUDIES

DEPARTMENT OF ARTIFICIAL INTELLIGENCE

REAL-TIME VOICE-ACTIVATED CHAT-BOX DIGITAL ASSISTANT USING

ESP32 AND OPENAI API

M.Sc. THESIS

EriOluwa ODUNLAMI

Nicosia

June, 2024

O
D

U
N

LA
M

I ER
IO

LU
W

A

R
EA

L-TIM
E V

O
IC

E-A
C

TIV
A

TED

C
H

A
T-B

O
X

 D
IG

ITA
L A

SSISTA
N

T
U

SIN
G

 ESP32 A
N

D
 O

PEN
A

I A
PI

M
A

STER
 TH

ESIS
2024

II
NEAR EAST UNIVERSITY

INSTITUTE OF GRADUATE STUDIES

DEPARTMENT OF ARTIFICIAL INTELLIGENCE ENGINEERING

REAL-TIME VOICE-ACTIVATED CHAT-BOX DIGITAL ASSISTANT USING
ESP32 AND OPENAI API

M.Sc. THESIS

EriOluwa ODUNLAMI

Supervisor

Professor Fadi AL-TURJMAN

Nicosia

June, 2024

IV
Declaration

I hereby declare that all information, documents, analysis and results in this thesis

have been collected and presented according to the academic rules and ethical

guidelines of Institute of Graduate Studies, Near East University. I also declare that

as required by these rules and conduct, I have fully cited and referenced information

and data that are not original to this study.

Odunlami EriOluwa Ayomide

…../…../…..

Day/Month/Year

Office
Add your name here

V
Acknowledgments

I would like to express my heartfelt gratitude to several individuals who have
supported me throughout this project.
First and foremost, I thank God for His guidance and wisdom. I am deeply indebted
to my supervisor, Prof. Fadi Al-Turjmann, for his invaluable guidance, expertise,
and unwavering support. I also extend my sincere appreciation to my colleague,
Sarumi Usman, who has been an immense help throughout this journey.
To my loving parents, Dr. and Mrs. Odunlami, I thank you for your constant
encouragement, love, and support.
Lastly, I would like to thank my friends and colleagues who have contributed to my
growth and success in various ways.

Odunlami EriOluwa

VI
Abstract

REAL-TIME VOICE-ACTIVATED CHAT-BOX DIGITAL ASSISTANT
USING ESP32 AND OPENAI API

Odunlami, EriOluwa

MS.c, Department of Artificial Intelligence Engineering

June, 2024, 53 pages

The essence of this thesis is to give comprehensive details of the design and

implementation of a voice-activated chatbot system or ‘Chat-box’. The chat-box’s

purpose is simply to record questions from the user and then answer the questions,

with the aid of OpenAI API ‘speaking’ via a speaker. To make this possible, two

ESP-32 microcontrollers were used in a master-slave configuration. The Master

ESP-32 was connected to a microphone which recorded the questions asked and then

the master ESP-32 converts the questions from audio to text. The text is then sent to

the slave ESP-32 which then forwards the received question to ChatGPT using

OpenAI API, the answers gotten from ChatGPT is then heard from a speaker, hence

giving the experience of talking with a smart box. The chat-box was later

implemented alongside a robotic head with moving mouth called ‘Dux’ which gives

the feeling of a talking robot.

This system shows how ESP-32 can be applied in conversational Cloud and AI

applications. The results show how effective this design is in real-time interactions in

different scenarios.

Key Words: Chat-box, Chatbot, ESP-32, OpenAI, ChatGPT, API

Office
Ensure the page count is valid if you add more content

VII
 Table of Contents

Approval .. III

Declaration ... IV

Acknowledgments ... V

Abstract .. VI

Table of Contents ... VII

List Of Tables ... VIII

List Of Figures ... IX

List Of Abbreviations ... X

CHAPTER I .. 1

Introduction .. 1
1.1 STATEMENT OF THE PROBLEM .. 1

CHAPTER II .. 7

Literature Review ... 7
2.1 Background ... 7

2.2 Speech-To-Text Technology .. 7

2.3 ESP-NOW Protocol .. 8

2.4 ChatGPT ... 9

2.5 Conclusion ... 11

CHAPTER III .. 14

Methodology .. 14

CHAPTER IV ... 34

Results Analysis .. 34
References ... 41

Appendix A ... 46

Code.. 46

Appendix X ... 60

Similarity Report .. 60

Office
Ensure your Table of Contents is generated automatically to match the page numbers for each title and subtitle

VIII
List Of Tables

Table 1: Table showing available conversational Ais with their accuracy, response

time and reference. ... 9

 Table 2: Table comparing accuracy of Chat-box across three scenarios
. ... 38

Table 3: Table comparing Average time of response, Audio clarity rating and
Quality of response across all three scenarios
. ... 39

Table 4: Average Overall Response Time across all three scenarios
. ... 40

IX
List Of Figures

Figure 1: Image of ESP32 (Photo credit: https://www.aranacorp.com/en/__trashed/)
 .. 10
Figure 2: Flowcharts describing operations of the chat-box 18
Figure 3: Microphone box containing master esp32 and microphone 19
Figure 4: Chat-box (slave ESP32 circuit with speaker) incorporated with dux-head
project ... 28
Figure 5: Wireless microphone using ESP-NOW on breadboard. 29
Figure 6: MAX98357 circuit diagram with a speaker and microcontroller (Photo
credit: https://www.dfrobot.com/product-2614.html) .. 29
Figure 7: MAX98357 diagram and label (Photo credit:
https://cdn.shopify.com/s/files/1/1509/1638/files/2BreakoutBoardBezeichnung_1024
x1024.png?v=1648737062)
. ... 31
Figure 8: Chat-box testing phase on breadboard (Slave ESP32-MAX98352
Amplifier-Speaker Connection)
. ... 35

X
List Of Abbreviations

AI: Artificial Intelligence

App: Application

DL: Deep Learning

CNN: Convolutional Neural Network

VGG: Visual Geometry Group

ResNet: Residual Network

ML: Machine Learning

DOM: Document Object Model

API: Application Programming Interface

RNN: Recurrent Neural Network

CPU: Central Processing Unit

GPU: Graphics Processing Unit

WSGI: Web Server Gateway Interface

GD: Gradient Descent

SGD: Stochastic Gradient Descent

Adam: Adaptive Moment Estimation

GAN: Generative Adversarial Network

FTP: File Transfer Protocol

VAR: Variant

RAM: Random Access Memory

HTML: HyperText Markup Language

PHP: Hyper PreProcessor

SQL: Structured Query Language

UI: User Interface

CLI: Command Line Interface

URL: Uniform Resource Locator

Office
Edit Abbreviations as you see fit.

1

CHAPTER I

Introduction

 In recent years, Artificial Intelligence (AI) has become increasingly prevalent in
various industries, revolutionizing the way tasks are automated and executed. One area
that stands to benefit from AI technology is education. With the advent of AI assistants,
students have the opportunity to access personalized learning experiences and receive
immediate feedback on their progress. The development of a student AI assistant chat-box
device aims to enhance the educational experience by providing an interactive platform
where students can ask questions, seek clarification, and engage in dialogue to deepen their
understanding of academic concepts. By leveraging AI technology and integrating it into a
physical device, this project seeks to bridge the gap between traditional teaching methods
and modern advancements in AI technology, ultimately creating a more dynamic and
efficient learning environment for students.

1.1 STATEMENT OF THE PROBLEM

 In recent years, the integration of artificial intelligence (AI) technology in educational
settings has gained significant momentum. The emergence of chat-box devices as student
assistants represents a cutting-edge development in this space. These AI-powered chat-
boxs are designed to provide personalized support to students, offering assistance with a
wide range of academic tasks and inquiries. By leveraging natural language processing
techniques, these chat-boxs can engage students in interactive conversations, deliver
instant feedback, and adapt their responses based on individual needs. The implementation
of a student AI assistant chat-box device holds immense potential to enhance the learning
experience for students, offering a convenient and efficient way to access educational
resources and support. As such, the development of these innovative devices aligns with
the broader goal of harnessing AI technology to optimize learning outcomes and facilitate
a more personalized approach to education . Its incorporation into educational institutions
can revolutionize the way students engage with course material and receive academic
guidance, ultimately fostering a more dynamic and adaptive learning environment
(Krishan Kant Singh Mer et al., 2021-04-23).

1.2 AIMS AND OBJECTIVES OF THE PROJECT

 While trying to enhance student learning experiences, the incorporation of artificial
intelligence (AI) technologies has become increasingly very common and one particular
project that exemplifies this trend involves the development of a student assistant chat-box
utilizing key components such as ChatGPT, esp32 microcontroller, a microphone, and a
speaker. This innovative device purpose is to provide students with a personalized and
interactive tool for academic support and guidance while also removing the distraction of
the screen by leveraging the capabilities of ChatGPT for natural language processing and
response generation, the chat-box can engage in meaningful conversations with students to
address their queries and facilitate learning. Additionally, the integration of esp32, a
versatile microcontroller, alongside a microphone and speaker allows for seamless

2
communication between the chat-box and the user. The best thing about this project is that
it showcases how the convergence of AI technologies and IoT devices can revolutionize
the way students access educational resources and assistance in a user-friendly and
efficient manner.

1.3 SIGNIFICANCE OF STUDY

 In the realm of educational settings, the integration of Artificial Intelligence (AI)
technology holds immense importance. AI can personalize learning experiences by
analyzing individual learning patterns and adapting teaching methods accordingly. This
personalized approach can cater to diverse learning needs, ensuring that each student
receives tailored support and feedback. Additionally, AI technology can automate
administrative tasks, allowing educators to focus more on innovative teaching strategies
and student engagement. AI-powered tools can also provide timely and actionable insights
into student performance, enabling instructors to intervene promptly when necessary.
Moreover, AI can facilitate interactive and engaging learning experiences through virtual
tutors, personalized recommendations, and real-time feedback mechanisms. As stated by ,
the utilization of AI in education has the potential to revolutionize traditional teaching
methods and enhance overall educational outcomes, making it a crucial component in
modern educational environments.

1.3.1 Context for Implementing Student AI Assistant Chat-box Device

 In the realm of educational technology, the integration of Artificial Intelligence (AI)
into student learning environments has become increasingly prevalent. AI chat-boxs have
emerged as a promising tool to enhance student engagement, provide personalized
assistance, and offer immediate feedback. With the rise of remote and hybrid learning
models, the need for innovative solutions to support student learning is more critical than
ever. Implementing a Student AI Assistant Chat-box Device offers a unique opportunity to
address these challenges by creating a virtual companion that can interact with students,
answer questions, and guide them through their educational journey. By leveraging the
capabilities of AI technologies, educators can enhance the learning experience, promote
self-directed learning, and foster a more interactive and personalized learning environment.
As Kingsley (Kingsley Okoye et al., 2024-06-07) have highlighted, the integration of AI
chat-boxs in education has shown promising results in improving student outcomes and
promoting a more dynamic and adaptive learning experience.

1.3.2 Current Educational Landscape
 The current educational landscape is increasingly incorporating technology to enhance
learning experiences and address the diverse needs of students. With the rise of
personalized learning and adaptive technologies, educators are leveraging AI and chat-box
devices to provide individualized support and feedback to students in real-time. These
devices have the potential to cater to students' specific learning styles, preferences, and
pace, ultimately improving their academic performance and engagement. Additionally, the
integration of AI chat-boxs in education allows for more efficient communication between
students and teachers, facilitating instant access to resources, feedback, and assistance. As
educational institutions strive to embrace digital transformation and meet the demands of
modern learners, the development of student AI assistant chat-box devices presents a
compelling solution to optimize the learning process and promote student success .
Moreover, by leveraging cutting-edge technologies such as esp32, microphone, and

3
speaker, this project aims to revolutionize the way students interact with educational
content and support systems (Miao et al., 2021-04-08).

1.4 LIMITATIONS

 In traditional learning environments, students often face various challenges that can
hinder their academic progress. One common difficulty is the lack of personalized
attention from educators, as classes typically have a large number of students, making it
challenging for teachers to cater to individual learning needs. This can result in students
feeling lost or overlooked, leading to a decline in motivation and engagement with the
material. Additionally, the rigid structure of traditional classrooms may not accommodate
different learning styles, making it difficult for some students to fully grasp the content.
Furthermore, access to resources and support outside of the classroom can be limited,
leaving students struggling to find assistance when needed. These challenges underscore
the need for innovative solutions, such as AI-powered chat-box devices, to provide
personalized support and guidance to students in a more accessible and efficient manner
(Miao et al., 2021-04-08).

1.5 Introduction of AI technology as a solution to enhance student learning
experiences
 As technology continues to advance, it has become increasingly important to leverage
innovative solutions in education to enhance student learning experiences. The
introduction of Artificial Intelligence (AI) technology has shown great potential in
revolutionizing the way students interact with educational content. AI-powered chat-boxs
can provide personalized assistance to students, offering immediate feedback, explanations,
and resources tailored to their individual needs. By incorporating AI technology into the
learning process, educators can create a more engaging and dynamic environment that
fosters collaboration, critical thinking, and problem-solving skills. Research has shown
that students are more likely to retain information when they are actively engaged in the
learning process, and AI-powered chat-boxs have the ability to provide that level of
engagement . This innovative approach not only enhances student learning experiences but
also prepares them for a future where technology plays an increasingly prominent role in
all aspects of society (Sarah Nagle et al., 2022-03-15).

1.6 Motivation for Developing Student AI Assistant Chat-box Device
 In today's educational landscape, the integration of technology is becoming
increasingly vital in enhancing learning outcomes for students. The motivation behind
developing a student AI assistant chat-box device stems from the need to provide
personalized and accessible support to learners. By incorporating artificial intelligence
capabilities into a chat-box, students can receive immediate responses to their queries,
enabling them to engage more actively with their studies. Moreover, the use of such
innovative technology can promote independent learning and problem-solving skills
among students, preparing them for the challenges of the digital age. Additionally, the
student AI assistant chat-box device holds the potential to alleviate the burden on
educators by offering timely assistance to students outside of classroom hours, thus
fostering a more self-regulated and efficient learning environment. This initiative aligns
with the broader objectives of enhancing student learning experiences and promoting
technological literacy in education (P. Otero et al., 2022-08-05).

4

1.7 Enhancing Student Engagement and Learning

 In modern educational settings, the concept of enhancing student engagement and
learning has become a focal point for educators and researchers alike. By integrating
technology into the learning environment, educators aim to provide students with
interactive and personalized experiences that cater to their individual needs and learning
styles. One promising tool that has emerged in this realm is the utilization of AI chat-boxs
as student assistants. These intelligent virtual agents can support students in navigating
complex concepts, providing instant feedback, and offering personalized learning
recommendations. By incorporating AI chat-boxs into the classroom, educators can create
a more dynamic and interactive learning environment that fosters student engagement and
motivation. Research has shown that students are more likely to be actively involved in
their learning when they are provided with opportunities for interactive and personalized
learning experiences . By harnessing the power of AI technology, educators can enhance
student engagement and facilitate more effective learning outcomes (Arcangelo
Castiglione et al., 2018-09-23).

1.7.1 Explanation of how AI chat-boxes can provide personalized assistance to
students

 In the realm of educational technology, AI chat-boxs present a promising avenue for
enhancing student learning experiences through personalized assistance. By leveraging
advanced natural language processing algorithms, AI chat-boxs can tailor their interactions
with students based on individual preferences, learning styles, and needs. These chat-boxs
can adapt their responses in real-time to provide customized support, guidance, and
feedback to students as they navigate educational tasks and challenges. With the ability to
analyze vast amounts of data and information, AI chat-boxs can offer personalized
recommendations for study materials, resources, and learning strategies that align with
each student's unique learning goals. Moreover, AI chat-boxs can assist students in setting
personalized learning objectives, tracking their progress, and identifying areas for
improvement. Through their adaptive capabilities, AI chat-boxs have the potential to
revolutionize the way students engage with educational content and receive support,
ultimately enhancing learning outcomes and fostering a more student-centered approach to
education (Arcangelo Castiglione et al., 2018-09-23).

1.7.2 Benefits of interactive learning through AI technology

 In the context of developing a student AI assistant chat-box device that integrates AI
technology to enhance interactive learning experiences, the potential benefits identified
through research highlight a paradigm shift in language pedagogy. Leveraging Artificial
Intelligence chat-boxs offers a transformative approach to language education by
providing immediate, personalised feedback to learners, thereby fostering a supportive
learning environment tailored to individual needs and preferences (Konstantinos M.
Pitychoutis, 2024). The integration of AI technology in education not only enables
personalized learning experiences but also enhances student engagement through
interactive platforms. Furthermore, the synergy between AI and Augmented Reality (AR)
technologies presents opportunities for visualizations, simulations, and collaborative
learning experiences, ultimately deepening students' understanding of complex concepts
and promoting active knowledge sharing within the classroom (A. Zouhri et al., 2024).

5
This interconnectedness between AI technology and interactive learning methodologies
underscores the immense potential for enhancing educational experiences and motivating
the development of innovative student assistant chat-box devices that respond to the
evolving needs of students and educators alike.

1.8 CONCLUSION

 In summary, the development of a student AI assistant chat-box device utilizing
Chatgpt, esp32, microphone, and speaker has the potential to revolutionize the way
students interact with educational resources. By providing a voice-activated tool that can
answer questions, provide information, and offer support in real-time, this device offers a
personalized learning experience for students. The integration of artificial intelligence
technology enables the chat-box to continuously learn and improve its responses,
enhancing its effectiveness over time. Additionally, the use of esp32 ensures seamless
connectivity and communication, making the device accessible and user-friendly. Overall,
this innovative project not only showcases the capabilities of AI technology in education
but also highlights the importance of adapting to the evolving needs of learners in the
digital age. Further research and development in this area can lead to significant
advancements in the field of educational technology, benefiting students and educators
alike. (Tareq Ahram and Redha Taiar, 2023-04-13)

 In today's fast-paced education system, students often struggle to access personalized
assistance and resources tailored to their individual needs. This is where the Student AI
Assistant Chat-box Device plays a crucial role. By utilizing artificial intelligence
technology, this innovative device can provide students with instant support and guidance,
enhancing their learning experience. The chat-box's ability to quickly respond to inquiries,
provide relevant information, and offer personalized recommendations can significantly
impact a student's academic performance and overall well-being. Furthermore, the
convenience of having a virtual assistant available 24/7 can help alleviate the burden on
educators and support staff, allowing them to focus on more complex tasks. Ultimately, the
Student AI Assistant Chat-box Device not only improves academic outcomes but also
fosters a more efficient and effective learning environment for students and educators alike.
(Kingsley Okoye et al., 2024-06-07)

 The integration of AI technology in educational settings has profound implications for
enhancing the learning experience. By incorporating AI-driven tools, educators can
personalize learning pathways to cater to individual student needs, thereby promoting a
more effective and engaging learning environment. AI technology can also streamline
administrative tasks, allowing teachers to allocate more time to student interactions and
instructional delivery. Additionally, AI-enabled systems can provide real-time feedback on
student performance, enabling timely interventions and personalized support. Through the
utilization of AI, educational institutions can harness the power of data analytics to gain
insights into student learning patterns and preferences, ultimately driving continuous
improvement in instructional strategies and curriculum design. Moreover, the integration
of AI technology aligns with the broader trend towards digitalization in education,
equipping students with essential 21st-century skills and preparing them for the demands
of an increasingly technology-driven society. (Miao et al., 2021-04-08)

 As technology continues to advance at a rapid pace, the future implications of utilizing
AI assistants for student support are promising. With the ability to access information

6
instantaneously and provide personalized assistance, AI assistants have the potential to
revolutionize the way students learn and interact with educational resources. By leveraging
machine learning algorithms and natural language processing capabilities, these AI
assistants can adapt to students' individual needs and learning styles, offering tailored
guidance and support in real-time. Furthermore, as AI technology evolves, the potential for
advancements in student support through AI assistants is limitless. From providing
interactive tutoring sessions to offering cognitive-behavioral therapy interventions, the
future of AI-driven student support holds great promise in enhancing educational outcomes
and improving overall student well-being. The implementation of AI assistants in student
support services represents a significant leap forward in the realm of educational
technology, paving the way for a more efficient and personalized learning experience for
students across various academic disciplines.

7
CHAPTER II

Literature Review

2.1 Background

 In recent times, there has been exponential advancement in the progress of Artificial
Intelligence related technology like Speech-to-text for instance. Great progress has been
made in terms of quality, how we interact with it, precision and efficiency. For instance, in
the case of Speech-to-text technology, noticeable improvements has been noticed based on
precison, authenticity and speed thereby increasing it's versatility thanks to important
algorithms and frameworks of interfaces like Google Cloud speech to text. Large
Language Models (LLM) like ChatGPT are emerging and evolving at a scary rate,
becoming more smart and human-like over time. If we combine both speech to text and
LLM capability with the emergence of ESP-NOW communication protocol, this opens us
up to various topnotch applications in various fields like Education (like this project for
instance), Medicine, Agriculture etc. We will examine the development and current state
of these technologies so that we can gain valuable insights into their application with
respect to the Chat-box system.

2.2 Speech-To-Text Technology

 Speech-to-text technology is a rapidly advancing technology that simply converts
spoken words into text format. Speech-to-text technology has been around for a while and
early systems have relied solely on rule-based frameworks and phonetic dictionaries. The
results of these methods were decent but not reliable enough to work with. In modern
times, Deep learning techniques like transformers and recurrent neural networks (RNN)
are used to increase accuracy by handling diverse accents of the speaker, language and
cutting out noise environments which affected results of early systems.

 Speech-to-text and text-to-speech technologies have really come a long way. There has
been a large improvement and advancement in terms of their accuracy, naturalness and
latency reduction. For instance, the progress made in terms of naturalness has been
significant. To put this in perspective, a research done by Shermen in 1993 shows how
hard it takes computers to handle data from videos, let alone speech. Back then, even one
second video created so much data that servers could not keep up at the time, they
exhausted their available IP packets just for one second video. (Sherman, 1993) but
nowadays, modern speech-to-text applications can handle speech quickly without needing
as much computer power, making them improve their naturalness, thanks to advancements
made in underlying algorithms and improved neural network architectures (Fang Chen et
al., 2010-07-01).

 Speech-to-text technology has improved greatly in humanizing computer interaction.
These technologies can be seen in chatbots, personal assistants, and augmented reality
simulations that use text-to-speech to create voices for characters, for example. Google
Cloud Speech-to-text has been more influential in ushering this new era of 'more human-
like' speech-to-text technologies. The voices sound more natural in the case of text-to-
speech technology, the texts can bypass complexity of error correction and understand and
interprete (not perfect yet) human speeches more accurately. Early speech-to-text systems

8
have relied previously on carefully researched guide;ines to convert sound into text or vice
versa but modern systems take advantage of human expertise to improve the quality of
their interpretation with the aid of deep learning models, such as recurrent neural networks
(RNNs) and transformer-based models like BERT and GPT-3. A recent study by Fang
Chen et al (2010-07-01) further illustrates the use of neural network architectures eg
Transformer can improve the performance of speech-to-text medical transcription systems.
This techniques reduce noise to the bare minimum and then improves the quality of the
output rendered.

 Regarding to the Chat-box project, the Speech-to-text function's role is important. It is
needed to listen to the question asked by the user and translate it accurately to text format
so that it can be forwarded to ChatGPT. The accuracy of the Speech-to-text function is so
crucial to the success of the project since ChatGPT needs to get the right question to send
out the right answer. Google Cloud Speech-to-text API was used in this project and the
accuracy was impressive as shown in the result chapter of this thesis.

2.3 ESP-NOW Protocol

 ESP-NOW is a cutting-edge wireless communication protocol developed by Espressif
Systems, specifically for IoT applications using ESP microcontrollers. It is known for its
high dependability, low power consumption, and secure communication and because of
this, ESP-NOW enables smooth and seamless data transmission between IoT devices
without requiring traditional Wi-Fi network infrastructure. Because of the lightweight
design of ESP microcontrollers, this makes it especially suitable for a lot of IoT devices,
enabling fast and efficient device-to-device communication. Researchers show how
important secure protocols like ESP-NOW can be in ensuring data integrity and
confidentiality in modern IoT systems (Themba Ngobeni et al., 2024).

 ESP-NOW works using peer-to-peer communication between two or more ESP
microcontrollers, bypassing the need for external routers or Wi-Fi networks. Instead of
connecting to a WiFi router, they exchange data directly by connecting using MAC
addresses. It is more like an exclusive WiFi connection for ESP microcontrollers. One ESP
device initiates the communication channel, and others connect securely in a broadcast or
unicast mode. This protocol’s low latency and lightweight design make it ideal for real-
time applications, like the chat-box system integrating speech-to-text and text-to-speech
functions. Its secure data handling and energy efficiency makes it more appealing for IoT
deployments.

 ESP-NOW has so many diverse applications in IoT use cases ranging from sensor
networks, smart home automation, to industrial IoT. An example of its application can be
seen its use in decentralized communication setups for smart lighting and home monitoring
systems (Wang et al., 2018; Lee et al., 2019). Its ability to handle low-power, high-speed
data transmission makes it indispensable and highly valuable in environments requiring
robust and reliable connections. Case studies and literature also highlight its role in
promoting automation and enhancing real-time interactions in IoT projects.

9

Fig 1: IMAGE OF ESP32 (Photo credit: https://www.aranacorp.com/en/__trashed/)

 ESP-NOW has some vital advantages over other connection types like bluetooth and
WiFi. First and foremost, it is more secured than bluetooth and WiFi connections. It also
boasts of other advantages like low power consumption, reduced latency, and enhanced
reliability compared to traditional protocols like Wi-Fi or Bluetooth (Tomonobu Senjyu).
However, it has limitations, including a relatively short message size and dependency on
ESP32 hardware. Despite these constraints, its simplicity and efficiency make it an optimal
choice for IoT applications that prioritize energy-saving and direct device communication
like the Chat-box project.

 ESP-NOW's simplicity and versatility makes it the most ideal connection type
employed in the Chat-box project. The ESP-NOW protocol's purpose is to relay the
generated answer from the master ESP32 to the slave ESP32 which is connected to the
speaker. It serves as a bridge between the two ESP32s and it makes the design much more
flexible.

2.4 ChatGPT

 Recently, OpenAI's ChatGPT has been in the forefront of the recent surge or waves of
Large Language Models. The launch of ChatGPT opened humanity to the endless
possibilities with LLMs. For instance, this recent surge of progress with Natural Language
Processing (NLP) when combined with Large Language Models (LLMs) have greatly
impacted systems of interaction with examples like ChatGPT. The AI language model
developed by OpenAI has proved to be extremely useful in numerous fields such as
Education. For instance, the OpenAI's golden goose improves interactions between
students and their teachers and also even with their institutions through context awareness,

10
real-time interaction, and human-like response generation. The integration of ChatGPT
into educational systems makes learning more personalized, effective and self-directed.

One thing that makes ChatGPT unique is that it provides a much more multi-dimensional
and customized approach which is powered by AI. It enables students to learn information
best suited to their personal needs and preference. Students can learn what they want to
learn, how they want to learn, where and when they want to learn at their own convenient
pace. With its ability to modify complexity based on user-set prompts, it is able to give out
optimal information for people with varying levels of understanding. This flexibility in
approach makes it helpful for both students who might be struggling and those ahead of
their syllabus. ChatGPT is also a great way for people to bypass traditional means of
education, making it simple to retrieve data without wasting precious time. Another major
application of ChatGPT in the education arena is AI-powered tutoring. It helps learners in
different subjects like maths, science, literature etc., and provides step-by-step solutions
with explanations. Plus it’s able to review essays, summarize academic papers, and assist
with research project outlines. The availability of GPT-3 around the clock removes the
boundaries of human tutors. This means that students can access a tutor at any convenient
time. Language learning is one of the most prominent fields in which ChatGPT shines.
Students can practice conversations in English due to its AI-driven technology. ChatGPT
can also receive feedback on their pronunciation, and engage in grammar correction
exercises that can help refine their language skills. It also enhances multilingual learners'
comprehension of various languages due to its real-time translation features. ChatGPT
serves as an AI language tutor, helping both novice and more advanced learners hone their
communication skills.

 ChatGPT can serve as an handy writing assistant for students and researchers by
helping with brainstorming, writing, essay structure, summaries of books, and academic
writing. ChatGPT can save a lot of time taken in studying research materials by giving
accurate summaries and making it easy for the researcher to navigate the academic
material. Additionally, it can offer citation recommendations and help with improving
writing flow. ChatGPT also has the potential of writing ideas on its own but ethical issues
surrounding the over-dependence on AI content shows that critical thinking and originality
should dominate the use of ChatGPT in academia.

 AI-driven technologies such as ChatGPT is a huge source of help for students with
disabilities. Text-to-speech, speech-to-text, and personalized learning assistance are some
features that aid accessibility for students with disabilities like visually impaired or
dyslexic students. ChatGPT can also help neuro-diverse students by providing customized
learning materials best suited for each different cognitive styles. These developments
facilitate a more equitable learning experience.

 As we all know that every rose has its thorns, it is worth noting that despite the
numerous positive impacts from ChatGPT, the ChatGPT's 'rose' comes with its thorns;
challenges and limitations which are also present in education. While this has its benefits,
ChatGPT poses a problem in education. There are valid concerns about misinformation,
biased responses and academic dishonesty (plagiarism to name one) from the AI LLM.
Overdependence on AI-generated responses can also weaken students’ critical and
problem-solving skills which is counterproductive to the values of academia. Teachers
need to lead students toward the responsible use of ChatGPT, and make sure it acts as a
supplement rather than a replacement for traditional learning methods.AI offers several

11
advantages to education and can be defined as the future of it. ● AI Software Program
Interface adapt learning to a personal level. Yet still, enough attention should be given to
ensure that a balance is kept between AI-enabled and human-led education for a
wholesome learning experience.

 ChatGPT has taken education, whether it is about personalized learning, AI-based
tutoring, language analysis, research assistance, or accessibility, to a never before seen
level. Although the implementation of ChatGPT in education presents many advantages, it
also contributes to challenges that needs meticulousness. Through responsible AI usage,
ethical academic practices, and adequate human supervision, educators can harness the
potential of ChatGPT while also maintaining educational integrity. While the potential of
AI grows, so must our will to employ it to complement, not compete with, the existing
educational scaffolds.

2.5 Conclusion

 Recent studies in the field of interactive chat-box systems have shown a growing
interest in incorporating advanced technologies such as natural language processing and
artificial intelligence to enhance user experiences. These studies have highlighted the
importance of improving the responsiveness and efficiency of chat-box systems by
utilizing speech-to-text conversion and text-to-speech synthesis capabilities. However,
there is a noticeable gap in the literature regarding the development of a seamless and
integrated chat-box system using multiple microcontrollers like the ESP32. This project
aims to address this gap by leveraging the ESP32's capabilities to create a more
sophisticated and dynamic chat-box system. By integrating Speech-to-Text conversion,
ESP-NOW communication, and ChatGPT response generation, this project seeks to
enhance user interactions with the chat-box system. Through this research, we aim to
contribute to the field by providing a more responsive and efficient chat-box system that is
user-centered and technologically innovative.

 Recent research has underscored the growing significance of interactive chat-box
systems in various domains, highlighting their potential to enhance user engagement and
streamline communication processes. Innovations in the fields of natural language
processing, machine learning, and artificial intelligence have enabled the development of
more sophisticated chat-box systems capable of understanding and generating human-like
responses. However, existing literature suggests that there remains a gap in designing chat-
box systems that seamlessly integrate speech-to-text conversion with intelligent response
generation in real-time (Leah A Lievrouw et al., 2006-01-17). This is where the current
project seeks to make a valuable contribution by leveraging ESP32 microcontrollers to
create a responsive and efficient chat-box system. By combining speech recognition
technology with advanced language models like ChatGPT, the aim is to enhance user
interaction by providing more accurate and contextually relevant responses. Through this
innovative approach, the project aims to address the limitations of existing chat-box
systems and offer a more user-friendly and intuitive communication experience for users.

 Previous research has widely explored the development of interactive chat-box systems,
focusing on enhancing user experience and efficiency. Recent papers have highlighted the
integration of machine learning algorithms to improve response accuracy and speed, as
well as the utilization of natural language processing to enhance conversational capabilities.
However, a gap in the existing research lies in the seamless integration of speech-to-text

12
and text-to-speech technology within chat-box systems, presenting a challenge for creating
truly interactive and efficient platforms. This project aims to address this gap by utilizing
two ESP32 microcontrollers to enable real-time communication and response generation,
significantly advancing the field of interactive chat-box systems. By building upon current
knowledge and enhancing the capabilities of existing technologies, this project seeks to
create a more responsive and user-friendly chat-box system that offers a seamless
conversational experience for users.

Table 1: Table showing available conversational Ais with their accuracy, response time and reference

Name of AI Type of AI Accuracy and
Response time Reference

Jibo Conversational
AI

Accuracy: 90%
(claimed by

manufacturer)
Response time: 2-3

seconds

Jibo (n.d.),
2020

Kuri Conversational
AI

Accuracy: No publicly
available data available

Response time: No
publicly available data

available

Mayfield
robotics Kuri

Alexa
Virtual

Assistant
Speaker

Accuracy: 95%,
Response time: 1.5

seconds

Loup Ventures
(2020)

Alexa Blogs
(2019)

13

Google Assistant Voice
Assistant

Accuracy: 95%
Response time: 2.1

seconds

Stone Temple
(2020)

Siri Voice
Assistant

Accuracy: 83.1%
Response time: 2.5

seconds

Apple Support
(2020)

Chat-box Conversational
AI

Accuracy: 93.8 %
Response time: Varies

based on network

Odunlami
EriOluwa

(2024)

14
CHAPTER III

Methodology

 The aim of this project is to build a chat-box, a device that can help us communicate
with ChatGPT and get a response. In order to achieve this, the device will receive audio
from the user, transcribe the audio into text, forward the text as a query to ChatGPT via a
OpenAI API key. The response from ChatGPT is then converted from text to an audio file
which is played from the speaker, thereby becoming the chat-box. To get this done, two
ESP-32s were employed to split the functions. The full list of components used is listed
below:

1. Amplifier (MAX98357)
2. Microphone (INMP441-MEMS-I2S-MIC-MODULE)
3. Two ESP 32 (NODEMCU-32S)
4. Speaker
5. LEDs (3 pieces)
6. 1000 ohms resistor
7. Button

 In order to achieve the objective of this project, three milestones must be achieved and
they are; Speech-to-text function, ESP-NOW function and the Text-to-speech function. To
bring this chat-box project to fruition, it is essential that focus is directed on the integration
and seamless interaction between two ESP-32 microcontrollers. Each device plays a
crucial and unique role in the overall functionality of the chat-box, ensuring efficient data
processing and communication. The first ESP-32’s job is basically to capture ‘speech’
(audio) with the aid of a microphone and converting the captured audio into text, taking
advantage of the functions and capabilities of Google Cloud's Speech-to-Text API. This
step is vital for enabling the chat-box to understand and process verbal inputs from users,
thus forming the foundation for subsequent interactions.

 The ‘text’ generated by the first ESP-32 is not the final result needed. The generated
text is still the question that needs to be answered. That is where the second ESP-32
microcontroller comes in and in order to get the question to the second ESP-32, means of
communication is needed to send text from the first ESP-32 to the other ESP-32 and to
achieve that, ESP-NOW function was introduced. The robust communication link
established between the two ESP-32 devices using ESP-NOW protocol allows for quick
and reliable data transfer, ensuring that the text generated from the speech input is
promptly transmitted to the second device. This efficient communication channel is crucial
for maintaining a responsive and interactive user experience, as it offers range, minimizes
delays and potential data loss, thereby enhancing the overall performance of the chatbot.

 Finally, the second ESP-32 device takes the received question and interacts with the
ChatGPT API to generate a meaningful response or reply. This response is then converted
into speech using a text-to-speech library, completing the conversational loop. This final
step not only demonstrates the integration of advanced AI capabilities with hardware
components but also highlights the importance of delivering a natural and engaging audio
response to the user. By focusing on these interconnected aspects, the project aims to
create a sophisticated and user-friendly chatbot system.

15

Fig 2: FLOWCHARTS DESCRIBING OPERATIONS OF THE CHAT-BOX

16

3.1 Speech To Text Function

Fig 3: MICROPHONE BOX CONTAINING MASTER ESP32 AND MICROPHONE

 For the speech-to-text section, the two major components used are ESP-32
(NODEMCU-32S) and a microphone (INMP441-MEMS-I2S-MIC-MODULE). As
described above, the microphone receives audio which is converted to audio with the aid
of Google Cloud Services.

3.1.1 Hardware Connection

 The hardware connection is quite simple. The microphone (INMP441-MEMS-I2S-
MIC-MODULE) has six pins; L/R, WS, SCK, SD, VDD and GND pins. The INMP441 is
a high-performance, low-power, digital output, omnidirectional MEMS microphone. It
communicates with the aid of the I2S (Inter-IC Sound) protocol. The VDD and L/R pins
are connected together and then connected to the 3v3 pin of the ESP-32 microcontroller
which supplies the microphone 3.3 volts. GND pin of the microphone goes to any ground
pin of the ESP-32 to complete the power supply circuit of the speech-to-text section.
Here are the functions of the remaining primary pins:

• WS (Word Select) Pin:
- Also known as LRCLK (Left-Right Clock).
- This pin determines which channel is currently active, either the left or the right.
- It acts as a frame synchronization signal, indicating the start of a new audio frame.
- When WS is low, data on the SD line corresponds to the left channel. When WS is
high, data on the SD line corresponds to the right channel.
- The WS pin is connected to the D22 pin of the ESP-32 microcontroller in this case.

17

• SCK (Serial Clock) Pin
- Also known as BCLK (Bit Clock).
- This pin provides the clock for the data transfer.
- Each bit of data on the SD line is clocked out on each rising or falling edge of the
SCK signal, depending on the I2S mode used.
- It synchronizes the data transmission between the microphone and the receiving
device.
- The SCK pin is connected with the D26 pin of the ESP-32 microcontroller.

• SD (Serial Data) Pin
- This pin is responsible for the actual audio data.
- The data is relayed in a serial format, with the bits being clocked out on the SCK
pin.
- It alternates between the left and right audio data, controlled by the WS pin.
- The SD pin is connected to the D34 pin of the ESP32 microcontroller.

 In summary, the WS pin is used to select the channel (left or right), the SCK pin is the
clock for data transmission (timer of the microphone), and the SD pin is responsible for the
digital audio data. These three pins work together to transmit audio data from the
INMP441 microphone to a microcontroller or another I2S-compatible device.

 Two LEDs and a reset button were later added to serve as the User Interface of the
circuit. The button turns the device on, the LED determines when to record the question
and when the question has reached the slave ESP-32 microcontroller. With the hardware
connections all taken care of, all that is left for the successful operation is the code
implementation which is explained in the next section.

3.1.2 Code Implementation

 The coding of the ESP-32 is done with the aid of the Arduino IDE using C++ language.
The code used here is basically the combination of the ESP-NOW master’s code from the
ESP-32 library on Arduino IDE with the Speech-to-text code (by Techiesms on github).
The code was split into eight groups, one main code and seven implementation codes. The
main code’s operation can be broken down into three major components; Initialization,
Audio Processing and Data Transmission.

a) Initialization

++ (InitESPNow() Function):
In this stage, the networks required, both the WiFi and ESP-NOW networks are initialized.
The ESP-NOW network is first initialized by disconnecting the ESP-32 from any other
WiFi network to avoid interference as shown in the code below;

void InitESPNow() {
 WiFi.disconnect();
 if (esp_now_init() == ESP_OK) {
 Serial.println("ESPNow Init Success");
 } else {

18
 Serial.println("ESPNow Init Failed");
 ESP.restart();
 }
}
++ Scanning for Slaves (ScanForSlave() Function):
 After initializing the ESP-NOW network, the ESP-32 scans for WiFi networks to find
the slave device by looking for SSIDs that start with "Slave". The Master ESP-32 searches
for WiFi networks in AP mode. The slave ESP-32 SSID has already been set to be ‘slave-1’
to make it easy for the master ESP-32 to locate it. After locating the slave ESP-32, the
MAC address of the slave ESP-32 microcontroller is extracted and stored as shown in the
code below;

void ScanForSlave() {
 int8_t scanResults = WiFi.scanNetworks();
 bool slaveFound = 0;
 memset(&slave, 0, sizeof(slave));

 Serial.println("");
 if (scanResults == 0) {
 Serial.println("No WiFi devices in AP Mode found");
 } else {
 Serial.print("Found "); Serial.print(scanResults); Serial.println(" devices ");
 for (int i = 0; i < scanResults; ++i) {
 String SSID = WiFi.SSID(i);
 int32_t RSSI = WiFi.RSSI(i);
 String BSSIDstr = WiFi.BSSIDstr(i);

 if (PRINTSCANRESULTS) {
 Serial.print(i + 1);
 Serial.print(": ");
 Serial.print(SSID);
 Serial.print(" (");
 Serial.print(RSSI);
 Serial.println("");
 }
 delay(10);
 if (SSID.indexOf("Slave") == 0) {
 Serial.println("Found a Slave.");
 Serial.print(i + 1); Serial.print(": "); Serial.print(SSID); Serial.print(" [");
Serial.print(BSSIDstr); Serial.print("]"); Serial.print(" ("); Serial.print(RSSI);
Serial.println("");
 int mac[6];
 if (6 == sscanf(BSSIDstr.c_str(), "%x:%x:%x:%x:%x:%x", &mac[0], &mac[1],
&mac[2], &mac[3], &mac[4], &mac[5])) {
 for (int ii = 0; ii < 6; ++ii) {
 slave.peer_addr[ii] = (uint8_t) mac[ii];
 }
 }
 slave.channel = CHANNEL;
 slave.encrypt = 0;

19
 slaveFound = 1;
 break;
 }
 }
 }

 if (slaveFound) {
 Serial.println("Slave Found, processing..");
 } else {
 Serial.println("Slave Not Found, trying again.");
 }

 WiFi.scanDelete();
}

++ Managing Slave Connection (manageSlave() Function):
The next lines of code checks if the slave device is already paired with the master ESP-32.
If the slave device is not already connected, it tries to make sure the devices pair together.
Different error messages are programmed also to aid in troubleshooting errors in the
pairing process.

bool manageSlave() {
 if (slave.channel == CHANNEL) {
 if (DELETEBEFOREPAIR) {
 deletePeer();
 }

 Serial.print("Slave Status: ");
 bool exists = esp_now_is_peer_exist(slave.peer_addr);
 if (exists) {
 Serial.println("Already Paired");
 return true;
 } else {
 esp_err_t addStatus = esp_now_add_peer(&slave);
 if (addStatus == ESP_OK) {
 Serial.println("Pair success");
 return true;
 } else if (addStatus == ESP_ERR_ESPNOW_NOT_INIT) {
 Serial.println("ESPNOW Not Init");
 return false;
 } else if (addStatus == ESP_ERR_ESPNOW_ARG) {
 Serial.println("Invalid Argument");
 return false;
 } else if (addStatus == ESP_ERR_ESPNOW_FULL) {
 Serial.println("Peer list full");
 return false;
 } else if (addStatus == ESP_ERR_ESPNOW_NO_MEM) {
 Serial.println("Out of memory");
 return false;
 } else if (addStatus == ESP_ERR_ESPNOW_EXIST) {

20
 Serial.println("Peer Exists");
 return true;
 } else {
 Serial.println("Not sure what happened");
 return false;
 }
 }
 } else {
 Serial.println("No Slave found to process");
 return false;
 }
}

++ After confirming the ESP-NOW connection, the WiFi connection is set to stationary
mode in the void setup section of the code, The WiFi connection part of the code is
handled by the CloudSpeechClient.cpp implementation code as shown below. The ESP-32
scans for the WiFi network whose details (SSID and password) are given by the network-
param.h implementation code.

CloudSpeechClient::CloudSpeechClient(Authentication authentication) {
 this->authentication = authentication;
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED) delay(1000);
 client.setCACert(root_ca);
 if (!client.connect(server, 443)) Serial.println("Connection failed!");
}

b) Audio Processing and Transcription

++ Recording and Transcribing Audio:

 The recording of the audio is achieved with the aid of four of the implementation codes
(i2s.cpp, i2s.h, audio.cpp, audio.h). The I2S.cpp and I2S.h implementation codes initialize
the interface based on the type of microphone used, the audio from the microphone is also
read by the I2S.cpp and I2S.h implementation codes. The audio.cpp and audio.h
implementation codes manages the audio gotten through the I2S interface, allocates
memory on the ESP-32 for the audio data, generates a WAV file header and processes the
audio data into a format suitable for a WAV file.
 The recorded audio is then sent to Google Cloud’s Speech-to-text API for transcription.
This is handled by the CloudSpeechClient.cpp and CloudSpeechClient.h implementation
codes. The audio and cloud speech client objects are deleted after processing to avoid
overwhelming the ESP-32 microcontroller.
 The code below simply shows line of codes from the main code that activates the
operation of the implementation codes. The code below also shows serial monitor
comments and LED pins set such a way to help the user know when to record his message.

Serial.println("\r\nRecord start!\r\n");
digitalWrite(15, HIGH);
digitalWrite(2, LOW);
Audio* audio = new Audio(ICS43434);

Office
You need more image screenshots in your thesis. Try to reach a minimum of 15 images / figures

21
audio->Record();
Serial.println("Recording Completed. Now Processing...");
digitalWrite(15, LOW);
digitalWrite(2, HIGH);
CloudSpeechClient* cloudSpeechClient = new CloudSpeechClient(USE_APIKEY);
cloudSpeechClient->Transcribe(audio);
delete cloudSpeechClient;
delete audio;

c) Data Transmission
++ sendData() Function:
 The transcribed text (‘My_Answer’) is converted to a C-style string. The text is then
sent to the slave ESP-32 using ESP-NOW. Messages are placed to review the status of the
send operation handling different error conditions as shown in the code below;

void sendData() {
 const char* data = My_Answer.c_str();
 const uint8_t *peer_addr = slave.peer_addr;
 Serial.print("Sending: "); Serial.println(data);
 esp_err_t result = esp_now_send(peer_addr, (uint8_t *)data, strlen(data) + 1);
 Serial.print("Send Status: ");
 if (result == ESP_OK) {
 Serial.println("Success");
 } else if (result == ESP_ERR_ESPNOW_NOT_INIT) {
 Serial.println("ESPNOW not Init.");
 } else if (result == ESP_ERR_ESPNOW_ARG) {
 Serial.println("Invalid Argument");
 } else if (result == ESP_ERR_ESPNOW_INTERNAL) {
 Serial.println("Internal Error");
 } else if (result == ESP_ERR_ESPNOW_NO_MEM) {
 Serial.println("ESP_ERR_ESPNOW_NO_MEM");
 } else if (result == ESP_ERR_ESPNOW_NOT_FOUND) {
 Serial.println("Peer not found.");
 } else {
 Serial.println("Not sure what happened");
 }
}

++ OnDataSent() Callback:
The callback is handled after sending data to verify and log the delivery status.

void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {
 char macStr[18];
 snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",
 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4],
mac_addr[5]);
 Serial.print("Last Packet Sent to: "); Serial.println(macStr);
 Serial.print("Last Packet Send Status: "); Serial.println(status ==
ESP_NOW_SEND_SUCCESS ? "Delivery Success" : "Delivery Fail");

22
}

In conclusion, the main code effectively sets up an ESP-32 as a master device that it:
1) Initializes ESP-NOW for communication.
2) Scans for and pairs with the slave ESP-32.
3) Captures the audio input, processes it and transcribes the audio using Google
Cloud’s Speech-to-Text service.
4) Sends the transcribed text to the slave ESP32 using ESP-NOW.
5) Handles communication and ensures successful data transmission.

 This setup is essential for the first part of the project, allowing the first ESP32 to get,
process and transcribe the audio, then send the resulting text to the slave ESP32 for further
handling and response generation. The flowchart below further explains the workings of
the Speech-to-text code.

flowchart TD
 Start --> InitSerial
 InitSerial[Initialize Serial Communication] --> SetupGPIO
 SetupGPIO[Set Up GPIO Pins] --> InitWiFi
 InitWiFi[Initialize WiFi in Station Mode] --> InitESPNow
 InitESPNow[Initialize ESP-NOW] --> CheckESPNow
 CheckESPNow{ESP-NOW Init Success?}
 CheckESPNow -- Yes --> RegisterCallback
 CheckESPNow -- No --> RestartESP32
 RestartESP32[Restart ESP32] --> InitESPNow
 RegisterCallback[Register ESP-NOW Send Callback] --> BeginSpeechRec
 BeginSpeechRec[Begin Speech Recognition Process] --> RecordAudio
 RecordAudio[Record Audio] --> TranscribeAudio
 TranscribeAudio[Transcribe Audio Using Google Cloud] --> ScanSlave
 ScanSlave[Scan for Slave Devices] --> CheckSlaveFound
 CheckSlaveFound{Slave Found?}
 CheckSlaveFound -- Yes --> ManageSlave
 CheckSlaveFound -- No --> PrintNoSlave
 PrintNoSlave[Print "No WiFi devices in AP Mode found"] --> End
 ManageSlave[Manage Slave Connection] --> CheckPairSuccess
 CheckPairSuccess{Pairing Successful?}
 CheckPairSuccess -- Yes --> SendData
 CheckPairSuccess -- No --> PrintPairFailed
 PrintPairFailed[Print "Slave pair failed!"] --> End
 SendData[Send Transcribed Text via ESP-NOW] --> PrintSendStatus
 PrintSendStatus[Print Send Status] --> End
 OnDataSent[On Data Sent Callback] --> PrintMACStatus
 PrintMACStatus[Print MAC Address and Delivery Status] --> End
 End[End]

3.2 ESP-NOW Function

 ESP-NOW communication protocol is a crucial part of the project. It serves as an
essential bridge between the two ESP-32 microcontrollers helping them complement each

23
other. The Speech-to-text section above showed how the ESP-NOW connection is
integrated to the code but this section sheds more light on the essence of ESP-NOW
communication.

 ESP-NOW is a connectionless communication protocol designed by Espressif, made
most especially for ESP32 and ESP8266 microcontrollers. It allows for low-latency, peer-
to-peer wireless communication between the microcontrollers. In the case of the chat-box
project, ESP-NOW ensures the communication between two ESP32 microcontrollers: one
acting as the master ESP-32 microcontroller (which gets, processes and transcribes the
speech) and the other as the slave ESP-32 microcontroller (responsible for relaying the
transcribed text to ChatGPT and converting ChatGPT response to audio).

3.2.1 Key Steps in ESP-NOW Communication

1. Initialization of ESP-NOW:
 Both the master and slave ESP-32 devices initialize the ESP-NOW protocol. This
involves setting up the WiFi of the ESP-32 microcontrollers in station mode and
initializing the ESP-NOW library to handle communication. Initialization is crucial for the
devices to proceed with other functions of the code.

2. Device Discovery:

 The master ESP32 scans for available WiFi networks to discover the slave device. The
slave ESP32 broadcasts its presence by doing two things; operating in AP (Access Point)
mode and also using a recognizable SSID (in this case, starting with "Slave"). This makes
it easier for the master to identify and select the correct slave device for pairing.

3. Peer Information Setup:
 Once the slave device is identified, the master ESP-32 extracts the MAC address of the
slave and saves it, which is very important for direct communication between them. The
master then prepares an `esp_now_peer_info_t` structure that includes the slave ESP-32’s
MAC address, communication channel, and encryption status.

4. Pairing Devices:
 The master ESP-32 attempts to pair with the slave by adding it as a peer using the
ESP-NOW protocol. Pairing ensures a trusted communication link between the two
devices. This step ensures that the master can send data to the slave without any form of
interruptions or errors.

5. Data Transmission:

 The master ESP-32 microcontroller captures the speech (audio input) from a
microphone and processes it using Google Cloud’s Speech-to-Text service (by using
CloudSpeechClient.cpp and CloudSpeechClient.h implementation code) to convert the
spoken words of the user into text. This text data is then sent to the slave ESP32 via ESP-
NOW communication protocol. The master formats/edits the text data into a suitable
message structure and sends it to the slave's MAC address.

6. Receiving Data:

24
 The slave ESP32, configured to listen for incoming ESP-NOW messages, receives the
text data sent by the master. Upon receiving the data, the slave processes it and prepares a
response using the OpenAI API. The response text is then converted back into speech
using Google Cloud’s Text-to-Speech service.

7. Handling Callbacks:

 Both the master and slave ESP32 microcontrollers make use of callback functions to
handle various events such as confirming successful message delivery, message reception,
and detecting errors. These callbacks provide feedback on the communication status
between the ESP-32 microcontrollers, allowing the devices to react accordingly (for
instance, retrying transmission if it fails).

3.2.2 Workflow of the ESP-NOW Communication on the Two Devices

 Master ESP32:
 - Initializes ESP-NOW.
 - Scans for the slave ESP-32.
 - Extracts the slave ESP-32 MAC address.
 - Pairs with the slave ESP-32.
 - Captures audio input and converts it to text.
 - Sends the text data to the slave using ESP-NOW.
 - Handles callback events to confirm successful data transmission or retry if necessary.

 Slave ESP32:
 - Initializes ESP-NOW.
 - Broadcasts its presence in AP mode for discovery.
 - Receives pairing request from the master and pairs.
 - Listens for incoming text data from the master.
 - Processes the received text using the OpenAI API.
 - Converts the response text to speech.
 - Handles callback events to confirm message receipt and process incoming data.

3.2.3 Advantages of Using ESP-NOW

1. Low Latency:
ESP-NOW allows for near-instantaneous data transmission between the ESP-32s, which is
important and valuable for real-time applications like a chat-box.

2. Low Power Consumption:
 The ESP-NOW protocol consumes relatively low power since it is designed to be power-
efficient, making it suitable for battery-operated devices.

3. Connectionless Communication:
The ESP-32 microcontrollers communicate directly independent (without the need for) of
a router or access point, making the network setup much more simplified and reducing
potential chances of failure.

25
4. Range:
 The ESP-NOW connection offers range and flexibility to the design of the chat-box.

3.3 Text-To-Speech Function

Fig 4: CHAT-BOX (SLAVE ESP32 CIRCUIT WITH SPEAKER) INCORPORATED WITH DUX-HEAD
PROJECT

The question has been converted from audio to text thanks to the Master ESP-32
microcontroller. The question needs to be processed, sent to ChatGPT API and the
response gotten should be converted to audio which is then heard from a speaker. To
achieve this, a slave ESP-32 microcontroller is connected to the amplifier (MAX98357)
which is later connected to the speaker. An LED is connected to indicate when the text
reaches the slave ESP-32 microcontroller and when the ChatGPT response has been
converted to audio. More details about the hardware section of the design are discussed
below;

26
3.3.1 Hardware Connection

Fig 5: WIRELESS MICROPHONE USING ESP-NOW ON BREADBOARD

The hardware connection involves simply connecting the MAX98357 amplifier to the
ESP32 microcontroller, followed by connecting the speaker to the amplifier. This setup
allows the digital audio signals processed by the ESP32 to be amplified and output through
the speaker, facilitating clear and powerful sound for the chat-box project.
The MAX98357 Amplifier is a digital pulse-code modulation (PCM) input amplifier, that
is often used in audio applications to drive (power) speakers. In the context of the chat-box
project, the MAX98357 amplifier is connected to the slave ESP-32, which processes the
received text data (from the master ESP32) and converts it to speech. The amplifier then
drives a speaker to output the audio.

Fig 6: MAX98357 CIRCUIT DIAGRAM WITH A SPEAKER AND MICROCONTROLLER (Photo credit:
https://www.dfrobot.com/product-2614.html)

27

Key Features of MAX98357:

• Class D Amplification: This is the reason why the MAX98357 amplifier is very
efficient and why it consumes low amount of power.
• I2S Audio Interface: This feature directly interfaces with microcontrollers (for
instance, ESP-32 microcontroller in this case) and digital audio sources.
• Integrated Digital Signal Processing (DSP): This feature improves and enhances
the quality of the audio.
• Low Quiescent Current: The MAX98357 Amplifier consumes very low current and
this makes it suitable for battery-powered applications.
• Shutdown and Mute Control: This feature allows for power management and aids
in audio control.

Primary Pins and Their Connections:

1) VIN (Power Supply Voltage):
This pin receives power supply for the amplifier. It is connected to the 3v3 pin of the ESP-
32 microcontroller which implies that it is being powered with 3.3 volts.

2) GND (Ground):
This is the other half of the power supply pin, this is the ground pin of the amplifier and it
is connected to the ground pin of the ESP-32 microcontroller to complete the power supply
circuit.

3) SD (Shutdown) pin:
The essence of this pin is to control the shutdown mode of the amplifier. Putting this pin
low puts the amplifier into a low-power shutdown state. In this circuit, the SD pin is not
needed.

4) GAIN (Gain Control):
This pin’s function is to select the gain of the amplifier. For maximum audio sound, the
gain pin was connected to the 3v3 pin of the ESP-32 microcontroller.

5) DIN (Data Input):
This pin receives the digital audio data in I2S format from the ESP-32 microcontroller. It
is connected to output pin D25 of the ESP-32 (the pin was declared in the code of the
microcontroller).

6) BCLK (Bit Clock):
For successful synchronization of the data, this pin receives the bit clock signal from the
microcontroller. It is connected to the input pin D27 of the ESP-32 microcontroller.
Note: The input pin was declared in the code of the microcontroller.

7) LRCLK (Left-Right Clock):
This pin’s job is to receive the left-right clock signal from the microcontroller, which
shows the channel (left or right) of the audio data. It is connected to the input pin D26 of
the ESP-32 microcontroller.

28
Note: The input pin was declared in the code of the microcontroller.

8) OUT+ (Positive Speaker Output):
The amplified audio signal is sent through this pin to the positive pin of the speaker since
it is connected to the positive terminal of the speaker.

9) OUT- (Negative Speaker Output):
The amplified audio signal is sent through this pin to the positive pin of the speaker since
it is connected to the positive terminal of the speaker.

Fig 7: MAX98357 DIAGRAM AND LABEL (Photo credit:
https://cdn.shopify.com/s/files/1/1509/1638/files/2BreakoutBoardBezeichnung_1024x1024.png?v=16487370
62)

3.3.2 Code Implementation

This code shows in details the operation of the slave ESP-32 microcontroller, which
receives questions from the master ESP-32 microcontroller, forwards them to the ChatGPT
API for processing, and then converts the response to speech. Here's an analysis of how
the code works, section by section:

Setup and Initialization
1) Libraries and Definitions:
The code includes the important libraries for WiFi, ESP-NOW, HTTP requests, and audio
handling (Audio.h) as shown in the ‘include’ section of the code below;
#include <Arduino.h> // Provides basic Arduino functions.
#include <esp_now.h> // Manages ESP-NOW communication.
#include <WiFi.h> // Manages WiFi functionality.
#include <HTTPClient.h> // Allows for HTTP/HTTPS requests.
#include <ArduinoJson.h> // Handles JSON parsing.
#include "Audio.h" // Manages audio playback.

29

I2S pins are also defined here for audio output as shown in the section of the code below;
#define CHANNEL 1
#define I2S_DOUT 25
#define I2S_BCLK 27
#define I2S_LRC 26 // Define I2S pins and communication channel.

2) Global Variables:
Global variables like WiFi credentials, ChatGPT API token and parameters, question and
Audio are declared in this phase as shown in the code below;
const char* ssid = "WIFI NAME";
const char* password = "WIFI PASSWORD"; // WiFi credentials.
const char* chatgpt_token = "ChatGPT-API"; // API token for accessing ChatGPT.
const char* temperature = "0";
const char* max_tokens = "45"; // Parameters for the ChatGPT API request.
String Question = ""; // Holds the received question from the master ESP32.
Audio audio; // Audio object for handling sound playback.

3) ESP-NOW Initialization (InitESPNow):
The first rule of initializing ESP-NOW is to disconnect the ESP-32 microcontroller from
any existing WiFi connection to avoid interference similarly to how it was declared in the
Master ESP-32 microcontroller’s code. After this precaution, the ESP-NOW is initialized.
If the initialization fails, the ESP32 tries again.

void InitESPNow() {
 WiFi.disconnect();
 if (esp_now_init() == ESP_OK) {
 Serial.println("ESPNow Init Success");
 } else {
 Serial.println("ESPNow Init Failed");
 ESP.restart();
 }
}

4) Configuring Device as Access Point (configDeviceAP):
At the last stage of the setup and initialization stage, the ESP-32 is setup as a WiFi Access
Point with a predefined SSID and password on a specified channel. The success or failure
of the AP configuration will be displayed on the serial monitor for troubleshooting
purposes.
void configDeviceAP() {
 const char *SSID = "Slave_1";
 bool result = WiFi.softAP(SSID, "Slave_1_Password", CHANNEL, 0);
 if (!result) {
 Serial.println("AP Config failed.");
 } else {
 Serial.println("AP Config Success. Broadcasting with AP: " + String(SSID));
 Serial.print("AP CHANNEL "); Serial.println(WiFi.channel());
 }}
Main Setup (‘setup’ Function)

30
1) Serial Communication:
Serial communication is started/initialized for debugging purposes as shown below;
void setup() {
 Serial.begin(115200);
 Serial.println("ESPNow/Basic/Slave Example");

2) WiFi and ESP-NOW Setup:
The ESP-32 is configured to operate in both AP and Station modes (WIFI_AP_STA).
Command ‘configDeviceAP’ is called to set up the AP, after which the AP MAC address
is printed. ESP-NOW is then initialized and it registers the receive callback function
‘OnDataRecv’.
WiFi.mode(WIFI_AP_STA);
 configDeviceAP();
 Serial.print("AP MAC: "); Serial.println(WiFi.softAPmacAddress());
 InitESPNow();
 esp_now_register_recv_cb(OnDataRecv);

3) Connecting to WiFi:
The provided SSID and password is used to connect to a WiFi network to access the
internet. The device then waits until the connection is established and then the serial
monitor prints the local IP address.
 WiFi.begin(ssid, password);
 Serial.print("Connecting to ");
 Serial.println(ssid);

 while (WiFi.status() != WL_CONNECTED) {
 delay(1000);
 Serial.print(".");
 }
 Serial.println("connected");
 Serial.print("IP address: ");
Serial.println(WiFi.localIP());

4) Audio Setup:
Lastly, the I2S pins are configured for audio output. The audio volume is set to 100.
 audio.setPinout(I2S_BCLK, I2S_LRC, I2S_DOUT);
 audio.setVolume(100);
}

ESP-NOW Data Reception (OnDataRecv Function)
Receive Callback:
When data is received via ESP-NOW, the setup is triggered. Then the MAC address of the
sender is extracted and printed out. The message received is then saved into a string
‘Question’.
void OnDataRecv(const uint8_t *mac_addr, const uint8_t *data, int data_len) {
 char macStr[18];
 snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x",
 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4],
mac_addr[5]);
 Serial.print("Last Packet Recv from: "); Serial.println(macStr);

31

 char msg[data_len + 1];
 memcpy(msg, data, data_len);
 msg[data_len] = '\0';

 Serial.print("Last Packet Recv Data: "); Serial.println(msg);
 Serial.println("");

 Question = String(msg);
}

Main Loop (‘loop’ Function)
1) Audio Loop:
Continuously calls audio.loop() to handle audio playback.

2) Processing the Question:
This process checks if a new question has been received (Question.length() > 0). The
question is then formatted as a JSON string for the API request.

3) HTTP Request to ChatGPT:
HTTP client is initialized. The HTTP client is then configured to connect to the OpenAI
API endpoint. The required headers are set, including the authorization header with the
API token. Constructs the JSON payload with the model, prompt, temperature, and max
tokens. The POST request is then sent to the API.

4) Handling the API Response:
The code checks if the HTTP request was successful. After confirming, it then Parses the
JSON response to extract the generated text. Unnecessary characters are striped from the
response and prepares it for audio playback. It then uses the ‘audio.connecttospeech’
method to convert the response text to speech. The Question variable is then reset to an
empty string.
void loop() {
 audio.loop();

 if (Question.length() > 0) {
 String processedQuestion = "\"" + Question + "\"";
 Serial.println(processedQuestion);

 HTTPClient https;

 if (https.begin("https://api.openai.com/v1/completions")) {
 https.addHeader("Content-Type", "application/json");
 String token_key = String("Bearer ") + chatgpt_token;
 https.addHeader("Authorization", token_key);

 String payload = String("{\"model\": \"gpt-3.5-turbo-instruct\", \"prompt\": ") +
processedQuestion + String(", \"temperature\": ") + temperature + String(",
\"max_tokens\": ") + max_tokens + String("}");

32
 int httpCode = https.POST(payload);

 if (httpCode == HTTP_CODE_OK || httpCode ==
HTTP_CODE_MOVED_PERMANENTLY) {
 String response = https.getString();
 DynamicJsonDocument doc(1024);
 deserializeJson(doc, response);
 String Answer = doc["choices"][0]["text"];
 Answer = Answer.substring(2);
 Serial.print("Answer : "); Serial.println(Answer);
 audio.connecttospeech(Answer.c_str(), "en");
 } else {
 Serial.printf("[HTTPS] GET... failed, error: %s\n",
https.errorToString(httpCode).c_str());
 }
 https.end();
 } else {
 Serial.printf("[HTTPS] Unable to connect\n");
 }

 Question = "";
 }
}
``` 
- **audio.loop():** Maintains audio playback. 
void audio_info(const char *info) { 
    Serial.print("audio_info: "); Serial.println(info); 
} 
 
This code effectively sets up the slave ESP-32 microcontroller to receive questions from 
the master ESP32, and then forward these questions to the ChatGPT API, which then 
convert the received answers to speech. The use of ESP-NOW for device communication 
and I2S for high-quality audio output makes this setup suitable for real-time, interactive 
applications like the chat-box project. 
 

 
 



 

33 
Fig 8: CHAT-BOX TESTING PHASE ON BREADBOARD (Slave ESP32-MAX98352 Amplifier-Speaker 
Connection) 
 
 

 

  



 

34 
CHAPTER IV 

Results Analysis 

4.1 Performance Metrics 
 
      In order to effectively evaluate the performance of the chat-box, the chat-bot was rated 
based on the following metrics; accuracy of speech-to-text conversion, latency in data 
transmission, quality of text-to-speech output, and overall system responsiveness. The 
accuracy of speech-to-text conversion was measured by comparing the transcribed text 
which the Google Cloud Speech-to-Text API produced with what was actually said. This 
is to make sure that the chatbot gets the accurate question as this is crucial to get the right 
response.  
 
      Data transmission from the Master ESP-32 to the slave ESP-32 was assessed by testing 
how long it takes the transcribed question from the master ESP-32 takes to reach the slave 
ESP-32 regardless of distance and obstacles. This was crucial for ensuring real-time 
interaction. The quality of text-to-speech output was also evaluated. It was evaluated based 
on clarity of the speaker, naturalness of response generated, and how valid the responses 
gotten were. 
 
      Finally, system responsiveness was measured by testing how long the chat-box takes to 
respond to the question asked. The total time taken from asking a question to receiving the 
spoken answer is what is measured at this stage, encompassing all stages of the process, 
including API interactions and text-to-speech conversion. These metrics were chosen to 
give a comprehensive assessment of how the chat-box will perform in real-world 
conditions. For instance, high accuracy in speech-to-text conversion makes sure that the 
questions are correctly interpreted by the system, which is important/fundamental for 
generating accurate responses. The Data transmission test is necessary to verify the 
reliability of the ESP-NOW connection in sending the question to the slave when in range 
for maintaining the flow of conversation and avoiding delays that could disrupt the user 
experience. The quality of text-to-speech output verifies the accuracy and clarity of the 
responses generated, while overall system responsiveness determines the chat-box's 
suitability for real-time applications. By systematically evaluating these metrics, the 
strengths and weaknesses of the chat-box system were identified, which will aid in future 
advancements. 
 
4.1.1 Test Scenarios and Procedures 
      Three major scenerios were created to stimulate different conditions and see how the 
chatbot performs in these situations: 
 
Scenario 1: Short and simple questions (e.g., "What is your name?") 
Scenario 2: Complex and longer questions (e.g., "Can you explain the theory of 
relativity?") 
Scenario 3: Noisy environment with background noise. This was created by playing loud 
video in the background while recording. 
 
 
 
 
 

Office
Your results analysis is really short. Where are all the findings from your research?



 

35 
4.2 Results and Analysis 
 
4.2.1 Accuracy of Speech-to-Text Conversion 
 
      The accuracy of the speech-to-text conversion was measured by comparing the 
transcribed text from the Google Cloud Speech-to-Text API with the actual spoken input. 
Ten basic questions were spoken and the accuracy was calculated based on how accurate it 
was at transcribing the spoken words. For instance, for scenario one, ten basic questions 
like ‘What is the capital of Turkey’ were said and the accuracy of the transcribed text was 
compared to the spoken words. The accuracy was calculated as the percentage of correctly 
transcribed words over the total number of words spoken. 
 
Accuracy (%) = (CTW / TWS) * 100 
CTW = Correctly Transcribed Words 
TWS = Total Words Spoken 
 
Table 2: Table comparing accuracy of Chat-box across three scenarios 
Scenario Total Words Spoken Correctly Transcribed Words Accuracy (%) 

1 60 60 100% 
2 65 61 93.8% 
3 60 51 85% 

 

 
 
CHART EXPLAINING TABLE ABOVE 
 
This result shows high accuracy in quiet environments with both simple questions and 
complex questions. The accuracy decreases in noisy environments but the decrease 
remains acceptable for real life applications. 
 
4.2.2 ESP-NOW Data Transmission 
 

0

20

40

60

80

100

120

Scenario 1 Scenario 2 Scenario 3

Chart Title

Total Words Spoken Correctly Transcribed Words Accuracy Percentage

Office
What is this table actually for, where are your model comparisons?



 

36 
The ESP-NOW data transmission was tested to see how fast and reliable the connection is 
for sending data between the two ESP-32 microcontrollers. This test was conducted by 
varying the distance between the ESP-32s and checking if the message is delivered 
successfully. The speed of the message transmission was also taken account of and at the 
end of the test, the ESP-NOW connection was reliable and fast in transmitting the question 
from the master ESP-32 to the slave ESP-32 microcontroller. 
This test is important to make sure that the communication channel between the ESP-32 
microcontrollers is reliable and not affect the outcome of the project negatively. 
 
 
 
 
 
4.2.3 Quality of Text-to-Speech Output 
 
After testing the speech-to-text transcription quality and the ESP-NOW connection, the 
quality of the Text-to-speech output was tested for the speed of response, clarity of audio 
and accuracy of response with respect to the question asked.  
In order to rate this efficiently, ten questions from each scenario were asked and the 
responses were rated based on the time taken to get the response, the clarity of the audio 
and the accuracy of the response. The speed of response was calculated by checking the 
time period between receiving the question to the time which the response is heard on the 
speaker. The table below explains the results gotten; 
 
NOTE: ATR = TTR / 10 
ATR = Average Time of Response 
TTR = Total Time of Response 
 
ACR = TACR / 10 
ACR = Average Audio Clarity Rating 
TACR = Total Audio Clarity Rating 
 
QR = TQR / 10 
QR = Average Quality Response 
TQR = Total Quality of Response 
 
 
Table 3: Table comparing Average time of response, Audio clarity rating and Quality of response across all 
three scenarios 
Scenarios Average Time of 

response(s) 
Audio Clarity rating 
(1-5)   

Quality of response 
(1-5) 

1 27.6 4.8 4.9 
2 31.2 4.2 4.1 
3 15.2 4.6 4.7 
 
 



 

37 

 
 
CHART SHOWING COMPARISON BETWEEN AUDIO CLARITY AND QUALITY 
OF RESPONSE 
 
As shown by the table above, the average time of response is ‘all over the place’ but one 
thing the results across the three scenarios have in common is that the response time is 
slow and unpredictable. This is mostly because of slow internet connection. This makes it 
generate responses from OpenAI slow.  
The Audio clarity had a good rating. The only issue with clarity is that the speaker 
placement affects the sound from the speaker. The quality of response depended on the 
response from ChatGPT and it was mostly satisfying and accurate except for some few 
tough questions. 
 
4.2.4 System Responsiveness 
The overall system responsiveness measures the total time it takes the chat-cox to respond 
to the question. This means that this is the measure of time it takes from the speech-to-text 
conversion, data transmission all the way to the response-to-speech conversion. This was 
done by asking ten questions each in the three scenarios and then calculating the average 
time it takes to respond to the questions. The table below shows the results gotten in 
details; 
 
NOTE: Formula used to calculate average response time ART = TRT/10 
ART = Average Response Time 
TRT = Summation of response time recorded across ten trials per scenario 
 
Table 4: Average Overall Response Time across all three scenarios  
Scenario Average Response Time (s) 
1 49.5 
2 67.0 
3 51.8 
 

3,6

3,8

4

4,2

4,4

4,6

4,8

5

Scenario 1 Scenario 2 Scenario 3

Chart Title

Audio clarity rating (1-5) Quality of response (1-5) Column2



 

38 
The table above shows that the device takes almost a minute to respond to the questions 
asked with the lowest average time being 49.5 seconds. This show that the chat-box takes a 
lot of time to respond to the question and this is a major drawback to the design. 
 
4.3 Discussion of Results 
 
The results from the chat-box had been mostly positive; the audio quality has been good 
enough, the chat-box transcribes the questions well, the response to the questions have 
been fairly accurate. The unique aspects and the limitations of this thesis are highlighted 
below; 
 
4.3.1 Standout points of research 
 
The standout parts of these research are;  

• The chat-box uses a pretrained application on OpenAI to generate more unique 
answers especially when the questions are about Machine learning. This makes the 
answers from the chat-box more unique and different from what ChatGPT would 
normally give. 

• Another unique area of the project is its wireless one-way communication (using 
ESP-NOW protocol) which makes communication more unique. 

 
4.3.2 Limitations 

 
• One major drawback is that it takes time to get a response. This is as a result of its 

reliability on the internet to transcribe the question asked and to get a response 
from OpenAI.  

• Another drawback is that the text-to-speech only record audio for 3 seconds. This 
is to manage the credit given on the Google API. 

 
Future improvements can focus on improving the response time and improving the time 
limit to record question. 
 
 
 
 
 
 

  



 

39 



 

40 
  



 

41 
References 

 
Konstantinos M. Pitychoutis (2024). "Harnessing AI Chat-boxs for EFL Essay Writing: A 
Paradigm Shift in Language Pedagogy". 
https://www.semanticscholar.org/paper/64f739ceb4b63564b5a9552d91e9011f8b27ffe3 
 
A. Zouhri, M. El Mallahi (2024). "Improving Teaching Using Artificial Intelligence and 
Augmented Reality". 
https://www.semanticscholar.org/paper/4f985bf98c3195487149b4c83df70312d010fb13 
 
Krishan Kant Singh Mer, Vijay Bhaskar Semwal, Vishwanath Bijalwan, Rubén González 
Crespo (2021-04-23). "Proceedings of Integrated Intelligence Enable Networks and 
Computing". Springer Nature. 
https://play.google.com/store/books/details?id=rworEAAAQBAJ&source=gbs_api 
 
Kingsley Okoye, Samira Hosseini, Kamal Kant Hiran , Julius Nganji (2024-06-07). 
"Impact and implications of AI methods and tools for the future of education". Frontiers 
Media SA. 
http://books.google.com/books?id=gjsNEQAAQBAJ&dq=What+is+the+significance+of+
context+and+motivation+in+implementing+a+student+AI+assistant+chat-
box+device%3F&hl=&source=gbs_api 
 
Miao, Fengchun, Holmes, Wayne, Ronghuai Huang, Hui Zhang, UNESCO (2021-04-08). 
"AI and education". UNESCO Publishing. 
http://books.google.com/books?id=yyE7EAAAQBAJ&dq=CONTEXT+AND+MOTIVAT
ION+FOR+STUDENT+AI+ASSISTANT+CHAT-
BOX+DEVICE+%2B+Current+Educational+Landscape&hl=&source=gbs_api 
 
Miao, Fengchun, Holmes, Wayne, Ronghuai Huang, Hui Zhang, UNESCO (2021-04-08). 
"AI and education". UNESCO Publishing. 
http://books.google.com/books?id=yyE7EAAAQBAJ&dq=Analyze+challenges+faced+by
+students+in+traditional+learning+environments+to+develop+context+and+motivation+f
or+student+AI+assistant+chat-box+device.&hl=&source=gbs_api 
 
Sarah Nagle, Elias Tzoc (2022-03-15). "Innovation and Experiential Learning in Academic 
Libraries". Rowman & Littlefield. 
https://play.google.com/store/books/details?id=G9BbEAAAQBAJ&source=gbs_api 
 
P. Otero, P. Scott, S.Z. Martin (2022-08-05). "MEDINFO 2021: One World, One Health 
— Global Partnership for Digital Innovation". IOS Press. 
http://books.google.com/books?id=4pGREAAAQBAJ&dq=Analysis+of+motivation+behi
nd+creating+AI+chat-
box+device+for+student+assistance+in+educational+settings&hl=&source=gbs_api 
 
Arcangelo Castiglione, Florin Pop, Massimo Ficco, Francesco Palmieri (2018-09-23). 
"Cyberspace Safety and Security". Springer. 
http://books.google.com/books?id=_akfuwEACAAJ&dq=How+can+the+context+and+mo
tivation+for+student+AI+assistant+chat-
box+devices+be+leveraged+to+enhance+student+engagement+and+learning%3F&hl=&s
ource=gbs_api 

Office
References must be pulled from Mendeley and must be in APA 7th Edition Format.



 

42 
 
Arcangelo Castiglione, Florin Pop, Massimo Ficco, Francesco Palmieri (2018-09-23). 
"Cyberspace Safety and Security". Springer. 
http://books.google.com/books?id=_akfuwEACAAJ&dq=How+can+AI+chat-
boxs+personalize+assistance+for+students+in+the+development+of+a+contextual+and+m
otivational+student+AI+assistant+chat-box+device%3F&hl=&source=gbs_api 
 
Tareq Ahram and Redha Taiar (2023-04-13). "Human Interaction & Emerging 
Technologies (IHIET-AI 2023): Artificial Intelligence & Future Applications". AHFE 
Conference. 
https://play.google.com/store/books/details?id=inq3EAAAQBAJ&source=gbs_api 
 
Kingsley Okoye, Samira Hosseini, Kamal Kant Hiran , Julius Nganji (2024-06-07). 
"Impact and implications of AI methods and tools for the future of education". Frontiers 
Media SA. 
http://books.google.com/books?id=gjsNEQAAQBAJ&dq=What+is+the+significance+of+
deploying+AI+chat-
boxs+as+student+assistants+and+analyzing+their+context+and+motivation+in+education
al+settings%3F&hl=&source=gbs_api 
 
Miao, Fengchun, Holmes, Wayne, Ronghuai Huang, Hui Zhang, UNESCO (2021-04-08). 
"AI and education". UNESCO Publishing. 
http://books.google.com/books?id=yyE7EAAAQBAJ&dq=What+is+the+importance+of+i
ntegrating+AI+technology+into+educational+environments+for+developing+a+student+A
I+assistant+chat-box+device%3F&hl=&source=gbs_api 
 
R. Baecker, Peter Wolf, Kelly Rankin (2004). "The ePresence Interactive Webcasting and 
Archiving System: Technology Overview and Current Research Issues". 2004. pp. 2532-
2537. 
https://www.semanticscholar.org/paper/d34e5165d316e8e6bbe7d97d160df729dc4fa532 
 
D. Cook, G. Guyatt (2001). "Colloid Use for Fluid Resuscitation: Evidence and Spin". 135. 
pp. 205-208. 
https://www.semanticscholar.org/paper/44c695fbdf664850834ef62e66a1ff40f3d35dd0 
 
Themba Ngobeni, Boniface Kabaso (2024). "Quantum-Secure Signalling Model for L1/L2 
Next-Gen Interconnect and Roaming Networks Over IPX for NB-IoT Traffic: A Review". 
https://www.semanticscholar.org/paper/c57b14b23011051b1c883da1f90e31305ced57ea 
 
M. V. Stilpen, D. M. Avejonas (2023). "PRE-TEST: SPEECH THERAPY PROTOCOL 
FOR COGNITIVE ASSESSMENT.". 66. pp. 1031-1032. 
https://www.semanticscholar.org/paper/206137c5707e4c6c7879950d5f6db7ca0810096e 
 
J. Chukwuere (2024). "Today's Academic Research: The Role of ChatGPT Writing". 
https://www.semanticscholar.org/paper/85e4112943fbe5dd4001788ba3adc142b9091dc1 
 
K. P. Kuchinke (2023). "Grounding and Deepening Academic Writing in Human Resource 
Development: The Role of Selecting and Representing the Supporting Literature". 22. pp. 
414-427. 
https://www.semanticscholar.org/paper/d68c79fb3001472ecbb379c68a7051b39aa33849 

http://books.google.com/books?id=yyE7EAAAQBAJ&dq=What+is+the+importance+of+integrating+AI+technology+into+educational+environments+for+developing+a+student+AI+assistant+chat-box+device%3F&hl=&source=gbs_api
http://books.google.com/books?id=yyE7EAAAQBAJ&dq=What+is+the+importance+of+integrating+AI+technology+into+educational+environments+for+developing+a+student+AI+assistant+chat-box+device%3F&hl=&source=gbs_api
http://books.google.com/books?id=yyE7EAAAQBAJ&dq=What+is+the+importance+of+integrating+AI+technology+into+educational+environments+for+developing+a+student+AI+assistant+chat-box+device%3F&hl=&source=gbs_api


 

43 
 
C. Debrah, A. Darko, Albert P. C. Chan (2022). "A bibliometric-qualitative literature 
review of green finance gap and future research directions". 15. pp. 432-455. 
https://www.semanticscholar.org/paper/0bc82cd97ee26c3b8f275f1a9c075a78d091f787 
 
Daniel Stefan, Valentina Vasile, Anca Oltean, Calin-Adrian Comes, Anamari-Beatrice 
Stefan, Liviu Ciucan-Rusu, E. Bunduchi, Maria-Alexandra Popa, Mihai Timus (2021). 
"Women Entrepreneurship and Sustainable Business Development: Key Findings from a 
SWOT–AHP Analysis". 13. pp. 5298. 
https://www.semanticscholar.org/paper/f442a1b62cbdbf3ef9635a378750aec40d6c1daa 
 
Fausto Pedro García Márquez (2021-08-18). "Internet of Things". BoD – Books on 
Demand. 
http://books.google.com/books?id=fX4_EAAAQBAJ&dq=Literature+review+on+develop
ing+chat-box+systems+using+ESP32+microcontrollers&hl=&source=gbs_api 
 
Fang Chen, Kristiina Jokinen (2010-07-01). "Speech Technology". Springer Science & 
Business Media. 
https://play.google.com/store/books/details?id=jD3XKFBuN5QC&source=gbs_api 
 
Tomonobu Senjyu . "Smart Trends in Computing and Communications". Springer Nature. 
http://books.google.com/books?id=Z9UHEQAAQBAJ&dq=Literature+review+on+ESP-
NOW+vs.+other+IoT+wireless+protocols&hl=&source=gbs_api 
 
Paul C. Cozby, Patricia E. Worden, Daniel W. Kee (1989). "Research Methods in Human 
Development". WCB/McGraw-Hill. 
http://books.google.com/books?id=NTkiAAAAMAAJ&dq=Literature+review+on+recent
+developments+and+improvements+in+ESP-
NOW+for+enhancing+performance+and+reliability.&hl=&source=gbs_api 
 
Vedat Ozan Oner (2021-09-13). "Developing IoT Projects with ESP32". Packt Publishing 
Ltd. https://play.google.com/store/books/details?id=e4k4EAAAQBAJ&source=gbs_api 
 
Et al. Beschi I S (2023). "Applications of Deep Learning and Machine Learning in 
Healthcare Domain – A Literature Review". 
https://www.semanticscholar.org/paper/8ac9e14e98c71a13f364ba3a87be9b49e120f8d9 
 
Xinying Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David 
Lo, John C. Grundy, Haoyu Wang (2023). "Large Language Models for Software 
Engineering: A Systematic Literature Review". abs/2308.10620. 
https://www.semanticscholar.org/paper/000f964393dafe113a8e66734d63b2a145844159 
 
Basahel, A, Irani, Z (2010). "Examining the strategic benefits of information systems: A 
global case study". EMCIS2010. https://core.ac.uk/download/336775.pdf 
 
British Academy of Management 32nd Annual Conference : Driving Productivity in 
Uncertain and Challenging Times, British Academy of Management, Camilleri, Adriana 
Caterina, Camilleri, Mark Anthony (2018). "The performance management and appraisal 
in higher education". British Academy of Management. 
https://core.ac.uk/download/162326049.pdf 



 

44 
 
Asim Zulfiqar (2024-01-19). "Hands-on ESP32 with Arduino IDE". Packt Publishing Ltd. 
https://play.google.com/store/books/details?id=5JnqEAAAQBAJ&source=gbs_api 
 
Diana Ridley (2012-07-23). "The Literature Review". SAGE. 
https://play.google.com/store/books/details?id=WaNrAwAAQBAJ&source=gbs_api 
 
Amina Al-Marzouqi . "Artificial Intelligence in Education: The Power and Dangers of 
ChatGPT in the Classroom". Springer Nature. http://books.google.com/books?id=ViL-
EAAAQBAJ&dq=Literature+review+on+the+impact+of+ChatGPT+in+enhancing+interac
tive+user-friendly+chatbot+systems.&hl=&source=gbs_api 
 
Darwish, Dina (2024-04-09). "Design and Development of Emerging Chatbot 
Technology". IGI Global. 
https://play.google.com/store/books/details?id=V9wBEQAAQBAJ&source=gbs_api 
 
William Johnson (2024-04-09). "ChatGPT in the Classroom for Harnessing AI to 
Revolutionize Higher Education in Colleges and Universities". LEGENDARY EDITIONS. 
https://play.google.com/store/books/details?id=QbQAEQAAQBAJ&source=gbs_api 
Zhao Ni, Mary L Peng, Vimala Balakrishnan, Vincent Tee, I. Azwa, Rumana Saifi, LaRon 
Nelson, David Vlahov, Frederick L Altice (2023). "Implementation of Chatbot 
Technology in Health Care: Protocol for a Bibliometric Analysis". 13. 
https://www.semanticscholar.org/paper/1324c6b904eca5fa87eb116457da66dcf59aac8c 
 
A. Cau, Alison Müller, Samia El Joueidi, K. Chan, Jayson Park, M. Semakula, S. 
Nsanzimana, Peter Lodokiyiaa, Linet Lumumba, Osman A. Abdullahi, C. Logie, A. 
Hayward, R. Lester (2021). "Digital mHealth and Virtual Care Monitoring and Support in 
Pandemics: Part 2 - A Rapid Review Assessing Strategies during COVID-19 (Preprint)". 
https://www.semanticscholar.org/paper/02152661864f374bb5d0f7cb82c92d975d40f26a 
 
Yuvika Gupta, F. Khan (2024). "Role of artificial intelligence in customer engagement: a 
systematic review and future research directions". 
https://www.semanticscholar.org/paper/25d4f4be2ff2475ec6cb509326bb6807aa230a65 
 
Lee Kowalsky (2001). "Internet conferencing tools for deaf and hard of hearing users". 
https://www.semanticscholar.org/paper/dedac1cc074d1ab308469fe50716a5320679c70b 
 
Rafael Santana Queiroz, Lucas Marins Batista, Miguel Felipe Nery Vieira, Lucas Cruz da 
Silva, Bruno Caetano dos Santos Silva, Rodrigo Santiago Coelho (2023). "A Literature 
Review of Additive Manufacturing in the Fabrication of Soft Robots: Main Techniques, 
Applications, and Related Industrial-Sized Machines". 
https://www.semanticscholar.org/paper/6ac5ee35cde4fc3f2150bdea0c17a9171d7d5de9 
 
Miguel A. Baque-Cantos, Cristhian Y. Moreira-Cañarte, Andrés Ultreras-Rodríguez, 
Daniel O. Nieves-Lizárraga, Felipe De J. González-Rodríguez, J. S. Moreira-Choez, 
Shirley T. Campos-Sánchez, Mariana De L. Cantos-Figueroa, Cristian Rincón-Guio (2023). 
"Technological Enablers and Prospects of Project Management in Industry 4.0: A 
Literature Review". 
https://www.semanticscholar.org/paper/47a399eaa631fe48ba2781ff5919d5e09908eb58 
 



 

45 
Shuvojit Nath, Sabrina Kirschke (2023). "Groundwater Monitoring through Citizen 
Science: A Review of Project Designs and Results". 61. 
https://www.semanticscholar.org/paper/f14e91cf29d6de0ffcb40703746a8a4a543bf540 
 
André Coners, Benjamin Matthies (2022). "Perspectives on reusing codified project 
knowledge: a structured literature review". 
https://www.semanticscholar.org/paper/c50ace415e2f4eca6520d30f904d82c60b5a5f72 
 
P. Muruganantham, S. Wibowo, S. Grandhi, N. Samrat, Nahina Islam (2022). "A 
Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote 
Sensing". 14. pp. 1990. 
https://www.semanticscholar.org/paper/11413499875c438b3ce16fca7eecfaf21850d4d9 
 
S. F. Khatib, Ahmed A. Elamer, D. F. Abdullah, S. Hazaea (2022). "The development of 
corporate governance literature in Malaysia: a systematic literature review and research 
agenda". 
https://www.semanticscholar.org/paper/8360e3cf197324681a7237737a23ba6abbc3c5bc 
 
Leah A Lievrouw, Sonia M. Livingstone (2006-01-17). "Handbook of New Media". SAGE. 
http://books.google.com/books?id=P9HkFWEwfFUC&dq=Importance+of+interactive+ch
at-box+systems+in+literature+review.&hl=&source=gbs_api 
 
Khosrow-Pour, Mehdi (2014-07-31). "Encyclopedia of Information Science and 
Technology, Third Edition". IGI Global. 
https://play.google.com/store/books/details?id=MJd_BAAAQBAJ&source=gbs_api 
 
Diana Ridley (2012-07-23). "The Literature Review". SAGE. 
https://play.google.com/store/books/details?id=WaNrAwAAQBAJ&source=gbs_api 
 
 

  



 

46 
Appendix A 

Code 

TEXT-TO-SPEECH CODE 
 
#include <Arduino.h> 
#include <esp_now.h> 
#include <WiFi.h> 
#include <HTTPClient.h> 
#include <ArduinoJson.h> 
#include "Audio.h" 
 
#define CHANNEL 1 
#define I2S_DOUT 25 
#define I2S_BCLK 27 
#define I2S_LRC 26 
 
const char* ssid = "WIFI NAME"; 
const char* password = "WIFI PASSWORD"; 
const char* chatgpt_token = "ChatGPT token"; 
const char* temperature = "0"; 
const char* max_tokens = "45"; 
String Question = ""; 
 
Audio audio; 
 
void InitESPNow() { 
    WiFi.disconnect(); 
    if (esp_now_init() == ESP_OK) { 
        Serial.println("ESPNow Init Success"); 
    } else { 
        Serial.println("ESPNow Init Failed"); 
        ESP.restart(); 
    } 
} 
 
void configDeviceAP() { 
    const char *SSID = "Slave_1"; 
    bool result = WiFi.softAP(SSID, "Slave_1_Password", CHANNEL, 0); 
    if (!result) { 
        Serial.println("AP Config failed."); 
    } else { 
        Serial.println("AP Config Success. Broadcasting with AP: " + String(SSID)); 
        Serial.print("AP CHANNEL "); Serial.println(WiFi.channel()); 
    } 
} 
 
void setup() { 
    Serial.begin(115200); 
    Serial.println("ESPNow/Basic/Slave Example"); 

Office
Move all your code to this chapter



 

47 
     
    WiFi.mode(WIFI_AP_STA); 
    configDeviceAP(); 
    Serial.print("AP MAC: "); Serial.println(WiFi.softAPmacAddress()); 
    InitESPNow(); 
    esp_now_register_recv_cb(OnDataRecv); 
 
    WiFi.begin(ssid, password); 
    Serial.print("Connecting to "); 
    Serial.println(ssid); 
     
    while (WiFi.status() != WL_CONNECTED) { 
        delay(1000); 
        Serial.print("."); 
    } 
    Serial.println("connected"); 
    Serial.print("IP address: "); 
    Serial.println(WiFi.localIP()); 
 
    audio.setPinout(I2S_BCLK, I2S_LRC, I2S_DOUT); 
    audio.setVolume(100); 
} 
 
void OnDataRecv(const uint8_t *mac_addr, const uint8_t *data, int data_len) { 
    char macStr[18]; 
    snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x", 
             mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], 
mac_addr[5]); 
    Serial.print("Last Packet Recv from: "); Serial.println(macStr); 
 
    char msg[data_len + 1]; 
    memcpy(msg, data, data_len); 
    msg[data_len] = '\0'; 
 
    Serial.print("Last Packet Recv Data: "); Serial.println(msg); 
    Serial.println(""); 
 
    Question = String(msg); 
} 
 
void loop() { 
     
    audio.loop(); 
 
    if (Question.length() > 0) { 
        String processedQuestion = "\"" + Question + "\""; 
        Serial.println(processedQuestion); 
 
        HTTPClient https; 
         



 

48 
        if (https.begin("https://api.openai.com/v1/completions")) { 
            https.addHeader("Content-Type", "application/json"); 
            String token_key = String("Bearer ") + chatgpt_token; 
            https.addHeader("Authorization", token_key); 
 
            String payload = String("{\"model\": \"gpt-3.5-turbo-instruct\", \"prompt\": ") + 
processedQuestion + String(", \"temperature\": ") + temperature + String(", \"max_tokens\": 
") + max_tokens + String("}"); 
 
            int httpCode = https.POST(payload); 
 
            if (httpCode == HTTP_CODE_OK || httpCode == 
HTTP_CODE_MOVED_PERMANENTLY) { 
                String response = https.getString(); 
                DynamicJsonDocument doc(1024); 
                deserializeJson(doc, response); 
                String Answer = doc["choices"][0]["text"]; 
                Answer = Answer.substring(2); 
                Serial.print("Answer : "); Serial.println(Answer); 
                audio.connecttospeech(Answer.c_str(), "en"); 
            } else { 
                Serial.printf("[HTTPS] GET... failed, error: %s\n", 
https.errorToString(httpCode).c_str()); 
            } 
            https.end(); 
        } else { 
            Serial.printf("[HTTPS] Unable to connect\n"); 
        } 
 
        Question = ""; 
    } 
} 
 
void audio_info(const char *info) { 
    Serial.print("audio_info: "); Serial.println(info); 
} 
 
SPEECH-TO-TEXT CODE 
 
#include <esp_now.h> 
#include <WiFi.h> 
#include "Audio.h" 
#include "CloudSpeechClient.h" 
 
esp_now_peer_info_t slave; 
#define CHANNEL 0 
#define PRINTSCANRESULTS 0 
#define DELETEBEFOREPAIR 0 
 
extern String My_Answer; 



 

49 
 
// Init ESP Now with fallback 
void InitESPNow() { 
  WiFi.disconnect(); 
  if (esp_now_init() == ESP_OK) { 
    Serial.println("ESPNow Init Success"); 
  } else { 
    Serial.println("ESPNow Init Failed"); 
    ESP.restart(); 
  } 
} 
 
// Scan for slaves in AP mode 
void ScanForSlave() { 
  int8_t scanResults = WiFi.scanNetworks(); 
  bool slaveFound = 0; 
  memset(&slave, 0, sizeof(slave)); 
 
  Serial.println(""); 
  if (scanResults == 0) { 
    Serial.println("No WiFi devices in AP Mode found"); 
  } else { 
    Serial.print("Found "); Serial.print(scanResults); Serial.println(" devices "); 
    for (int i = 0; i < scanResults; ++i) { 
      String SSID = WiFi.SSID(i); 
      int32_t RSSI = WiFi.RSSI(i); 
      String BSSIDstr = WiFi.BSSIDstr(i); 
 
      if (PRINTSCANRESULTS) { 
        Serial.print(i + 1); 
        Serial.print(": "); 
        Serial.print(SSID); 
        Serial.print(" ("); 
        Serial.print(RSSI); 
        Serial.println(""); 
      } 
      delay(10); 
      if (SSID.indexOf("Slave") == 0) { 
        Serial.println("Found a Slave."); 
        Serial.print(i + 1); Serial.print(": "); Serial.print(SSID); Serial.print(" ["); 
Serial.print(BSSIDstr); Serial.print("]"); Serial.print(" ("); Serial.print(RSSI); 
Serial.println(""); 
        int mac[6]; 
        if (6 == sscanf(BSSIDstr.c_str(), "%x:%x:%x:%x:%x:%x", &mac[0], &mac[1], 
&mac[2], &mac[3], &mac[4], &mac[5])) { 
          for (int ii = 0; ii < 6; ++ii) { 
            slave.peer_addr[ii] = (uint8_t) mac[ii]; 
          } 
        } 
        slave.channel = CHANNEL; 



 

50 
        slave.encrypt = 0; 
        slaveFound = 1; 
        break; 
      } 
    } 
  } 
 
  if (slaveFound) { 
    Serial.println("Slave Found, processing.."); 
  } else { 
    Serial.println("Slave Not Found, trying again."); 
  } 
 
  WiFi.scanDelete(); 
} 
 
// Check if the slave is already paired with the master. 
// If not, pair the slave with master 
bool manageSlave() { 
  if (slave.channel == CHANNEL) { 
    if (DELETEBEFOREPAIR) { 
      deletePeer(); 
    } 
 
    Serial.print("Slave Status: "); 
    bool exists = esp_now_is_peer_exist(slave.peer_addr); 
    if (exists) { 
      Serial.println("Already Paired"); 
      return true; 
    } else { 
      esp_err_t addStatus = esp_now_add_peer(&slave); 
      if (addStatus == ESP_OK) { 
        Serial.println("Pair success"); 
        return true; 
      } else if (addStatus == ESP_ERR_ESPNOW_NOT_INIT) { 
        Serial.println("ESPNOW Not Init"); 
        return false; 
      } else if (addStatus == ESP_ERR_ESPNOW_ARG) { 
        Serial.println("Invalid Argument"); 
        return false; 
      } else if (addStatus == ESP_ERR_ESPNOW_FULL) { 
        Serial.println("Peer list full"); 
        return false; 
      } else if (addStatus == ESP_ERR_ESPNOW_NO_MEM) { 
        Serial.println("Out of memory"); 
        return false; 
      } else if (addStatus == ESP_ERR_ESPNOW_EXIST) { 
        Serial.println("Peer Exists"); 
        return true; 
      } else { 



 

51 
        Serial.println("Not sure what happened"); 
        return false; 
      } 
    } 
  } else { 
    Serial.println("No Slave found to process"); 
    return false; 
  } 
} 
 
void deletePeer() { 
  esp_err_t delStatus = esp_now_del_peer(slave.peer_addr); 
  Serial.print("Slave Delete Status: "); 
  if (delStatus == ESP_OK) { 
    Serial.println("Success"); 
  } else if (delStatus == ESP_ERR_ESPNOW_NOT_INIT) { 
    Serial.println("ESPNOW Not Init"); 
  } else if (delStatus == ESP_ERR_ESPNOW_ARG) { 
    Serial.println("Invalid Argument"); 
  } else if (delStatus == ESP_ERR_ESPNOW_NOT_FOUND) { 
    Serial.println("Peer not found."); 
  } else { 
    Serial.println("Not sure what happened"); 
  } 
} 
 
// send data 
void sendData() { 
  const char* data = My_Answer.c_str(); 
  const uint8_t *peer_addr = slave.peer_addr; 
  Serial.print("Sending: "); Serial.println(data); 
  esp_err_t result = esp_now_send(peer_addr, (uint8_t *)data, strlen(data) + 1); 
  Serial.print("Send Status: "); 
  if (result == ESP_OK) { 
    Serial.println("Success"); 
  } else if (result == ESP_ERR_ESPNOW_NOT_INIT) { 
    Serial.println("ESPNOW not Init."); 
  } else if (result == ESP_ERR_ESPNOW_ARG) { 
    Serial.println("Invalid Argument"); 
  } else if (result == ESP_ERR_ESPNOW_INTERNAL) { 
    Serial.println("Internal Error"); 
  } else if (result == ESP_ERR_ESPNOW_NO_MEM) { 
    Serial.println("ESP_ERR_ESPNOW_NO_MEM"); 
  } else if (result == ESP_ERR_ESPNOW_NOT_FOUND) { 
    Serial.println("Peer not found."); 
  } else { 
    Serial.println("Not sure what happened"); 
  } 
} 
 



 

52 
// callback when data is sent from Master to Slave 
void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) { 
  char macStr[18]; 
  snprintf(macStr, sizeof(macStr), "%02x:%02x:%02x:%02x:%02x:%02x", 
           mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]); 
  Serial.print("Last Packet Sent to: "); Serial.println(macStr); 
  Serial.print("Last Packet Send Status: "); Serial.println(status == 
ESP_NOW_SEND_SUCCESS ? "Delivery Success" : "Delivery Fail"); 
} 
 
void setup() { 
  Serial.begin(115200); 
  pinMode(15, OUTPUT); 
  pinMode(2, OUTPUT); 
 
  digitalWrite(15, LOW); 
  digitalWrite(2, LOW); 
  WiFi.mode(WIFI_STA); 
  Serial.println("ESPNow/Basic/Master Example"); 
  Serial.print("STA MAC: "); Serial.println(WiFi.macAddress()); 
  InitESPNow(); 
  esp_now_register_send_cb(OnDataSent); 
 
  // Begin speech recognition process 
  Serial.println("\r\nRecord start!\r\n"); 
  digitalWrite(15, HIGH); 
  digitalWrite(2, LOW); 
  Audio* audio = new Audio(ICS43434); 
  audio->Record(); 
  Serial.println("Recording Completed. Now Processing..."); 
  digitalWrite(15, LOW); 
  digitalWrite(2, HIGH); 
  CloudSpeechClient* cloudSpeechClient = new CloudSpeechClient(USE_APIKEY); 
  cloudSpeechClient->Transcribe(audio); 
  delete cloudSpeechClient; 
  delete audio; 
 
  // Scan for slaves and manage connections 
  ScanForSlave(); 
  if (slave.channel == CHANNEL) { 
    bool isPaired = manageSlave(); 
    if (isPaired) { 
      sendData(); 
      digitalWrite(15, HIGH); 
      digitalWrite(2, LOW); 
      delay(1000); 
      digitalWrite(15, LOW); 
      digitalWrite(2, HIGH); 
    } else { 
      Serial.println("Slave pair failed!"); 



 

53 
    } 
  } 
} 
 
void loop() { 
  // Empty loop as the main logic is handled in setup 
} 
 
AUDIO.CPP CODE 
#include "Audio.h" 
 
Audio::Audio(MicType micType) { 
  wavData = new char*[wavDataSize/dividedWavDataSize]; 
  for (int i = 0; i < wavDataSize/dividedWavDataSize; ++i) wavData[i] = new 
char[dividedWavDataSize]; 
  i2s = new I2S(micType); 
} 
 
Audio::~Audio() { 
  for (int i = 0; i < wavDataSize/dividedWavDataSize; ++i) delete[] wavData[i]; 
  delete[] wavData; 
  delete i2s; 
} 
 
void Audio::CreateWavHeader(byte* header, int waveDataSize){ 
  header[0] = 'R'; 
  header[1] = 'I'; 
  header[2] = 'F'; 
  header[3] = 'F'; 
  unsigned int fileSizeMinus8 = waveDataSize + 44 - 8; 
  header[4] = (byte)(fileSizeMinus8 & 0xFF); 
  header[5] = (byte)((fileSizeMinus8 >> 8) & 0xFF); 
  header[6] = (byte)((fileSizeMinus8 >> 16) & 0xFF); 
  header[7] = (byte)((fileSizeMinus8 >> 24) & 0xFF); 
  header[8] = 'W'; 
  header[9] = 'A'; 
  header[10] = 'V'; 
  header[11] = 'E'; 
  header[12] = 'f'; 
  header[13] = 'm'; 
  header[14] = 't'; 
  header[15] = ' '; 
  header[16] = 0x10;  // linear PCM 
  header[17] = 0x00; 
  header[18] = 0x00; 
  header[19] = 0x00; 
  header[20] = 0x01;  // linear PCM 
  header[21] = 0x00; 
  header[22] = 0x01;  // monoral 
  header[23] = 0x00; 



 

54 
  header[24] = 0x80;  // sampling rate 16000 
  header[25] = 0x3E; 
  header[26] = 0x00; 
  header[27] = 0x00; 
  header[28] = 0x00;  // Byte/sec = 16000x2x1 = 32000 
  header[29] = 0x7D; 
  header[30] = 0x00; 
  header[31] = 0x00; 
  header[32] = 0x02;  // 16bit monoral 
  header[33] = 0x00; 
  header[34] = 0x10;  // 16bit 
  header[35] = 0x00; 
  header[36] = 'd'; 
  header[37] = 'a'; 
  header[38] = 't'; 
  header[39] = 'a'; 
  header[40] = (byte)(waveDataSize & 0xFF); 
  header[41] = (byte)((waveDataSize >> 8) & 0xFF); 
  header[42] = (byte)((waveDataSize >> 16) & 0xFF); 
  header[43] = (byte)((waveDataSize >> 24) & 0xFF); 
} 
 
void Audio::Record() { 
  CreateWavHeader(paddedHeader, wavDataSize); 
  int bitBitPerSample = i2s->GetBitPerSample(); 
  if (bitBitPerSample == 16) { 
    for (int j = 0; j < wavDataSize/dividedWavDataSize; ++j) { 
      i2s->Read(i2sBuffer, i2sBufferSize/2); 
      for (int i = 0; i < i2sBufferSize/8; ++i) { 
        wavData[j][2*i] = i2sBuffer[4*i + 2]; 
        wavData[j][2*i + 1] = i2sBuffer[4*i + 3]; 
      } 
    } 
  } 
  else if (bitBitPerSample == 32) { 
    for (int j = 0; j < wavDataSize/dividedWavDataSize; ++j) { 
      i2s->Read(i2sBuffer, i2sBufferSize); 
      for (int i = 0; i < i2sBufferSize/8; ++i) { 
        wavData[j][2*i] = i2sBuffer[8*i + 2]; 
        wavData[j][2*i + 1] = i2sBuffer[8*i + 3]; 
      } 
    } 
  } 
} 
 
AUDIO.H CODE 
#ifndef _AUDIO_H 
#define _AUDIO_H 
 
#include <Arduino.h> 



 

55 
#include "I2S.h" 
 
// 16bit, monoral, 16000Hz,  linear PCM 
class Audio { 
  I2S* i2s; 
  static const int headerSize = 44; 
  static const int i2sBufferSize = 12000; 
  char i2sBuffer[i2sBufferSize]; 
  void CreateWavHeader(byte* header, int waveDataSize); 
 
public: 
  static const int wavDataSize = 90000;                   // It must be multiple of 
dividedWavDataSize. Recording time is about 1.9 second. 
  static const int dividedWavDataSize = i2sBufferSize/4; 
  char** wavData;                                         // It's divided. Because large continuous 
memory area can't be allocated in esp32. 
  byte paddedHeader[headerSize + 4] = {0};                // The size must be multiple of 3 for 
Base64 encoding. Additional byte size must be even because wave data is 16bit. 
 
  Audio(MicType micType); 
  ~Audio(); 
  void Record(); 
}; 
 
#endif // _AUDIO_H 
 
CLOUDSPEECHCLIENT.CPP CODE 
#include "CloudSpeechClient.h" 
#include "network_param.h" 
#include <base64.h> 
#include <ArduinoJson.h> 
 
WiFiClientSecure client; 
String My_Answer = ""; // Global variable to hold the transcription result 
 
CloudSpeechClient::CloudSpeechClient(Authentication authentication) { 
  this->authentication = authentication; 
  WiFi.begin(ssid, password); 
  while (WiFi.status() != WL_CONNECTED) delay(1000); 
  client.setCACert(root_ca); 
  if (!client.connect(server, 443)) Serial.println("Connection failed!"); 
} 
 
CloudSpeechClient::~CloudSpeechClient() { 
  client.stop(); 
  WiFi.disconnect(); 
} 
 
void CloudSpeechClient::PrintHttpBody2(Audio* audio) { 
  String enc = base64::encode(audio->paddedHeader, sizeof(audio->paddedHeader)); 



 

56 
  enc.replace("\n", ""); 
  client.print(enc); 
  char** wavData = audio->wavData; 
  for (int j = 0; j < audio->wavDataSize / audio->dividedWavDataSize; ++j) { 
    enc = base64::encode((byte*)wavData[j], audio->dividedWavDataSize); 
    enc.replace("\n", ""); 
    client.print(enc); 
  } 
} 
 
void CloudSpeechClient::Transcribe(Audio* audio) { 
  String HttpBody1 = 
"{\"config\":{\"encoding\":\"LINEAR16\",\"sampleRateHertz\":16000,\"languageCode\":\"
en-NG\"},\"audio\":{\"content\":\""; 
  String HttpBody3 = "\"}}\r\n\r\n"; 
  int httpBody2Length = (audio->wavDataSize + sizeof(audio->paddedHeader)) * 4 / 3; 
  String ContentLength = String(HttpBody1.length() + httpBody2Length + 
HttpBody3.length()); 
  String HttpHeader = String("POST /v1/speech:recognize?key=") + ApiKey 
                      + String(" HTTP/1.1\r\nHost: speech.googleapis.com\r\nContent-Type: 
application/json\r\nContent-Length: ") + ContentLength + String("\r\n\r\n"); 
  client.print(HttpHeader); 
  client.print(HttpBody1); 
  PrintHttpBody2(audio); 
  client.print(HttpBody3); 
  My_Answer = ""; 
  while (!client.available()); 
 
  while (client.available()) { 
    char temp = client.read(); 
    My_Answer = My_Answer + temp; 
  } 
 
  Serial.print("My Answer - "); Serial.println(My_Answer); 
  int position = My_Answer.indexOf('{'); 
  String jsonResponse = My_Answer.substring(position); 
  Serial.print("Json data--"); Serial.print(jsonResponse); 
 
  // Parse JSON to extract the transcribed text 
  DynamicJsonDocument doc(2048); 
  DeserializationError error = deserializeJson(doc, jsonResponse); 
  if (error) { 
    Serial.print(F("deserializeJson() failed: ")); 
    Serial.println(error.f_str()); 
    return; 
  } 
 
  const char* transcript = doc["results"][0]["alternatives"][0]["transcript"]; 
  Serial.print("Transcript: "); 
  Serial.println(transcript); 



 

57 
  My_Answer = String(transcript); 
} 
 
CLOUDSPEECHCLIENT.H CODE 
// CloudSpeechClient.h 
#ifndef CLOUDSPEECHCLIENT_H 
#define CLOUDSPEECHCLIENT_H 
 
#include <WiFiClientSecure.h> 
#include "Audio.h" 
 
enum Authentication { 
  USE_APIKEY, 
  USE_SERVICEACCOUNT 
}; 
 
class CloudSpeechClient { 
  public: 
    CloudSpeechClient(Authentication authentication); 
    ~CloudSpeechClient(); 
    void Transcribe(Audio* audio); 
    void QueryChatGPT(const String& question, String& answer); 
 
  private: 
    Authentication authentication; 
    void PrintHttpBody2(Audio* audio); 
}; 
 
#endif 
 
I2S.CPP CODE 
#include "I2S.h" 
#define SAMPLE_RATE (16000) 
#define PIN_I2S_BCLK 26 
#define PIN_I2S_LRC 22 
#define PIN_I2S_DIN 34 
#define PIN_I2S_DOUT 25 
 
// This I2S specification :  
//  -   LRC high is channel 2 (right). 
//  -   LRC signal transitions once each word. 
//  -   DATA is valid on the CLOCK rising edge. 
//  -   Data bits are MSB first. 
//  -   DATA bits are left-aligned with respect to LRC edge. 
//  -   DATA bits are right-shifted by one with respect to LRC edges. 
I2S::I2S(MicType micType) { 
  if (micType == M5GO || micType == M5STACKFIRE ) { 
    BITS_PER_SAMPLE = I2S_BITS_PER_SAMPLE_16BIT; 
    i2s_config_t i2s_config = { 



 

58 
      .mode = (i2s_mode_t)(I2S_MODE_MASTER | I2S_MODE_RX | I2S_MODE_TX | 
I2S_MODE_DAC_BUILT_IN | I2S_MODE_ADC_BUILT_IN), 
      .sample_rate = SAMPLE_RATE, 
      .bits_per_sample = BITS_PER_SAMPLE, 
      .channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, 
      .communication_format = (i2s_comm_format_t)(I2S_COMM_FORMAT_I2S_MSB), 
      .intr_alloc_flags = 0, 
      .dma_buf_count = 2, 
      .dma_buf_len = 1024 
    }; 
    i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL); 
    i2s_set_adc_mode(ADC_UNIT_1, ADC1_CHANNEL_6); 
    i2s_set_clk(I2S_NUM_0, SAMPLE_RATE, BITS_PER_SAMPLE, 
I2S_CHANNEL_STEREO); 
    i2s_adc_enable(I2S_NUM_0); 
  } 
  else if (micType == ADMP441 || micType == ICS43434 ) { 
    BITS_PER_SAMPLE = I2S_BITS_PER_SAMPLE_32BIT; 
    i2s_config_t i2s_config = { 
      .mode = (i2s_mode_t)(I2S_MODE_MASTER | I2S_MODE_RX), 
      .sample_rate = SAMPLE_RATE, 
      .bits_per_sample = BITS_PER_SAMPLE, 
      .channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, 
      .communication_format = (i2s_comm_format_t)(I2S_COMM_FORMAT_I2S | 
I2S_COMM_FORMAT_I2S_MSB), 
      .intr_alloc_flags = 0, 
      .dma_buf_count = 16, 
      .dma_buf_len = 60 
    }; 
    i2s_pin_config_t pin_config; 
    pin_config.bck_io_num = PIN_I2S_BCLK; 
    pin_config.ws_io_num = PIN_I2S_LRC; 
    pin_config.data_out_num = I2S_PIN_NO_CHANGE; 
    pin_config.data_in_num = PIN_I2S_DIN; 
    i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL); 
    i2s_set_pin(I2S_NUM_0, &pin_config); 
    i2s_set_clk(I2S_NUM_0, SAMPLE_RATE, BITS_PER_SAMPLE, 
I2S_CHANNEL_STEREO); 
  } 
} 
 
int I2S::Read(char* data, int numData) { 
  return i2s_read_bytes(I2S_NUM_0, (char *)data, numData, portMAX_DELAY); 
} 
 
int I2S::GetBitPerSample() { 
  return (int)BITS_PER_SAMPLE; 
} 
 
 



 

59 
I2S.H CODE 
#ifndef _I2S_H 
#define _I2S_H 
#include <Arduino.h> 
#include "freertos/FreeRTOS.h" 
#include "freertos/task.h" 
#include "driver/i2s.h" 
#include "esp_system.h" 
 
enum MicType { 
  ADMP441, 
  ICS43434, 
  M5GO, 
  M5STACKFIRE 
}; 
 
class I2S { 
  i2s_bits_per_sample_t BITS_PER_SAMPLE; 
public: 
  I2S(MicType micType); 
  int Read(char* data, int numData); 
  int GetBitPerSample(); 
}; 
 
#endif // _I2S_H 
 
NETWORK_PARAM.H CODE 
#ifndef _NETWORK_PARAM_H 
#define _NETWORK_PARAM_H 
 
const char *ssid = "WIFI NAME";  
const char *password = "WIFI PASSWORD";  
const char*  server = "speech.googleapis.com"; 
const char* root_ca=”Input google cloud certificate”; 
const String ApiKey = "Input Google API key"; 
 
  



 

60 
Appendix X 

Similarity Report 

 

Office
Get your plagiarism checked, the maximum is 15%


	Approval
	Declaration
	Acknowledgments
	Abstract
	Table of Contents
	List Of Tables
	List Of Figures
	List Of Abbreviations
	CHAPTER I
	Introduction
	1.1 STATEMENT OF THE PROBLEM


	CHAPTER II
	Literature Review
	2.1 Background


	2.2 Speech-To-Text Technology
	2.3 ESP-NOW Protocol
	2.4 ChatGPT
	2.5 Conclusion
	CHAPTER III
	Methodology

	CHAPTER IV
	Results Analysis
	References

	Appendix A
	Code

	Appendix X
	Similarity Report


