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Abstract

Multiple Filter Embedded Custom CNN Architecture on Optimized Detection
and Classification of Face Mask
Kayali, Devrim
PhD, Department of Electrical & Electronic Engineering
01/2025, 73 pages

When COVID-19 started to spread rapidly globally, various kinds of face
masks were started to be used because one of the effective ways of protection was the
proper usage of face masks until the vaccinations were found. In such an environment,
it is important to check proper face mask usage to keep the spread under control, which
can be effectively done by using automated control systems. This research aims to
accurately classify the correct, wrong, and no mask-wearing situations. The used
dataset with the three mask-wearing conditions is obtained by adding face masks to
the Labeled Faces in the Wild (LFW) dataset. The research contains three main parts.
In the first part, deep convolutional neural networks are trained with their minimum
possible input data and make a comparison. The second part aimed to use a filter-based
approach as a pre-process to extract features and feed them to a customized neural
network for classification. Chosen 17 filters were applied to the input images and the
network was trained at different learning rates for comparison. Also, an oscillating
learning rate was used and compared with the fixed learning rate results. A weight-
dropping feature was added to the training process by checking training and validation
metrics after each epoch and setting random weights to zero. In the third part, the
filtering process was embedded inside a custom network by using convolutional layers
and initializing them with selected filter values. They were frozen to prevent them
from updating by training. With this approach fixed filters were embedded inside the
network architecture, and three versions of the network were implemented with 32x32,
64x64, and 128x128 input image resolutions. The final network sizes were 24.2MB,
60.8MB, and 204MB respectively. The networks were evaluated with their validation
and test accuracies. At 32x32, validation and test accuracies were 99.45% and 98.45%.
For the second input with 64x64 resolution, the resulting accuracies were 99.84% and
99.43%. When 128x128 input images were used the results were 99.84% and 99.49%.
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When the results of the whole research are considered, it was observed that with the
fixed filter-based approach, good results can be achieved with a smaller network size
than the other models. Also, the results showed that using the oscillating learning rate
and the weight-dropping features can effectively shorten the training time and improve

the obtained accuracy.

Key Words: mask detection, image processing, filtering, custom cnn architecture,

training optimization
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Ozet

Yiiz Maskesinin Optimize Edilmis Algilanmasi ve Siniflandirilmasinda Coklu
Filtre Gomulu Ozel CNN Mimarisi
Kayali, Devrim
Doktora, Elektrik ve Elektronik Miihendisligi Anabilim Dah
01/2025, 73 sayfa

COVID-19 kiiresel olarak hizla yayilmaya basladiginda, asilar bulunana kadar etkili
korunma yollarindan biri yliz maskelerinin dogru kullanimi oldugundan cesitli yiiz
maskeleri kullanilmaya baglandi. Boyle bir ortamda, yayilmay1 kontrol altinda tutmak
icin dogru yiiz maskesi kullaniminin kontrol edilmesi 6nemlidir ve bu, otomatik
kontrol sistemleri kullanilarak etkili bir sekilde yapilabilir. Bu arastirma, dogru, yanlis
ve maske takmama durumlarini dogru bir sekilde siiflandirmay1 amaglamaktadir. Ug
maske takma kosuluna sahip kullanilan veri seti, Labeled Faces in the Wild (LFW)
veri setine yiiz maskeleri eklenerek elde edilmistir. Arastirma {ic ana boliimden
olusmaktadir. ilk béliimde, derin evrisimli sinir aglar1 miimkiin olan en az giris
verileriyle egitilir ve bir karsilagtirma yapilir. ikinci béliimde, dzellikleri ¢ikarmak ve
siniflandirma i¢in 6zellestirilmis bir sinir agina beslemek icin 6n islem olarak filtre
tabanli bir yaklagim kullanilmasi amaclanmistir. Secilen 17 filtre giris goriintiilerine
uygulanmis ve ag karsilastirma i¢in farkli 6grenme oranlarinda egitilmistir. Ayrica,
dalgalanan Ogrenme oran1 kullanilmis ve sabit O8renme oranit sonuclartyla
karsilastirilmistir.  Egitim siirecine, her donemden sonra egitim ve dogrulama
metriklerini kontrol ederek ve rastgele agirliklari sifira ayarlayarak bir agirlik diisiirme
ozelligi eklendi. Uciincii boliimde, filtreleme islemi evrisimli katmanlar kullanilarak
ve secilen filtre degerleriyle baslatilarak 6zel bir agin i¢ine gdmiildii. Egitimle
giincellenmelerini 6nlemek amaciyla donduruldular. Bu yaklagimla sabit filtreler ag
mimarisinin i¢ine gomiildii ve agin li¢ versiyonu 32x32, 64x64 ve 128x128 giris
goriintii ¢oziiniirliikleriyle uygulandi. Son ag boyutlar1 sirasiyla 24.2 MB, 60.8 MB ve
204 MB oldu. Aglar dogrulama ve test dogruluklartyla degerlendirildi. 32x32'de
dogrulama ve test dogruluklar1 %699.45 ve %98.45 idi. 64x64 ¢oziiniirliige sahip ikinci
giris icin ortaya ¢ikan dogruluklar %99.84 ve %99.43 idi. 128x128 giris goriintiileri

kullanildiginda sonuglar %99.84 ve %99.49 olmustur. Tiim aragtirmanin sonuglari g6z
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Oniine alindiginda, sabit filtre tabanl yaklasimla, diger modellere gore daha kiigiik bir
ag boyutuyla iyi sonuglar elde edilebilecegi gozlemlenmistir. Ayrica, sonuglar
dalgalanan 6grenme orani ve agirlik diisiirme 6zelliklerinin kullanilmasimin egitim
sresini etkili bir sekilde kisaltabilecegini ve elde edilen dogrulugu artirabilecegini

gostermistir.

Anahtar kelimeler: maske algilama, goriintii isleme, filtreleme, 6zel cnn mimarisi,

egitim optimizasyonu
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CHAPTERII

Introduction

Both artificial intelligence (Al) and image processing (IP) applications have
become crucial tools to solve problems in a faster, more efficient, and accurate way.
Their speed, sustainability, and reliability are the main points to be used in various
applications. Al and IP can be used for preliminary examination and information
retrieval, assistance, and fully automated systems.

Image processing has different uses so it can be used for multiple purposes
according to the need. As a preprocessing step, it can be used for removing background
noise, intensity normalization of individual images, and enhancing or removing
unwanted data in images before computational processing. Getting rid of any kind of
noise before any process is very important since noise can decrease the success rate
and cause increased time in calculations. To obtain a better image before any process,
some image enhancement steps are used after noise reduction. Histogram equalization,
thresholding, and different kinds of filtering techniques are some examples of image
enhancement. Applying image enhancement increases the success rate of an operation.
Because of this image enhancement is widely used in healthcare applications
(Dimililer & Kayali, 2021). Image restoration on the other hand is a technique to
estimate the original image which is corrupted with any kind of noise. The aim is that
the estimation is as close as the original image. For images having details of different
resolutions for different sizes of objects, multiresolution processing is a method used
at multiple resolutions to obtain more information about different objects in an image.
Image compression is another technique that is used to reduce the amount of data
required to represent an image. This is important to process images faster and also
efficiently store information. Besides images, it is also important for videos since
videos consist of a sequence of multiple images which is also called frames. This
means reducing the data required for an image efficiently at this scale saving a lot of
space and also means a faster transmission rate. For extracting the interested
components or features from an image morphological image processing is used.
Dilation and erosion are the basis of morphological image processing and these are
also the basis for image segmentation. In image segmentation, the image is divided
into regions, or some objects are detected or targeted in the image. This operation can

be easy or very hard depending on the task and the risk of the accuracy of the output



of the task. In some cases, a low accuracy may be enough, although in serious cases a
very high accuracy can still be not enough.

Artificial intelligence applications are used in many different areas and play an
important role in our lives nowadays. Machine learning (ML), neural networks (NN),
deep learning (DL), and natural language processing (NLP) are technologies related to
Al. Neural networks are formed by copying the human brain structure, while machine
learning algorithms use statistical approaches to learn and predict from given data. In
deep learning, there are many layers involved in the structure which makes it effective
in complex tasks including image and speech recognition. On the other hand, natural
language processing makes communication between humans and machines possible
so humans can communicate with systems that contain artificial intelligence. Al is
used in fields like healthcare, autonomous vehicles, entertainment, and finance. This
helps to obtain sustainable, efficient, and minimal errored systems.

Artificial intelligence applications are used for both classification and
regression problems. Some applications include fruit classification (Dimililer & Bush,
2017), security technologies (llgi et al., 2022), skin lesion classification (Dimililer &
Sekeroglu, 2023), and electrochemical determination and classification (Asir et al.,
2019; Kayali et al., 2023). When used for regression, the output represents a numerical
output rather than a class label like in classification as in the study by Dimililer et al.
(2023) 19 years of historical power demand data was used with machine learning
regressor models to predict future month power demand (Dimililer et al., 2023).

In Al applications, image processing is used as a preprocessing stage. Dimililer
et al. (2016), used image processing on CT images before using back propagation
neural networks (BPNN) for lung tumor detection (Dimililer et al., 2016). A detailed
review was done by Dimililer et al. (2024) where the image preprocessing phase was
applied with artificial intelligence applications on medical images (Dimililer et al.,
2024).

Human health can be influenced by many factors, one of them being biological.
When COVID-19 was first introduced, various kinds of face masks with different
printed figures were designed and sold to help users become familiar with wearing
masks and to increase their usage. Because it was seen that one of the most effective
ways of slowing down infection and ensuring individual protection is using face
masks. Also in such an environment, it is important to check face mask usage in public

places since no usage or improper usage can increase the spread.



When the COVID-19 pandemic was spreading quickly all over the world,
global-level precautions had to be taken because of its high infection rate and severity.
One of the most effective ways of slowing down the infection and individual protection
was to use face masks while the vaccination was not found (Cheng et al., 2020).
Checking face mask usage in public places was important since no usage or improper
usage can increase the spread. Automated control systems are a reliable way of
maintaining control. As an example, a smart door project was studied by Baluprithviraj
et al. (2021), which was integrated into a mobile app. It detects whether a person is
wearing a face mask and sends an alert message to the mobile app (Baluprithviraj et
al., 2021). Pandey (2020) also worked on a system that detects whether an individual
is wearing a face mask. The system raises an alarm when a person without a mask is
detected (Pandey, 2020). A CNN-based gate control system was proposed by Prasad
et al. (2022) which opens or closes according to body temperature and face mask
detection. Arduino was used for body temperature monitoring while Raspberry Pi was
used for face mask monitoring with CNN (Prasad et al., 2022).

Besides mask detection, studies on automatic COVID-19 detection and
survival analysis have also been carried out. Narin et al. (2021) used X-ray images and
deep CNNs for the automatic detection of COVID-19. Three different binary
classifications were implemented to discriminate COVID-19 from normal (healthy)
subjects and viral and bacterial pneumonia (Narin et al., 2021). For survival analysis,
Atlam et al. (2021) used the Cox regression model and deep learning (Atlam et al.,
2021). The usage of face masks also caused conventional face recognition
technologies ineffective, so to improve existing methods some research started.
According to Wang et al. (2020), face recognition systems are mostly based on deep

learning with a large number of face samples (Wang et al., 2020).

Statement of the Problem

Effective infection control and individual protection depend on proper face
mask usage in public places. Since manual monitoring requires manpower and is prone
to human error, automated control systems are a reliable way of doing this. When this
type of global-level problem happens and starts to spread quickly, it can be hard to
gather enough data to develop such systems. Also, for deployment in various
environments, both highly accurate and resource-efficient solutions are harder to

achieve, especially on datasets with more than two classes.



Purpose of the Study

Developing an image processing-based artificial intelligence system can help
maintain public safety. Using a fixed filter-based feature extraction approach with a
selection of filters can significantly enhance the classification accuracy by a custom
network architecture. Also, embedding the image filtering process within the network
architecture can streamline image processing, leading to higher classification accuracy
and more efficient network performance. The implementation of a custom network
architecture with embedded fixed filters can achieve high accuracy while maintaining
a small network size, making it practical for deployment in environments with lower
specifications. To achieve effective training in a shorter time, applying adjustments
between epochs can further improve classification accuracy while reducing the total

training time.
Significance of the Study

This study focuses on the accurate classification of three types of face mask-
wearing conditions using and modifying convolutional neural networks and filters as
image processing. In the first part of the research, deep convolutional neural networks
are trained with minimum input data as possible. In the second part, 17 filters are
selected to extract features from the images, and a customized network is used for the
classification. The filter-based approach is used as a pre-processing phase for feature
extraction. In the third part, these filters are embedded inside the network to achieve a
custom network architecture that contains the image processing step inside the network
itself.

Limitations

Although a variety of masks with different designs and patterns were used in
the mask pool to obtain the dataset, there may still be other designs and patterns that
can affect the performance obtained in the study. Also, environmental factors that
affect the captured image quality can cause performance variations. These limitations
can be addressed by fine-tuning or retraining the obtained network and adding image
processing for image enhancement. Implementing a fixed filter-based approach may
require decent or even advanced knowledge of filter selection and application,

especially in more complex situations.



Contributions

This research focuses on the accurate classification of three face mask-wearing
conditions using convolutional neural networks and filters as image processing. To
achieve this, 17 filters are selected to extract features from the images and then they
are given to a customized network. These filters are also embedded inside the network
to achieve a custom network architecture that contains the image processing step inside
the network itself. Besides the custom architecture, also training optimization was
done to achieve higher accuracy in a shorter training time. All of the obtained results
were evaluated and comparisons of networks were made by their performance and
efficiency in the means of training times, model sizes, and accuracies.

The thesis is organized into five chapters. The first chapter is the introduction
which gives an overview, which is then followed by the statement of the problem,
purpose of the study, significance of the study, limitations, and contributions. The
second chapter is the literature review, which includes relevant research in the
literature. The third chapter explains the methodology by describing the dataset,
modifications, and networks used, and the proposed customized network with the
training procedure. In the fourth chapter, the obtained results are given and discussed.
In the fifth chapter, the conclusion of the research is given with some recommendations
for possible future directions of the study.

Throughout the research, several publications were made with the findings,
which reflects the progressive development of the research (Dimililer & Kayali, 2023,;
Kayali et al., 2021; Kayali & Dimililer, 2023). Contributions of the thesis can be
summarized as:

e Creating a three-class face mask dataset

e Classification of the three face mask-wearing conditions

e Training existing deep convolutional neural networks with minimum input

resolution

e A fixed filter-based feature extraction approach with the chosen filters

e Improved training by learning rate changes and weight-dropping features

e Embedding the filtering process inside a network to obtain a custom

architecture

e Development of a resource-efficient and accurate network



CHAPTER I

Literature Review

This chapter includes related research in the literature which explains existing
methods used and gives information about the recent advances in the field that are
related to image processing, filtering, and face mask classification with convolutional

neural networks.

Related Research

For face mask detection in public areas, Suresh et al. (2021) studied a
MobileNet network. If a face mask is not detected, the authorities are notified and the
face is captured (Suresh et al., 2021).

A CNN-based real-time face mask detector was proposed by Chavda et al.
(2021). The first stage involved face detection, and in the second stage, NasNetMobile,
DenseNet121, and MobileNetVV2 networks were trained. NasNetMobile network was
selected as the most suitable network for real-time application according to the
experimental results in terms of both accuracy and average interference time (Chavda
etal., 2021).

Mohan et al. (2021) proposed a tiny CNN architecture to be used on devices
with constrained resources. The proposed architecture was compared to the
SqueezeNet and the Modified SqueezeNet. The proposed method outperformed the
SqueezeNet and the Modified SqueezeNet in both size and accuracy according to the
results (Mohan et al., 2021).

Snyder and Husari (2021) developed an automated detection model “Thor” and
implemented it on a mobile robot. The detection of human existence, the detection and
extraction of the human face, and the classification of masked/unmasked faces are the
three components of the method. ResNet50 is used with Feature Pyramid Network
(FPN) in the first component. The second component detects and extracts human faces
with multitask convolutional neural networks (MT-CNNSs). The last component is a
trained CNN classifier for the detection phase (Snyder & Husari, 2021).



Khamlae et al. (2021) trained a CNN with a dataset consisting of 848 images
with a 416x416 resolution. 81% accuracy was obtained with the model, which was
then implemented at the front gate of a campus building (Khamlae et al., 2021).

For face mask detection Kodali and Dhanekula (2021) proposed a deep
learning-based network that consists of two parts. The first part, the pre-processing
step, converts the RGB image to grayscale and resizes and normalizes it. Then, the
proposed CNN classifies the face images with and without face masks. The accuracy
of the proposed model was 96% (Kodali & Dhanekula, 2021).

By fine-tuning MobileNetV2, Pinki and Garg (2020) developed a deep-
learning model for a face mask detection system. The developed model can be used in
public areas to detect if people are wearing masks. If a person is not wearing a mask,
a notification is sent to the authorities (Pinki & Garg, 2020).

By building four fully connected layers on top of MobileNetV2, Sen and
Patidar (2020) developed a deep learning-based method. The developed model detects
people with or without face masks from images and video streams with an accuracy of
79.24% (Sen & Patidar, 2020).

A system was proposed by Yadav (2020) that uses both deep learning and
geometric techniques for detection, tracking, and validation purposes. Real-time
monitoring is performed to detect face masks and social distancing between people.

Figure 1 shows a test result from the research. (Yadav, 2020).

Figure 1
Test Result of the System Proposed by Yadav (2020)




Srinivasan et al. (2021) proposed a system that uses Dual Shot Face Detector
(DSFD), Density-based spatial clustering of applications with noise (DBSCAN),
YOLOv3, and MobileNetV2 for an effective solution regarding face mask and social
distancing detection. According to an evaluation of its performance, the system
obtained accuracy and F1 scores of 91.2 and 90.79%, respectively (Srinivasan et al.,
2021).

Wang et al. (2021) proposed a face mask detection solution dubbed Web-based
efficient Al recognition of masks (WearMask). It is an in-browser, serverless,
edgecomputing- based application that requires no software installation and can be
used by any device with an internet connection and access to web browsers. This
framework integrates deep learning (YOLO), a high-performance neural network
inference computing framework (NCNN), and a stack-based virtual machine
(WebAssembly) (Wang et al., 2021).

Dey et al. (2021) proposed a multi-phase deep learning based model for face
mask detection in images and video streams, which was named MobileNet Mask.
According to their experimental results, MobileNet Mask achieved about 93%
accuracy with 770 validation samples, and about 100% with 276 validation samples
(Dey et al., 2021).

Naufal et al. (2021) conducted a comparative study on face mask detection
using support vector machines (SVM), k-nearest neighbors (KNN), and deep CNNs
(DCNN). Although CNN required a longer execution time compared to KNN and
SVM, it reported the best average performance, with an accuracy of 96.83% (Naufal
etal., 2021).

Vijitkunsawat and Chantngarm (2020) also conducted a comparative study on
the performance of SVM, KNN, and MobileNet for real-time face mask detection.
According to the results, MobileNet has the best accuracy with regard to both images
and real-time video inputs (Vijitkunsawat & Chantngarm, 2020).

Nagrath et al. (2021) proposed SSDMNV2, an approach based on OpenCV and
deep learning. In this method, a Single Shot Multibox Detector is used as a face
detector, and the MobilenetV2 network is used as a classifier. The accuracy and F1
score of the proposed system are 92.64 and 93%, respectively (Nagrath et al., 2021).

Sanjaya and Rakhmawan (2020) also used MobileNetVV2 to develop a face

mask detection algorithm in order to fight COVID-19. Their model can discriminate



people with and without a face mask with an accuracy of 96,85% (Sanjaya &
Rakhmawan, 2020).

Sakshi et al. (2021) also used MobileNetV2 to implement a face mask detection
model to be used both on static pictures and real-time videos (Sakshi et al., 2021).

Venkateswarlu et al. (2020) used MobileNet and a global pooling block to
develop a face mask detection model. The global pooling layer flattens the feature
vector, and a fully connected dense layer and the softmax layer utilize classification.
The system was evaluated with different datasets, and the obtained accuracies were 99
and 100% (Venkateswarlu et al., 2020).

Rudraraju et al. (2020) proposed a face mask detection system to control
various entrances of a facility using fog computing. Fog nodes are used for processing
the video streams of the entrances. Haar-cascade-classifiers are used to detect faces in
the frames, and each fog node consists of two MobileNet models. The first model
classifies whether the person is wearing a mask, and, if this model gives the output that
the person is wearing a face mask, then the second model classifies whether the mask-
wearing condition is proper. As a result of this two-level classifier, the person is
allowed to enter the facility if they are properly wearing a mask. The accuracy of this
system is about 90% (Rudraraju et al, 2020).

Hussain et al. (2021) proposed a Smart Screening and Disinfection
Walkthrough Gate (SSDWG), an loT-based control and monitoring system. This
system performs rapid screening, includes temperature measuring, and stores the
record of suspected individuals. The screening system uses a deep learning model for
face mask detection and the classification of people who are wearing face mask their
properly, improperly, or wear no mask (Figure 2). A transfer learning approach was
used on CNN, ResNet-50, Inceptionv3, MobileNetV2, and VGG-16. Results showed
that VGG-16 achieved the highest accuracy, with 99.81%, followed by the
MobileNetV2 with 99.6% (Hussain et al., 2021).
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Figure 2.
Monitoring System of Hussain et al. (2021)

Adusumalli et al. (2021) studied a system that detects whether people are
wearing face masks. The system is based on OpenCV and MobileNetV2. It also sends
message to the person if they are not wearing a mask, and their face is stored in the
database (Adusumalli et al., 2021).

Das et al. (2020) used OpenCV and CNNs in their research to develop a face
mask detection system. They used two different datasets, and the obtained accuracies
were 95.77 and 94.58% (Das et al., 2020).

Aydemir et al. (2022) used pre-trained DenseNet201 and ResNet101 for feature
extraction. Then, they used an improved RelieF selector to choose features in order to
train an SVM classifier. They had three cases in their research: mask vs. no mask vs.
improper mask; mask vs. no mask and improper mask; and mask vs. no mask (Figure
3). They obtained 95.95%, 97.49%, and 100% accuracy for these cases, respectively
(Aydemir et al., 2022).

Figure 3.
Cases Used by Aydemir et al. (2022)
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Wu et al. (2022) proposed an automatic facemask recognition and detection
framework called FMD-Yolo. ImRes2Net-101 was used to extract features, which is
a modified Res2Net structure. Then, an aggregation network En-PAN was used to
merge low-level details and high-level semantic information. According to their
experimental results, at the intersection over union (loU) level 0,5, FMDYolo had
average precisions of 92 and 88.4% for two different datasets (Wu et al., 2022).

Mar-Cupido et al. (2022) conducted a study on classifying face masks used by
people according to their type. They used the pre-trained models ResNet101v2,
ResNet152v2, MobileNetv2, and NasNetMobile to classify the classes KN95, N95,
cloth, surgical, and no mask. According to their results, ResNet101lv2 and
ResNet152v2 both had higher accuracies (98 and 97.37%, respectively) in comparison
with NasNetMobile and MobileNetv2, both with 93.24% accuracy (Mar-Cupido et al.,
2022).

Agarwal et al. (2022) proposed a hybrid model with CNNs and SVMs. They
used the medical mask dataset (MDD) and the real-world masked face recognition
dataset (RMFD) for training and evaluating the proposed model. The obtained
accuracy was 99.11% (Agarwal et al., 2022).

Crespo et al. (2022) carried out a study on both two and three-class face mask-
wearing conditions using deep learning while focusing on ResNets. The results showed
that ResNet-18 had the best accuracies for both two and three classes, with 99.6% and
99.2% respectively (Crespo et al., 2022).

Jayaswal and Dixit (2022) proposed a framework that uses a Single Shot
Multibox Detector and Inception V3 (SSDIV3). They also proposed two versions of
synthesized face mask datasets and compared SSDIV3 against VGG16, VGG19,
Xception, and MobileNet. Their experimental results showed the higher accuracy of
their proposed system, with 98% (Jayaswal & Dixit, 2022).

Singh et al. (2022) proposed a framework that uses cloud computing, fog
computing, and deep neural networks. It is a smart and scalable system that can detect
mask-wearing and distancing violations (Figure 4). When the proposed framework

was tested on video, it achieved a 98% accuracy (Singh et al., 2022).
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Figure 4.
Mask and Distance Detection by Singh et al. (2022)

A quarter Laplacian filter was proposed by Gong et al. (2021) which is 2x2
instead of the classical 3x3 Laplacian filter which works more locally and can preserve
the corners in the image while smoothing. They used the filter in some image
processing tasks such as image smoothing, low-light image enhancement, and texture
enhancement to show the edge-preserving advantage (Gong et al., 2021).

Methil (2021) used various image processing methods on brain images and
investigated their impact on the dataset for brain tumor detection with a convolutional
neural network. The dataset consisted of different tumor sizes, textures, shapes, and
locations, and an accuracy of 99.73% was obtained on the validation data (Methil,
2021). Ahmad and Dimililer (2022) also used convolutional neural network in their
study for brain tumor detection (Ahmad & Dimililer, 2022).

Tayal et al. (2022) proposed a deep learning-based framework that can detect
ocular diseases. Four classes which are normal, choroidal neovascularization, drusen,
and diabetic macular edema were detected from optical coherence tomography (OCT)
scans. Image preprocessing was also involved to remove noise, enhance contrast, do
contour-based edge detection, and extract retinal layers. Three different convolutional

neural networks were used for detection which had five, seven, and nine layers. The
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resulting accuracy was 96.5% while having 96% sensitivity and 98.6% specificity
(Tayal et al., 2022).

Jasti et al. (2022) used machine learning and image processing for the detection
and classification of breast cancer using the MIAS data collection. The geometric
mean filter was used for image enhancement while AlexNex was used for the feature
extraction. After using the relief algorithm for feature selection, Naive Bayes, KNN,
random forest (RF), and least square support vector machine algorithms were used for
detection and classification (Jasti et al., 2022).

Viknesh et al. (2023) used their designed CNN, AlexNet, VGG-16, and LeNet
from existing CNNs and support vector machines (SVM) for the detection and
classification of melanoma skin cancer as normal, malignant, and benign. According
to the results, CNN obtained 91% of accuracy while the SVM classifier obtained
86.6%. By using Android Studio and Django, the designed CNN model was also
deployed for mobile and web applications (Viknesh et al., 2023).

Hammad et al. (2023) proposed a hybrid approach in their study which includes
image processing, feature extraction with CNN, feature selection, and machine
learning. They used genomic image processing to convert human coronavirus (HCoV)
genome sequences to genomic grayscale images by the frequency chaos game
representation mapping technique. Then they used AlexNex to extract features from
these images from the last convolution layer and the second fully connected layer.
Feature selection was done by using ReliefF and the least absolute shrinkage and
selection operator (LASSO). For classification, k-nearest neighbors (KNN) and
decision trees were used. According to their results, the best hybrid combination was
extracting features from the second fully connected layer, using the LASSO algorithm
for feature selection, and using KNN as a classifier. This approach obtained 99.71%
accuracy, 99.78% specificity, and 99.62% sensitivity (Hammad et al., 2023).

Umer et al. (2023) built a public dataset named RILFD for face mask detection
by using a camera and annotating them with the two classes, with mask, and without
mask. In their study, they used machine learning models, YOLOv3, Faster R-CNN,
and a customized CNN with a four-step image processing for the classification.
According to their results, the proposed method obtained better accuracy on the
RILFD, and two other public datasets MOXA and MAFA with a 97.5% accuracy
(Umer et al., 2023).
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Dong et al. (2022) studied generating raw monochrome images from raw
colored images, and low-light image enhancement. For the first task, they used deep
neural networks based on De-Bayer-Filter simulator. For the low-light image
enhancement, they proposed a fully convolutional network. For training, they
proposed a dataset called Mono-Colored Raw paired dataset (MCR) which is collected
by a color camera with Bayer-Filter and a monochrome camera without Bayer-Filter
(Dong et al., 2022). Lv et al. (2022) proposed an adaptive bilateral filter that combines
bilateral filtering and the edge detection operator to enhance infrared images. This
method acts as an improved convolutional kernel for bilateral filtering and enhances
the details in infrared images while suppressing the noise (Lv et al., 2022). For edge
detection, Siddharth et al. (2021) mentioned that using Kalman Filter with ANN has
lower calculation rates and quicker merging. They used ANN for object localization
and Kalman filtering on obtained object coordinates which lowered the localization
error distances and improved localization accuracy (Siddharth et al., 2021).
Schmalfuss et al. (2023) studied blind image inpainting using directional filters. They
used a dictionary of filters and combined them with the trainable weights of a
lightweight network. Their approach had faster network convergence and improved
inpainting quality (Schmalfuss et al., 2023). Dasari and Reddy (2023) applied Gabor
filter to the public ILD (interstitial lung diseases) dataset to obtain texture-enhanced
input images. Then they gave these input images to a Multi-scale Convolution Neural
Network (M-CNN) and obtained 90.67% accuracy on lung tissue classification (Dasari
& Reddy, 2023). Putra et al. (2023) studied a face mask detection system on CCTV
that sends notifications on a mobile application. They used MobileNetV2 and stated
that using a distance of one meter gave good results in their experiments (Putra et al.,
2023). Sheikh and Zafar (2023) proposed a system called RRFMDS (Rapid Real-Time
Face Mask Detection System). They fine-tuned MobileNetV2 for classification while
using single-shot multi-box detector for face detection. The system detects three
classes which are incorrect mask, with mask, and without mask (Figure 5). According
to their results, training accuracy was 99.15% and the test accuracy was 97.81%
(Sheikh & Zafar, 2023).



Figure 5.
System Proposed by Sheikh and Zafar (2023)
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CHAPTER I11
Methodology

Deep learning refers to using artificial neural networks (ANNs) with many
layers. Since these networks have many layers, they can learn complex patterns on
data which makes them effective in applications of image recognition tasks.
Convolutional Neural Networks (CNNs) are a type of these models that are widely
used on image-related applications because of their effectiveness in processing image
data and extracting features. Layers generally included in CNNs are convolutional
layers, pooling layers, flattening layers, and fully connected dense layers. Convolution
layers are used to apply filters to the images by sliding over, applying convolution
operation, which extracts features from the image. Pooling layers are used to reduce
the spatial dimensions of the extracted feature maps, which reduces the computational
load. Fully connected layers are used to make classification according to the extracted
features. After the features are extracted using convolutional and pooling layers, they
are flattened using a flattening layer and fed into the fully connected dense layers.
Generally, these layers are used with the ReLU (Rectified Linear Unit) activation
function. If the task is classification, the final layer of the network is a dense layer with
units equal to the number of output classes and the “softmax” activation function. This
activation function gives an output of probabilities of each class, which is then used to
obtain the output class using the highest probability.

The goal of the study is to obtain an accurate face mask detection model that
classifies three mask-wearing conditions. To achieve this, a custom three-class dataset
was obtained to be used in this research. Then this dataset was used to obtain results
from modifying existing networks, and secondly, a customized network was created
to obtain results for comparison. This chapter provides detailed information about
obtaining the dataset, how the existing networks were modified, and how the

customized network was created and trained.

Dataset

The dataset used to train our networks is prepared by using the existing dataset
called Labeled Faces in the Wild (LFW) (Huang et al., 2007). Originally, this dataset
has face images of different people and each of them is labelled and categorized into

folders with their names. But the reason for selecting this dataset is not the labelling,
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the good amount of face images were suitable because the purpose was adding face
masks on face images to obtain 3 classes (no mask, mask wrong and mask correct) of
images required for our training process. By using OpenCV’s face detection algorithm
face borders in images were found and cropped. Then again OpenCV’s eye detection
algorithm was applied to these images to locate the eye positions. These eye positions
were used as reference points for calculating the insertion point and scaling of the
masks. The mask is selected randomly from a mask pool which consists of PNG
images of masks that differ in design and pattern. To obtain the desired dataset, this
process was applied to the images to insert face masks correctly to simulate the correct
way of wearing, at a lower position to simulate the wrong mask-wearing situation, and
left untouched for the no mask-wearing situation (Figure 6). With this whole
preparation process, 7892 images with 3 classes of mask-wearing conditions were
obtained with 2479 images for mask correct class, 2520 images for mask wrong class
and 2893 images for no mask class. Figure 7, Figure 8, and Figure 9 shows examples
from the obtained dataset. Obtained dataset was also used in other studies for three
class mask detection and classification (Dimililer & Kayali, 2023; Kayali et al., 2021,
Kayali et al., 2022; Kayali & Dimililer, 2023).

Figure 6.
Dataset Preparation
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Figure 7.

Mask Correct Class
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Modification of Networks
Preprocessing

The pre-processing stage was applied differently for each network depending
on their properties. Each of the selected networks has a default input resolution, and
some of them also need the input data to be scaled between specific values for training.
Since the goal was to train the network with as little data as possible, the minimum
input resolutions of each network were examined as shown in Table 1. The second
most important thing was the rescaling of the input data in order to meet the network
requirements. To this effect, each network’s input pixel value requirements were found
(Table 2). Finally, the image was converted to grayscale in order to train with only one
channel. Although these network inputs are generally three-channel images, grayscale
images were used to reduce the input data. To summarize: first, the input image was
converted to grayscale; then, the input image was resized to the minimum input size
of the network; and the input data were rescaled according to the network’s input scale
requirements. For networks with no input scale requirements, the input data were

scaled between 0 and 1.

Table 1.

Minimum Input Resolutions of the Networks

Network Minimum input resolution
DenseNet 121-169-201 32x32
EfficientNet BO-B7 32x32
InceptionResNetV2 75X75
InceptionV3 75X75
MobileNet - MobileNetV2 32x32
NasNetMobile - NasNetLarge 32x32
ResNet 50-101-152 32x32
ResNet 50V2-101V2-152V2 32x32
VGG16 32x32
VGG19 32x32

Xception 71x71
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Table 2.
Input Normalization Requirements of the Networks.

(-) Means that there is no Requirement

Network Input Normalization Requirement
DenseNet 121-169-201 -

EfficientNet BO-B7 between 0 and 255
InceptionResNetV2 between -1 and 1
InceptionV3 between -1 and 1
MobileNet - MobileNetV2 between -1 and 1

NasNetMobile - NasNetLarge -
ResNet 50-101-152 -

ResNet 50VV2-101V2-152V?2 between -1 and 1
VGG16 -
VGG19 -
Xception between -1 and 1

Network Models

The networks used for this study are MobileNets (Howard, 2017; Sandler et
al., 2018), EfficientNets (Tan & Le, 2019), ResNets (He et al.,2016; He et al.,2016),
DenseNets (Huang et al., 2017), NasNets (Zoph et al., 2018), InceptionResNetV2
(Szegedy et al., 2017), InceptionV3 (Szegedy et al., 2016), Xception (Chollet, 2017),
VGG16 (Simonyan & Zisserman, 2014), and VGG19 (Simonyan & Zisserman, 2014).
The total parameters of each network are given in Table 3.

Regarding the DenseNets, the models used in this research were DenseNet121,
DenseNet169, and DenseNet201. The default input resolution of these networks is
(224, 224, 3), which means the expected input, is a three-channel image of size
224x224. These networks can be trained with smaller images, but the size should not
be smaller than 32x32.

The EfficientNet models used in this research were EfficientNetBO,
EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5,
EfficientNetB6,and EfficientNetB7. The inputs expected by EfficientNet networks are
the float pixel values of the images between 0 and 255. The minimum image size

supported by the EfficientNets is also 32x32.



Table 3.
Total Parameters of each Network

Network Total Parameters
DenseNet121 7.034.307
DenseNet169 12.641.603
DenseNet201 18.321.475
EfficientNetBO 4.052.834
EfficientNetB1 6.578.502
EfficientNetB2 7.772.216
EfficientNetB3 10.787.422
EfficientNetB4 17.678.334
EfficientNetB5 28.518.806
EfficientNetB6 40.966.046
EfficientNetB7 64.104.214
InceptionResNetV2 54.340.771
InceptionV3 21.808.355
MobileNet 3.231.363
MobileNetV2 2.261.251
NasNetMobile 4.272.311
NasNetLarge 84.927.189
ResNet50 23.587.587
ResNet101 42.658.051
ResNet152 58.370.819
ResNet50V2 23.564.675
ResNet101V2 42.626.435
ResNet152Vv2 58.331.523
VGG16 33.608.387
VGG19 38.918.083
Xception 20.867.051
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The InceptionResNetV2 model has some differences when compared to
EfficientNets and DenseNets. This network expects a default input resolution of (299,
299, 3), and the input data need to be normalized between -1 and 1. 75x75 is the
minimum image size accepted by this network.

InceptionVV3 network has a default input resolution of (299, 299, 3), and the
input data normalization requirement is between -1 and 1, like InceptionResNetV?2.
InceptionV3 has a minimum input image size of 75x75.

The MobileNet and MobileNetV2 networks have a default input resolution of
(224, 224, 3), and the minimum supported image size is 32x32, like DenseNets.
However, these networks require the input data to be normalized between -1 and 1.

NasNets includes NasNetLarge and NasNetMobile, whose input requirements
are just like DenseNets, with a default input resolution of (224, 224, 3) and a minimum
image size of 32x32. As their names explain, NasNetLarge is a larger network, with
more parameters to train, and NasNetMobile is the lightweight version of the network,
with fewer parameters to train that can however be implemented on more devices.

ResNet networks can be grouped into two: ResNets and ResNetV2s. ResNets
have a default input resolution of (224, 224, 3), and the minimum input size is 32x32.
ResNetV2s also have the same properties, but their input needs to be normalized
between -1 and 1. This research used ResNet50, ResNet101, ResNet152, ResNet50V2,
ResNet101V2, and ResNet152V2.

VGG16 and VGG19 are also networks that have a minimum input size of
32x32 and a default input resolution of (224, 224, 3). The last network used was
Xception, which has a minimum input size of 71x71 and a default input resolution of
(299, 299, 3). This network also requires the input data to be normalized between -1
and 1.

All of the networks described above have the option of loading pre-trained
weights from a path or from ImageNet. However, in this research, pre-trained weights

were not used, which means that the weights were randomly initialized.
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Training

For the training process, training parameters were selected after several
experiments and used for all the networks. A value of patience parameter was
determined in order to track the learning process of the networks, aiming to make sure
that the learning process continued as long as the model continued to improve. To this
effect, the patience value was set at 100 epochs by experimenting, and validation loss
was tracked during the whole training process of each network. This means that each
network continued with the training process as long as the validation loss of the
network kept decreasing (Figure 10). In other words, the network continued to learn.
However, if the network stopped learning and the validation loss did not decrease for
the selected patience value of 100 epochs, the training process would automatically
stop, and the best weights of the training process would be restored before saving the
model.

For comparison, the training of all networks was carried out with the same
computer, which had 32GB DDR4 system memory, a 10th Gen. Intel Core i7-10750H
processor, and an NVIDIA GeForce RTX 2070 SUPER graphics card with 8GB
GDDR6 video memory. All of the code implementations were done by using Python
programming language, and Spyder which is an open-source integrated development

environment (IDE).

Figure 10.
Xception Training Graph
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Customized Network and Training
Preprocessing

Before feeding the images to the convolutional neural network, image
preprocessing was applied. This process was done by applying various 3x3 image
filters to the images and feeding all of the output images to the network at once. To
extract various features from the image, 17 different filters were chosen and applied.
The idea behind choosing these filters was to have multiple filters that put forward
different directional and regional details. By leaving out the center pixel, surrounding
values were adjusted to keep up with different details from the image. Then the center
pixel value was set so that all the numbers in the filter sum up to O, otherwise loss of
details would occur. The chosen filters are shown in Figure 11. The steps included in
the whole image preprocessing phase are, resizing, converting images to grayscale,
and filtering step. After the last step custom filtering, the resulting input becomes 17
images which are obtained by applying 17 different 3x3 filters to the images. Examples

of images obtained from each class are given in Figure 12, Figure 13, and Figure 14.

Figure 11.
17 Filters Used
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Figure 12.

17 Filters Outputs of Example Mask Correct Class

Figure 13.
17 Filters Outputs of Example Mask Wrong Class
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Figure 14.
17 Filters Outputs of Example No Mask Class
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Network and Training

By applying preprocessing to the images, the input spatial resolution becomes
WxHx17, so the input layer of the customized convolutional neural network is
specified to accept this input shape. After the input layer, a convolutional layer is added
to reduce the input to WxHx1, which is a single-channel image of WxH size. So up to
this point, the network actually eliminates the features from the whole 17 images and
obtains a single resulting image. After this layer, a flattening layer is applied before
continuing with the final dense layers. After two fully connected dense layers with
“relu” activation function, the last layer is a dense layer with “softmax™ function for
the classification result. The custom network architecture is shown in Figure 15 and
the block diagram of the process is given in Figure 16.

For training, the dataset is split into 3 which are, train, validation, and test
datasets. 20% of the dataset is reserved for test. From the remaining 80%, again 20%
is used for validation 80% is used for training. This results in 64% for training, 16%
for validation, and 20% for test. Adam optimizer was used and different learning rates
were tried for comparison. These learning rates are 10, 104, 10, 10, and 10”". These
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learning rates were selected to have a good comparison of their effect on accuracy and
training time but without being very low or very high. Very low learning rates can
cause the network to have a very long training time without having a good fit on the
data and remain at low accuracy. On the other hand, using a high learning rate can
cause the network to overfit on the training data which will then cause generalization
problems and accuracy will be low on any other data than the training data. During the
training process, accuracy, precision, recall, TP, TN, FP, and FN metrics are monitored
and the loss function is set as ““categorical cross entropy” which is also monitored.
Patience-based training is used which traces validation loss and stops the training
process when it does not decrease by a given threshold value in the number of patience
epochs which is 100 in this research. When the training process is stopped, the weights
of the best resulting epoch are restored to the model. All of the training process is done
with a computer with 32GB system memory, 10th generation Intel Core i7-10750H
processor, and NVIDIA GeForce RTX2070 SUPER graphics card with 8GB memory.

Figure 15.
Proposed Custom Network Architecture
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Figure 16.

Block Diagram of the Process
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After implementing training on different learning rates to investigate the effect

on the training process, the oscillating learning rate method was also implemented. In

this training method, the learning rate was changed every n epochs which was chosen

as 5 in this study. The learning rate was divided by 10 or multiplied by 10 every 5

epochs to keep it oscillating between the top boundary 10 and the bottom boundary

107. The change in learning rate over epochs can be visually observed in Figure 17.

Figure 17.

Oscillating Learning Rate
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When the accuracy and loss graphs of both training and validation were

investigated it was seen that the network had a good improvement in achieving higher

validation accuracy and lower validation loss after a specific event. By checking the

numerical training history data and the graphs visually it is seen that once the training
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accuracy hits 1.0 and the training loss goes close to zero the network stops improving
itself as needed which means overfitting occurs. Until change in the learning rate
triggers a spike on the training graphs which lowers the training accuracy and increases
the training loss for a short time which is then followed by a spike in validation
accuracy and validation loss which affect them positively and result in better results
(Figure 18).

Figure 18.
Training and Validation Accuracy and Loss Graphs
(Oscillating Learning Rate)
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By using this idea, a new training method was tried to see the effect on training
and validation outcomes. In this method, training and validation metrics are traced
between epochs, and once training accuracy hits 1.0 or the difference between training
loss and validation loss increases to more than 10 times, weights are randomly set to
zero. By using this method it was observed that better accuracy was obtained in fewer

epochs (Figure 19).
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Figure 109.
Training and Validation Accuracy and Loss Graphs

(Oscillating Learning Rate + Weight Dropping)
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Embedding Image Processing Filters into Network Architecture

After making performance improvements in the training process with learning
rate change and weights dropping features, the next step was embedding the filtering
process into the network architecture which was used as preprocessing. To achieve
this, convolutional layers were used. The input image was connected to multiple
Conv2D layers having 3x3 kernel size and kernels are set to be initialized with the
filter values selected. The weights of these layers were frozen by setting their
“trainable” parameter to false to prevent the weights from being updated during the
training process and act like fixed filters. Then the outputs of these layers are
concatenated and given to another Conv2D layer to reduce the data into a single image
again. So the input image with the shape WxHx1 becomes WxHXx17 after the filters
are applied and concatenated, then it is again reduced to the shape WxHx1 by using
the convolutional layer. The output of this layer is then given to the second part of the
network which results in the classification output. This was achieved by flattening the
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image and using two dense layers with “relu” and finally a “softmax™ layer to obtain
the classification output.

When results were obtained by this network, they were different and not as
good as the previous results where the filters were applied outside the network and
then used for training. To find the cause, the outputs of filters of both cases were
investigated. When the numerical outputs of embedded filters are compared to the
other ones, it was seen that embedded filters give negative pixel output results which
is not the case for applying filters to images. To fix this problem another layer had to
be added after the filters which will act as a thresholding layer and set the negative
pixel values to zero. To achieve this, a layer with “relu” function was added after the

filters. After this, the resulting custom network architecture was ready (Figure 20).
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Figure 20.
Final Custom Network Architecture
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CHAPTER IV

Findings and Discussion

Results For Modified Networks

After the experimental results were obtained, networks with an accuracy above
70% were selected for comparison. ResNet50, ResNet101, and ResNet152, as well as
EfficientNets, were not able to obtain a good accuracy with 32x32 grayscale images,
so they were not included in the comparison.

After obtaining results with the original dataset for all of the networks, different
image preprocessing techniques were evaluated for further improvements to the
networks. Contrast stretching was applied to obtain low and high contrast images.
Furthermore, Discrete Cosine Transform (DCT) was applied, which has improved
accuracy by compressing the image in some of the studies. However, in our case, none
of these approaches was able to improve the accuracy of the networks. Since grayscale
Images with a resolution as low as 32x32 were being used, the task became harder for
the networks, even with the original images.

Although image preprocessing affects ANN applications in a good way, our
experiments showed that it can negatively affect the results for small input data, which
Is 1024 (32x32x1) in our research. Table 4 shows the overall performances of the
networks included in the comparison.

By comparing the training times of the networks, it can be seen that VGG16
required the shortest time, with 105 minutes. On the contrary, ResNet152V2 reported
the highest value, with 607 minutes. The training times of Xception and MobileNet
were also very close to that of VGG16, with 108 and 112 minutes, respectively.

While evaluating the networks on the test dataset, their evaluation were also
recorded. An 80-20% train-test ratio was used for all of the networks, and the test
dataset included 1579 images. VGG16 reported the best evaluation time, with 2,52
seconds, and VGG19 was the second best (2,68 seconds). Considering that the image
size for Xception was 71x71, its evaluation time of 4,05 seconds was also a good result.
The highest evaluation time was 14,2 seconds, obtained by the InceptionResNetV2
with a 75x75 test image size.

The size of the network is also an important parameter for implementation. It

may not be always possible to implement a model with the highest accuracy on every
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device because of the size of the network and its memory requirements. By comparing
the output model sizes of all networks, it was observed that the MobileNetV2 network
has the smallest size, with 29,6 MB. The MobileNet network has the second smallest
size with 38,9 MB, and ResNet152V2 and InceptionResNetV2 have the two largest
model sizes (679 and 638 MB, respectively).

Regarding the accuracies of the networks, InceptionResNetv2 and Xception
had the highest value, with 99,6%. VGG19 and VGG16 also showed an accuracy over
99 (with 99,4% and 99,1%, respectively). As for the general performance of the
networks, if the highest possible accuracy is desired, the Xception network could be
selected, as it has moderate values regarding model size. If a little lower accuracy can
be tolerated, still over 99%, VGG16 or VGG19 are also good options, with faster
evaluation time. However, they have slightly higher model sizes, which is also a
drawback. Figure 21, Figure 22, and Figure 23 are the confusion matrices of VGG16,
VGG19, and Xception.



Table 4.

Network Performance Results

Network Epochs Training Evaluation Model

(Input Size) Run time Time(s) Size F1-Score  Accuracy
(mins) (MB)

DenseNet121 1178 226 6.13 89.6 0.9968 0.9690

(32x32)

DenseNet169 1554 267 6.47 157 0.9625 0.9650

(32x32)

DenseNet201 1681 334 8.05 224 0.9613 0.9630

(32x32)

InceptionRes 682 205 14.2 638 0.9950 0.9960

NetV2(75x75)

InceptionV3 1810 241 6.95 256 0.9740 0.9760

(75x75)

MobileNet 3417 112 3.01 38.9 0.8112 0.8230

(32x32)

MobileNetV2 4118 198 3.69 29.6 0.7238 0.7300

(32x32)

ResNet50Vv2 1445 122 4.55 273 0.8917 0.8980

(32x32)

ResNet101V2 1808 315 6.73 495 0.8777 0.8820

(32x32)

ResNet152V2 2173 607 6.83 679 0.8773 0.8888

(32x32)

VGG16 2078 105 2.52 385 0.9885 0.9910

(32x32)

VGG19 2412 150 2.68 445 0.9924 0.9940

(32x32)

Xception 587 108 4.05 241 0.9963 0.9960

(71x71)




Figure 21.

VGG16 Confusion Matrix

True label

Figure 22.

VGG19 Confusion Matrix

True label

Figure 23.

Xception Confusion Matrix

True label
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Results for Customized Network

Results were obtained for five different learning rates. At the start, the learning
rate was set to 107 and increased by 10 times for each try to compare the results. It is
observed that the increase in the learning rate resulted in faster training and improved
accuracy. A test dataset was used which was not involved in the training process to
also check the test accuracy if any overfitting problem is caused. According to the
obtained results, no overfitting problem was observed. At the 107 learning rate the
training process run for 4545 epochs for 180 minutes. The validation accuracy was
96.2% while the test accuracy was 95.69%. When the learning rate was increased to
10, the training process was about 4 times faster with 44 minutes with 1010 epochs.
The validation accuracy was slightly better with 96.4% but the test accuracy was
95.57%. At the 107 learning rate, the training time was improved and the results were
obtained in 470 epochs in 20 minutes. Both validation and test accuracies were better
than the previous ones with 97.4% and 96.33% respectively. When the learning rate
was increased to 10™* a good performance increase occurred both for time and
accuracy. The epochs run was 115 in 5.5 minutes. The obtained validation accuracy
was 99.3% and the test accuracy was 98.16% which was a good increase. Then the last
learning rate of 10 was tried and the results were close to the results of 107, 114
epochs were run in 5.4 minutes. The validation accuracy was 98.8% which was lower,
but the test accuracy was 98.86% which was better and the highest result obtained.
Obtained results are summarized in Table 5. It is also important to mention that the
final size of the customized network is about 60.4MB which is a good size to be
implemented in an application and does not require devices with high performance
needs.

Table 5.

Results Obtained from the Custom Network with 64x64 images for each learning rate

Learning Rate  Validation Accuracy  Test Accuracy Time(s) Epochs

10 98.8% 98.86% 323 114
10* 99.3% 98.16% 326 115
10° 97.4% 96.33% 1170 470
10°® 96.4% 95.57% 2629 1010

107 96.2% 95.69% 10791 4545
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In the next step, an oscillating learning rate approach was implemented and its
effect on training time and accuracy was investigated. The results showed that, by
using this approach good accuracy can be obtained in moderate time without the need
to search for an effective fixed learning rate. Table 6 shows the comparison of this

approach to a fixed learning rate.

Table 6.

Comparison of Fixed and Oscillating Learning Rate

Learning Rate  Validation Accuracy  Test Accuracy Time(s) Epochs

103 98.8% 98.86% 323 114
10" 99.3% 98.16% 326 115
107 97.4% 96.33% 1170 470
10°® 96.4% 95.57% 2629 1010
107 96.2% 95.69% 10791 4545
Osc. 103-107 99.3% 98.67% 1101 447
Osc. 104-107 98.89% 97.53% 2113 814
Osc. 104-10¢ 99.29% 97.78% 1993 774
Osc. 103-10¢ 91.37% 36.35% 1042 392

After the comparison of the oscillating learning rate approach, a weight-
dropping feature was added to the training process which was investigated to positively
effect the training both in time and accuracy. When using the weight-dropping feature,
both training and validation metrics are checked after every epoch and when the
training accuracy reaches 1.0 or the difference between training loss and validation
loss increases to more than 10 times, random weights are set to zero. Table 7 shows

the results obtained with this training method.
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Table 7.
Comparison of Fixed and Oscillating Learning Rate with Weight Drop Feature

Learning Rate  Validation Accuracy  Test Accuracy Time(s) Epochs

103 99.76% 99.18% 385 128
10 99.76% 99.56% 521 193
107 99.76% 99.3% 472 170
10 99.6% 99.24% 614 227
107 98.73% 97.97% 949 361
Osc. 103-107 99.37% 98.42% 351 123
Osc. 104-107 99.76% 99.18% 1041 403
Osc. 104-10° 99.76% 99.49% 439 154
Osc. 103-106 99.29% 98.61% 362 115

In Figure 24, validation loss graphs according to these results can be observed
and applied weight drops are seen in these graphs as spikes. Some of the weight drops
are then followed by a lower validation loss which means improvement while some of
them cause increased validation loss which causes a negative effect. Since patience
patience-based training approach is used, best-obtained weights are loaded back into
the network when the training process is finished. Validation accuracies of the
obtained results are shown in Figure 25 where the effect caused by the weight drop
feature can be observed again with the spikes.
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Validation Loss Graphs of Fixed and Oscillating Learning Rate with Weight

Drop Feature
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Figure 25.

Validation Accuracy Graphs of Fixed and Oscillating Learning Rate with
Weight Drop Feature
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After having good results with filtering as a preprocess, this approach was
embedded inside the network architecture using convolutional layers as explained in
the previous chapter. Table 8 shows the obtained results using this network at different
learning rates. Validation loss and validation accuracy graphs of all learning rates are
shown in Figure 26 and Figure 27 respectively. 99.84% validation accuracy and
99.43% test accuracy were obtained at the 10-4 fixed learning rate, while 99.6%
validation accuracy and 99.3% test accuracy were obtained at an oscillating learning
rate between 10-4 and 10-6. Confusion matrices of these results are given in Figure
28.

Table 8.
Results of Filter Embedded Custom CNN Architecture

Learning Rate  Validation Accuracy  Test Accuracy Time(s) Epochs

103 99.52% 99.11% 375 139
10" 99.84% 99.43% 616 241
10° 99.76% 98.86% 667 258
10°® 99.45% 99.05% 930 368
107 99.21% 98.54% 1922 798
Osc. 103-107 99.13% 98.10% 335 123
Osc. 104-107 99.37% 98.61% 489 194
Osc. 104-10¢ 99.60% 99.30% 398 151

Osc. 103-10¢ 98.81% 98.10% 312 115
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Validation Accuracy Graphs of Filter Embedded Custom CNN Architecture
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Figure 28.

Confusion Matrices of Filter Embedded Custom CNN Architecture
(a)99.43% Test Accuracy at 10 Learning Rate. (0)99.3% Test Accuracy at
Oscillating Learning Rate between 10-10.
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When the final results were obtained from the customized network, a final
comparison with the modified networks was done which is given in Table 9. When the
epochs run are considered, all versions of the proposed network have shorter epoch
numbers and training times which is caused by the different learning rates used and
also the training optimizations used for the customized networks during the training
process.

Model size comparison shows that the 32x32 input version of the network has
the smallest size with 24.7MB, which is followed by MobileNetVV2 and MobileNet
with 29.6MB and 38.9MB network sizes respectively. 64x64 input version of the
network comes after these networks with 60.8MB network size which is then followed
by DenseNet121 with 89.MB size.

When the obtained accuracies are compared, the modified networks Xception
and InceptionResNetv2 had the highest value with 99.6%, and VGG19 and VGG16
followed by 99,4% and 99,1%, respectively. Customized networks were evaluated
both with validation and test accuracies on separate test images that were not involved
in the training process. 64x64 and 128x128 input versions of the networks both had
99.84% validation accuracy while they had 99.43% and 99.49% test accuracies
respectively. With a lower input size, the 32x32 version of the network obtained
99.45% validation and 98.42% test accuracy.

When accuracy and model size are both considered, the proposed customized
network with 64x64 input image size is the most optimal network to be used. By using
this network, 99.43% accuracy is obtained with a network size of 60.8MB. Also
obtained results from all versions of the network are compared with some recent
related studies in the literature in Table 10 according to their classification accuracies

with both two and three classes.



Table 9.
Performance Comparison of Proposed Network

Network Epochs Training Model Size

(Input Size) Run time (mins)  (MB) F1-Score  Accuracy
DenseNet121 1178 226 89.6 0.9968 0.9690
(32x32)

DenseNet169 1554 267 157 0.9625 0.9650
(32x32)

DenseNet201 1681 334 224 0.9613 0.9630
(32x32)

InceptionResNetV2 682 205 638 0.9950 0.9960
(75x75)

InceptionV3 1810 241 256 0.9740 0.9760
(75x75)

MobileNet 3417 112 38.9 0.8112 0.8230
(32x32)

MobileNetV2 4118 198 29.6 0.7238 0.7300
(32x32)

ResNet50V2 1445 122 273 0.8917 0.8980
(32x32)

ResNet101V2 1808 315 495 0.8777 0.8820
(32x32)

ResNet152V2 2173 607 679 0.8773 0.8888
(32x32)

VGG16 2078 105 385 0.9885 0.9910
(32x32)

VGG19 2412 150 445 0.9924 0.9940
(32x32)

Xception 587 108 241 0.9963 0.9960
(71x71)

Proposed Network 310 12 24.7 0.9845* 0.9945
(32x32) 0.9842*
Proposed Network 241 10 60.8 0.9944* 0.9984
(64x64) 0.9943*
Proposed Network 271 18 204 0.9950* 0.9984
(128x128) 0.9949*

* Obtained by test dataset.
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Comparison with the Recent studies in the Literature

Reference Classes  Accuracy
Syafitri et al. (2024) 2 94.78%
Nirmaladevi et al. (2024) 2 98.1%
Kaur et al. (2024) 2 98.79%
Fazeli Ardekani et al.(2024) 2 99.02%
Parikh et al. (2024) 3 85%
Likhith et al. (2024) 3 90.74%
Mostafa et al. (2024) 3 92.2%
Aydemir et al. (2022) 3 95.95%
Tun and Myat (2024) 3 96%
Sheikh and Zafar (2023) 3 97.81%
Crespo et al. (2022) 3 99.2%
Proposed Network (32x32) 3 98.42%
Proposed Network (64x64) 3 99.43%
Proposed Network (128x128) 3 99.49%
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CHAPTER V

Conclusion and Recommendations

This chapter summarizes the research and gives conclusions according to the
research objectives, and experimental results, and gives recommendations for future

work.

Conclusion

This research aimed to make an accurate classification of three conditions of
face mask wearing. Correct, wrong, and no mask-wearing conditions have been
simulated with the processed dataset. The dataset was created by adding face masks to
the Labeled Faces in the Wild (LFW) dataset to simulate correct, wrong, and no mask-
wearing conditions.

In the first part of the research, deep convolutional neural networks were
trained with as little input data as possible to obtain an accurate model for face mask
detection and wearing condition classification. According to the experimental results,
EfficientNets and ResNet50, ResNet101, and ResNet152 networks were not able to
learn with their minimum input size of 32x32 and grayscale images. Four of the trained
networks were able to obtain an accuracy of over 99%, i.e., InceptionResNetv2,
Xception, VGG16, and VGG19, with accuracies of 99.6%, 99.6%, 99.1%, and 99.4%
respectively.

The second part of the research aimed to obtain an accurate classification of
face mask usage using a filter-based approach as a pre-process for feature extraction
to give them to a customized neural network. For this purpose, 17 filters were chosen
and applied to input images. Then the input of the network was adjusted accordingly
to accept these 17 images obtained by the filters. At the training stage of the network,
different learning rates were tried to find the optimal learning rate. Results showed that
at 10° and 10 learning rates, both training time and accuracy were better. The
obtained validation and test accuracies were 98.8% and 98.86% at the 103 learning
rate, while 99.3% and 98.16% at 10™* respectively. After this step, an oscillating
learning rate approach was also implemented. When the learning rate oscillated
between 107 and 107, 99.3% validation accuracy and 98.67% test accuracy were

obtained. And between 10 and 107, validation and test accuracies were 98.89% and
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97.53%. At 10%-10°, validation and test accuracies were 99.29% and 97.78%.
Between 10 and 10°, the network was not able to obtain a good result. After
comparing fixed learning rate and oscillating learning rate approaches, the weight-
dropping method was implemented during the training process which had a positive
effect on both training time and accuracy. To apply the weight-dropping feature,
training and validation metrics were traced after each epoch, and random weights were
set to zero when the training accuracy reached 1.0 or the difference validation loss and
the training loss increased more than 10 times.

The third part of the research was to embed the filtering process inside a custom
network architecture after achieving improvements in training with the learning rate
changes and weight-dropping feature. Convolutional layers were used to apply the
filtering process inside the network. Multiple Conv2D layers having 3x3 kernel size
and kernels with the selected values were connected to the input. The “trainable”
parameter of the layers was set to false to freeze them and prevent them from being
updated during the training process, which made them act like fixed filters. A layer
with the “relu” function was also added after each filter to act as a thresholding layer
because negative pixel outputs were observed. The output of these layers was then
concatenated and the data was reduced to a single image using another Conv2D layer
and given to the second part of the network which gives the classification result as
output. The network was implemented at 3 different input sizes 32x32, 64x64, and
128x128 for comparison. At 32x32 input size, 99.45% validation accuracy and 98.42%
test accuracy with a network size of 24.2MB. With 64x64 image input, the obtained
validation and test accuracies were 99.84% and 99.43% respectively, with a 60.8MB
network size. When a 128x128 input size was given, the network size increased to
204MB while the train and test accuracies were 99.84% and 99.49%.

Recommendations

It is possible to obtain different versions of the network by using different
filters and different combinations of filters. The filter-based approach is not limited to
the face mask dataset used in this research, it is possible to use it for feature extraction
for any application. By trying different filters and their combinations, the preprocess
involving neural networks can be used on different types of datasets to check

performance variation between various datasets.
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Mask Detection and Categorization during the
COVID-19 Pandemic Using Deep Convolutional
Neural Network

Deteccion y categorizacion de mascaras durante la pandemia
del COVID-19 utilizando una red neuronal convolucional
profunda

Kamil Dimililer'=%*, and Devrim Kayali®

ABSTRACT

With COVID-19 spreading all over the world and restricting our daily lives, the use of face masks has become very important, asit
is an efficient way of showing down the spread of the virus and an important piece to coninue our daily tasks until vaccination is
completed. People have been fighting this disease for a long ime, and they are bored with the precawtions, so they act carelesshy.
In this case, automatic deteciion systems are very important to keep the situation under conirol. In this research, deep learning
models are trained with as little input data as possible in order 1o obtain an acourate face mask-wearing condition classification.
These classes are mask-cormect, mask wrong, and no mask, which refers to proper face mask use, improper face mask use, and
no mask use, respeciively. DenseNets, EffidentMets, InceptionResNetV'2, InceptionV3, MobileMets, MasMets, ResMets, VGG16,
VGG19, and Xception are the networks used in this study. The highest accuracy was obtained by the InceptionResMetv2 and
Xception networks, with 99,6%. When other performance parameters are taken into consi deration, the Xception network is a step
forward. VGG16 and VGEG19 also show an acourany rate over 99%, with 99,1 and 99,4%, respectively. These ovo networks also
had higher FPS and the two lowest inifialization imes during implementation. A comparison with recent studies was also carried
out to evaluate the obtained acouracy. It was found that a higher acouracy can be obtained with the possible minimum input size.

Keywords: COVID-19, mask deteciion, deep learning, classification

RESUMEM

Con & COWID-19 extendiendose por todo &l mundo y restringiendo nuestra vida diaria, el uso de mascarillss se ha vuelto muy
importante, pues es una forma eficiente de frenar |a propagadon del virus, y una pieza importante para continuar con nuesiras
tareas diarias hasta gue se complete la vacunadon. La gente ha estado luchando contra la enfermedad durante mucho iempo
¥ se aburre con las precauciones, por Jo que actba con descuido. En este caso, los sistemas de deteccion automatica son muy
importantes para maniener la situaton bajo control. En esta investigadon se entrenan modelos de aprendizaje profundo con el
minime de datos de entrada posibles para obtener una clasificadion precisa de las condiciones de uso de las mascarillas. Estas clases
son maskoormect, y nomask, que se refieren al uso adecuado, a un uso inadecuado v al no uso de la mascarilla fadal,
respectivamente. DenseNets, EfficientNets, InceptionResNetV3, IncepionV's, MobileNets, Nashets, ResMets, VGG16, VGG19 y
Xception son las redes utlizadas en este estudio. La mayor precision la obtuvieron las redes InceptionResMetv2 y Xcepfon, con
un 99,6 %. Cuando se fienen en cuenia otros parametros de rendimiento, |a red Xcepion un paso adelante. VGG16 ¥ VGG19
presentan una tasa de predsion superior al %9 %, con 99,1 y 99,4 % respectivamente. Estas dos redes también presentaron FPS
mas altos y los dos tiempos de inicigizacion mas bajos en laimplementaddn. También se realzt una comparacion con estudios
recientes para evaluar la precision obtenida. Se enconird que se puede obtener una mayor precison con el minime tzmano de
entrada posible.

Palabras clave: COVID-19, detecrion de mascarillas, aprendizaje profundo, clasificacion
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Introduction

Owr lifestyles started changing with the advent of COVID-19,
avery dangerousvirus that quickly spread all over the world.
Due to its high infection rate and severity, precautions were
taken at a global level, and restrictions were put into effect.
The use of face masks was one of the most important and
effective ways for slowing down the infection from the very
beginning of the pandemic (Cheng et al., 2020).

Despite the fact that vaccinafion continues all over the
world the use of masks is still important, since suffident
vaccination has not yet been reached and the virus can
mutate and change. As we are trying to return to our daily
Iives while coed sting with the disease, we still have to take

some precautions to avoid amy rapid spread. This means that
serious control measures are needed, especially in public
places. Automated control is key to obtain fast, reliable,
and continuously working systems.  Artifidal intelligence
(Al} makes it possible to obtain such systems in many
different areas. Al-based image processing has been applied

in various cases (Dimiller, 2022; Dimililer and Kayah, 2021;
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Face Mask Detection and Classification for
COVID-19 using Deep Learning

1* Devrim Kayali
Electrical & Electronic Engineering
Near Ean University
Wicosia, Cyprus, Mersin 10 Turkey
devrim. kayali @ ktzmo.org

Abstract—With the emergence of COVID-19, our lifestyles
have changed. Becawse of iis high infectivity and high severity,
fighting with this virus has become a global problem in no tme.
Minimiring the speed of spread and kee ping the numbers under
control is a way fo save mome people by taking care of them
better and also have more time spemt om research to find a
cure such as medicine or vaccine which will pot an end to this
situation. During this time, personal protection like using Face
masks is very important since it profects people and others close
to them and significantly reduces the risk of infection on correct
usage. Unfortunaiely, some people can act careless or reckless
which puis many peoplke at riske This keads us to use antomated
sysiems in crowded places to detect those who do not follow the
rules When it comes to automated systems, artificial intelligence-
melated applications are favorable for supporting humans. In this
paper, at first, a datasel was obtained by adding face masks
to the existing Labeled Faces im the Wild (LFW) dataset to
detect three mask-wearing conditions: correct, wrong and no
mask. Then NASNeiMobilk and ResNet50 networks were trained
using the considered dataset. The ResNet50 outperformed the
MNASNe iMobile by achieving 92% defection accuracy.

Index Terms—COVID-19.Face Mask, Mask Detection, Deep
Learning

I. INTRODUCTION

Sustainable development is a key concept and solution
in creating a promising and prosperous future for human
societies. Human being always faces epidemic diseases in both
prediced or unpredicted ways. COVID-19, which is the new
version of Coronavirus, is one of the epidemic diseases that
affect human life. Many mesearch has been made by various
authors considering both the medical side as well as image
processing with antificial intelligence.

Pirouz et al. suggested a binary classification using Al and
Regression analysis. The authors selected Hubei in China
as a case study and used group method data handling tvpe
of neural network. Various kinds of weather factors were
considered for 30 days. For the comparison of the fluctuations
of daily weather parameters and the trend of confirmed cases,
regression analysis was donz. When the confirmed cases are
considered, in the main case study mlative humidity affecied
positively with an average of 77.9% and degress Celsins
affecied negatively with an average temperature of 15.4 [1].

97E-1-6654-3003-8721/331.00 2021 IEEE
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Lalmuanawma et al. reviewed the applications of machine
learning and artificial intzlligence for the COVID-19 pan-
demic. The authors discussed the Al and ML in the field of
forecasting, predicting, scre2ning, contact tracing., and drug
development for SARS-CoV-2 and its mlated epidemic [2].

Naude W. Studied the Arificial Intelligence against
COVID-19. Early evaluation of Al is considerzd for COVID-
19. The author suggested that Al was not impactful against
COVID-19. When the constraints such as lack of data or oo
much data are considered. a careful balance between data
privacy and public health will be needed w be overcome [3].

Another msearch has bean made by Pourhomayoun and
Shakibi, to predict the Morality Risks in patients with COVID-
19 using Al for decision making. The authors developed a
predictive model to determine the health risk and predict the
mortality risk of the patients. The authors achieved 93% of
overall accuracy in predicting the mortality raie by comparing
Logistic regression, Random forest, Support vector machine,
Decision tree, K-neamst neighbor and Artificial neural net-
works [4].

COVID-19 virus can be easily spread among people, es-
pecially in closed areas. so wearing a mask is necessary o
prevent the virus mach the humans during coronavirus epi-
demic. This situation makes the conventional face recognition
technology ineffective in many cases. The researchers startad
to improve the recognition performance of the existing Tech-
nologies considering the masked faces. Wang et al. mentioned
that most of the face recognition systems are based on deep
learning with a large number of face samples [3].

II. LiTERATURE REVIEW

Matuscheck et al. studied the benefits, as well as the risks
during the COVID-19 crisis considering the face masks. The
authors performed an extensive query of the most recent pub-
lications that addmess the prevention of viral infections while
the face masks in the community prevent the spread of the
infection. The authors suggested that there are some clinically
mlevant scenarios wher the use of MNC necessitales more
defined recommendations [6].

Bubbico et al. studied the community use of face masks
against the spread of COVID-19. The authors sugpestad that
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Face Mask Detection using Custom CNN
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Devrim Kayali! and Kamil Dimililer”

! Electrical & Electronic Engineering
Research Center for Science, Technology and Engineering (BILTERM)
MNear East University, Nicosia, N. Cyprus, Via Mersin 10, Turkey
devrim.kayalif@ktemo.org,
2 Flectrical & Electronic Fngineering
Applied Artificial Intelligence Research Centre ( AATRC)
Research Center for Science, Technology and Engineering (BILTERM)
Near East University, Nicosia, N. Cyprus, Via Mersin 10, Turkey
kamil. dimililerfineu.edu.tr

Abstract. After the COVII-19 pandemic, the effectiveness of face mask
usage in such an environment has been seen. This situation triggered
much research and experiments on this subject. Most of this research
was done by using artificial intelligence. This paper focuses on a filter-
based approach using a convolutional neural network for classification of
face mask usage, which are mask correct, mask wrong, and no mask. 17
chosen filters are applied to the input images as an Image pre-processing
phase which results in 17 input images per image. Our customized net-
work takes these 17 images as input and eliminates them into a single
image before flattening and feeding to the dense layers. For training, 5
learning rates were tried starting from 107 and increasing 10 times for
each try stopping at 10, Results showed that increasing the learning
rate shortened the training time and increased the accuracy. The highest
test accuracy was obtained at 107 learning rate with 98.86%. At 107
learning rate, the second good result 98.16% was obtained.

Keywords: Face Mask, Filtering, Image Processing, CNN, Classifica-
tion

1 Introduction

When COVID-19 came up and spread rapidly and became a pandemic that af-
fected the whole world, we had to take precantions to take the spread under
control and protect ourselves individually, One of the effective methods for this
was to use face masks. When it comes to public places, it is important to check
the face mask usage since Improper and no usage can increase the spread and
affect other’s lives. When the situation is serious and eonstantly running appli-
cations are needed with minimum errors, antomated detection svstems become
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Appendix D

Python Code of the Proposed Network

ReLU(Layer):
£ __init_ (
super(ReLU,

# Apply r n to th
tputs = tf.nn.relu(inputs)
"n outputs

inputimagewidth,inputimageheight, inputimagechannel=inputshape
input_layer = keras.layers.Input(shape=(inputimagewidth,inputimageheight,inputimagechannel), name='input_Layer')

filter_outputs=
- ach 1 ly
range(len(filterarray)):
initfilter = tf.constant_initializer(filterarray[i])
filter_output = tf.keras.layers.Conv2D(1, kernel_size=(3, 3), padding=‘same’, kernel_initializer=initfilter
,use_bias=False,nam i str(i)) (input_layer)
filter_output = RelLU(name="ReLU"+str(i))(filter_output) # a
filter_outputs.append(filter_output)

# cater | lter outpu

1 C
filter_output_lay tf.keras.layers.Concatenate(axis=-1)(filter_outputs)

v 1
if inputimagewidth>=64:
convout=Conv2D(1,(32,32),(1,1),padding="same") (filter_output_layer)

convout=Conv2D(1, (int(inputimagewidth/2),int(inputimageheight/2)),(1,1),padding="same")(filter_output_layer)

x=Flatten() (convout)

x=Dense(1024, activation='relu’) (x)
x=Dense(1024, activation='relu') (x)
out=Dense(categories,activation="softmax")(x)
model = Model(input_layer,out)




Appendix E

Proposed Network with 32x32 Input Image Resolution

Layer (type)

input_laver (InputlLayer)

filtere

filterl

filter2

filter3

filter4

filters

filters

filter?

filters

filterd

filterle

filterll

filterl2

filterl3

filterld

filterls

filterls

{Conv2D)
{ Conv2D)
{Conv2D)
{ Conv2D)
{Conv2D)
{ Conv2D)
{Conv2D)
{ Conv2D)
{Conu2D)
{ Conv2D)
(Conv2D)
{Conv2D)
(Conv2D)
{Conv2D)
(ConvzD)
(Conv2D)

(Conv2D)

RelLUa {RelLU)

ReLU1 (ReLU)

RelLU2 {ReLU)

RelLU3 (ReLU)

RelLU4 (ReLU)

RelLUS (ReLU)

RelLUs {ReLU)

RelLU7 (ReLU)

RelLUS {RelLU)

RelLUs (ReLU)

RelLUld (ReLl)

Output Shape
[(Mone, 32, 32, 1)]
(Mone, 32, 32, 1)
(Mome, 32, 32, 1)
(None, 32, 32, 1)
(Mone, 32, 32, 1)
(None, 32, 32, 1)
(Mone, 32, 32, 1)
(Mone, 32, 32, 1)
(Mome, 32, 32, 1)
(Mone, 32, 32, 1)
(Mone, 32, 32, 1)
(None, 32, 32, 1)
(Mone, 32, 32, 1)
(Mone, 32, 32, 1)
(Mome, 32, 32, 1)
(Mone, 32, 32, 1)
(None, 32, 32, 1)
(None, 32, 32, 1)
(Mome, 32, 32, 1)
(Mone, 32, 32, 1)
(Mome, 32, 32, 1)
(Mone, 32, 32, 1)
(None, 32, 32, 1)
(Mone, 32, 32, 1)
(Mome, 32, 32, 1)
(Mone, 32, 32, 1)
(Mome, 32, 32, 1)
(Mone, 32, 32, 1)

(None, 32, 32, 1)

Param #

Connected to

[*input_layer[@][@]"]
["input_layer[@][@]"]
["input_layver[@][@]']
[input_layer[8][@]"]
["input_layver[@][@]"']
[input_layer[8][@]"]
[*input_layer[@][@]"]
["input_layer[@][@]"]
[*input_layer[@][@]"]
[input_layer[8][@]"]
["input_layver[@][@]"']
[input_layer[8][@]"]
[*input_layer[@][@]"]
["input_layer[@][@]"]
[*input_layer[@][@]"]
['input_laver[8][@]"]
["input_layver[@][@]"']
['filter@[8][@]"']
["filterl[@][®]"']
['filter2[8][8]"']
['filter3[@][@]"']
["filterd4[@][@]"']
["filter5[@][@]"']
['filter&[B][A]"']
["filter7[@][2]"']
['filter8[8][8]"]
['filterg[@][@]"']

["filterle[@][@]"]
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ReLU11 (RelU) (None, 32, 32, 1) 8 ["filterll[@][®]"]
RelLU12 (RelLU) (Mone, 32, 32, 1) 2 ["filterl2[B][@]"]
RelLUl3 (ReLU) (Mone, 32, 32, 1) ] ["filterl3[@][@]"]
ReLU14 (ReLU) (Mone, 32, 32, 1) a ["filterl4[@][@]" ]
ReLU15 (RelU} (None, 32, 32, 1) 8 ["filteri5[@][@]"]
ReLU16 (RelU) (None, 32, 32, 1) 8 ["filterls[@][@]"]
concatenate (Concatenate) (None, 32, 32, 17) 2] ["ReLua[@][@]",

*ReLUl[@][@]",
"ReLUz[@][@]",
"RelU3[@]I[8]",
‘RelU4[@][8]",
*RelUS[B][B]",
‘RelUG[@][8]",
‘RelU7[@][8]",
‘RelUB[@][B]",
*ReLUs[@][@]",
‘RelLUle[e@][e]’,
*RelLUl1l[@][e]",
*RelLUl2[@][0]",
"ReLU13[@][e]",
"RelLUl4[@][@]",
"ReLU15[@][e]",
"RelU16[@][8]"]

conv2d (Conv2D) (None, 32, 32, 1) 4353 ["concatenate[@][@]"]
flatten (Flatten) (None, 1@24) a [*conv2d[@][e]"]
dense (Dense) {(None, 1@824) 18496088 [*flatten[@][8]"']
dense_1 (Dense) {(None, 1@824) 18496088 [*dense[@][@]"]
dense_2 (Dense) (None, 3) 3875 ["dense_1[@][@]1"]

Total params: 2,186,781

Trainable params: 2,186,628
Non-trainable params: 153



Appendix F

Proposed Network with 64x64 Input Image Resolution

Layer (tvpe) Output Shape Param # Connected to
“lnput_layer (Inputloyer)  [(None, 64, 64, D1 © 0
filter@ (Conv2D) (None, &4, &4, 1) 9 ["input_layer[8][@]"]
filterl (Conv2D) (None, &4, &4, 1) 9 ["input_layer[@][@]"]
filter2 (Conv2D) (None, 64, &4, 1) 9 ["input_layer[@][@]"]
filter3d (Conv2D) (Mone, &4, 64, 1) 2] ["input_layer[@][@]"]
filterd (Conv2D) (None, 64, &4, 1) 9 ["input_layer[®&][@]"]
filters (Conv2D) (None, &4, &4, 1) 9 ["input_layer[@][@]"]
filteré (Conv2D) (Mone, &4, &4, 1) o) [*input_layer[@][@]"']
filter7 (Conv2D) (Mone, &4, 64, 1) =] ["input_layer[@][@]"]
filterg (Conv2D) (None, 64, &4, 1) 9 ["input_layer[8][@]"]
filter? (Conv2D) (None, 64, &4, 1) 9 ["input_layer[8][@]"]
filterl® (Conv2D) (None, &4, &4, 1) 9 ["input_layer[@][@]"]
filterll (ConvZD) (Mone, 64, 64, 1) 9 [*input_layer[@][@]"]
filterl2 (Conv2D) (Mone, 64, 64, 1) G ["input_layer[@][@]"]
filterl3 (Conv2D) (None, &4, &4, 1) 9 ["input_layer[8][@]"]
filterld (Conv2D) (None, &4, &4, 1) 9 ["input_layer[@][@]"]
filterlS (ConvZD) (Mone, &4, 64, 1) 2] ["input_layer[@][@]"]
filterls (ConvZD) (Mone, &4, 64, 1) 2] ["input_layer[@][@]"]
ReLUB (Rell) (None, 64, 64, 1) a ['filter8[al[e]']
ReLUl (RelLu) (None, 64, 64, 1) ] ["filterl[@][®]']
ReLU2 (ReLU) (None, 64, &4, 1) @ ['filterz[@][e]']
RelLU3 (Rell) {None, 64, &4, 1) a ['filter3[ai[e]'l
ReLU4 (ReLU) (None, 64, 64, 1) a8 ["filterd4[@][0]']
ReLUS (ReLu) (None, 64, 64, 1) ] ["filter5[@][0]']
ReLUs (ReLU) (None, &4, B4, 1) 2] ["filter&[@][0]"']
ReLU7 (ReLU) (None, 64, 64, 1) ] ['filter7[@][@]']
ReLUS (RelU) (None, 64, 64, 1) a ['filter8[a][e]']
ReLU9 (RelLU) (None, 64, 64, 1) ] ["filterg[@][@]"']
RelLU1® (ReLU) (None, &4, B4, 1) 2] ["filterle[@][@]"]
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RelLU1l (ReLU} (Mone, &4, 1) a ["filterll[@][@]"']

-

RelLU12 (ReLU} (Mone, &4, 1) a ["filterl2[@][@]"']

-

ReLU13 (RelLU) (Mone, &4, 1) a ['filterl3[@][@]"]

-

ReLU14 (ReLU) (Mone, &4, 1) a ['filterla[@][@]"]

ReLU15 (ReLU) (Mone, &4, 1) a ['filterlS[@][@]"]

-

RelLU16 (ReLU) {Mone, &4, 1) a ['filter1s[@][@]"]

-

L S S T S &

-

17) @ ['ReLUB[@][@] ",
‘RelUL[e][e]",
‘ReLU2[@][@]",
‘ReLU3[@][@]",
‘RelLlM[@][®]",
‘ReLUs[e][e]",
"RelUG[@][@]",
‘RelLU7[@][@]",
‘ReLUB[@][®]",
‘RelUS[@][®]",
‘RelU10[B]I[B]",
‘RelLU11[B][B]",
‘RelU12[B][B]",
‘RelU13[B][B]",
‘RelUl4[B][8]",
‘ReLU15[8][8]",
"RelU16[8]1[8]"]

concatenate (Concatenate) (Mone, &4,

conv2d (Conv2D) (Mone, &4, 64, 1) 174@9 ['concatenate[@][@]"]
flatten (Flatten) (Mone, 489&) 2] ['conv2d[B][@]"]
dense (Dense) (Mone, 1824) 4195328 [*flatten[@][@]"]
dense_1 (Dense) {None, 1824) 1849688 ['dense[@][@]"]
dense_2 (Dense) {Mone, 3) 3875 ['dense_l[@][@]']

Total params: 5,265,565
Trainable params: 5,265,412
Non-trainable params: 153



Appendix G

Proposed Network with 128x128 Input Image Resolution

Layer (type)

filter® (Conv2D)
filterl (Conv2D)
filter2 (Conv2D)
filter3 (Conv2D)
filterd (Conv2D)
filter5 (Conv2D)
filteré (Conv2D)
filter7 (Conv2D)
filterg8 (Conv2D)
filterd (Conv2D)
filterl@d (Conv2D)
filterll (Conv2D)
filterl2 (Conv2D)
filterl3 (Conv2D)
filterld (Conv2D)
filterls (Conv2D)
filterle (Conv2D)
ReLUB (RelU)
ReLUul (ReLU)
ReLU2 (ReLU)
ReLU3 (ReLU)
ReLU4 (ReLU)
ReLUs (ReLU)
ReLUs (ReLU)
ReLU? (ReLU)
ReLUS (RelU)

RelLUS (RelU)

Output Shape

1]

(None,
(None,
(None,
(None,
{Mone,
{Mone,
{Mone,
{Mone,
{Mone,
{Mone,
{Mone,
(Mone,
(Mone,
(Mone,
(Mone,
(Mone,
(Mone,
(Mone,
(MNone,
(MNone,
(MNone,
(MNone,
(MNone,
(MNone,
(MNone,
(None,

(None,

128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,

128,

128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,
128,

128,

1)
1)
1)
1)
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1)
1)
1)
1)
1)
1)
1)
1)
1)

[*input_layer[8][8]"]
[*input_layer[8][8]"]
[*input_layer[8][8]"]
[*input_layer[8][8]"]
[*input_layer[8][8]"]
[*input_layer[8][8]"]
[*input_layer[8][8]"]
[*input_layer[8][8]"]
[*input_layer[8][8]"]
[*input_layer[8][8]"]
[*input_layer[8][8]"]
["input_layer[@][@]"]
["input_layer[@][@]"]
["input_layer[@][@]"]
["input_layer[@][@]"]
["input_layer[@][@]"]
["input_layer[@][@]"]
["filter@[@][®]"]
["filterl[@][®]"]
["filter2[B][®]"]
["filter3[@][®]"]
["filter4[B][®]"]
["filterS5[@][@]"]
["filter&[B][®]"]
["filter7[B][®]"]
[*filter8[@][@]"]

["filters[8][8]"']
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ReLU1@ (ReLU) (Mone, 128, 128, 1) @ ["filterle[@][@]"']

RelLU1l (RelLU) (Mone, 128, 128, 1) @ ["filterll[@][@]"]
ReLU12 (RelU) (None, 128, 128, 1) @ ["filter12[@][8]"]
ReLU13 (RelU) (None, 128, 128, 1) @ ["filter13[@][8]"]
ReLU14 (RelU) (None, 128, 128, 1) @ ["filterld[@][8]"]
ReLU15 (RelU) (None, 128, 128, 1) @ ["filter15[@][8]"]
ReLU1E (ReLU) (None, 128, 128, 1) @ ["filterls[@][@]"]
concatenate (Concatenate) (Mone, 128, 128, 17 @ [*ReLUa[@][@]",

‘RelLU1[B][®]",
‘ReLUZ[@][®]",
"RelLU3[@][@]",
‘ReLlM[@][@]",
*ReLUS[@][@]",
‘RelUG[@][®]",
"RelLU7[@][@]",
"RelLUS[@][@]",
*ReLUS[@][@]",
‘ReLUlB[B]I[O]",
"ReLU11[@][0]",
‘ReLU12[@][@]",
‘ReLU13[@]I[@]",
‘RelLU14[B][B]",
"ReLU1S[@I[0]",
"RelLU16[@1[81"]

conv2d (Conv2D) (None, 128, 128, 1) 17489 ["concatenate[@][@]"]
flatten (Flatten) (None, 16384) @ ["conv2d[@][8]"]
dense (Dense) {Mone, 1824) 16778240 [*flatten[@][@]"]
dense_1 (Dense) {Mone, 1824) 1849608 ["dense[@][@]"']
dense_2 (Dense) {(Mone, 3) 3a75 ["dense_1[@][@]"]

Total params: 17,848,477
Trainable params: 17,848,324
Non-trainable params: 153
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Appendix H

Turnitin Similarity Report

Similarities: Abstract %0, Chapters %8, Conclusion %0
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