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Abstract 

Analyzing Urban Runoff with Climate Parameters and Soil Moisture Using 

Artificial Neural Network (ANN) and Ordinary Least Square (OLS) in GIS: A 

Case Study Mogadishu-Somalia. 

Hussein, Abdirahim Salad  

MSc, Department of Civil Engineering 

June 2024, 97 pages  

Flood risk management needs to anticipate urban runoff accurately; nonetheless, this 

continues to be challenging due to the unpredictable and ambiguous nature of urban 

runoff. The identification of the most significant affecting variables is an essential step in 

the process of making accurate predictions. Consequently, the primary objective of this 

research is to investigate the utilization of an artificial neural network (ANN) and ordinary 

least squares (OLS) to determine the most significant parameters for the prediction of 

monthly runoff. The maximum and lowest temperatures, rainfall, and soil moisture are the 

four input factors that are taken into consideration in this study. The location of the case 

study is Mogadishu, which is located in Somalia. For study, global meteorological data 

spanning the years 1985 to 2022 are gathered. The results of this research indicate that 

rainfall and soil moisture are the most significant input elements in the process of 

predicting runoff. This allows for better accuracy while also reducing the complexity of 

the process. As a result of the fact that these two components have a direct and significant 

influence on the quantity and behavior of water flow across the land surface, they are 

essential in determining the patterns of runoff.  

 

Keywords: Mogadishu, Urban runoff, Geographical Information System, Artificial Neural     

Network, Ordinary Least Square.  
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ÖZET 

CBS'de Yapay Sinir Ağı (YSA) ve Sıradan En Küçük Kare (OLS) Kullanılarak 

Kentsel Akışın İklim Parametreleri ve Toprak Nemi ile Analiz Edilmesi: 

Mogadişu-Somali Örneği. 

Hüseyin, Abdirahim Salatası 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Haziran 2024, 97 sayfa 

Sel risk yönetiminin kentsel akışı doğru bir şekilde tahmin etmesi gerekir; yine de kentsel 

akışın öngörülemeyen ve belirsiz doğası nedeniyle bu durum zorlu olmaya devam ediyor. 

En önemli etkileyen değişkenlerin belirlenmesi, doğru tahminler yapma sürecinde önemli 

bir adımdır. Sonuç olarak, bu araştırmanın temel amacı, aylık akış tahmini için en önemli 

parametreleri belirlemek amacıyla yapay sinir ağının (YSA) ve sıradan en küçük karelerin 

(OLS) kullanımını araştırmaktır. Maksimum ve en düşük sıcaklıklar, yağış ve toprak nemi 

bu çalışmada dikkate alınan dört girdi faktörüdür. Vaka çalışmasının yeri Somali'de 

bulunan Mogadişu'dur. Çalışma için 1985-2022 yıllarına ait küresel meteorolojik veriler 

toplanıyor. Bu araştırmanın sonuçları, yağış ve toprak neminin yüzey akışının tahmin 

edilmesi sürecinde en önemli girdi unsurları olduğunu göstermektedir. Bu, daha iyi 

doğruluk sağlarken aynı zamanda sürecin karmaşıklığını da azaltır. Bu iki bileşenin arazi 

yüzeyindeki su akışının miktarı ve davranışı üzerinde doğrudan ve önemli bir etkiye sahip 

olması nedeniyle, akış modellerinin belirlenmesinde hayati öneme sahiptirler.  

 

Anahtar Kelimeler: Mogadişu, Kentsel akış, Coğrafi Bilgi Sistemi, Yapay Sinir Ağı, 

Sıradan En Küçük Kare. 
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CHAPTER I 

Introduction 

This chapter comprises a general introduction, a statement of the problem, the study's 

objective, and the study's cope.  

1.1. Background  

Throughout the world, cities are now experiencing a growing challenge associated 

with managing urban runoff and the nexus of water quality and flood risk. The research is 

going to offer a critical appraisal of the in-depth investigation of urban runoff in 

Mogadishu, Somalia. This research presents a very good case study of urban development, 

climate change, and water management. Through a meticulous study covering several 

decades, this research not only sheds light on the local phenomena but contributes to the 

greater general discourse of sustainable urban planning.  This makes Urban Runoff 

Management a very critical challenge in modern environmental science, especially in 

regions that are turning urban at a fast pace while at the same time suffering from the 

consequences of climate change. The elaborate study gives an in-depth examination of the 

multifaceted challenges and innovative solutions associated with urban runoff 

management in Mogadishu, Somalia. This research is a clear testimony that urban 

resilience in the face of environmental threats would be enhanced with scientific research 

in urban planning and policy. The literature clearly outlines the basic processes of urban 

runoff and what it portends for water resources. The study further investigates how 

urbanization intensifies runoff and pollutant loads into water bodies, hence the urgent need 

for management strategies that are robust enough to offset such increases. Literature has 

also noted that climate change poses such challenges at higher magnitudes, making 

prediction and management of urban runoff a very complex and critical task. 

The methodology chapter presents the hybrid analytic framework that uses both 

traditional and advanced computational techniques: Ordinary Least Squares (OLS) 

regression and Artificial Neural Networks (ANN), respectively. This hybrid approach is 

designed to utilize the strengths of each method to boost the prediction accuracy and 

reliability of urban runoff. The study used a data set from 1985 to 2022, with all variables 

that determine soil moisture, temperature, and rainfall, to model the dynamics of urban 
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runoff under different scenarios. The results brought out in the following chapters are 

important in a way that they show how good these models are. This comparative analysis 

between the OLS and ANN models has brought forth both the strengths and weaknesses 

of the models. Whereas OLS models are clear and easy to comprehend linear 

relationships, ANNs are superior in capturing complex, nonlinear interactions in the data. 

In this way, detailed forecasting could be done, which is very important in urban water 

management. General conclusions synthesize the results and set them in the context of 

applications for an urban planner and policymaker. The study gives strong 

recommendations for strengthening the resilience of urban systems under the dual stresses 

of flooding and pollution. This includes the improvement in meteorological data 

collection, increased use of predictive models in planning processes, and infrastructure 

investment that benefits from the insights learned from the study. It also further calls for 

interdisciplinary action of scientists, urban planners, and policymakers to make these 

recommendations operational strategies. In general, these documents will provide a full 

view of the various challenges and strategies in dealing with urban runoff management 

under a climate change scenario. The study focused on Mogadishu in addressing specific 

local needs and at the same time contributed to the global knowledge base by learning 

lessons that can be adapted and applied in other urban settings going through similar 

challenges. This research epitomizes the critical link that should exist between scientific 

inquiry and urban planning, stressing that such information helps decision-making that is 

fully informed and data-driven for the development of sustainable and resilient urban 

setups.  

1.2. Statement of Problem  

Rapid urbanization in Mogadishu, Somalia, has outpaced the establishment of proper 

water management systems, leading to an escalated risk of flooding due to increased urban 

runoff. This has been worsened by climate change, which alters precipitation patterns, 

increasing rainfall intensity and making events very erratic. The traditional urban runoff 

strategies in Mogadishu are thus inappropriate to predicate or handle the complex 

interaction between the changes in climate and urban infrastructures. Therefore, advanced 

predictive models are very essential in guiding urban planning to avert such risks. This 
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study thus advances the above gap by integrating the performance of OLS regression and 

Artificial Neural Networks to improve the accuracy and reliability of urban runoff 

estimations in Mogadishu 

1.3.  Objectives of the study  

The main objective studies are as follows:  

• To develop predictive: Develop robust models using the regression technique, 

especially ordinary least squares (OLS), and Artificial Neural Networks (ANN) to 

correctly predict the patterns of urban runoff in Mogadishu. 

• To compare modeling approaches: Evaluate how well the effectiveness of OLS 

regression and ANN compares in modeling urban runoff, and what their specific 

strengths and weaknesses are. 

• To Provide Management Strategies: Propose operative management strategies for 

urban water management, based on model findings, that could contribute to flood 

risk reduction and increase urban infrastructure resilience in the face of increasing 

climate variability. 

1.4.  Scope of study  

This study combines the use of climatological data, analysis of urban infrastructure, 

and advanced predictive modeling to address complex issues in urban water management 

in predicting urban runoff in Mogadishu, Somalia. This research is geographically focused 

on Mogadishu and delves into the impacts of urbanization and infrastructural dynamics 

that have contributed to increasing problems of runoffs. Within the considerable period 

between 1985 and 2022, it provides a long-term perspective on the characteristic patterns 

and trends of precipitation, temperature, soil moisture, and the resultant runoff events that 

seriously complicate the urban planning and sustainability agenda. The study hereafter 

further performs the modeling exercise applying both the OLS regression and ANN 

method. These models will also be further enriched with adaptation strategies in the 

mitigation of flooding and building the resilience of infrastructure with recommendations 

that will support urban planners, policymakers, and community stakeholders in fostering 

sustainable urban development in Mogadishu. 
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CHAPTER II 

 Literature Review 

2.1. Introduction to Urban Runoff  

Runoff is one of the interrelated components; it connects the chain of precipitation 

and streamflow in the hydrological cycle. Surface runoff results from the overflow of 

rainwater over land surfaces into surface rivers and does not infiltrate into the soil. Runoff 

helps in controlling the Hydrological cycle from the side of replenishing the surplus of 

precipitation and also manages the amount of water that goes to the stream channels. 

Surface runoff is an important area of monitoring interest to water supplies and also seeks 

to address quantity and quality issues, flood forecasting, and ecological and biological 

interactions in aquatic ecosystems. It is the principal agent of pollution transport as excess 

fertilizers and pesticides from agricultural lands are carried into streams by rainfall. This 

information can be used by water resource managers for considering runoff-related 

pollutants (Sitterson et al., 2018). A greater understanding of runoff mechanisms 

facilitates the assessment of surface and groundwater risk in terms of quality and quantity. 

Short-duration, high-intensity rainfall is considerably more likely than longer-duration, 

less intense rainfall to exceed the soil's capacity to digest water and cause overland flow. 

While a more humid environment with shallow water tables is less prone to experience 

stream infiltration losses, even light rainfall, when distributed and aggregated over 

extensive areas, can cause high stream flows. In arid settings with deep water tables, heavy 

rainfall over a limited area can cause local runoff that infiltrates downstream (Tarboton, 

2003). The term "runoff" describes the flow of water over the surface of the ground and 

is a crucial phase in the water cycle that unites aquatic, terrestrial, and aerial systems. 

From Figure 2.0 generation of runoff begins with precipitation, any form of liquid and 

solid water that comes from the sky. This water can take some different pathways: it may 

be intercepted by vegetation, be added to the depression storage, or reach the surface of 

the soil. A fraction of the water that reaches the ground is used to return vapor to the 

atmosphere via evapotranspiration, but a further remainder will instead travel over the 

land's surface in what is known as overland flow.  
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 Figure 1 

 Physical Process of Runoff Generation, Source (overview and runoff processes, 2003). 

 

 

 

Water in the soil may percolate deeper to recharge the groundwater, or move laterally as 

interflow to a near return via surface water bodies through return flow, or to maintain 

stream levels of base flow. The term "runoff" is used both for overland flow and that part 

of the return flow reaching rivers and streams, adding to streamflow. This water 

movement, both overland and through the subsurface, is critical for landscape 

development, ecological health, and water supply planning for both human and 

environmental needs (overview and runoff processes, 2003).  

2.2. Climate Change and Urban Runoff Prediction 

For over a decade now, our world has experienced the adverse impacts of climate 

change. In particular, it is made abundantly clear by the way that natural disasters 

physically affect the environment and socioeconomic components. Climate change is 

regarded to be the most important element in the causes of natural disasters such as severe 

drought and flooding, despite efforts to mitigate any loss, damage, or destruction across 

all relevant dimensions (Hormwichian et al., 2023). It is linked to an increase in extreme 

weather events, changes in rainfall patterns, more intense floods and droughts, significant 

forest fires, rising sea levels, flooding, melting polar ice, catastrophic storms, and a decline 
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in biodiversity (Tsakiris & Loucks, 2023). Because of the catastrophic implications of 

climate change on individuals, society, and the environment, water resource research 

under climate change has received a lot of attention in the scientific community. The 

hydrological cycle and climatic factors like temperature and precipitation will be disrupted 

by future climate change, which poses serious risks to the operation of hydro-junctions. 

Therefore, it is imperative to create workable ways to deal with how climate change affects 

the management of water resources (Bai et al., 2023). Monthly runoff forecasting is the 

most important in the management, operation, and development of reservoirs. In the 

meantime, the non-stationarity, skew, and nonlinearity caused by climate change and 

human activities ruin the runoff, which sharply reduces the accuracy of the projection 

about monthly runoff. That leads the monthly runoff to be considered hard and demanding 

work in the prediction of accuracy. In general, the models used for runoff predictions are 

of two types: physical models and data-driven models. Physical models involve very 

complex calculating techniques and need substantial meteorological data. Recently, more 

attention has been paid to data-driven models because of their simpler structure and lower 

data demand. Among all these techniques, the ANN has attracted tremendous attention in 

data-driven runoff forecasting during the last 20 years. Consider the backpropagation 

model (BP neural network). As a result, accurate monthly runoff prediction is regarded as 

a challenging issue. Researchers have worked for decades creating algorithms for 

hydrologic forecasting. Runoff is impacted by vegetation cover, land use change, human 

activities, and climate change. Runoff series display nonstationary and multi-frequency 

characteristics due to the effect of these uncertain components, which poses considerable 

difficulty for relevant departments in conducting accurate runoff forecasts. (W. chuan 

Wang et al., 2024).  To reduce the damage caused by urban floods, drainage district units 

need to have a flood prediction system in place when localized heavy rainfall increases as 

a result of accelerated changes in climate patterns. Major floods that occurred in Seoul on 

September 21, 2010, and July 27, 2011, in the past, significantly damaged property. In 

Seoul, the damage from heavy rains in 2010 and 2011 was $ 35 million and $25 million, 

respectively (Kim & Han, 2020). Rainfall patterns and intensity have changed due to 

global climate change, which has an impact on drainage. This has led to regular floods, 
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which have resulted in fatalities and large financial damage. Due to road inundation, 

Beijing issued a flood emergency in July 2012. 79 people died as a result of the lack of a 

prompt flood forecast, which would have enabled the implementation of appropriate 

protocols and preventive measures. Large losses occur when floods are not responded to 

quickly, and swift response depends on timely and accurate forecasts. To provide 

decision-makers ample time to intervene and minimize disaster costs, flood disasters must 

be forecasted quickly (Yan et al., 2021). 

Hydrology is a fundamental topic in geosciences, and rainfall-runoff modeling has 

historically been a prominent research area in hydrology. Since the eighteenth century, 

hydroscientists have widely used differential equations (DE) to explore a variety of 

hydrological phenomena and processes, including evapotranspiration and snowmelt, 

baseflow, and surface flow. Researchers have gradually developed these DE into a series 

of relatively complete and well-interpretable process-based models, which have been used 

to predict and explain various hydrological tasks, particularly flood forecasting (Li et al., 

n.d.). Runoff is critical in managing the hydrological cycle because it returns excess 

rainfall to surface water bodies, moderating flows. The rainfall-runoff interaction is quite 

complex due to its composite hydrological aspect. This is due to the significant 

spatiotemporal variability of watershed and rainfall patterns. Because the hydrological 

cycle comprises so many factors, it is difficult to articulate the runoff mechanism that 

ultimately affects the climate regionally. The mathematical description of rainfall-runoff 

fueled the rise from the 1980s to the late 1800s. It has been an invaluable resource for 

hydrologists and engineers in predicting and developing urban runoff. The short-range 

streamflow forecast with less than 24 hours of lead time is useful for flood warning 

systems and reservoir operation. Surface runoff estimations in the nineteenth century were 

based on empirical formulas. For smaller catchments, estimations were based on time of 

concentration, but for large-scale concerns, rational approaches had to be modified 

(Prasanna et al., 2023).  
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2.3. Variables Influencing Urban Runoff 

Such variables affecting urban runoff are so important in the prediction of and proper 

management of urban water systems to overcome the risk associated with flooding events 

and to preserve good water quality. This study analyzes Mogadishu, Somalia, key 

variables such as maximum temperature, minimum temperature, soil moisture, and 

rainfall, using ordinary least square (OLS) and artificial neural network (ANN ) methods. 

Other parameters need to be taken into account, as they affect the volume and quality of 

urban runoff. Rainfall and soil moisture are the two best parameters concerning 

determining runoff volume from specific areas, a fact which could determine their overall 

impacting importance in the hydrological cycle of urban centers.  

2.3.1. Temperature  

Climate change and urbanization have increased the likelihood of urban flooding 

(H. Il Kim and Kim, 2020). Climate change, induced by a variety of human activities, has 

emerged as a major focus of scientific inquiry (S. Zhang et al., 2011). The current climatic 

change is highly sensitive to runoff from glacierized basins. Elevated temperatures have 

the potential to accelerate the melting of glaciers and snowmelt in numerous river basins, 

leading to increased meltwater availability for rivers shortly (A. Wang et al., 2023). 

Between 0.8 and 1.2 degrees Celsius have increased global air temperatures from pre-

industrial levels. The hydrological process and sources of major seasonal snow-fed river 

basins have been negatively impacted by variations in temperature and precipitation. 

These processes are crucial for the management of water resources, the production of 

hydropower, agricultural output, and environmental impact assessments. Results from 

general circulation models (GCMs) and other analyses show that by the middle of the next 

century, there will be significant global warming due to rising CO2 concentrations in the 

atmosphere. Temperatures in the middle latitudes are expected to rise by 1 to 4 degrees. 

The first step in tackling this issue is to investigate the links between changing climate 

and surface water runoff (Zhao et al., 2021).  
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2.3.2. Rainfall  

The impact of precipitation is one very pertinent aspect that has increasingly 

gained importance in the research of urban runoff in recent years, mainly due to the large 

alterations of natural urban hydrology derived from both natural climatic variations and 

human-induced changes. Somehow, the available research tends to suggest that 

precipitation concentration and human impacts change runoff patterns significantly in 

urban environments, particularly in the case of extremely urbanized areas. Findings in one 

study related to the city of Guangzhou from 1970 to 2020 showed an increase in rainfall-

runoff by 132.9 mm during 2013-2020, with human activities contributing most Through 

the joint effects of precipitation attention and human activities. Human activities 

contributed to the rise in the runoff by 141.4 mm, and a decrease in the concentration of 

precipitation brought a reduction in the runoff by 8.5 mm. In this way, there emerges a 

94% significant contribution rate from human activity towards the changes in runoff 

compared to precipitation concentration changes of -6%. Such findings point towards the 

need to integrate both hydrologic and urban development considerations for effective 

management of urban runoff, which is crucial in reducing flood risks (Lv et al., 2023).  

2.3.3. Soil Moisture  

The hydrological condition of a watershed is the primary element influencing runoff 

(Hassan & Al-Shamma, n.d.). Soil moisture levels before rainfall have a crucial role in 

influencing the hydrological response, as they impact infiltration and runoff generation. 

In hydrologic modeling, the forecast of runoff is thus heavily dependent on the description 

of antecedent soil moisture levels (Minet et al., 2011). Soil moisture has stretched and 

been assigned a key position in the hydrologic cycle, and studies have been conducted to 

better understand its link to watershed runoff or streamflow. Texture, % organic matter, 

coarse fragments, bulk density, and structure all have an impact on how much moisture a 

soil retains. These and other soil qualities are used to classify soils, and soil scientists have 

created categorization systems based on soil physical and chemical properties, parent 

material, and climate. Because soils vary, so do their interrelationships (Henninger et al., 

n.d.).   
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2.4. Global Studies on Urban Flood Prediction Methods  

(H. Wang et al., 2021) used the theory of the Naïve Bayes (NB) in multi-factor analysis 

to estimate the depth of floods and the raised risks worldwide, seriously ruling out the 

temperature rise. By combining multi-factor analysis with the Naïve Bayes theory to 

predict the increasing urban flood depths of Zhengzhou, better disaster-predicting results 

in this paper are put forward by establishing an NB model of 11 key relevant factors in 

flood disasters, including features of rainfall and surface condition. The model was trained 

and tested with a series of historical data for rainfall and flood depth, demonstrating results 

on the performance of the model for the estimates of flood depth across different rainfall 

conditions. It is a research fact that flooding in the urban area of Zhengzhou has intensified 

after the reappearance period of two years, mainly in the older urban area. Accordingly, 

the effectiveness of the NB model in predicting the flood depth gave rise to an average 

root mean square error value of 0.062, which is essentially valid to yield altogether good 

insights under early warning systems in an attempt to reduce the adverse impact of a flood 

event on the concerned areas. This research review is based on the case study of "Urban 

Flood Risk Assessment" by (Li et al., 2023)  is published in the journal "Sustainability". 

It is a novel issue of concern concerning urban flood disasters occurring in tandem with 

rapid urbanization and changes in climatic conditions. The conducted research highlights 

the importance of access to flood disaster risk assessment, a non-engineering measure, in 

the anticipation and reduction of disasters in cities. It stipulates it as an important principle 

in management. Authors engage in the study to systematically review mechanisms of 

flood disasters including impacts from global climate change to urbanization and 

adaptation lag of municipal facilities collectively intensify the frequency and impact of 

the floods. The methodology of the study consists of an overall summary of the derived 

methods of flood risk assessment based on an analysis of the international literature for 

the past two decades. Notable in this regard is the fact that the analytic tools bring several 

methods on board in analyzing urban flood risk, including historical disaster statistics, 

multi-criteria index systems, remote sensing (coupled with GIS), scenario simulation 

evaluations, and machine learning in-depth discussions of this paper on the current 

standing of each method, to what the case helps for in foreseen urban flood risks. 
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In a comparative study, machine learning techniques have been applied to reduce 

urban damage caused by flooding and to produce a map representing flood hazards from 

minimal data in dealing with hydrological and hydraulic. The procedure was applied to 

two models of machine learning: the Genetic Algorithm Rule-Set Production (GARP) 

Model and the Quick Unbiased Ethical Statistical Tree (QUEST) Model. These models 

seek to integrate many flood-conditioning factors such as precipitation, slope, curve 

number, distance to river and channel, depth to groundwater, land use, land cover, and 

elevation in modeling flooding. The adopted salient influencing factors in the prediction 

from the experts on the interdisciplinary field through the Fuzzy Analytical Network 

Process (FANP) are assigned the weights to produce the maps of flood hazard and 

vulnerability. The model's performance was tested by incorporating a receiver-operator 

characteristic (ROC) curve and calculating the area under the ROC curve (AUC-ROC). 

The results of the model's accuracy based on the validation subset are given in Table 4. 

From the table, it can be seen that GARP performs comparatively with a better accuracy 

level than QUEST. This is crucial for this research as it will portray the real effectiveness 

of the machine learning models in flood risk mapping in places with no detailed 

hydrological and hydrodynamic data. (Darabi et al., 2007). In the study by (S. Kim et al., 

2021)  titled "High-Resolution Modeling and Prediction of Urban Floods Using WRF-

Hydro and Data Assimilation," it was stated that increased high resolution of the 

hydrological model in this framework allows influence to be made from an increment in 

the parameter. In this study, data assimilation impact on high-resolution hydrologic 

modeling and calibration of model parameters in the WRF-Hydro framework is carried 

out, refining urban flood modeling and prediction in the Dallas-Fort Worth area. It uses 

high spatiotemporal quantitative precipitation estimates (500 m and 1 min) summed up by 

the radar network, called the Collaborative Adaptive Sensing of the Atmosphere (CASA), 

a calibration approach by the name of Stepwise Line Search, and data assimilation 

provided by the fixed-lag smoothing approach. It covers three urban catchments in 

Arlington and Grand Prairie, with a total area coverage of interest totaling 144.6 km^2. 

The result of the study described indicates that the six-pointed parameters of the WRF-

Hydro model considerably increase the accuracy of hydrographs' predictions, applied 
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primarily at the increasing branches of flood events, while less accurate during the 

attenuated peaks or at the over-fast falling limbs. There is also the 250 m requirement of 

land surface model spatial resolution needed. Another study gives empirical results that 

high-resolution precipitation data and associated land cover data highly contribute to 

accuracy in flood prediction. Thus, quality initialization is put as one of the contributors 

to improvements in event-based urban flood forecasting. Through data assimilation, the 

forecast accuracy is substantially ameliorated since the initialization is with the realistic 

conditions in conducting high-resolution urban floods. This study developed an integrated 

system of flood forecasting and warning, intended to be urban-based and to fit an urban 

area that is flood-prone due to flash rainfall along a focused small-scale urban stream. It 

constitutes a mixture of short-term and very short-term forecasts of inundation using high 

technology to quantify the risks of flooding, hence accurate warning. In the short term, 

through LSTM, the data in terms of upstream depth time series feeding is done by a lead 

time of inundations at 30-90 minutes. The ultra-short-term forecast uses radar-based 

rainfall. It has a rainfall-runoff model in the integration of both inland and river dynamics 

through SWMM and HEC-RAS software. In addition, these are often implemented along 

with the models for drainage network automatic simplification, and with the calibration 

of SWMM parameters by Dynamically Dimensioned Search (DDS) algorithm and a 2D 

inundation database for betterment in the prediction accuracy. Altogether, all these work 

on water level prediction and areas with the inundation risk with lead times of 10 to 60 

minutes. PREDICT has shown better performance in the results for the forecast. The 

offering shows a remarkable difference from the existing Seoul Integrated Disaster 

Prevention System when handling critically important support to the urban flooding 

forecasting system and the warning system (Lee et al., 2020).  

2.5. Flood Modelling Studies in Somalia 

As a result, in response to this need, this study (Osman & Das, 2023) assessed flood 

risk in the Shebelle River Basin, Southern Somalia, with a focus on GIS-based flood risk 

assessments using Multi-Criteria Decision Analysis (MCDA), focusing on flood hazard 

analysis, vulnerability, and risk level computation. The approach was distinguished by the 

use of seven major causative elements for elevation, slope, drainage density, distance to 
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river, rainfall, soil, and geology in the creation of a flood hazard map. The spatial layers 

considered are as follows: land use/land cover, population density, distance to roadways, 

Global Man-made Impervious Surface (GMIS), Human Built-up Area, and Settlement 

Extent (HBASE). We used the Analytical Hierarchy Process (AHP) to assign weights to 

the data based on their respective contributions to flood risk. The study demonstrated that 

there are varying levels of flood danger and susceptibility, which led to the creation of a 

flood risk map for the basin. The graphic grouped the research region into five flood risk 

zones: very low, low, moderate, high, and very high. The flood hazard model for the 

Receiver Operating Characteristics-Area Under the Curve (ROC-AUC) was validated and 

found to have a good prediction accuracy of 0.781. As a result, the study will be critical 

not only for providing authorities with hazard, vulnerability, and risk maps but also for 

other uses and the general public to assist them in improving their flood protection 

awareness and efforts in those locations.  

(Thiemig et al., 2010)  has conducted an even more detailed study on using the 

European Flood Alert System (EFAS) for such an environment in a particular hydro-

meteorological setting: equatorial river catchments of Africa. "Being the avant-garde 

warning software, it provides a 2–10-day implicit flood forecast over the whole of Europe 

using probabilistic intensive weather conditions, along with a set of predefined criteria 

that includes the threshold exceedance and persistence. It was, however, applied in this 

study to the new frontier, the Juba–Shabelle basin shared transboundary by Somalia, 

Ethiopia, and Kenya. In principle, the continental-scale climate evolves around changing 

and somewhat progressively challenging to forecast seasonally and inter-annually. In 

addition, the current and future climate conditions have been assessed for changing and 

sometimes contradictory, hence, identifying the meteorological input needed for 

understanding the nature of the changing climatology of the study area. Endowed with 

diverse meteorological datasets, notably that of ERA-40 and CHARM for Climatological 

analysis and information; yield flood-oriented simulations information alongside the 

operational predictions from the European Centre for Medium-Range Weather Forecasts 

model for historical flood event hindcast of the LISFLOOD model. A comprehensive 

review of the performance of the system concludes that a very promising outcome is above 
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85% of flood events for both timing and magnitude. This is quite an evident result, 

emphasizing the potential related to the applicability of EFAS methodologies, accurate 

Metrologic data, and powerful hydrological modeling in African realities. This would go 

a long way in providing a reliable guideline on what to do and in the improvement of flood 

prediction capabilities for critical lead time on such disasters across the continent, for 

better preparedness and mitigation efforts. On these premises, the study is not only 

evidence but opens further research to be used in wider, non-European environments with 

the aim of adaptability on Earth.  

this paper titled "Real Time Flood Detection System Based on Machine Learning 

Algorithms" by (Saeed et al., 2021), appreciates the development of efficient and real-

time detection of floods made for regions like Somalia where the setting up of 

infrastructure for the prevention of flood disasters is technically and economically 

untenable, courtesy of machine learning algorithms. The principal objective is to introduce 

an efficient model that can detect potential floods before they occur, deploying a mixture 

of Machine Learning algorithms such as Random Forest, Naive Bayes, and J48. These 

algorithms will be used as part of the analysis of the data for water levels and predictions 

of floods with their intent toward the early warning population at ecosystem service. The 

solution proposed entails installing sensors in the rivers so that current information about 

the water levels is captured as it happens. The information thus captured is relayed for 

further processing and analysis through the required machine-learning algorithms and 

developed hardware architecture designed to use the Arduino boards for data-capturing 

systems while GSM modems are used for SMS alerting. The experimental results showed 

that the achieved accuracy in the detection of flood by the Random Forest algorithm is 

98.7%, therefore, compared with the Naïve Bayes and J48 algorithms, it shows competent 

performance. This is intended to provide a necessary cushion period for important times 

associated with the evacuation and the taking of measures for prevention. The paper comes 

up with a unique take on a low-to-no-cost solution that comes in the form of a very 

different machine learning Methodology for Flood Detection and Forecasting without 

high-class infrastructure, which may even be exemplary of the scope of Machine Learning 

Algorithms in forecasting natural disasters. 
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2.6. Predictive Modelling of Urban Runoff 

In this section previous studies related to the predictive modeling of urban runoff using 

the respective approaches to artificial neural network (ANN) and ordinary least square 

(OLS) regression are discussed, allowing for predictive considerations to be summarized 

through a holistic viewpoint on the understanding and forecasting of urban area runoff 

dynamics. Models are based on different methodologies of interpretation of the 

computational runoff patterns analyzed to give helpful information for urban planning and 

water management. 

2.6.1. Artificial Neural Network  

Hydrological simulations commonly use three modeling systems: distributed 

physically based models, lumped conceptual models, and empirical black box models. 

The latter two groups encompass a wide range of physical phenomena with a focus on 

understanding hydrological processes. Because the rainfall-runoff process is so complex, 

these physical process simulations and model calibrations necessitate a large amount of 

hydrological data. Numerous black-box models, including support vector machines, fuzzy 

theory, artificial neural networks, chaos, genetic programming, and others, have been 

developed and applied to hydrological forecasting. An artificial neural network is a 

flexible structure with self-learning and self-adaptive properties that was inspired by 

research into biological brain networks. In 2000, the American Society of Civil 

Engineering (ASCE) Task Committee investigated the use of artificial neural networks in 

hydrology. According to Hsu et al., even though the model's parameters and structure do 

not correlate to the physical processes that occur in catchments, the artificial neural 

network (ANN) model may recognize the complex nonlinear relationship between runoff 

and rainfall time series (Y. Wang et al., 2015). Over the last two decades, Artificial Neural 

Networks (ANNs) have evolved into powerful computer systems capable of handling 

exceedingly complex and nonlinear systems. Artificial neural networks (ANN) are a rapid 

and versatile solution to time series modeling. Because of their parallel structure, these 

models can deal with system nonlinearity to some extent. For instance, several such 

researches have found the ANN models underperform compared to the traditional models. 

Feed-forward ANNs versus a conceptual and linear model by Gaume and Gosset. They 
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found both the linear and ANN models perform poorly compared to their conceptual 

model. Other research shows just how well ANN models can be used to predict future 

run-offs accurately. After comparing ANN with Box & Jenkins techniques, it has been 

found by (48_233, n.d.) that ANN gave good results for prediction compared to Box & 

Jenkins model. In a tiny watershed in Tono, Japan, (Sohail et al., 2008) compared ANN 

to MARMA (multivariate autoregressive moving average models) models during the wet 

and dry seasons. They concluded that when the R-R process's nonlinearity is higher during 

wet seasons, ANN models function better. It is evident from the discussion that before 

ANN models performed better than traditional models (Ghumman et al., 2011).   

Artificial Neural Networks (ANNs) are widely accepted due to their capacity to solve 

complicated issues. They are composed of interconnected neurons that work together to 

solve problems in disciplines like as control, pattern recognition, forecasting, and 

optimization. One type is the feedforward neural network, which uses backpropagation 

for training. This design consists of interconnected layers of neurons, with data flowing 

unidirectionally from input to hidden to output. The backpropagation algorithm reduces 

errors by changing the weights of neurons during training. As data goes through the hidden 

layers, each neuron uses an activation function to generate output for the following layer, 

culminating in the output layer. During the training process, network weights are updated 

based on the error gradient associated with them. Backpropagation propagates errors 

backward across the network by computing gradients for each connection and changing 

weights in the opposite direction of the gradient. This repetitive method gradually reduces 

the mistake. Feedforward neural networks using backpropagation have proven effective 

in a variety of applications (Kassem & Hussein, n.d.).  
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2.6.2 Ordinary Least Square  

Regression analysis allows you to model, examine, and research spatial relationships 

to better understand the factors that drive visible spatial patterns and predict outcomes 

based on that understanding. Ordinary Least Squares (OLS) is a global regression method. 

The Spatial Statistics Tool includes a method called spatial regression, which allows the 

relationships you're modeling to vary across the research area. Ordinary least squares 

(OLS) have been used as effective modeling approaches for understanding how runoff 

affects metropolitan situations. Several studies have utilized OLS to estimate runoff at 

various time scales around the world. "Surface Runoff Responses to Suburban Growth: 

An Integration of Remote Sensing, GIS, and Curve Number" (Jahan et al., 2021a) as well 

as "A GIS-Based Approach for Determining Potential Runoff Coefficient and Runoff 

Depth for the Indian River Lagoon, Florida, USA" (Bellamy and Cho, no date). "The use 

of geographically weighted regression models to predict spatial characteristics of nitrate 

contamination: Implications for an effective groundwater management strategy" (Koh et 

al., 2020), while surface runoff response to sprawling can be evaluated using remote 

sensing, GIS, and curve numbers (Jahan et al., 2021b). Remote sensing gives rich data for 

hydrological investigations. OLS regression was used to investigate the correlation 

between precipitation, land use, geology, and potential site locations (Fu et al., 2022). The 

link between yield and precipitation was investigated with OLS regression and GWR. The 

OLS regression model was thought to apply to the entire research region because of the 

geographical stability of the variables (Sharma et al., 2011). Different relationships would 

be useful in achieving a first step towards a useful assessment of yield variation on a 

regional scale. This starts with how different variables such as soil moisture, the pattern 

in precipitation, and temperature changes, From a systematic perspective, mineral 

researchers such as the Desert Regional Global Risk Assessment Model of urban flood. 

Examining historical occurrences and their correlation with explanatory variables might 

help better understand the incidence of pluvial floods in a specific city. While disaster 

databases exist on global, national, and regional sizes, few provide high spatial resolution 

for urban pluvial floods (C. Wang et al., 2017).  
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Ordinary Least Squares (OLS) regression applies a statistical methodology in ArcGIS, 

where geographical relationships between variables in a dataset are analyzed. The tool 

within the Spatial Statistics toolbox is particularly useful for exploring how one or more 

independent variables vary according to a dependent variable across space. The results for 

the values of  R squared and root mean square errors in general for OLS analysis and 

geostatistical analysis are derived from ArcGIS. That is, these findings contribute to the 

means of evaluating the strength and relevance of connections so that researchers and 

analysts have a better understanding of the spatial distribution of phenomena. Utilizing 

ArcGIS in this context in spatial analysis is considered an effective tool since it helps to 

explore and communicate spatial patterns and relationships that OLS regression produces 

maps of, consequently enabling visualization of the results. 

2.7. Relationship between urban flooding and runoff 

Urban development significantly increases surface runoff, both in terms of impervious 

surfaces and total runoff volume flowing to the receiving watershed. Furthermore, the 

development of storm sewer systems and river culverts throughout the urbanization 

process contributes to increased runoff. The peak velocity of runoff unavoidably rises 

when more runoff is released at shorter intervals, increasing the risk of overflow. 

Urbanization, combined with the concentration of population and property in the 

watershed, often increases flood potential (Kawamura et al., 2023).  

Floods are one of the most devastating natural calamities, with the potential to destroy 

everything, including buildings, residences, cars, bridges, animals, flora, and even people. 

Floods are the most common sort of disaster, and their frequency is growing as urban 

runoff increases. Floods are split into two types: rainy season and flash floods. These 

categories are determined by the location of geography and topography. As a result, flood 

episodes vary in duration and month between countries. For example, the Malaysia 

Meteorological Service (MMS) reports that the largest risk of flooding occurs between 

November and February, coinciding with the Northeast monsoon season. The rainy season 

in Thailand typically lasts from May to October, followed by the dry season from 

November to April. This is also known as the tropical savannah climate (Jaafar et al., 

2016). More than half of the world's population now lives in cities, and over 500 cities 
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have more than one million residents. This increase causes urban sprawl, with the surface 

of metropolitan areas expanding fast. Urbanization has a significant impact on watershed 

hydrology, resulting in higher runoff rates and volumes, as well as loss of infiltration and 

baseflow. The construction of impervious surfaces, as well as the simplification of the 

drainage network, result in a considerably faster runoff response to rainfall, resulting in 

shorter concentration and recession times (Fletcher et al., 2013).  Current and future flood 

risks are rising due to climate and land use change, with peak runoff flows estimated to 

increase at a rate of over 5% per decade and 10% of new homes being built in areas of 

significant flood risk (Quinn et al., 2022).  

 

Figure 2 

 Schematic Representation of the Flooding Process in an Urban Area, Source: (Tom et 

al., 2022). 

 

 

 

Figure 2.6: Highlights comparison of two different conflict cases with two 

different scenarios of the flood inundation models during heavy precipitation situations, 

runoff, and urban flooding. In a "Flood Inundation Model," an area receives an excess 

overland flow as a result of the heavy rainfall, thus flooding part of the area. This diagram 
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presents activities after the occurrence of heavy rainfall in Area A. According to the 

diagram, one thing depicted is that Area A gets flooded after a heavy rainfall event occurs. 

On the other hand, Area C remains safe as a result of a blocking effect towards C that is 

caused by Area B. On the right, there is a "Real Dynamical Process" showing the complex 

massive situation: heavy rainfall leads to flooding in Area A, but it also affects Area C. In 

such cases, domination in the accumulation of surface runoffs coming from Areas B and 

D also contributes to the volumes responsible for the flooding in Area C. This implied that 

the water from floods overland moved and was collected from various areas in the real 

dynamics of the world as opposed to bursting from a river channel emptying banks.  

One of the prominent effects of climate change is the disruption of rainfall patterns. The 

changing rainfall patterns directly affect urban runoff and flooding. In areas with frequent 

and heavy rainfall, urban drainage systems can become flooded due to the increased 

volume of runoff.  Generally, urban areas with impervious surfaces obstruct natural water 

infiltration. Rainwater flows over surfaces, collecting pollutants and entering stormwater 

drains, causing urban runoff. Furthermore, the combination of intensified rainfall and 

urban runoff increases the risk of flooding in urban areas. Hence, predicting and modeling 

urban runoff is essential for informed decision-making, flood preparedness, pollution 

control, and sustainable urban development (Kassem & Hussein, n.d.).  

2.8. Relationship between Urban Flooding and Land Use  

According to the study by (Alexakis et al., 2014), any telling relation of change in land 

use, particularly towards urbanization, is associated with urban flooding in the Yialias 

basin in Cyprus. That is to note that changes in terms of urban sprawl and land use 

alteration have to bear the blame for the cited phenomenon. In this study, GIS and remote 

sensing techniques are used to evaluate the hydrologic impacts of land use change at a 

multi-temporal scale and build a calibrated hydrological model to understand the internal 

dynamics in the basin and the consequences that such dynamics pose on hazardous flood 

risk. The results showed a striking rise in the runoff from urban sprawl that has been so 

evident for the last ten years, showing an evident close link between the rise in built-up 

size, the decrease in surfaces that can allow infiltration, and the consequential rise in flood 

risks. Moreover, the analysis appropriate Cellular Automata (CA)-Markov Chain analysis 
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for the prediction of future change in land use and land cover and their likely hydro-

ecological impacts status based on the critical sustainable need for land usage management 

and integrated urban planning in reducing the adverse hydro-ecological impacts and 

vulnerability of urban areas against flooding. The relationship between land use and urban 

flood was understood with geographic information systems (GIS) tools and analysis of the 

Zăbala catchment in Romania on a temporal scale between 1989 and 2019. Summing up 

so much exciting complexity in land use/land cover change dynamics and its significant 

effects on potential flash floods was done. This relation is crucial in the setting of human 

alterations to a natural landscape, such as vegetative covers, flash floods, and examples of 

urban flooding. The study used Landsat imagery to derive land covers of 1989 and 2019, 

where seven land-use/land-cover classes were identified using supervised classification. 

Land use/land cover change potentials in 2019 were seen to have raised surface runoff 

classes and the potential for flash floods, covering close to 46% of the study area, 

compared to their classification of about 34% in 1989. Flash flood potential had also 

increased remarkably because of land use/land cover changes. Geographical Weighted 

Regression (GWR) was applied to land use/land cover change indicators with the relative 

evolution of the flash flood potential index. The high values of the Pearson coefficient 

were close to 17.4% out of the study area, hence giving high correlations on the land 

use/land cover changes over the flash flood potential changes in those areas. This would 

make this study, therefore, feasible in the application of GIS, Remote Sensing, and 

Machine Learning in determining the strong correlation between change in land use/land 

cover and flash flood potential. It is the enhanced flash flood potential from 1989 to 2019, 

when further establishing a human footprint on the natural topography, that insists on the 

importance of land use and management strategies in mitigating flash flood risk (Costache 

et al., 2020).  
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 Figure 3   

Distribution of Land Use on the Flood plain, Source: (Santato & Bender, n.d.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A design for graded planning restrictions based on flood risk is shown in Figure 2.7, 

suggesting different land uses by the level of flood hazard. Hospitals and evacuation 

facilities should be located in areas free of flood danger. The figure indicates that standard 

single-story homes for low risk, flood-resistant single-story homes for moderate risk, and 

flood-resistant two-story, high-rise residential buildings, industrial, and commercial 

structures for high risk are the recommended uses as the flood risk increases to low, 

moderate, and high.  

2.9.  Impervious Surfaces of Urban Runoff 

The term "impervious surface" refers to a surface that keeps water from seeping 

through to the soil beneath it. The most crucial indicator of how urbanization is affecting 

the aquatic environment is imperviousness. Because of the way urban expansion has 

affected habitat health, impermeable surfaces have emerged as a major issue for growth 

management and watershed planning. Water quality is decreased by impervious surfaces 
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because they increase the frequency and intensity of downstream discharge. The number 

of highways, parking lots, rooftops, and other impermeable surfaces has increased along 

with urbanization, while the quantity of wetlands, forests, and other open spaces that 

naturally absorb and cleanse stormwater has decreased. The impervious-pervious surface 

balance has changed, leading to significant alterations in the quantity and quality of 

stormwater runoff, which has negatively impacted stream and watershed systems. When 

more than 10% of the watershed is impermeable, stream quality starts to decline 

(Harindranathan Nair, n.d.). Impermeable surfaces are a major environmental concern 

since urban runoff from parking lots, rooftops, and roads is mostly responsible for 

polluting metropolitan rivers (Ebrahimian et al., 2016). Only a small amount of 

stormwater can be infiltrated, evaporated, detained, or retained by vegetation on 

impervious surfaces like roofs, asphalt roads, and concrete. This results in high-volume 

runoff episodes, problems with the hydraulic efficiency of older sewer systems, and direct 

discharge to a downstream recipient. The characteristics of urban surfaces, human activity, 

and natural processes within each watershed all have an impact on the chemical properties 

of stormwater. In a typical metropolitan setting, the impermeable areas usually make up 

60–100% of the total area (Jartun et al., 2008). In urban environments, impermeable 

surfaces have a major influence on the relationship between rainfall and runoff. During 

storms, urban imperviousness raises peak discharges, runoff volumes, and runoff episode 

frequency. Negative effects on stream health and water quality have been repeatedly 

demonstrated by research. There are two categories for impermeable surfaces: linked and 

unconnected. Any surface that has a direct connection to the drainage system is considered 

a directly connected impervious area (DCIA). Rooftop areas that drain into landscaping 

are examples of unconnected impervious areas (UIAs), which are regions that drain into 

pervious surfaces. Because UIA runoff may spread over pervious surfaces and penetrate 

before reaching the drainage system, this distinction is critical during small storms 

(Schoener, 2018).  
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2.10. Challenges for Predicting Urban Runoff 

Rapid urbanization in many nations has increased impermeable surfaces, increasing 

the risk of flooding and stormwater runoff accumulation. Stormwater runoff contains 

pollutants and contributes to low water quality in many natural bodies. Reducing urban 

stormwater runoff contamination is thus a major concern. The government, particularly in 

China, has implemented a series of initiatives to reduce stormwater runoff and related 

pollutants, such as the introduction of natural reservoirs and sponge cities based on the 

nation's low-impact development (LID) policies (Zhang et al., 2018). Urban hydrology 

will become more crucial to maintaining the sustainability of human society. Urban 

population growth is outpacing the decline in water sources, or at best, the decline in 

quantity but a decline in quality of the sources of water supply. The physical 

characteristics of land undergo significant changes due to the expansion of urban centers. 

Soil permeability and infiltration decrease when the amount of paved surfaces grows, yet 

surface runoff rises. Strong peak flows and quick runoff are produced by natural stream 

channeling. For the entire river basin downstream of the city, such modifications to the 

natural regime of a relatively small area of the city have significant and usually disastrous 

effects (Niemczynowicz, n.d.). Identifying explanatory variables (predictors) that affect 

the flood (predictand) and getting previous data on both the predictand and predictors are 

necessary steps in developing an effective flood prediction model (current science 

Challenges in Predicting Floods, n.d.). The world's scientific community and the public 

are becoming increasingly concerned about the growing risks of urban rainstorms and 

floods brought on by rapid urbanization and climate change, as well as the resulting 

socioeconomic losses. In addition to being a major issue for sustainable urban growth, 

assessing and controlling the risks associated with urban flood disasters is an essential part 

of urban stormwater management. Many solutions have been proposed to solve the 

different issues of urban water management, including best management practices 

(BMPs), low-impact development (LID), green infrastructures (GIs), water-sensitive 

urban design (WSUD), and resilient cities (Yang et al., n.d.).  
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CHAPTER III 

Methodology 

3.1. Introduction  

In this chapter, the methodological framework is marked to promote the study of 

urban runoff and its intricate relationships with meteorological parameters that encompass 

soil moisture, temperature, and rainfall within the periphery of Mogadishu, Somalia. Since 

one of the objectives of the study is to establish the impacts of selected factors on urban 

runoff discharges accurately in an environment where the estimation of such parameters 

is very uncertain, it emphasizes the importance of identifying and examining significant 

influencing variables using both Ordinary Least Squares (OLS) regression and Artificial 

Neural Networks (ANN). The approach of the methodology is based on a duel approach 

based on Ordinary Least Squares (OLS)) and Artificial Neural Networks (ANN)). The 

methodology applied in this study develops a hybrid framework rooted in both approaches 

to minimize their weaknesses while leveraging their inherent strength for improved 

accuracy and reliability of urban runoff predictions. The study area, Mogadishu, Somalia, 

is presented as a challenge and opportunity due to the global changing climate patterns 

leading to urbanization. 

The analysis is based on the most complete data set available, covering the period 

between 1985 and 2022; it comes from global meteorological reanalysis. This study 

contains a lot of essential variables: maximum and minimum temperatures, precipitation, 

and soil moisture. This chapter includes data preparation, their standardization, and 

methods used for its analysis. It sets the framework in which OLS and ANN models are 

applied. The OLS regression part of the study puts measurements to the relationships 

between urban runoff and a selection of meteorological parameters. This chapter outlines 

variable selection, methodologies used in model construction, and the interpretation of the 

coefficients, p-values, and R-squared of the model. The potential of OLS to capture linear 

relationships is like a foundation capable of precipitating further insight into urban runoff 

dynamics.  ANN has more focus on developing computational architectures that capture 

nonlinear patterns and relationships between the derived random variables. This part 

outlines the architecture that would be used in this neural network, i.e., the number of 
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hidden layers, neurons and others like the type of activation functions to be used. Further 

discussed here are the training, validation, and testing phases regarding the model 

prediction performance and related implications in urban runoff management. The OLS 

and ANN models are compared against each other by their respective performance-

evaluating statistical indices, such as R^2, RMSE, and MAE, among others. The 

validation presented not only the predicting capabilities of each model but, on top of that, 

elucidated certain attributes and limitations of each model regarding urban runoff 

anticipation. Accordingly, the methodology chapter of this dissertation has been 

concluded with a reflective commentary on the methodological contribution of this study 

toward urban hydrology and environmental management. It further underscores these 

efforts of integrating conventional statistical methodologies with advanced computational 

models as very crucial for better understanding and prediction of urban runoff given 

valuable urban planning and sustainable development pursuits. 

3.2. Study Area  

The capital town of Somalia, Mogadishu, with coordinates of Latitude 2.0469° N and 

Longitude 45.3182° E, is a throbbing urban town along the Indian Ocean. Mogadishu 

happens to be Somalia's largest city based on population and is viewed as an economic, 

cultural, and political hub for the country. This city experiences a hot semi-arid climatic 

condition marked by two seasons, known as the dry seasons and wet seasons. That season 

variability, coupled with the geographic positioning of the city, becomes one of the players 

in the urban water management challenges—in recognition of urban hydrological changes 

from different drivers, especially in components on the most critical runoff and flood risks. 

Over the last few decades, Mogadishu city has been experiencing rapid urbanization that 

has come with great changes in land use and the construction of greater proportions of 

impervious surfaces such as roads and buildings. In enhancing economic growth, this kind 

of urban expansion has stressed existing infrastructural systems, in particular those 

handling drainage systems. The rapid population increase and migration have outpaced 

the proper development or implementation of water management systems and flood 

mitigation, hence increasing the risk of flooding within the cities. Mogadishu faces a 

variety of environmental problems and is rampant with urbanization patterns, climatic 
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conditions, and inadequacies in infrastructures. The city often becomes inundated with 

floodwater problems, particularly during the rainy seasons where the incidence of the 

drainage systems get overwhelmed and the infiltration capacity of the ground becomes 

inefficient. Thus, the respective condition gets further aggravated by its coastal location 

which is susceptible not only to sea-level rise but also storm surges, thereby complicating 

further urban runoff management for the city. Besides the quantity aspect, the urban runoff 

in Mogadishu further touches on the quality aspect. During stormwater events, urban 

runoff is known to transport pollutants from the streets, residential areas, and industrial 

sites into receiving water bodies. Such pollution leads not only to the deteriorated integrity 

of the ecosystem but also to the general health of the public population residing around 

such localities. Such environmental issues are only possible through complex reasoning 

that incorporates the sophisticated relation between climate change dynamics, 

urbanization factors, and indeed general water management paradigms.  

 

Figure 4  

Study Area, Source: ArcGIS Desktop 10.7.1 
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Urban runoff study in Mogadishu is crucial for several reasons. First, through it, an 

understanding of how urbanization coupled with climate variability affects the water 

management systems. Mogadishu presents a strong case for understanding some of the 

multi-dimensional problems related to urban runoff, their effects, and causes against the 

backdrop of an increasingly changing climate and rapid urbanization. The work in this 

area is therefore highly informative and provides a basis for building sustainable solutions 

to water management challenges facing Mogadishu and other urban centers within the 

region and beyond. 

3.3.  Dataset  

The dataset applied in the investigation of urban runoff in Mogadishu, Somalia, is very 

crucial to understanding the complex interrelationship that exists between urban runoff 

and meteorological variables, such as soil moisture, temperature, and rainfall. In 

particular, this section is aimed at emphasizing the composition, source, and importance 

of the used dataset against the background of applying Ordinary Least Squares (OLS) 

regression and Artificial Neural Networks (ANN) techniques in predictive analytics. This 

data is a wide scope of meteorological data from around the globe, starting from 1985 up 

to 2022. This set was collected over several years with the objective of this entire thing 

being to study several environmental factors which are capable of influencing urban 

runoff, giving a comprehensive set of metrics for analysis. Taken from the Terra Climate 

database and characterized by high spatial resolution (approximately 1/24 or ~4 km), the 

dataset delivers one of the most detailed and accurate representations of climatic 

conditions in Mogadishu. For an OLS regression, the dataset formed the basis to explore 

linear associations among meteorological parameters with urban runoff. From this data, 

the study adopted quantitative analysis of these variables to identify the significant 

predictors for runoff, thereby enabling the formulation of models that predict runoff 

volumes based on changes in climatic conditions. The detailed statistical analysis, 

supported with coefficients, p-values, and R-squared values derived from the data, further 

underlines the significance of certain meteorological parameters to have essential 
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characteristics in the shaping of urban runoff characteristics in Mogadishu. Descriptive 

statistics for the collected data are summarized in Table 3.3.1 

 

Table 1 

Specific Details of each Variable in the Study 

 

Variable Units Mean Standard deviation Minimum Maximum 

Tmax °C 30.72 0.145 30.46 30.97 

Tmin °C 23.33 0.093 22.99 23.46 

R mm 33425.9 1421.6 31190.2 37423.7 

SM mm 11.99 0.993 10.22 14.66 

RO mm 2420.2 282.65 1984.1 3274.9 

 

 

 in the case of ANN modeling, the same dataset is put through a different type of 

analysis—interested in the actual interactions of the variables. Paradoxically, nowadays, 

urban runoff can be best forecasted with greater precision and nuance in ANNs developed 

with deeper datasets and allowing for the training of computational models. The ability of 

an ANN to handle complex multidimensional data facilitates a more comprehensive 

analysis, explanation of the intricate dynamics associated with urban runoff situations, and 

presentation of an insight into how many factors jointly influence runoff behavior. 

Descriptive statistics of all the gathered data are provided in Table 3.3.2.  
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Table 2 

 Descriptive statistics of all variables 

 

Variable Units Mean Standard deviation Minimum Maximum 

Tmax °C 30.51 1.36 27.00 34.40 

Tmin °C 23.45 0.95 20.00 27.20 

R mm 40.37 50.90 0.00 327.00 

SM mm 10.22 13.70 1.30 78.40 

RO mm 2.66 8.76 0.00 163.00 

 

 

The importance of this dataset lies in its detailed representation of a large number of 

climatic variables over long durations, which provides a solid foundation to carry out 

studies on both statistical and computational analyses.  Of these detailed metrics of the 

variables present in this dataset for the OLS regression, it gives strong ground on linear 

correlations and  ANN modeling, it is made comprehensive enough to allow one to attempt 

investigating intricate patterns beyond the realms of conventional statistical methods.  the 

dataset utilization in employing both OLS and ANN methodologies brings a holistic 

approach to understanding and prediction of urban runoff. This dual-method approach 

further strengthens the study's ability to develop effective prediction models that will 

contribute to making informed choices during urban planning and actual water 

management practices in Mogadishu. 

Mainly, Tmax (maximum temperature), Tmin (minimum temperature), and moisture 

in the soil were considered the main inputs that would be included in the study. The choice 

of these parameters is owing to the direct effect on the hydrological features which 

changes the flow of water over the land surface and at the point of its distribution. In 

elements of urban runoff phenomena understanding and forecasting, they are very critical. 

This will affect the rate of evaporation through the minimum and maximum temperatures, 
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and, in total, the potential of the soil to absorb submitted water. This relationship between 

the temperature of the day and evaporation rates may lead the soil moisture levels that are 

vital to the capacity of a certain soil to absorb water to change and create a runoff. More 

appropriately, soil moisture is a vital factor since it points out the area at which further 

rainfall will create runoff and flooding in terms of its urbanization. Through the analysis 

of global meteorological data spanning from 1985 to 2022. While the wind speeds and 

average temperatures were not considered as primary input parameters of the modeling, 

because the study aimed to focus on factors that had more proximate and significant 

impacts on urban runoff. Most notably, the exclusion of parameters such as mean 

temperature and wind speed from the input in modeling urban floods for Mogadishu, 

Somalia, can be attributed to the specific relevance and direct impact experienced from 

the chosen variables on runoff dynamics. Indeed, this study has considered Tmax and 

Tmin peculiar in nature towards influencing the increased rate of evaporation and low soil 

moisture, among other reasons for understanding runoff. Maximum and minimum 

temperatures directly influence the soil's capacity to absorb and retain water, thus affecting 

potential runoff in rainfall. Soil moisture was selected as the saturation can be determined 

directly for the volume of the runoff. Wind speed, of course, has to do with evaporation, 

but this aspect is unlikely to have been considered as having such a high impact on the 

immediate processes that result in urban runoff and flooding as the chosen variables. This, 

therefore, would be a consideration of parameters that have a direct and substantial 

influence on the hydrological processes that define urban flooding, to ensure an increased 

prediction performance of the model in managing such a source of flood risk. 

3.4. Methodological framework 

The methodological framework of this research is such that a combination of statistical 

and computational modeling techniques gives a holistic insight into understanding and 

estimating the dynamics of urban runoff. These statistical and computational techniques 

are applied in this framework to understand or estimate this complex interplay of 

processes as it bears relation to human activities, urbanization, climate change, and other 

hydrologic occurrence. This is done in this study through the use of Ordinary Least 
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Squares (OLS) regression and Artificial Neural Networks (ANN) as the main analytical 

tools. 

 

Figure 5 

 The Study Outline 

 

 

3.4.1. Ordinary least square (OLS) 

The OLS regression is used to discover and quantify dependencies in a linear relation 

between meteorological variables and urban runoff. The statistical technique offers a clear 

understanding of the degree of impact that single factors have on volumes of runoff, such 

as rainfall and soil moisture, leading to the discovery of major predictors. Coefficients 

produced by the OLS model, root mean square error, and R-squared values are 
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summarized here, giving an impression of the strength and significance of these 

relationships, and helping in the deriving of models that will predict urban runoff.  

 

Figure 6 

 Parts of Regression Analysis (OLS), Source ( 48_233. (n.d.)).  

 

 

 

This is the multiple linear regression model, a statistical technique that predicts the 

value of a dependent variable (Y) based on the values of one or more independent or 

explanatory variables (X1, X2,... Xn). In the equation above, Y is the predicted value or 

outcome, β0 is the intercept (i.e., if all X variables take the value of zero, this will be the 

predicted value of Y), β1 to βn are coefficients representing the contribution delivered by 

corresponding explanatory variables to the dependent variable, and ε stands for random 

error term or residuals that capture variation in Y that cannot be explained by the 

independent variables. The model assumes a linear relationship between the dependent 

variable and the independent variables, which means that each coefficient of the 

independent variable reflects the change in the dependent variable caused by a one-unit 

change in the respective independent variable, assuming all other independent variables 

remain constant.  
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3.4.2. Artificial Neural Network(ANN) 

 Artificial neural networks are made up of artificial neurons known as units. These 

units are grouped into layers, which together make up the full Artificial Neural Network 

in a system. A layer can contain a dozen or millions of units, depending on how complex 

neural networks are required to comprehend the dataset's underlying patterns. An 

Artificial Neural Network normally consists of an input layer, an output layer, and the so-

called hidden layers that lie in between. The input layer receives the inputs from the 

environment, which the neural network is supposed to interpret or learn. These are then 

passed through one or more hidden layers to be converted into useful data for the output 

layer. Finally, the output layer generates a response from an Artificial Neural Network to 

the input data. The overwhelming majority of neural networks interconnect units from one 

layer to the next. Each of these links has a weight, which relates to how much one unit 

influences another. The data is passed through these series of units where the neural 

network learns more about the data until it presents an output from the output layer. The 

process through which this computation is done is the training of the neural network in 

the recognition and modeling of the complex dynamics of urban runoff about the input 

variables. ANN is pretty adept in capturing the multifaceted character of urban runoff, so 

it exhibits such qualities as flexibility and learning capability and hence makes it possible 

to predict the volume of runoff for different climatic scenarios. 

Figure 7  

Architecture of Artificial Neural Network, Source (Tech Vidvan).  
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The above figure provides a simplified diagram of the architecture for an Artificial 

Neural Network (ANN). It mainly constitutes the input layer, hidden layer(s), and output 

layer. Every layer comprises nodes represented in a circular form, each of which is similar 

to some real biological brain neuron. The input layer receives the data to be subjected to 

processing via the hidden layers, through which real computation on weighted connections 

(drawn as lines between nodes) is performed. These weights are then fine-tuned over 

epochs of training to minimize the errors in generalization. The output layer at the end 

activates and shows the result or prediction of the neural network. This type of network 

forms the backbone of deep learning and can be applied to all sorts of tasks, from the 

simplest to more complicated functions, depending on the complexity and depth of a given 

network. 

 

3.5.  Model Development and Evaluation 

Generally, in model development, the process starts by picking up important 

meteorological variables that influence urban runoff, such as maximum and minimum 

temperatures (Tmax and Tmin), rainfall (R), soil moisture (SM), etc. The above dataset 

helps to relate these factors with runoff (RO) in linear functions so influential predictors 

are established through statistical analysis. The model is simple and clear in revealing the 

contribution of each factor to runoff; hence, it is valuable in analysis and prediction. 

3.5.1. Ordinary least square (OLS) 

A full range of fifteen Ordinary Least Squares (OLS) regression models was 

developed for this study, using a distinct set of input parameters as specified in Table 

3.4.1. The models were then logically grouped concerning the number of input covariates 

each contained. In particular, Models 1- 4 contained only a single predictor each and could 

thus be used to consider in isolation the effect of individual variables. Models 5-10 

developed this structure further by the inclusion of pairs of predictors, through which it is 

possible to scrutinize the interaction between the two variables. Models 11-14 developed 

this further to include three covariates and hence give a view of the dynamics of more than 

the interaction of two variables and the joint effect on the response variable. Finally, 

Model 15 aimed to bring out the most complex scenario in the sense of accommodating 
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four different predictors while synthesizing a holistic view of the interplay among the 

maximum number of studied variables. The predictors selected across all models were 

maximum temperature (Tmax), minimum temperature (Tmin), rainfall (R), and soil 

moisture (SM), to predict the target variable of monthly runoff (RO). This organized 

approach facilitated a clear understanding of the influence of each variable acting alone 

and also provided good information on how variables interact with one another to affect 

the runoff in diverse climatic and environmental conditions. 

 

Table 3  

OLS Models of Different Input Variables.  

 

Modal Input Modal Input Modal Input 

OLS#1 Tmax OLS#6 Tmax R OLS#11 Tmax Tmin R 

OLS#2 Tmin OLS#7 Tmax SM OLS#12 Tmax Tmin SM 

OLS#3 R OLS#8 Tmin R OLS#13 Tmax R SM 

OLS#4 SM OLS#9 Tmin SM OLS#14 Tmin R SM 

OLS#5 Tmax Tmin OLS#10 R SM OLS#15 Tmax Tmin R SM 

 

 

The general regression methodology, based on the ordinary least squares (OLS) approach, 

makes it possible to obtain a quantification of the relation between the factors to be 

explained (Tmax, Tmin, R, and SM) with the independent variables (RO). In fact, 

according to the definition provided by ArcGIS Desktop 10.7.1 Help, the ordinary least 

squares (OLS) is regarded as a prediction or modeling process considering the correlation 

between one dependent variable and several explanatory variables. 

3.5.2. Artificial Neural Network 

In the current study, fifteen distinct ANN models were created for diverse combinations 

of input variables. The details of these ANN models are shown in Table 4. Model #1 only 
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used one input, whereas Model #15 trained the ANN with four inputs. The independent 

variables that represented the input data were maximum temperature (Tmax), minimum 

temperature (Tmin), rainfall (R), and soil moisture (SM). These sets of inputs have been 

designed to work together to teach ANN, with the predicted variable being monthly runoff 

(RO) data.  

Table 4  

ANN Models of Different Input Variables 

 

Modal Input Modal Input Modal Input 

ANN#1 Tmax ANN#6 Tmax R ANN#11 Tmax Tmin R 

ANN#2 Tmin ANN#7 Tmax SM ANN#12 Tmax Tmin SM 

ANN#3 R ANN#8 Tmin R ANN#13 Tmax R SM 

ANN#4 SM ANN#9 Tmin SM ANN#14 Tmin R SM 

ANN#5 Tmax Tmin ANN#10 R SM ANN#15 Tmax Tmin R SM 

 

 

In the model performance analysis, 70% of the dataset was used for training, and the 

remaining 30% was used for testing the trained networks. Out of the fifteen ANN models 

developed one that yielded a good performance was selected using statistical techniques. 

The purpose was to find out which ANNs of the created models result in more precise 

monthly runoff estimates based on the input variables chosen. 

3.6.  Statistical Analysis  

This comprehensive work of urban runoff in the geographic location of Mogadishu, 

Somalia, has deep connotations for showing how the flow of urban water is tightly linked 

to several meteorological variables: temperature, precipitation, and soil moisture content. 

The behavior of urban runoff was also looked at through statistical analysis, which is 

central for the complete understanding of the numerous relationships given one behavior 

of urban runoff. Through the application of advanced analytics, this research aims to 
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unravel the underlying meteorological influences related to urban runoff. This therefore 

gives a thrust toward the accuracy of prediction models in urban water management. 

3.6.1. Ordinary Least Square  

Ordinary Least Squares (OLS) regression applies a statistical methodology in ArcGIS, 

where geographical relationships between variables in a dataset are analyzed. The tool 

within the Spatial Statistics toolbox is particularly useful for exploring how one or more 

independent variables vary according to a dependent variable across space. The results for 

the values of  R squared and root mean square errors in general for OLS analysis and 

geostatistical analysis are derived from ArcGIS. That is, these findings contribute to the 

means of evaluating the strength and relevance of connections so that researchers and 

analysts have a better understanding of the spatial distribution of phenomena. Utilizing 

ArcGIS in this context in spatial analysis is considered an effective tool since it helps to 

explore and communicate spatial patterns and relationships that OLS regression produces 

maps of, consequently enabling visualization of the results. In this regard, an evaluation 

of such models will involve a keen check on their performance with the use of various 

indicators in statistics such as Coefficient of Determination (R2) (as per Table 5), and root 

mean square error. Our work uses mathematical representations, so it will support 

assessing the help of these criteria in finding a quantitative basis for accuracy and 

reliability in the models.  

Table 5 

  R2-Based Model Performance Rating 

 

 

  Performance Rating    Range of 𝑹𝟐 

 

Excellent >70% 

Good 50% < 𝑅2 < 70% 

Poor 0%  < 𝑅2 < 50% 
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In geostatistical analysis, "interpolating" and "non-interpolating" techniques or 

"interpolators" and "non-interpolators" are two terms used to differentiate between the 

multiple spatial interpolation techniques established in different disciplines. This work 

covers a single spatial interpolation technique, which is kriging, more especially ordinary 

kriging. The spatial patterns and the values of the main variable at unsampled sites are 

described and the uncertainty or error of the estimated surface is modeled using 

geostatistical methods. Kriging, also known as Gaussian process regression, is an 

interpolation technique first used in geostatistics. To maximize the smoothness of the 

fitted values, the interpolated values are represented by a Gaussian process that is driven 

by prior covariances. Kriging is a linear interpolation technique that provides the most 

precise linearly unbiased estimation of the values taken to be intermediate if the priors are 

correctly taken. The ordinary kriging (OK) method is a linear interpolator that estimates a 

value at a location in a region with a known variogram, without information about the 

mean of the distribution. It computes the error variance and then weights the samples 

around it in such a way that the average error of the model is zero and the modeled variance 

is the smallest. This section will give a brief description of all the statistical metrics we 

used in our analysis: (i) Root Mean Square Error, RMSE; (ii) Mean Absolute Error, MAE. 

RMSE is an error metric for accuracy in spatial analysis and remote sensing products. 

Root mean square deviation (RMSD) is a common measure of the differences between 

the expected values for the sample and population and their observed values. The RMSE 

is the sample standard deviation of the difference between expected and observed values. 

These individual differences are known as residuals when computed across the data 

sample used for estimation, and prediction errors when computed out-of-sample. RMSE 

combines the magnitudes of prediction errors over time to get a single measure of 

predictive capacity. RMSE is an accurate measure, however, it can only be used to 

compare predicting errors of various models for a single variable, not between variables, 

due to scale dependence. The model's performance improves as the RMSE value falls. 

MAE examines the average amount of errors in a group of forecasts without regard to 

direction, as well as accuracy for continuous variables. It is a metric used to assess how 

close forecasts or predictions are to actual events, as well as a popular measure of a model's 
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forecast error. It is a linear score, which means that all the differences that people show 

are taken to have equal importance in the mean. The adjusted R squared, on the other 

hand, varies from 0 to 1.0, meaning how much the model explains the variance in the 

dependent variable. 

3.6.2. Artificial Neural Network  

The created models are evaluated using a plethora of statistical indicators. This study 

uses four metrics: the coefficient of determination (R2), root mean squared error (RMSE), 

mean absolute error (MAE), and relative root mean square error (RRMSE). These indices 

for measuring the forecast accuracy show how well the model matches the actual data. 

The models were developed to forecast urban runoff for Mogadishu, and they were 

checked with the root mean square error, mean absolute error, relative root mean square 

error, and coefficient of determination. The statistical indices thus evaluated the value of 

the model being tested. These methods are used only for comparison purposes of the 

observed and the expected values. Equations (1),(2),(3), and (4) will be used to explore 

the potential of mathematical and empirical models to predict urban runoff in Mogadishu. 

One of the common statistical measures that apply to testing the effectiveness and 

accuracy of the resulting empirical models is termed R-squared or the coefficient of 

determination. It is simply denoted as R2. R-squared is a measure describing the extent of 

variance from the empirical data, and a higher value will show a better performance of the 

model. The best model performance strategies are normally those whose R-squared is 

close to one and whose root mean squared error is close to zero. The R-squared statistic 

can be used to assess how close an observed collection of data points is to an underlying 

hypothetical model of what is expected. This statistical index could be used for the 

approximation of how close the urban projected runoff is to Mogadishu. The values of R-

squared lie between 0 and 1, with 1 being very close to a model of the data being described. 

A score of close to zero for a number conveys the lack of power in the model to describe, 

but a close-to-one score shows that correspondence between the model and data points is 

performed. The MAE indicates an average absolute difference in model-predicted values 

and actual data points. It is measured as the average of the difference between observed 
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and predicted values in absolute terms, making it a very effective procedure for model 

evaluations. Being a linear score, MAE implies that each of the individual differences is 

going to contribute directly towards the average value. It measures how far the model is 

off, but not in which direction—either over- or under-predicting. RMSE is an acronym for 

Root Mean Square Error, one of the pivotal statistical indicators that help to measure the 

performance of a regression model. It is a metric that measures the average difference 

between the expected and observed values of the dependent variable. This can be used to 

study and evaluate both the adequacy of the model and the degree to which data fit the 

model. In diverse empirical models, the root mean square error (RMSE) is used to 

scrutinize the actual and predicted value discrepancies. The RMSE value varies from 0 to 

infinity, where the smallest values are considered the best and a more accurate model gives 

values that are close to zero. Despite benefits related to the sensitivity of the outer layers, 

RMSE would be sensitized by the measure of the dependent variable. Normalization 

techniques can be applied to describe this to avoid indecisive errors. See Table 6.                 
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where i is the number of input variables; 𝑎p, i is the projected value; 𝑎𝑎,𝑖 is the 

average actual value; and n is the number of data points.  Notably, in model evaluation, 

one should put more emphasis on prediction accuracy about benchmarks. 
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 RMSE is used primarily for checking how good predictive models are at 

prediction. This measures how far the predictions are from the true outcomes. In a scenario 

where you need an exact prediction, like in weather forecasting or stock markets, RMSE 

will provide a simple measure of the model's effectiveness. Further, RMSD and RRMSE 

describe how good the predictions of the model fit with the actual data, and hence provide 

an easy, intuitive sense of the potential performance of the model. Such statistics are used 

for model comparison—quantitatively, one can observe which of the models available 

yields the best work concerning a dataset since it has both RMSD and RRMSE values. 

When multiple models are built to address the same prediction task, RMSE is used as a 

baseline metric to compare models.  

 

Table 6  

RRMSE-based Model Performance Rating 

 

Performance rating  Range of RRMSE  

 Excellent < 10% 

Good 10% < 𝑅𝑅𝑀𝑆𝐸 < 20% 

Fair 20% < 𝑅𝑅𝑀𝑆𝐸 < 30% 

Poor > 30% 
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CHAPTER IV 

RESULTS AND DISCUSSION 

This chapter will discuss results, an overview of methods, preparation of input 

variables, preparation and Utilization of methods  

4.1. Introduction to Data Analysis Methods  

In handling urban runoff, two key techniques have their applicability and precision, 

i.e., Ordinary Least Squared (OLS), and Artificial Neural Network (ANN). This presents 

the strong boundary of analysis over the multidimensional data of the environment and 

gives the prediction for the urban runoff. This chapter delves deep into the result of the 

operating characteristics of both models, that is, OLS in GIS and ANN, besides the 

comparative strengths of ANN in predicting urban runoff; it underlines how indispensable 

and proven to be in environmental engineering and management works. 

4.1.1. Brief Overview Of OLS Methodologies. 

Ordinary least squares (OLS) is an elementary and standard method of statistical 

estimation that tries to dynamically explain the changes in a dependent or target variable 

such that they are linearly related to one or several independent or explanatory variables 

by minimizing the sum of the squares of the differences between the observed and 

predicted values. The basic method of analysis lies at the core within routes of the 

regression methodology and forms, in essence, a cornerstone approach towards predictive 

modeling within multiple disciplines, including hydrology, geoinformatics, and urban 

planning. The trick behind OLS lies in reducing or minimizing these differences between 

the known values and the measured values of the dependent variable here, urban runoff 

volume. OLS adjusts the coefficients of the linear equation modeling this relationship in 

such a manner that it endeavors to locate a line of best fit amidst the data points. This is 

done by working out the least squares estimator, being the criteria that minimize the sum 

of the squares of the residuals–differences between observed and estimated values. One 

of the most powerful selling factors and justifiable reasons why reliance should be put on 

OLS as a regression technique is because it is simple and interpretable. This method 

clearly states the direct impact of a relationship between variables, thus being very 

valuable for preliminary data analysis and model building.  
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4.1.2. Brief Overview Of ANN Methodologies. 

Artificial Neural Networks (ANNs) are one of the most popular machine learning 

algorithms that have modeled the biological neural networks of animal brains. ANNs 

present the ability to model complex nonlinear relationships between inputs and outputs, 

providing there is observational data. This therefore makes them more appropriate for the 

task of predictions, classifications, and pattern recognition across disciplines as the 

discipline of urban hydrology. An Artificial Neural Network consists of primitively 

connected nodes in layers: an input layer, one or more hidden layers, and an output layer. 

Each of these connections has a weight associated with the neurons adjusting as the rest 

of the network learns from the data. The task is applied by pushing the given input data 

(independent factors) through the network and then across the hidden layers, inside which 

the data is adjusted according to the weights and the activation functions. The output of 

an ANN predicts the value of the dependent variable. Such training is done by adjusting 

how connections' weights are distributed to minimize the difference between the predicted 

and actual output. In other words, this would be implemented by utilizing techniques 

based on backpropagation of errors, where one gets a gradient for a loss function (a spread 

measure of prediction error) and then subsequently updates weights so that the error is 

reduced. Some of the advantages of ANNs include the capability of modeling all kinds of 

functions, hence making it a flexible and very strong modeling tool in a complex situation 

like urban runoff. The other is a potential device for processing huge datasets and 

identifying patterns or relations that may go unapparent. On the other hand, OLS and ANN 

methodologies are equated. On average, the estimation using the OLS method has tended 

to be more comprehensive as it uses many variables affecting urban runoff. The empirical 

analysis seems to provide some strong and impressive insights and tools for predicting 

urban runoff with the inclusion of many variables. The choice of the OLS model and ANN 

will only depend on the main criteria behind the research such as the nature of the data at 

hand and the level of complexity of the modeled interrelationships. The explicit nature of 

how these methodologies work and their application is, therefore, very essential for urban 
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planners and environmental scientists in putting up good strategies for managing the risk 

of floods and sustainability in urban development. 

4.2. Description Of Global Meteorological data (1985-2022) 

The global meteorological dataset employed for the analysis, ranging from 1985 to 

2022, provides aggregated details of the climatic variables, used in the analysis of 

precipitation forecast of the urban runoff heterogeneities, but more so in the aspect of 

Mogadishu, Somalia. It can be assumed that the output of this effort is a composite dataset, 

with a greater magnitude of sources including TerraClimate comprising most of it. This 

dataset has a tremendous spatial resolution and corresponds to observations made at a 

global monthly scale, providing the unprecedented granularity and precision required. 

Spanning nearly four decades, the dataset encapsulates the most important point within 

the history of modern climate that, in terms of stylistic features and fundamental shifts in 

international weather patterns, heavily puts focus on the aggravation of extreme weather, 

changes in precipitation regimes, and warming the feature of the larger phenomenon of 

global climatic change. Such a temporal spread is very important so as not to overlook the 

inherent variability in climatic systems, but equally to understand long-term trends 

necessary inputs to carry out accurate urban runoff modeling. The period chosen of 1985-

2022 is especially relevant in the light that it captured most climatic cycles with huge 

effects on weather, mainly focusing on the Horn of Africa, especially Somalia. These 

phenomena are characterized by changing temperatures in the ocean in the equatorial 

Pacific which has been proven to affect the pattern of precipitation and temperature 

affecting the world therefore affecting the volumes of the urban runoff. In this regard, by 

integrating data streams over such cycles, the analysis developed a much more 

sophisticated appreciation of how such global climatic phenomena relate to local weather 

events and their subsequent implications for urban runoff. All of these factors associated 

with the maximum and minimum temperatures (Tmax and Tmin), the maximum soil 

moisture (SM), and precipitation input (R) in urban runoff studies have been the core 

conditions of concern. All these factors were recorded and validated in measures to ensure 

that the analysis is carried out on the data having a solid and reliable background. The 

minimum and maximum temperatures are essential for characterizing the thermal 
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dynamics bearing on evaporation rates, and hence, the moisture available for initiation of 

runoff from the soil. Soil water levels offer a direct measure of the land's ability to take in 

rainfall, an important element in runoff generation, in which wet soils produce greater 

runoff in rain events than dry soils. Rainfall is the main factor in generating an amount of 

surface runoff and is correlated with the intensity, duration, and frequency of the rainfall 

that directly correlates with the amount generated in generating runoffs in the urban 

fraction. Data in the dataset are collected appropriately in the study. Data preparation and 

cleaning go through in-depth analytical data-driven steps, which include cleansing from 

anomalies and inaccuracies, normalization for making the different units of measurements 

comparable and splitting according to some specifications, for example, seasonal 

variations, to make the extraction of the detailed trend analysis. The basis of such 

painstaking preparation is the assurance that the data is arid: it reflects the climatic 

conditions through the historical data, correctly prepared yet primed for inputs into 

predictive models toward forecasting urban runoff. These are years with global empirical 

meteorological data, from 1985 to 2022, which form the backdrop for a foundational 

empirical study of urban runoff; in other words, from which to anchor the development of 

predictive models. These data would shed some light not only on artists of climate 

conditions in the past but also on contemporary artists by assisting in the quest for 

thorough analysis, quantification, and mitigative measures of such problems on an 

anticipatory basis. 

4.3.  Preparation Of Input variables: Tmax, Tmin, SM, and R. 

In general, the input variables (Tmax, Tmin, SM, R) used in this study to forecast the 

urban runoff using an Artificial Neural Network (ANN) and OLS in the study area 

covering Mogadishu, Somalia, were prepared through the collection and screening of a 

global meteorological dataset ranging from the 1985-2022 time period. The preparation 

and use of each of these variables in this chapter are described in this section. 
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4.3.1. Maximum and Minimum Temperature  

The temperatures were the reanalysis especially maximum and minimum temperatures 

from TerraClimate. The dataset presented a high spatial resolution of monthly data, giving 

the Tmax and Tmin values for the whole period of the study. Temperature variables are 

very important in understanding the earth's surface energy balance, which will give rise to 

the evaporation rates, levels of soil moisture, and in turn events in the process of the 

production of runoff. The temperatures were processed to obtain monthly mean values, 

which served as input variables for the ANN models.  

4.3.2. Soil Moisture  

The TerraClimate data was also used to generate soil moisture, which gives 

information on the volume of water available within the soil. Soil moisture is an important 

measure for runoff prediction; hence, this is because of its direct implication on the 

compactness of the soil for water absorption. High soil moisture values correspond to the 

level of saturating the soil with water and, therefore, holds little water during an event; it 

is also translated into higher runoff. however, the soil water capacity suggests more 

capacity for infiltration, which thereby probably reduces runoff. The monthly soil 

moisture values were used as input to the ANN to model their impact on runoff generation. 

4.3.3. Rainfall  

Rainfall is the main driver of runoff since it provides water that enters the soil, hence 

either infiltrating for recharge into groundwaters or forming an overland flow. In this 

regard, the monthly time-series data of rainfall by TerraClimate have been applied to bring 

out its direct relationship with the quantities of runoff. This is among the most basic 

variables to any hydrological model, be it ANN or OLS, since, as aforementioned, the 

intensity, time duration, and amount of rainfall essentially define the rate and volume of 

generated runoff.  

4.3.4. Preparation and Utilization in ANN Models  

The ANN models were developed to predict monthly runoff (RO) for the 

corresponding period with the best-suited input variables (Tmax, Tmin, R, SM) 

combinations. Developing or testing ANN models involved partitioning the dataset into 

70% and 30% as specific training and testing portions used to predict monthly runoff. 
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However, the complexity of the model changes with the input variables, such that the least 

complex Model #1 used the single input variable, while the whole of Model #15 used all 

four variables (Tmax, Tmin, R, SM). Hence, the objective of this study was to try and get 

the most influenced parameters, with a significant influence on urban runoff prediction. 

This checks the performance of each model with the aid of statistical tools such as R-

squared, Root Mean Squared Error, and Mean Absolute Error. This section elaborates on 

training an Artificial Neural Network (ANN) for urban runoff prediction, trying to capture 

the methodological approach that provides for the analysis of global meteorological data 

in the search for important parameters that affect urban runoff. That is, in so doing, the 

study critically takes a look at some combination of input variables such as maximum and 

minimum temperatures, rainfall, and soil moisture against the observed values over the 

period from which data is collected, 1985-2022, and carries out the training of a feed-

forward neural network trained using backpropagation. The ANN models were developed 

and assessed over a dataset split into 70% as the training set and 30% as the testing set, 

where the statistical indices, coefficient of determination (R²), root mean squared error 

(RMSE), and mean absolute error (MAE), are used for tuning the model to performance. 

ANN provided a stringent deployment process, and among the crucial features of the 

results, empirical findings were rainfall and soil moisture as key drivers, thus associating 

the success of ANNs in discharge predictions and justifying in principle the effectiveness 

of flood risk management and urban planning activities. 

 

4.3.5. Preparation and Utilization in OLS Models  

The input variables to be considered shall entail Tmax, Tmin, SM, and R in the 

prediction of urban runoff within Mogadishu, Somalia, as analyzed using Ordinary Least 

Squares (OLS). The study was designed to find the major influencing factors that are 

essential for the forecasted urban runoff using monthly global meteorological data 

available in the TerraClimate dataset. This was done through an Ordinary Least Squares 

in ArcGIS, notably beginning from the collection of spatially referenced data on abiotic 

factor variables such as temperature, and precipitation, among others. ArcGIS uses an 

ordinary least squares model to model the relationship between the variables and the 
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predictors and it is run under the Spatial Statistics toolbox and then applied to 

geostatistical analysis to find the coefficient of determination (R²), root mean squared 

error (RMSE).  

 Figure 8   

Maximum and Minimum Temperature map, Source (GIS).  

 

 

 

Figure 4.3.5 portrays two maps: one that determines the maximum and another 

that displays minimum temperatures in degrees Celsius. They represent the area of ranges 

of temperatures observed throughout, with the maximum one ranging from beige to dark 

red, which is indicative of hot temperatures, and the minimum temperature map ranging 

from light yellow to dark green, which indicates cooler areas. Each of these sets of maps 

is sided with a legend that shows the range of temperatures that range for each color; it 

acts as a translation of colors for the area on the map and temperature. 
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Figure 9   

Rainfall and Soil Moisture Map, Source ( GIS ). 

 

 

 

The second image contains two more thematic maps: one for soil moisture and another 

for precipitation, and at their lateral side are its color-coded legends. The soil moisture 

gradient used in coding ranges from red to dark green, in increasing order of soil moisture 

levels in millimeters, and the precipitation gradient similarly ranges from shades of 

purples in an indicative amount in millimeters. Again, these are also fitted with legends 

that define the particular ranges of moisture and precipitation values, regarding each color. 

In addition, the two have units of a scale bar as well as a compass rose to indicate distance 

and orientation, with the two maps showing latitude and longitude coordinates which aid 

in the exact location of the various climatic zones. These maps are designed meticulously, 

keeping in mind even the minute details; these help a lot in understanding the 

environmental and climatic conditions due to accurate depictions of land cover needed to 

carry out agricultural planning, resource planning, and scientific research. 
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4.4.  Ordinary Least Square (OLS) Method  

The simple Ordinary Least Squares (OLS) approach to predicting urban runoff with 

datasets in Mogadishu, Somalia, will lay down the complete approach toward the below 

challenges in urban flooding and its management. The study aimed to get an estimation of 

urban runoff by OLS in 15 different global meteorological characteristics models to 

identify which would be the most significant for urban runoff forecasting. The maximum 

and minimum temperatures, monthly amount of rainfall, and moisture content obtained 

from 1958 to 2022 are among the input variables that will be taken into account. Flooding 

and urban runoff have been a problem greatly heightened by continual rapid urban growth, 

poor infrastructure, and undeveloped drainage in Mogadishu, Somalia. The potential reach 

of such impacts can be magnified, with the range of factors that will include runoff speed 

associated with rain, impermeable surfaces, drainage condition, and rate. During this rainy 

season, the intensity of the rainfall noticed is overwhelming the drainage and causing 

flooding issues with water quality. The analysis evaluates the relationship among all 

explanatory factors, like maximum temperature, minimum temperature, rainfall, and soil 

moisture, with the dependent variable (runoff) in OLS regression analysis. 

This method helps very strictly in an urban setting to interpret the likely pattern for 

runoff and make predictions of the pattern; statistical indices like the coefficient of 

determination (R²) and root mean squared error (RMSE) are used to show the performance 

of the models within the study. It was presented that soil moisture and rainfall rank very 

important and high in having the best formulation to predict runoff. The present finding 

is in agreement with the earlier studies which indicated that these variables offered very 

important variables in estimating the runoff. It has been established that all 

imperviousness is highly influential in the urban rainfall-runoff process. The OLS models 

indicated that clear concepts of mechanisms of runoff and effects of urbanization on storm 

runoff may be key for the effective management of urban rainwater. It further underlines 

that there have to be well-modeled hydrological inputs in the estimation of surface water 

flow, assess infiltration, and estimate runoff formation. In some models, the high R-

squared is an indication of a strong explaining power such that the models will statistically 
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explain the variations of the dependent variable strongly and hence increase the conclusion 

in the study. 

 

4.5.  Artificial Neural Network (ANN) Method 

This section examines the use of Artificial Neural Networks (ANN) for predictions in 

one of the most important flood risk management elements (urban runoff). Urban runoff 

is described as flow resulting from precipitation in urbanized areas. The study was based 

on the previously indicated sense, which emphasizes the requirement to get accurate 

prediction results: urban runoff, on the ground of which effective prevention from the risk 

of flooding and consequently growth in the tendency of safety, should be. Widespread 

urbanization, with impervious surfaces, acts as natural infiltration barriers to the 

percolation of water, in a manner to collect pollutants and to entail flooding risk. In this 

work, the ANN will be relied on in the estimation of urban runoff based on four key 

meteorological parameters of maximum and minimum temperature, rainfall, and soil 

moisture from Mogadishu, Somalia, over a significant period (1985-2022). This approach 

tends to pick out the most regulating variables affecting urban runoff, improving model 

accuracy and in a way making the process of model development less complex by 

considering and incorporating important variables. 

Artificial Neural Networks (ANNs) are computational models developed as an 

imitation of the human brain, whereby they acquire a capacity for learning skills by being 

exposed to trained data and later making predictions with new information. Against this 

background, the model of a network was built with back-propagation of a traditional kind 

of ANN architecture in the stage of training, i.e., feedforward neural network. Each neuron 

processes one input from the previous processing level in these layers and forwards it so 

that in aggregate, the network learns meaningful and complex patterns and relationships 

between input variables and urban runoff. The training process relates to the modification 

of connection weights between neurons in an ANN so that the errors of prediction are 

minimized. This nature makes ANNs highly suitable for the development of a model that 

has nonlinear and complex relationships, such as between different meteorological 

variables with urban runoff. Based on this four-variable input model, the study included a 
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combination of these input variables in fifteen different possible ways to train the ANN 

model to predict the monthly urban runoff. After training the ANN models and reassessing 

these models statistically, statistically bounding the best possible model in the context of 

the chosen input variables is the research outcome. Such an approach can make a 

probabilistic assessment of the prediction count accurate, in a solicited way, in keeping 

with how variable these variables and their combination can be in predicting urban runoff. 

The study results found that the rainfall and soil moisture variables are necessary for 

predicting urban runoff. This result conforms to logic, in that the quantity and character 

of water flowing over land surfaces must be directly influenced by the character and 

quantity of precipitation, and soils' capacity to absorb water. These two parameters gave 

better performances than models that did not use them in predicting monthly runoff in all 

applied models and hence indicated that they were predictive in the runoff generation 

process.  

 

4.6. Result Of Artificial Neural Network (ANN) 

The present study systematically used all data from 1985 to 2022 to elaborate on 

knowledge in the forecasting of urban runoff with an Artificial Neural Network (ANN). 

About 70% of the datasets were put away for the training exercise, which is the most 

important in the model, leaving the balance of 30% to play an essential role in testing the 

model by predicting the performance. Setting up the good settings for the neural network 

was the approach with the step-by-step trial and error method, through which a 

methodological plan was worked out up to the finest receipts in the optimal definition of 

the configuration of the network. This has many sub-steps to optimize, which are 

determining the right number of hidden layers (HL), associated neurons (NN), and transfer 

function (TF) to be used. These are some of the key aspects that can aid in the modulation 

of model prediction to fit input data.  
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4.6.1. Result of Case 1: One Input  

In this study, for every variable, one Artificial Neural Network (ANN) was fed. That 

is, four different models existed, denoted from ANN#1 through ANN #4, which made the 

impact of each variable on the network's predictability of urban runoff independent. The 

performance of the models is tested based on key statistical parameters as follows: R-

squared (an indicator of how good a predictor variable is in explaining the variance in the 

response variable), Root Mean Squared Error (RMSE; to calculate the average prediction 

error in a model), and Mean Absolute Error (MAE; to obtain the sum of absolute errors 

divided by the number of data points). The  ANN#3  emerged at the top of all; this is an 

indicator that the qualities used to implement such a network are better than the rest as it 

has higher accuracy in predicting urban runoff. Quantitatively, this was identified since 

associated statistical scores were also higher compared to other models available in 

making such an estimation. On the other hand, the remaining models in the study would 

have shown less precision in Table 4. This selective checking of input variables depicts 

how some of the researchers view the importance of proper input variables to enhance 

prediction models of ANN in various environmental studies. 

4.6.2. Result of Case 2: Two Input  

ANNs are put to practical examination in the sense of predicting urban runoff (RO) 

through six models (ANN#5-ANN#10), forming various pairs of inputs with a similar 

pattern. This approach targeted understanding the effect of different pairs of input 

variables on their prediction of runoff to the best estimations. The model that combined 

(R and SM) into the pair of input variables was the model ANN#10. The highest r-squared 

was given that portrays a relationship that prevails between predicted and observed RO 

values, shown by an R-squared of 0.8945. Such a high r-squared signaled high predictivity 

accuracy; therefore, a high signal existed showing that the interfacing of rainfall and soil 

moisture is a very critical aspect in runoff prediction. Further to that, among the ten, 

ANN#10 gave the lowest predicting errors with RMSE and MAE of 1.3512 mm and 

0.3659 mm. End-User Outputs, User Acceptance, and Interpretability Evaluation These 

values underline the accuracy of the model in the prediction of runoff in the urban 

environment and show the efficiency that will be achieved in making use of soil moisture 



67 
 

 
 
  
  

and rainfall data in such predictions. Thus, this seems to suggest potential benefits in the 

aspect of consideration of the enhancements of this model related to exact combinations 

of variables, an important segment of managing flood risks and urban planning. 

4.6.3. Result of Case 3: Three Input  

In more advanced stages of the research, effectiveness in Artificial Neural Networks 

(ANNs) was adopted by using three input variable combinations to anticipate urban 

runoff, and as such, four different models (ANN#11-ANN#14) were developed. In 

addition to several improvements in the parameterizations of these models, efforts were 

extended during this process to explore synergies between diverse environmental factors 

and their collective influence on the accuracy of runoff prediction. Among all these 

models, ANN#13 performed best, using a combination of (Tmax, R, and SM) as input. 

These gave an R-squared at 0.8811, meaning a very strong relationship existed between 

the predicted and obtained values of the rate. That is a very stunning performance to have 

Tmax, R, and SM together in their performance in capturing the dynamics of urban runoff. 

ANN #13 illustrated consistency for excellent accuracy, lowest among Root Means 

Squared Error (RMSE) at 1.3407 mm, and Mean Absolute Error (MAE) at 0.4701 mm of 

the tested models. These measurement metrics will emphasize the accuracy in predicting, 

driving the essentiality that multiple variables have to be integrated into developing 

methods for better predictions of urban runoff. This was relevant to town planning and 

flood risk management in so far as handling the same was concerned, whereby a proper 

prediction of runoff is extremely critical in the sense that it contributes very highly toward 

coming up with effective approaches as concerns flood risk mitigation and infrastructure. 

4.6.4. Result of Case 4: Four Input  

The inclusion of all the four inputs., (Tmax, Tmin, R, and SM), the Model ANN#15 

developed in the present study, was done in respect of the performance of the Artificial 

Neural Network. This modeling approach was considered to have previously been carried 

out in other models, through inputs already used in models made to indicate research to 

create estimates of urban runoff. Key statistical indicators under which ANN#15 

performed are included below: it has reached an R-squared of 0.8053, stating a strong 

relationship between the predicted and observed values of runoff; i.e., the inclusion of a 
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larger set of somehow related water was able to track the runoff dynamics effectively. In 

the meantime, the model also records an RMSE of 1.7368mm and a low MAE of 

1.0083mm, again indicating that follow-up prediction errors remain within a reasonable 

scope for the prediction of a complicated environmental process. All these results, on the 

robustness of the model integrating several environmental factors to predict urban runoff, 

show at the same time the problems in reaching precision in modeling complex systems. 

This will bring wholly comprehensive modeling further enhance our understanding of 

urban hydrology and further aid the development of predictive models in areas of flooding 

and urban planning. 

 

Table 7  

Developed OLS Models to Forecast RO and Statistical Measures. 

 

Model HL NN TF 𝑹𝟐 RMSE [mm] MAE[mm] RRMSE 

OLS #1 1 5 logsig 0.0065 3.8968 2.3776 145.517 

OLS #2 1 8 logsig 0.0001 3.9207 2.3850 152.764 

OLS #3 1 10 logsig 0.7314 2.0428 0.5298 48.693 

OLS #4 1 5 logsig 0.6257 3.4621 1.9569 56.797 

OLS #5 1 8 logsig 0.0037 3.9154 2.4095 148.340 

OLS #6 1 12 logsig 0.8141 1.6951 0.6315 44.311 

OLS #7 1 5 logsig 0.6798 3.0188 1.8210 53.034 

OLS #8 1 3 logsig 0.7672 1.8875 0.9318 50.052 

OLS #9 1 3 logsig 0.5292 2.6703 1.8547 80.817 

OLS #10 1 2 logsig 0.8945 1.3512 0.3659 35.610 

OLS #11 1 5 logsig 0.7955 1.7845 0.7930 42.868 

OLS #12 1 8 logsig 0.5817 4.1164 2.0456 61.396 

OLS #13 1 15 logsig 0.8811 1.3407 0.4701 32.336 

OLS #14 1 2 logsig 0.8329 1.7669 0.7511 36.457 

OLS #15 1 16 logsig 0.8053 1.7368 1.0083 45.506 
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Figure 10 

 Time Series of Observed and Predicted Value of Rainfall. 

 

 

 

 

4.7.  Result Of Ordinary Least Square (OLS) 

This is a comprehensive statistical framework developed to study the performance of 

the developed models. Several statistical metrics are enumerated to measure this 

performance: Coefficient of Determination (R^2) and root mean square error(RMSE), 

These came to give a rich dimension to the performance of the models, indeed proving 

accurate, reliable, and possible multi-collinearity existence among variables. In similar 

processes of ANN models, the regression models were also subjected to even stricter 

trial and error. Thus, the iterative processes kept on refining the models, and in this sense, 

the ability of models to give more accurate and reliable regression results was constantly 

increased as the process of fitting models with data continued till the moment of 

precision.  The application of the highly developed analytical technique to deal with such 

a hard challenge, the prediction of urban runoff, leaves the application of this or that 

methodology deeply committed. The application of such improved and new methods, 

corresponding to added insight, can revert to some fields of flood risk management and 

urban planning. Statistical metrics, including Coefficient of Determination (R2) and root 
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mean square error (RMSEs), are used to evaluate the performance. Various models were 

analyzed through trial and error to obtain more accurate regression results. 

 

4.7.1. Result of Case 1: One Input  

In this instance, each input was fed individually into the OLS and designated as OLS 

1-OLS 4. Each model's performance was evaluated using statistical tools such as 

Coefficient of Determination (R2) and root mean square error(RMSE). Among these 

models, OLS 3 showed high estimating capabilities, whereas the remainder of the models 

performed less accurately, as shown in Table 4. 

4.7.2. Result of Case 2: Two Input  

Six combinations were generated using two inputs (OLS 5-OLS-10), and their impact 

on RO prediction was evaluated, as shown in Table 4. OLS-10 with the input combination 

[SM, R] had the highest R-squared value of 0.996229 among these models. This shows a 

good correlation between projected (Tmax, Tmin, R SM) and observed (RO) values. 

According to the summary of OLS results, OLS-10 with the input combination of [SM, R].  

 

4.7.3. Result of Case 3: Three Input  

To assess the relationship, a total of four combinations were made with the three 

input variables. Table 4 displays the results of these models. Of these, OLS-13 with the 

input combination of [Tmax R SM] produced the lowest Root mean square error (RMSE) 

of 1.0346mm and the highest R-squared value of 0.998189mm. 

 

4.7.4. Result of Case 4: Four Input  

The relationship between the variables was analyzed utilizing the Ordinary Least 

Squares (OLS) approach, which considered all four input variables. The results, as shown 

in Table 4, illustrate that the OLS-15 model achieved a significant R-squared value of 

0.998980. This R-squared value suggests that the model adequately explains 

approximately 99.9% of the variability found in the dependent variable, highlighting its 

robust explanatory capability. Employing the OLS approach enhances the reliability of 
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the study's conclusions by affirming a substantial connection between the variables being 

investigated.  

 

Table 8 

 Developed OLS models to forecast RO and statistical measures. 

 

Model parameters 𝑹𝟐 RMSE [mm] 

OLS #1 1 0.043305 0.4026 

OLS #2 1 0.863232 0.9692 

OLS #3 1 0.992993 0.9946 

OLS #4 1 0.956593 0.6478 

OLS #5 2 0.884389 0.9588 

OLS #6 2 0.993007 0.9328 

OLS #7 2 0.977147 0.9192 

OLS #8 2 0.994910 1.1509 

OLS #9 2 0.986590 1.1367 

OLS #10 2 0.996229 0.9005 

OLS #11 3 0.993158 1.0937 

OLS #12 3 0.991163 1.1373 

OLS #13 3 0.998189 1.0346 

OLS #14 3 0.995923 1.0598 

OLS #15 4 0.994580 0.8771 
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Figure 11  

OLS 10 Observed and Predicted Runoff Value. 

 

 

 

Figure 12   

OLS 13 Observed and Predicted Runoff Value. 
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Figure 13   

Map of Model #1 

 

 

 

 Figure 14 

 Map of Model #2 
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Figure 15 

  Map of Model #3 

 

 

 

 

Figure 16 

 Map of Model #4 
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 Figure 17  

Map of Model #5 

 

 

 

 Figure 18  

Map of Model #6 
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Figure 19  

Map of Model #7 

 

 

 

Figure 20 

 Map of Model #8 
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Figure 21 

 Map of Model #9 

 

 

 

Figure 22  

Map of Model #10 
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 Figure 23  

Map of Model #11 

 

 

 

 Figure 24  

Map of Model #12 
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Figure 25  

Map of Model #13 

 

 

 

 Figure 26  

 Map of Model #14 
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Figure 27 

 Map of Model #15 

 

 

 

4.8.  Comparison of OLS and ANN Models 

In contrast, the comparison of results between Ordinary Least Squares (OLS) and 

Artificial Neural Networks (ANN) models on urban runoff predictive models best depicts 

the congruent strength and impact of the two methodologies in equal measure. OLS 

models, OLS#10, depicted high values of R-squared at 0.996229 and root mean square 

error of   0.9005, while OLS#13 achieved R-squared of 0.998189 and RMSE of 1.0346. 

OLS #13 best predicts urban runoff volumes based on the input combinations provided.  

This is in sharp contrast with ANN models such as ANN#10 and ANN#13, trained 

with the method of backpropagation and regarding the variables, which strongly estimated 

the importance, for instance, of rainfall and soil moisture to make good precision in 

prediction. Thus, ANN#10 realized both high R-squared results of 0.8945 with low 

prediction errors at RMSE 1.3512 mm and MAE 0.3659, whereas ANN#13 realized a 

result at 0.8811 with prediction errors at RMSE 1.3407 and MAE 0.4701 indicating good 

potential lies in the multiple variable integration power of enhancing prediction accuracy. 
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therefore, The difference between the estimation evaluation of OLS models with statistical 

metrics like R-squared and RMSE, and the estimation of ANN models with the use of 

RMSE and MAE indices, where each approach gives the diversity of the model's 

evaluation, will have to be incorporated after incorporating both methods to bring a critical 

analysis that will improve good reliability and accuracy for the predictions of urban runoff 

to ensure effective flood-risk management and strategies in urban planning. 

4.9.  Discussion  

As simple and directly interpretable as they were, the OLS models tended to perform 

very well in prediction. This was particularly brought out in models like OLS#10 and 

OLS#13, which had very high R-squared values of 0.996229 and 0.998189, respectively, 

with the least RMSE values of 0.9005 and 1.0346. This is typical of high explanatory 

power or ability to account for a large proportion of variance about urban runoff based on 

the set of variables under consideration. This would then mean that the OLS is very 

effective when the relationship between the variables is known in good detail and can be 

assumed to be linear. 

The ANN models, in contrast, displayed strength in handling complex, non-linear 

relationships among several variables. For example, both ANN#10 and ANN#13 gave R-

squared values of 0.8945 and 0.8811, respectively, besides low prediction error values for 

RMSE and MAE, indicating the potential for flexibility in capturing urban runoff 

dynamics compared to OLS models. The ANN models are especially advantageous when 

the interactions among variables are complex and not purely linear; thus, such models are 

suitable for a detailed and nuanced analysis of the environment. 

The choice between the OLS and ANN models depends on the data's nature and 

specific analytical needs. OLS models are preferable for their ease of use, while ANNs 

show high modeling potential to capture complex patterns, mostly for massive datasets 

with many variables. A more comprehensive picture of urban runoff prediction can be 

obtained by integrating both models, through the clear interpretability of the OLS and the 

advanced pattern recognition of ANNs for exploiting enhanced decision-making in urban 

planning and environmental management.  
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CHAPTER V 

Conclusion and Recommendation 

This chapter presents conclusions, recommendations, and limitations of the research 

based on the research findings and objectives. 

5.1.  Conclusion  

This chapter will be a comprehensive summary based on what has been presented in 

the previous section on the analysis and examination of urban runoff or flooding in 

Mogadishu. This research has evaluated the influence of climatic parameters and soil 

moisture on urban runoff and further identified the variables having the greatest impacts 

on urban floods. The established dependence between the dependent and independent 

factors in Mogadishu has been achieved using machine learning techniques together with 

mathematical and statistical models. 

The results of the study carried out for this research work revealed that maximum and 

minimum temperatures, soil moisture, and precipitation, among other variables, influence 

the outcome of the forecast of urban runoff in Mogadishu. Therefore, the identified 

attributes affect the availability of supplies and are considered to affect urban runoff. The 

outcome of this study will also help to comprehend how floods could be managed more 

effectively in the area of study.  

The machine learning models Artificial Neural Network and Ordinary Least Squares have 

produced outstanding results in detecting complex patterns and linkages between climate 

factors, soil moisture, and urban runoff. After testing, the models produced exceptionally 

accurate forecast results for urban runoff based on input parameters.  

Comparing machine learning models such as Artificial Neural Networks to OLS 

models, as well as statistical analysis, confirmed the connection models' effectiveness. 

The machine learning and OLS models produced significantly better outcomes than 

traditional mathematical methods. They were especially effective when dealing with 

complex data relationships and nonlinear interactions.  

The integration of both the OLS and ANN models would be a more integrated 

approach to the prediction and management of urban runoff. Such modeling will enable 



83 
 

 
 
  
  

scientists in urban planning and environmental science to improve the decision-making 

process using the clear interpretability of the OLS model and the high capability of pattern 

recognition by ANNs. This dual approach will allow a deeper perception of urban runoff 

dynamics and the formation of effective strategies in the field of flood risk mitigation and 

sustainable urban development. 

In conclusion, the study indicates an emphasis that should be put on selecting the right 

modeling technique for the particular data characteristic and nature of the environmental 

question that one is concerned with. Both OLS and ANN are powerful tools, but they have 

their respective areas of strength and limitations. Likely, the combined use of both could 

cover a broader range of scenarios for effective urban water management. 

5.2.  Recommendation 

To control urban runoff The following recommendations are focused on urban 

planning and environmental management, with much more insight into the study using 

both Ordinary Least Squares (OLS) and Artificial Neural Networks (ANN). 

Model Integration: Urban Planners and Environmental Scientists shall integrate both OLS 

and ANN models to harness the strong points of both. While OLS provides a robust 

platform to perform initial analysis for simple scenarios, on the other hand, ANNs provide 

deep insights and predictions under complex scenarios. Both models could be used 

together to provide a more comprehensive understanding of urban runoff patterns. 

Policy Formulation: In this regard, the policymakers, as well as the local 

authorities, should make policies that consider the insight offered by these predictive 

models so that the management of urban runoff and the mitigation of risks of flooding are 

ensured. These include infrastructural developments—like the building of enough and 

appropriate drainage—based on predictions by models for runoff patterns and volumes. 

Investment in Data Collection: This will drastically improve the quality and quantity of 

meteorological and environmental data collection, enhancing the predictive models. 

Advanced data collection technologies, including remote sensing and the Internet of 

Things sensors in urban areas, should therefore be invested in. 
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Public Awareness and Education: Sensitization of the public and local business 

community to the impacts of urban runoff and the need for sustainable practices should 

be carried out. This would involve promoting green infrastructure through public 

advertisements to permeable pavements and rain gardens to reduce runoff and improve 

water quality. 

Future Research: There is a need for more research to improve the developed models. It 

should include sensitivity analysis of more variables, further calibration or optimization 

of the model parameters, and application at different urban contexts and scales. The 

research is also recommended to focus on the effect of climate change on urban runoff to 

adapt the models to future scenarios. 

Interdisciplinary Cooperation: The problem of urban runoff management is highly 

complex and, hence, warrants interdisciplinarity. Hydrologists, urban planners, climatic 

scientists, and policy-makers need to work in tandem for the realization of inferences 

drawn through predictive models in real-life strategies and solutions. These 

recommendations enhance preparedness in cities and allow them to handle the challenges 

of urban runoff and the associated environmental impacts. It helps in bringing advanced 

modeling into urban planning and policymaking, transforming urban environments into 

much more resilient and sustainable ones. 

5.3.  Limitations and Future Research 

The analysis of urban runoff in the Mogadishu, Somalia area is limited by data quality, 

model complexity, interpretability, overfitting, computational resources, and 

generalization of the model by the Ordinary Least Squared (OLS) and Artificial Neural 

Network (ANN) methods. The quality of predictions is equal to the quality of the input 

data of meteorological variables and the specific Mogadishu urban environment. Other 

challenges with ANN models relate to the results' interpretability and the high possibility 

of overfitting, either to OLS or ANN models with such complex data while training. 

Future research in this study area should be guided toward data collection improvement, 

the development of localized models according to Mogadishu characteristics, and the 

integration of remote sensing. There is engagement with the local community and climate 
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change resilience with an urban runoff analysis. The study will, therefore assist in making 

more accurate predictions and informed decisions regarding sustainable urban planning 

and flood risk management in Mogadishu by overcoming these limitations and pursuing 

these research directions.  

Future research directions about the prediction of urban runoff will be towards the 

development of hybrid models that combine OLS and ANN or other machine learning 

techniques to achieve even higher forecast accuracies and interpretability. More feature 

engineering may be done on additional meteorological features or derived features to 

understand their performance concerning the developed models. Interesting research 

directions involve uncertainty analysis in the assessment of reliability, coupled with 

spatial and temporal analysis to capture variations in runoff patterns and trends over time. 

For this, more rigid validation studies with independent datasets and benchmarking of 

OLS and ANN models with other advanced methods in urban hydrology might be 

performed, helpful for sustainable urban planning and environmental management. By 

addressing these concerns, the future research direction, and researchers may improve the 

analysis of urban runoff in the present area, contributing to accurate and reliable 

predictions to make related decisions. 
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