
 
 

  

NEAR EAST UNIVERSITY 

INSTITUTE OF GRADUATE STUDIES 

DEPARTMENT OF CIVIL ENGINEERING 

 

 

 

PREDICTION OF HIGH-TEMPERATURE PERFORMANCE OF 

GEOPOLYMER MODIFIED ASPHALT BINDER USING MACHINE 

LEARNING AND MODEL INTERPRETATION APPROACH 

 

 

 

 

 

M.Sc. THESIS 

 

 

 

 

 

LYCE NDOLO UMBA 

 

 

 

 

Nicosia 

February, 2025 

L
Y

C
E

 N
D

O
L

O
 U

M
B

A
 

P
R

E
D

IC
T

IO
N

 O
F

 H
IG

H
 

T
E

M
P

E
R

A
T

U
R

E
 P

E
R

F
O

R
M

A
N

C
E

 

O
F

 G
E

O
P

O
L

Y
M

E
R

 M
O

D
IF

IE
D

 

A
S

P
H

A
L

T
 B

IN
D

E
R

 U
S

IN
G

 

M
A

C
H

IN
E

 L
E

A
R

N
IN

G
 A

N
D

 

M
O

D
E

L
 IN

T
E

R
P

R
E

T
A

T
IO

N
 

A
P

P
R

O
A

C
H

 

 

 

M
A

S
T

E
R

 T
H

E
S

IS
 

2
0

2
5
 



 
 

  

NEAR EAST UNIVERSITY 

INSTITUTE OF GRADUATE STUDIES 

DEPARTMENT OF CIVIL ENGINEERING 

 

 

 

 

PREDICTION OF HIGH-TEMPERATURE PERFORMANCE OF 

GEOPOLYMER-MODIFIED ASPHALT BINDER USING MACHINE 

LEARNING AND MODEL INTERPRETATION APPROACH 

 

 

 

 

M.Sc. THESIS 

 

 

 

  Lyce Ndolo UMBA 

 

 

Supervisors 

Assist. Prof. Dr. Gebre Gelete KEBEDE (Supervisor) 

Assoc. Prof. Dr. Shaban Ismael ALBRKA (Co- Supervisor) 

 

 

Nicosia 

February, 2025





II 
 

Declaration of Ethical Principles  

I hereby declare that all information, documents, analysis and results in this thesis have 

been collected and presented according to the academic rules and ethical guidelines of Institute 

of Graduate Studies, Near East University. I also declare that as required by these rules and 

conduct, I have fully cited and referenced information and data that are not original to this 

study.  

 

 

 

Lyce Ndolo Umba  

03/02/2025 

 

 

  



III 
 

Acknowledgements 

 I would like to express my deepest gratefulness to God, master of time and 

circumstances, for the breath of life and his goodness. To my parents, Yves Mande and Thérèse 

Tayi, thank you for your love, endless patience, and encouragement. You have always filled 

me with your affection and attention throughout my journey. Your advice has always guided 

me towards success. May this work be the fruit of your countless sacrifices made for my 

education.  Special gratitude to my dear Joy Kasongo, who has been my constant source of 

motivation, thank you for your big heart and your more than precious support. I would also like 

to acknowledge my supervisor Dr. Gebre Gelete Kebede, and my co-supervisor, Dr. Shaban 

Ismael Albrka for their invaluable guidance, availability, and mentorship. My appreciation 

goes to Dr. Ikenna Uwanuakwa for his support and encouragement during my academic 

journey. To all my pastors, friends, and colleagues: Nathan Malamba, Shekinah Sala, and 

Hochea Luhonda, your prayers and assistance have been immensely beneficial. Lastly, I thank 

all my instructors at Near East University for their passion and the knowledge they imparted. 

 

 

                                                                                                                         Lyce Ndolo Umba 

 

  



 
 

  

 

  

 

 

 

                       

  

 

 

 

Key words: machine learning, storage modulus, loss modulus, models interpretability 

  

IV

Abstract

Prediction of High-temperature Performance of Geopolymer Modified Asphalt Binder 

Using Machine Learning and Model Interpretation Approach

Lyce Ndolo Umba
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  Understanding  the  rheological  properties  of  asphalt  binders  is  crucial  for  pavement 

performance. This research predicts the Storage and Loss modulus, which reflects the elastic 

and  viscous  behavior,  by  applying  different  machine  learning  models  including  XGBoost,

Random  Forest,  and  CatBoost.  These  models  were  developed  using  Python.  Evaluation 

techniques  like  R²  (coefficient  of  determination),  RMSE  (Root  Mean  Square  Error),  MAE 

(Mean  Absolute  Error),  and  MAPE  (Mean  Absolute  Percentage  Error)  were  used  to  assess 

model predictive performance. Subsequently, model interpretability techniques: SHAP, LIME,

ICI,  PDP,  and  PFI  to  better  understand  how  different  features  impact  the  predictions.  The 

results indicated that the CatBoost model achieved significant performance with high R² values 

in training and testing models with lower metrics. Shear stress, temperature, and frequency are 

ranked as the most important and influential features across all the models for both predictions 

while softening point, binder type, and viscosity had minor contributions.
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CHAPTER I  

Introduction 

1.1 Background 

The durability of road infrastructure under traffic loads is highly dependent on the 

quality of the materials used for its construction; asphalt binders are not an exception in this 

respect (Lamontagne et al., 2001). Asphalt binders are viscoelastic, meaning that at high 

temperatures, they cease to be elastic and start to flow viscously. With the rise in temperature, 

it provides more chance for high-temperature rutting which may cause irreversible pavement 

deformation due to softening of binder (Zhou et al., 2021). In such scenarios, the development 

of asphalt binders that would retain mechanical integrity under extreme heat stress is highly 

required. All these reasons create a demand for durability and sustainability, making it feasible 

to do the application of geopolymer technology in the asphalt mixtures themselves. It has been 

determined through research that the modification of geopolymer increases the complex 

modulus of asphaltic mixtures while reducing their rutting susceptibility, hence exhibiting an 

increase in its high-temperature stability (Xie et al., 2017) . About high-temperature stability, 

the modification by geopolymer improves it through raising the complex modulus of asphalt 

while lowering its susceptibility to rutting (Zhang et al., 2021). 

In addition, the modification process will enhance overall durability in severe weather 

and high traffic, as well as producing high-temperature performance of asphalt mixture. It is 

hard to predict how the geopolymer-modified asphalt binders can behave in hot conditions 

because rheological characteristics and performance outcomes are correlated; for that, machine 

learning algorithms are able to predict how various geopolymer-modified asphalt compositions 

would behave at high temperatures (Roja et al., 2021). Conventional methods, such as DSR 

tests, are usually applied for the rheological characterization of asphalt binder; however, these 

methods generally do not identify the intricate relationships between variables that influence 

the behavior of the binder. 

This has, over the past decade, led to an increase in the application of machine learning 

methods for predicting the performance in asphalt mixture, thereby allowing for intricate data 

analyses that give out trends that may be difficult for the classic approaches. Considering 

geopolymer content, binder properties, and prevailing environmental conditions, the models 

provide accurate prediction about the behavior that the geopolymer-modified asphalt binders 
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are likely to exhibit at high temperatures (Golestani et al., 2015). These prediction models will 

enable engineers to determine the best mix designs that meet performance requirements.  

1.2 Problem Statement 

The high-temperature performance of asphalt binders is of great importance, as it 

considerably influences the durability and longevity of pavement constructions (Li et al., 2021). 

The viscoelastic characteristics of asphalt binders are very important because they define how 

well the material will perform at a wide range of temperatures, high temperatures being a 

special challenge for pavement longevity (Ali et al., 2017). Traditional methods for the 

assessment of asphalt binder characteristics are very often costly and time-consuming. This has 

made it necessary to have an increased need for better methods of prediction, where machine 

learning methods have great potential. However, machine learning methods also suffer from 

problems of interpretation, where, for instance, it is usually hard for the researcher to realize 

how different features influence the final results. 

1.3 Aim and Objectives of the Study 

This research will, therefore, focus on the incorporation of model interpretability 

methodologies to explain the variables that affect the predictions of machine learning models. 

The goal is to improve the performance at high temperature of geopolymer-modified asphalt 

binders and to develop reliable, data-driven methods to support the creation of more resilient 

and sustainable pavement designs. 

The following are the study's objectives:  

• To estimate the storage and loss modulus of the modified asphalt binder using machine 

learning models, such as Extreme Gradient Boosting (XGBoost) and Random Forest 

(RF), as well as Categorical Boosting (CatBoost) for high-temperature prediction.  

 

• Feature importance analysis using model interpretation techniques such as Partial 

Dependence Plot (PDP), Permutation Feature Importance (PFI), Shapley Additive 

Explanation (SHAP), Local Interpretable model agnostic explanations (LIME), and 

Individual Conditional Importance (ICI). 

• To evaluate the trained model using performance metrics 
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1.4 Significance of Study 

• The significance of this study lies in its capacity to accurately anticipate the behavior of 

geopolymer-modified asphalt binder at high temperatures, hence improving road 

durability. 

• The environmental effect of road repair and maintenance can be decreased by using 

geopolymer in asphalt binders. Furthermore, it makes a substantial contribution to 

material science by expanding the knowledge of the future-useful interactions between 

asphalt binders and geopolymers. 

•  Finally, the research shows how particular computer models can be used to solve issues 

relating to roads. 

1.5 Scope of the Study 

The present work focuses on the prediction of asphalt binder's performance when 

treated with geopolymers, especially at high temperatures. Machine learning approaches have 

been extensively used in a lot of optimization problems, but there is a lack of research when it 

comes to interpreting the prediction model. This opens new avenues from where outcomes can 

be compared. 

One of the major components used in the development of roads is asphalt binders. 

Further, its performance has a huge implication on pavement durability and safety. It is possible 

to apply geopolymers-a type of inorganic polymer-to asphalts for improved characteristics.  

This research seeks to understand how the modification of the geopolymer affects asphalt 

binder behavior. To predict these, machine learning methodologies come into play. For the 

performance of asphalt binders, model interpretations are used by experimental data in 

correspondence with local and global effects, and local and global interaction measurements. 

1.6 Thesis Organization 

• Chapter one introduces the topic by giving the problem statement, aims, objectives, 

and significance of the research 

• Chapter two highlights the previous studies related to this research 

• Chapter three provides the details on methods used in the study. 

• Chapter four discusses the finding result. 

• Chapter five concerns conclusion and recommendation for future studies 
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CHAPTER II 

Literature review 

2.1 Introduction 

The behavior of asphalt binders is a significant factor in the project and application of 

asphalt since it plays a key role in the durability and service life of this kind of pavement. 

Elevated melting points can cause greater viscosity, rutting susceptibility, and compromised 

overall performance of asphalt binders. Many studies have been conducted to improve the high-

temperature performance of asphalt binders through modifications and additives related to both 

rheological properties and resistance to deformation. 

Asphalt binders’ viscosity is known to be one of the most important factors controlling 

high-temperature performance. Research has revealed that the use of carbon nanomaterials 

(e.g., graphene, carbon nanotube) can considerably enhance asphalt binders´ apparent 

viscosity. This is due to improved interfacial interactions and the restricting molecular chain 

movement of the binder itself at high-temperature compression, which enhances the flow 

resistance of the binder under elevated temperatures ( Li et al. 2021).  

Incorporating polymers specifically of Styrene-Butadiene-Styrene (SBS) into asphalt 

has extensively been researched. The SBS-modified asphalt not only has higher softening 

points but also shows less permanent deformation which makes it more suitable for high-

stressed applications (Zhang & Hu, 2015). The results of the dynamic shear rheometer (DSR) 

tests indicate that the anti-rutting factor (G*/Sin δ) of SBS-modified asphalt increases with an 

increase in dosage level, indicating improved high-temperature performance, especially at 

higher temperatures, which have higher sin δ index values (Zhang et al., 2019). Although, 

mixing biochar with other modifiers such as reactive terpolymers has led to the improved 

rutting resistance and thermal stability of all materials from modified asphalt binder (Dong et 

al., 2020). 

Additionally, waste materials and bio-based additives have turned out to be another 

significant factor that can provide outstanding performance of the asphalt binders at high 

temperature. Some of the additives that have been able to provide improvement in the 

rheological properties of asphalt binders for better resistance against thermal cracking and 

aging are waste engine oil and biochar (Woszuk et al., 2019). Strong chemical bonds between 

the geopolymer and aggregate particles help to prevent losses of aggregates and improve the 

overall cohesion of the asphalt mixture. Improved adhesion has been particularly useful in 
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preventing moisture-related damage occurring in asphalt pavements (Hamid et al., 2020). 

Therefore, such geopolymers can also be used to enable asphalt binders to have lower 

temperatures for mixing and compacting. Several advantages come forth during paving with 

such geopolymers. Not only that, which would serve to add energy conservation, but it would 

also reduce the emissions related to asphalt production and application when considered on the 

whole (Katanalp et al., 2024).  

2.2 Asphalt in Road Construction 

Asphalt plays a vital role in road construction because it is moderately used for 

pavement as a durable yet flexible and cost-effective material. With increasing pressures for 

sustainability, some new developments in asphalt technology involve using recycled materials 

and alternative additives. Incorporation of high recycled asphalt pavement content improves 

the performance of the asphalt pavements significantly. Toth et al. (2023)  underline that full-

depth asphalt pavements with high RAP content have not only economic advantages but also 

positive improvements in in-situ performance, especially for high-volume roads like 

motorways. This again was confirmed by Sedthayutthaphong et al. (2021)  who argued that the 

addition of reclaimed materials in paving prolongs the service life of pavement on roads, hence 

the building of environmentally sustainable roads.  

This requires adding warm mix additives to reduce the temperature at which the paving 

is produced, hence reducing the carbon footprint emanating from asphalt production (Toth et 

al., 2023). One of the most crucial factors affecting the strength and longevity of pavement 

construction is the bonding between the layers of asphalt, and the mechanical characteristics of 

asphalt mixtures are among the most significant parameters for the safety and longevity of road 

surfaces. According to Vaitkus et al. (2011), the effectiveness of each bonding depends upon 

many factors including aggregate size, binder type, and construction technology 

2.3 Asphalt Durability Issues 

The performance and life of asphalt pavements is often affected by various durability 

problems such as fatigue cracking, rut and aging damage caused by moisture. 

One of the most common types of distress on asphalt pavements is Fatigue Cracking, 

which in the most part is generated by repeated traffic loads. These kinds of cracks form when 

the elasticity of the asphalt binder is broken down by accumulated stress from traffic 

applications, allowing a crack to develop and may continue to grow with time (Luo et al., 
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2023).  Previous studies considered that fatigue cracking is regarded as one of the main 

concerns in the design and maintenance of asphalt pavement, and it will affect the structural 

integrity and the service life of the pavement directly (Hussain et al., 2022). 

The other major problem affecting the durability of asphalt is Moisture Damage. Water 

infiltration into the pavement can lead to loss of adhesion between asphalt binder and 

aggregates. The result will be the loss of structural integrity of the pavement. This is 

exacerbated by the phenomenon of rolling traffic over wet surfaces, which generates pore 

pressure within the asphalt mixture, accelerating deterioration (Sulejmani et al., 2019). As 

shown by the study of  Arfat et al. (2019), moisture sensitivity can be reduced by incorporating 

some additives that are moisture-resistant in mix design, considering climatic impacts in 

design. Rutting is a term generally used to describe the permanent deformation of the asphalt 

surface, which usually develops under high temperatures and heavy traffic loads. The problem 

is very serious, especially for regions with extremely high temperatures that can cause the 

softening of the asphalt binder and the layer to deform under the weight of vehicles (Arfat et 

al., 2019). 

The increase in elasticity of the binder, and reduction in temperature susceptibility, 

among several other areas of improvement, is considered by many previous studies on how to 

enhance the resistance to rutting. They prove that the polymer modification of asphalt has 

considerably better properties than unmodified ones (Khasawneh et al., 2023). Crumb rubber 

can be included as a material in increasing such resistance, which in turn provides rut resistance 

in improved ways in certain studies (Cheng et al., 2019). Aging is a natural process in asphalts, 

due to exposure to normal environmental conditions. It leads to hardening of the binder by loss 

of volatile fractions and becoming brittle. All these degradation mechanisms can lead to 

increased susceptibility to crack development and overall performance deterioration of flexible 

pavements (Diab et al., 2019). Some of the innovative systems, like self-healing mechanisms 

and rejuvenators, have been investigated to neutralize the aging effects, enabling recovery of 

asphalt properties to a certain extent. Laboratory applications of nanomaterials, such as nano 

clay, have also been tested for their potential to improve the mechanical properties and 

durability of asphalt pavements (Iskender, 2016). 
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 2.4 Asphalt Improvement Through Modifications 

In particular, research works regarding the performances of asphalt mixes using 

Styrene-Butadiene-Styrene block copolymers as modifiers abound under high-temperature 

conditions. Compared with conventional asphalt, SBS-modified asphalt possesses an 

exceptionally good softening point and much higher resistance to rutting because of high 

viscosity. Further, besides granting pronounced improvement in temperature stability to asphalt 

binders, applications of SBS have improved performances for a series of environmental 

parameters (Li et al., 2023). 

This becomes crucial for those pavements that are prone to high temperatures and large 

volumes of traffic flow as the chances of deformation accordingly become very high. The use 

of asphalt rubber mixes has also enhanced high-temperature stability for asphalt mixtures apart 

from polymer modification. Cheng et al. (2019) conducted different types of stress creep 

recovery tests; the results showed that the incorporation of crumb rubber significantly improves 

the high-temperature performance of the asphalt mixture and binder. They found that asphalt 

rubber blends are suitable for high-traffic roads due to their enhancement in pavement 

durability and rutting resistance. WMA is also regarded as a new approach in the improvement 

of asphalt mixture performance at high temperatures. It allows lower temperature for mixing 

and compacting, which is able to enhance workability and simultaneously reduce energy 

consumption. WMA's lower temperatures of production than HMA can result in an improved 

quality of binders, together with reduced fumes during construction, hence an environmentally 

friendly procedure. 

Sun et al. (2019) present research that WMA performs just like HMA, especially in 

terms of high-temperature stability. The addition of diatomite does not significantly affect the 

low-temperature performance of asphalt mixtures but has proved its potential as an asphalt 

modifier by enhancing stability at high temperatures. This is a unique property that makes this 

type of material highly useful for situations where a high level of heat resistance is needed. 

Cheng et al. (2019) reported that an increase in the diatomite content of the mixture 

significantly enhances its rutting resistance. Anti-rutting chemicals have also been tried in 

modifying asphalt for improved performance at high temperatures. Among them, Liu & Tang. 

(2023) assert that anti-rutting chemical additives like NRP increase resistance when treated on 

asphalt mixtures against water and high temperature. Experiments with NRP-modified agents 

showed that there was a significant reduction in rutting for high-traffic areas, prolonging 

pavement life in areas that usually have this problem due to high traffic and temperatures. At 
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high temperatures, Sasobit has also been found to act as a warm-mix additive that enhances the 

rheological characteristics of asphalt binders (Turbay et al., 2022). However, the extent to 

which Sasobit decreases viscosity depends on the specific formulations and conditions 

involved (Jamshidi et al., 2012). 

2.5 Benefit of Using Geopolymer Modified in Asphalt Mixture 

Value-added geopolymers are manufactured from various industrial byproducts, like 

fly ash, considerably improving both mechanical properties and economic efficiency of asphalt 

mixes. Given its superior benefits, it has turned out to be an important tool and is now 

intensively applied in recent modern pavement engineering. In fact, the incorporation of 

geopolymers in asphalt will modify mechanical properties, above all increasing its resistance 

to rutting and on the whole boosting durability Hamid et al. (2020). Adding geopolymers to 

asphalt binders increases their viscosity, thus increasing their resistance to long-term 

deformation under high traffic. This is because the particle network of an asphalt-geopolymer 

blend expands for a more stable and effective mixture.  

In fact, further research by Bujang et al. (2023)  mentioned that asphalt mixtures 

containing fly ash geopolymers had increased fatigue and rutting resistance, prolonging its 

service life and reducing maintenance costs, especially under heavy traffic conditions where 

the performance of the pavement is crucially needed. The rheological properties of asphalt 

binders treated with geopolymers are also significantly improved; this, in turn, means that 

geopolymers increase the softening point and decrease the penetration, which is critical to 

achieving high-temperature performance. Asphalt pavements are prone to thermal deformation 

and cracking under extreme fluctuations in temperature. In this regard, geopolymers are added 

to asphalt mixtures between 6% and 9%, according to research for optimal performance 

(Dulaimi et al., 2023; Bujang et al., 2023). Geopolymers improve adhesion between aggregate 

particles and asphalt binders for durability. 

This is because a recent study by Bujang et al. (2023) shows that the pavement's lifespan 

is extended due to the fact that the chemical bonding afforded by geopolymers prevents 

aggregate particles from being lost. As a matter of fact, it is this improved bonding that is 

needed to maintain the structural integrity of asphalt pavements, considering extreme weather 

conditions and traffic congestion. The compaction behavior of asphalt mixes reinforced with 

geopolymers was studied using a sophisticated approach, such as that of DEM. A new 

modeling approach, in the work by Olsson et al. (2019), was done to shed light on the 
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mechanical interactions occurring within these mixes. This is one of the approaches aimed at 

aiding engineers in their compaction to achieve particular density and performance objectives. 

These geopolymer-modified mixes have been tested in various field and laboratory tests. For 

example, Bujang et al. (2022) conducted volumetric tests of asphalt mixtures containing fly 

ash geopolymers and observed better performance and stability of the geopolymers as 

compared to conventional asphalt mixtures.  

2.6 The Elastic and Viscous Behavior of Asphalt Binders 

The forecast of storage and loss modulus present in asphalt performance helps to 

explain the viscoelastic behavior of the asphalt binder. While loss modulus defines the viscous 

behavior of the asphalt material, the elasticity of the material is given by its storage modulus. 

Their prediction may help engineers understand the resistance that a material can have to 

deformation for different loading conditions, which becomes an essential part of pavement 

design (Wang et al., 2020). A material's modulus denotes its stiffness and recovery capacity, 

the energy retained after deformation due to stress. To avoid permanent deformation under 

traffic loads, elastic characteristics will be better for larger values of G′ (Wu et al., 2021). The 

storage modulus of asphalt mixture may be affected by its composition, loading frequency, and 

temperature. The addition of polymer modifiers like SBS has been proven to raise the storage 

modulus of asphalt binders significantly and enhances their ability in high temperature storage 

(Li et al., 2023). On the other hand, a master curve of dynamic modulus can relate G′ with 

temperature and frequency, for instance by the use of TTSP (Zhang et al., 2020). 

A higher loss modulus means that asphalt will be able to absorb more energy from the 

traffic load. This is important in preventing fatigue cracking, among other forms of distress. 

Often, the relationship of G′ to G″ is defined by a phase angle δ, where with decreasing phase 

angle, the behavior is more elastic, while at higher phase angle values, the response becomes 

more viscous (Bennert et al.,  2023). The aging of asphalt can also reduce the loss modulus, 

where with the hardening of binder, aged binders normally have greater G″ values. 

The storage and loss modulus for both have been developed to facilitate design and 

analysis in asphalt mixtures. Most of these models' basic concepts rely on the experimental 

data acquired from DSR and subsequently derive G*, which is the complex modulus consisting 

of both G′ and G″ (Zhan, 2013). Semi-empirical models to machine learning approaches have 

been made to find a prediction for dynamic modulus from the viscoelastic properties of asphalt 

mortar and mixtures (Dao et al., 2020). For example, the Hirsch model and Witczak's model 
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are normally applied to estimate the dynamic modulus from material properties and loading 

conditions (Wang et al., 2021) 

2.7 The Use of Machine Learning for Predicting the Performance of Asphalt Mixtures 

A new field of study, therefore, is in development to better the precision and 

effectiveness of the performance evaluations through sophisticated computational techniques 

for the estimation of the storage and loss modulus of asphalt mixtures by machine learning 

models. These models require input parameters of temperature, stress conditions, and material 

composition to forecast the viscoelastic characteristics of asphalt for pavement design and 

performance assessment. Several of the most popular machine learning techniques for 

estimating of the dynamic modulus and further the separate parts of its storage and loss 

modulus of the asphalt mix include Artificial Neural Networks, Support Vector Machines-

SVM, and the Random Forest-RF algorithm, widely applied in modeling the mechanistic 

properties in asphalts (Wang et al. (2021) Dao et al. 2020; Ayazi et al., 2024). 

These methods make more accurate predictions than traditional empirical methods and 

allow for the extraction of complex patterns linked with input variables regarding the intended 

outcome. Quantitatively and qualitatively, the amount of data utilized for training a machine 

learning model is major influencing factors on the performance. Dao et al. (2020) are some of 

the few who have developed predictive models for the dynamic modulus of warm mix asphalt 

using large laboratory test datasets. In the same way, such comprehensive datasets should be 

considered to predict the modified reclaimed asphalt pavement mechanical behavior as precise 

as possible. Also, more complex input features, such as aggregate gradation, binder 

concentration, and environmental conditions, enhance the performance of the models (Ayazi 

et al., 2024). 

This can be done by using the mean squared error, R-squared values of the machine 

learning model performance, among other metrics, as some guidelines to assess predictive 

accuracy. Many literatures have established that hybrid models tend to give better results since 

they are combined with several machine-learning techniques. For example, Eleyedath & 

Swamy. (2022) work on a hybrid model for the prediction of the dynamic modulus of asphalt 

concretes by incorporating the principal component analysis into gene expression 

programming.  

Le et al. (2020)  presented a hybrid artificial intelligence model for predicting the 

dynamic modulus of stone mastic asphalt by combining various algorithms that would provide 
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optimum performance prediction of the materials. This hence underlines the possibility of using 

multiple machine learning techniques to enhance predictive capability on asphalt mixes. 

Furthermore, machine learning applications also extend to the assessment of RAP properties. 

(Botella et al. (2022)  applied ML techniques to estimate the degree of binder activity in RAP 

(reclaimed asphalt pavement) and demonstrated that machine learning can sort out relatively 

simple input variables and provide very accurate predictions of the performance of recycled 

materials. This, especially for sustainable construction, will be a more important factor in the 

future, as more stress is being placed on the use of recyclable materials. Machine learning 

integrated into asphalt mixture performance prediction enhances the predictive accuracy and 

contributes to efficiency in the general design process. According to Uwanuakwa et al. (2020), 

machine learning models are thus applicable for accelerating the tests of various performance 

parameters, such as rutting and fatigue cracking, which enable the making of informed 

decisions in asphalt mix design.  

This capability is sorely needed to meet challenges in traffic loads and environmental 

condition uncertainties that have been directly affecting pavement.  Model interpretability has 

become of great significance when it comes to machine learning, especially within critical 

domains such as healthcare. Different explanation methods have cropped up, like SHAP, 

LIME, PDP, ICI, and PFI which let model transparency go hand in glove with trust. According 

to (Swathi & Challa, 2023), techniques could be divided into two important interpretability 

approaches, global and local, each reflecting a different insight upon model behavior. Global 

methods aim to provide insights on the whole conditional distribution, while local ones give 

insight for certain instances (Molnar et al., 2022). Research is done concerning their power of 

explanation and identifying relevant or important features (Tiwari et al., 2019). 
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CHAPTER III 

Methodology 

 

3.1. Proposed Methodology 

This research proposed tree machine learning models including Random Forest (RF), 

Extreme Gradient Boosting (XGboost) and Categorical Boosting (CatBoost) to predict the 

high-temperature performance of geopolymer-modified asphalt binder using local and global 

effect and interaction analysis. A proposed schematic diagram for methodology is presented in 

Fig 1 which, includes stages of data collection, data processing, model development using 

machine learning methods, model interpretability techniques, performance evaluation, and 

identification of the accurate predictive model.  

Figure 1  

Proposed schematic diagram for methodology 
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3.2. Data Source and Processing 

The data used in the research was obtained from physical tests: penetration, softening 

point, viscosity, conducted according to ASTM D5, ASTM D36, and a rheological test using a 

dynamic shear rheometer (Frequency sweeps tests) according to AASHTO T315 (Ali et al., 

2017). The 60/70 penetration grade was the base asphalt, whereas the geopolymer modifier of 

asphalt binders was a mixture of Fly Ash and alkali liquid which was a sodium silicate solution 

Na2SiO3 and sodium hydroxide NaOH pallet diluted in water to produce an 8 Molar (8M) of 

NaOH solution, while the Class F fly ash had a Specific Gravity -2.26. The mixture of Na2SiO3 

and NaOH was prepared to activate the alumino-silicate precursors in fly ash through a series 

of dissolution-hydrolysis. Nine (9) explanatory parameters have been used for this study which 

is composed of seven (7) inputs and two (2) outputs, represented in the following table:   

Table 1.  

Features distribution of dataset 

Name Measurement Data type Description 

Type of binder Percentage Qualitative Input parameter  

Temperature Celsius Quantitative Input parameter 

Frequency Hertz Quantitative Input parameter 

Shear stress Pascal Quantitative Input parameter 

Softening point Celsius Quantitative Input parameter 

Viscosity Pascal Quantitative Input parameter 

Failure temperature Celsius Quantitative Input parameter 

Storage modulus Pascal Quantitative Output parameter 

Loss modulus Pascal Quantitative Output parameter 
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Table 2.  

Descriptive statistics 

  

Type of 

Binder  T in °C 

Frequency 

(f) in Hz 

Shear stress 

(τ) in Pa 

Softening 

point (°C) 

viscosity 

@135 

Failure 

temperature 

Storage 
modulus (G') 

in Pa 

loss modulus 

(G") in Pa 
          

Mean 3.345 62.646 4.204 4865.538 51.161 0.410 66.169 1374.178 8499.403 

Standard 

Error 0.164 0.789 0.345 445.162 0.255 0.003 0.3164333 344.739 1332.599 

Median 3 64 1.592 2142.550 49 0.41 67 75.729 1775.103 

Mode 0 46 15.92 1228.04 47 0.35 59 35.277 1028.365 

Standard 

Deviation 2.474 11.862 5.182 6692.258 3.841 0.042 4.757 5182.574 20033.355 

Sample 

Variance 6.120 140.719 26.848 44786323 14.755 0.002 22.629 26859074 401335333 

Kurtosis -1.223 -1.171 0.377 6.592 -1.528 -1.281 -1.207 66.649 34.295 

Skewness -0.105 0.174 1.316 2.423 0.361 -0.345 -0.650 7.486 5.177 

Minimum 0 46 0.1592 12.913 47 0.35 59 0.537 10.829 

Maximum 7 82 15.92 32626 56.5 0.46 71 56366.602 183713 

Count 226 226 226 226 226 226 226 226 226 

 

To obtain good performance, the data must first be pre-processed before being 

evaluated by machine learning algorithms. Data normalization is a pre-processing technique 

that involves scaling or transforming the data so that each feature contributes equally 

(Dalwinder Singh & Birmohan Singh, 2020).  By using this pre-processing step, all features 

were appropriately scaled to fall between 0 and 1. The min-max normalization was used using 

the equation below:  

 

          𝑋𝑖
′ =

𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                                                                             (1) 

 where, 

𝑋𝑖  is the observed data while, 𝑋𝑚𝑎𝑥 𝑎𝑛𝑑 𝑋𝑚𝑖𝑛 represent the maximum and minimum value of 

the data. 
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3.3. Machine Learning Models 

3.3.1. Random Forest (RF) 

Random Forest is mainly an ensemble learning method that has widely been used both 

for classification and regression problems in machine learning (Ren et al., 2016). After training, 

this algorithm creates multiple decision trees and gives the mode of classes in the case of 

classification, or the mean prediction among different trees in the case of regression, as output, 

as was proposed (BREIMAN, 2001). It works quite effectively on big and high-dimensional 

data sets, with applications ranging across diverse domains. 

Random Forests are based on bagging (bootstrap aggregating) algorithm combined with 

decision trees. That is, multi-numbers of decision trees trained on various subsets of the training 

data. Each is built by a random sample of points in data and a random subset of features. This 

decorates the trees from each other. The diversity among the trees would decrease the risk of 

overfitting; in contrast, single-decision trees do have this problem. The final prediction is 

obtained by aggregating the predictions from all these trees, enhancing their overall accuracy 

and robustness within the model ( Zhang et al., 2021)Li et al., 2020). 

Compared to single decision trees, the main advantage of the Random Forest model is 

that it has less risk of overfitting, especially when there is noisy data. The major impacts of 

averaging multiple trees include smoothing predictions and a reduction in variance (Elmuna et 

al., 2023). It can handle missing values effectively because it keeps accuracy steady even when 

a large portion of the data is missing since its prediction depends on the majority of the trees 

based on available data. Further, an additional advantage of Random Forests is that it provides 

insight into feature importance. The features would be ranked according to their contribution 

to the prediction, and this may turn out to be informative in the understanding of the underlying 

data, and it could also serve in the selection of features (Y. Liu et al., 2018).  It is an extremely 

friendly algorithm to practitioners, mainly because it requires minimal pre-processing of the 

data. The data does not necessarily be scaled or normalized, therefore making life so easy for 

the modeling process. According to (Xu et al., 2012) Random Forest can handle imbalanced 

datasets much better compared to many other algorithms; this is because its tuning can be done 

to focus on minority classes without losing overall accuracy (Zhang et al., 2020).  

 
3.3.2. Extreme Gradient Boosting (XGBoost) 

XGBoost, or Extreme Gradient Boosting, is a popular ensemble learning algorithm that 

falls under the family of gradient boosting methods. Generally, it is put to work in supervised 
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learning tasks much like random forests for classification and regression problems. However, 

it is known for its speed and efficiency in the execution of big data and complex models (Chen 

& Guestrin, 2016).  It is based on the boosting ensemble technique, which pools predictions 

from a set of weak learners simple decision trees to come up with a strong predictive model 

(Lv et al., 2021). In a boosting model, XGBoost votes to build trees in order, with each new 

tree trying to correct the errors made by previously grown trees. It does this by optimizing a 

loss function using gradient descent in a way that iteratively minimizes the prediction error (Bi 

et al., 2020).  The structure of XGBoost consists of several components: 

• Decision Trees: XGBoost constructs an ensemble of decision trees where each tree is 

built based on previous residual errors. The trees will be added sequentially, one by 

one, with each contributing to the final prediction (Yang et al., 2024). 

• Learning rate: The learning rate or shrinkage parameter defines the contribution of each 

tree to the final prediction. For a given lower learning rate, increasing the number of 

trees improves the model for performance at the cost of slow training. 

•  Objective Function: is a combination of a loss function, which calculates the difference 

between predictions and actual values, and a regularization term. The latter punishes 

model complexity for better generalization. This can be formally expressed as: 

𝑂𝑏𝑗(𝑡) = ∑ 𝑙 (𝑦𝑖, ŷ𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) + 𝛺(𝑛
𝑖=1 𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡……………………………(1) 

Where 𝑙 is the loss function, n is the sample size, 𝑦𝑖 is the observed values, ŷ𝑖
(𝑡−1)

 is the 

predicted value of the last iteration, 𝑓𝑡 is a new function which model learns, 𝑥𝑖 is the feature 

vector and 𝛺(𝑓𝑡) denotes the regularization term which saves the model from complexity. 

• Hyperparameters: Among the hyperparameters that can be optimized in XGBoost are 

the number of trees, the maximum tree depth, the subsample ratio, and the 

regularization parameters (Torlay et al., 2017). 

The number of trees, maximum tree depth, subsample ratio, and regularization 

parameters are examples of hyperparameters that need to be tuned carefully for the best 

performance to be achieved from XGBoost (Torlay et al., 2017). Indeed, in most practical 

applications, this model outperforms a large number of other machine learning methods due to 

its well-known high predicted accuracy and efficiency (Bi et al., 2020).  It is one of the favorites 

of data practitioners due to its capability to handle big datasets with complicated interactions. 

XGBoost accepts a wide range of input formats and problem domains such as regression, multi-
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class classification, and binary classification (Liu et al., 2022). It is also resistant to overfitting 

because of its sophisticated regularization methods, hence suitable for noisy and high-

dimensional data (Romeo & Frontoni, 2022). It also helps in feature selection and model 

interpretation by providing useful information on which features have a major impact on model 

predictions through the feature significance method in XGBoost (Yang et al., 2024). 

 

3.3.3. Categorical Boosting (CatBoost) 

The gradient-boosting technique CatBoost makes use of binary decision trees. It 

improves on conventional gradient boosting by resolving problems such as overfitting and bias 

(Dorogush et al., 2018). This is how it functions:  

• Sequential Training: CatBoost trains on the entire dataset sequentially to reduce bias. 

• Random Permutation: After training, the dataset is randomly permuted.  

• Average Label Calculation: For each sample, an average label is computed based on 

the permuted data to prevent overfitting. 

CatBoost effectively transforms categorical features into numerical ones by utilising an 

ordered boosting technique created by Prokhorenkova et al. (2018). It overcomes the problem 

of gradient bias in the traditional gradient-boosting decision tree by ensuring that the 

conversion retains as much information as possible and hence minimizes information loss and 

overfitting caused by biased gradient estimates. Ordered Boosting is explained as follows: 

  

Ordered boosting algorithm 

Input: {(𝑋𝑘 , 𝑌𝑘)}𝑘=1
𝑛 , 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠 𝐼ꓼ 

           𝜎 ← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 [1, 𝑛] ꓼ 

                 𝑀𝑖 ← 0 𝑓𝑜𝑟 𝑖 = 1, … . . , 𝑛 ꓼ 

                   𝑓𝑜𝑟  𝑡 ← 1 𝑡𝑜 𝐼 𝑑𝑜  

   𝑓𝑜𝑟  𝑖 ← 1 𝑡𝑜 𝑛 𝑑𝑜 

𝑟𝑖 ← 𝑦𝑖 − 𝑀𝜎(𝑖)−1(𝑋𝑖)ꓼ 

   𝑓𝑜𝑟  𝑖 ← 1 𝑡𝑜 𝑛 𝑑𝑜 

 ∆𝑀 ← 𝐿𝑒𝑎𝑟𝑛𝑀𝑜𝑑𝑒𝑙[(𝑋𝑖 , 𝑟𝑗): 𝜎(𝑗)  ≤ 𝑖]ꓼ 

 𝑀𝑖 ← 𝑀𝑖 + ∆𝑀ꓼ 

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑀𝑛 
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 This algorithm is according to 𝜎, which is an example of a random permutation of data, 

{(𝑋𝑘, 𝑌𝑘)}𝑘=1
𝑛  representing a dataset with 𝑋𝑘 as the input feature and 𝑌𝑘 as the target variable 

for each sample k. The data indices [1, 𝑛] are randomly permuted to produce a new order of 

samples. For t = 1 to I, the model prediction ( 𝑀𝑖) is initially equal to zero, but it will be updated 

as I trees are sequentially added. The residual ( 𝑟𝑖) of the I sample is computed as the difference 

between 𝑦𝑖 the actual target and 𝑀𝜎(𝑖)−1(𝑋𝑖) the current model prediction, then the weak model 

learner's contribution ∆𝑀 is added to the model prediction for all samples to updated it. Finally, 

the algorithm returns the ensemble model (𝑀𝑛) after I interactions. 

3.4 Model Interpretation 

Model interpretation is one of the various methods used to make sense of the way a 

machine learning model is making predictions (Poursabzi-Sangdeh et al., 2021). ML has 

greatly improved and shown applications in many areas. This element is very crucial for high-

stakes situations where transparency has to be (Miller, 2018). Improving Machine Learning 

Model Interpretability addresses both educational goals and interest in how algorithms derive 

predictions. Moreover, explainability enhances the security of these models through testing, 

evaluation, and improvements. This is most important in sectors where mistakes have high 

impacts, such as fatal ones. Interpretable machine learning can be achieved using various 

techniques that have unique qualities. 

According to Molnar et al. (2022), the above two approaches have traditionally been 

divided based on the feature effects and feature importance of either a single data point or entire 

dataset - respectively: in Figure 1; this has two interpretations, which are explained in terms of 

Global Interpretability and local interpretability, whereas, during Global model interpretability: 

aims at insight into how specific features contribute toward predictions, overall on any data set. 

Partial Dependence Plots and Accumulated Local Effects are two methods that will give an 

overall view of how each feature affects the model's predictions across all data points. Global 

Importance Approaches such as Partial Importance, Permutation Feature Importance, and 

SAGE are used to quantify each feature's contribution to the model's prediction ability. With 

these methods, the contribution or influence of every feature towards the model's overall 

performance is assessed.  

 

 



19 
 

Figure 2.  

Techniques for Understanding Machine Learning Models (Molnar et al., 2022). 

 

The main goal of local model interpretability is individual prediction explanation. Local 

importance presents the degree a feature that affects a particular prediction using Individual 

Conditional Importance (ICI). The contribution of each feature to a particular prediction is 

quantified with techniques such as Shapley Additive Explanation (SHAP), Individual 

Conditional Expectation (ICE) curves, and Local Interpretable Model-agnostic Explanations 

(LIME) to understand the local effects on predictions. This study applied SHAP and LIME to 

assess the local impact on predictions, Individual Conditional Importance (ICI) for the 

evaluation of local importance, Partial Dependence Plots (PDP) for understanding the global 

general effect of features, and Permutation Feature Importance (PFP) to determine the global 

feature importance.  

3.4.1. Local Interpretable Model Agnostic Explanations (LIME) 

LIME is the method that explains the predictions of complex machine learning models 

in a more understandable form. It creates a much simpler and understandable model that 

emulates the behavior of the original "black-box" model for a certain given neighborhood of 

the given instance. This locally produced approximation, though with important overviews into 

the inner working mechanisms for normally incomprehensible models, gives insight into the 

decision-making process. 

The central idea behind LIME is to perturb the input data and study how changes in the 

data affect the output of the model (Dindorf et al., 2020 ; Sousa et al., 2019). It does this by 

creating a set of altered samples surrounding the instance to be explained, after which a simple 
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local model-fitting, such as a decision tree or linear regression, is fitted to closely mimic the 

behavior of the original model within that region. This procedure enhances our understanding 

of the internal model logic by elucidating how certain predictions are made and showing which 

characteristics have the most value for a specific choice (Dindorf et al., 2020).  

3.4.2.  Shapley Additive Explanation (SHAP) 

SHAP is a well-known Approach for ML model analysis using Cooperative game 

theory with the explanation by Shapley values, and is developed by Lundberg & Lee., (2017). 

This calculates the contribution of each feature towards the outputs from the model's prediction. 

According to Rodríguez-Pérez & Bajorath. (2020) in a unified approach, SHAP examines 

features reliance on consequences of even sophisticated, complex models of any design. 

The most important advantage of SHAP is its additive property, which states that the 

difference between the model's prediction for an individual instance and the average 

prediction across all instances is equal to the sum of SHAP values for all features. This 

property greatly enhances the interpretability and transparency of the explanations, while 

providing a uniform approach to estimating the contribution of each factor (Wang et al., 2022). 

3.4.3. Individual Conditional Importance (ICI) 

The particular strategy for the discovery of the most influential variables locally will be 

called the individual conditional importance. That enables learning about how a specific 

model's feature produces a specific forecast. ICI thus gives insight into a better investigation 

of different feature relevance in different portions of data and introduces the application of the 

concept of Shapley values. It reinforces the confidence level and understanding with a critical 

sense of trust in the way decisions are done via models, by describing how various subsets 

influence the prediction (Casalicchio et al., 2019). 

3.4.4. Partial Dependence Plot (PDP) 

Partial Dependence Plots (PDPs) show the relationship between a machine learning 

model’s prediction and one or more input features. They are particularly helpful for analyzing 

complex models because it can be difficult to determine how a specific attribute affects the 

results just by looking at the model's structure. PDPs are the most straightforward methods for 

communicating the relationships between these features and the target variable because they 

represent the marginal impact of a single feature on the expected outcome, averaged over the 

other features (Friedman, 2001). 
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3.4.5. Permutation Feature Importance (PFI) 

The significance of features in machine learning models is frequently assessed using 

Permutation Feature Importance (PFI). The methods measure the accuracy decrease that 

happens when feature values are randomly shuffled to quantify the distribution of features on 

the performance model.  

This is particularly a very useful method in that it is model-agnostic; it can be applied 

to any trained model, irrespective of its underlying architecture. The PFI quantifies features' 

importance by measuring how far the model's accuracy is influenced when the feature values 

have been permuted, in most PI, attention has turned to the marginal impacts while adjusting 

for the impact brought forward by other variables (Brenning, 2023). 

3.5 Model Evaluation Methods 

In this research, various methods are used to quantify the error and variance in a 

forecasted dataset, with no particular technique being better than the others (Muliauwan et al., 

2020). The techniques employed include mean absolute error (MAE), root mean squared error 

(RMSE), mean absolute percentage error (MAPE), and R-squared as error evaluation metrics 

that can be mathematically expressed by:  

𝑅2 = 1 − (
∑ (𝑦−𝑦′)2𝑛

𝑖=1

∑ (𝑛
𝑖=1 𝑦′)2

)                                                                                               (2) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦 −  𝑦′)2𝑛

𝑖=1                                                                                       (3) 

   𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦−𝑦′

𝑦
|𝑛

𝑖=1                                                                                              (4) 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦 − 𝑦′|𝑛

𝑖=1                                                                                                (5) 

 

where the number of data is n, and the actual and anticipated values are 𝑦 and 𝑦′ 

respectively. RMSE measures the average discrepancy between each real data point and the 

anticipated outcomes. Using the absolute difference between the actual data and the anticipated 

outcomes, MAE computes the average error. R quantifies the degree of the linear relationship 

between the two variables. While it shares similarities with MAE, which computes absolute 

differences in accuracy. The benefit of MAPE is that it is more effective at identifying the 

relative differences across models because it is unaffected by the unit or magnitude of the 

anticipated and actual values 
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CHAPTER IV 

Results and Findings 

4.1 Introduction 

In this section, the research presents all machine learning models mentioned in chapter 

three, including Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Categorical 

Boosting (CatBoost). They were utilized to predict the storage modulus (G'), and loss modulus 

(G") of geopolymer-modified asphalt binder. The results of all these models were computed 

using Python. Different performance metrics were also evaluated to determine which model 

performed the best.  Model interpretability techniques were applied to interpret the ML model. 

4.2 Machine Learning Model Training and Testing Results of Loss Modulus 

As mentioned in Chapter Three, 266 data were used to predict loss modulus. The data 

was divided into 65% for training and 35% for testing using seven inputs: binder type, 

temperature, frequency, shear stress, softening point, viscosity, and failure temperature to train 

the model. R², RMSE, MAE, and MAPE were determined in Table 3.  to evaluate the model's 

predictive performance. Using scatter plots, the observed and predicted values of G" are 

compared by applying the three models (RF, XGBoost, and CatBoost).  

Figure 3. (a) and (b) show the model performance on the training and testing set, where 

each model is represented using a particular marker. RF has red circles, XGBoost has blue 

squares and green is represented by CatBoost. For training performance, the predicted and 

measured have a positive linear relationship for all models. The CatBoost (green line) and 

XGBoost (blue line) models are closely aligned with the diagonal line indicating a strong 

correlation between predicted and measured G" by achieving higher accuracy with R² =1 than 

RF which deviating more from the line with the largest RMSE and MAE in term of error. 

For testing, CatBoost maintains the closet's alignment with the diagonal line 

demonstrating a significant performance with an R² value of 0.9568 and a high % of MAPE 

from Table 3. However, RMSE and MAE were lower than the other two models. RF and 

XGBoost exhibit the deviation from the diagonal line with lower R² values of 0.882 and 0.755 

respectively. In general, CatBoost demonstrated significant performance with prediction 

closely aligned with the diagonal line in both training and testing cases by achieving the most 

consistent and high performance, particularly in the training set with the highest value of R² 
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and MAPE but the lowest RMSE and MAE. XGBoost comes in second position followed by 

RF which has less accuracy than other models. 

Table 3.   

Fit-Accuracy Statistics of Statistical Regression Models' Prediction of Loss Modulus 

 Training Testing 

Models RF XGBoost CatBoost RF XGBoost CatBoost 

R² 0.9354 1 1 0.882 0.7549 0.9568 

RMSE 6554.657 1.047 163.281 5247.254 5208.924 2359.396 

MAE 1899.699 0.689 123.157 1727.184 1805.779 1039.329 

MAPE 10.1%  0.1% 19.5% 13.5% 14.1% 64.4% 

 

Figure 3.  

The model training and testing scatter plots between predicted and measured loss modulus 

for RF, XGBoost, and CatBoost models. 

 

 
                                         (a) 

                                           

 
                                            (b) 

                                                

4.2.1 Local Effect Model Interpretation for Loss Modulus 

Machine learning models are complex and challenging, often used as black boxes, 

while they are robust in their predictive capabilities, they provide little interpretability 

regarding their outputs. After modeling the two parameters (G', and G"), this research focuses 

on four different approaches to understanding better the models used (RF, XGBoost, and 
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CatBoost). These approaches include global effect (PDP) and local effect (SHAP and LIME), 

global importance (ICI), and local importance (PFI). 

a. SHAP Value 

Figure 4 illustrates feature importance ranking and SHAP summary plots for RF, 

XGBoost, and CatBoost using SHAP as a local effect approach to quantify the contribution of 

a feature for loss modulus prediction. The SHAP summary plots visualize the distribution of 

SHAP values for each feature by showing how the feature values affect the predictions. Six 

features namely shear stress, frequency, binder type, softening point, and viscosity were 

considered as the input variables where each dot represents a data point with its colors 

corresponding to the feature value: bleu represents low feature values and red suggests high 

feature values. The Left and right position shows whether the feature increase or decreases for 

the model’s prediction. 

 On the other hand, the feature importance ranking with mean absolute SHAP values 

indicates the average magnitude of the impact on a feature for the model's predictions. Higher 

values mean the feature has a greater influence on the outputs. The result reveals that, for the 

Random Forest model, Shear stress has the highest mean absolute SHAP value, indicating it's 

the most influential feature. Frequency and Temperature also have significant impacts. The dot 

plot shows that higher values of Shear stress generally increase the prediction of Loss Modulus.  

For the XGBoost model, Similar to Random Forest, Shear stress is the most influential feature. 

Temperature and Frequency follow in importance. The dot plot indicates that higher 

Temperature values tend to decrease the prediction, while higher Frequency values increase 

it and for the CatBoost model, Shear stress again leads in importance. Temperature and 

Frequency are also significant. The dot plot for CatBoost shows a similar pattern with Shear 

stress and temperature impacting the prediction in opposite directions. 
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Figure 4.  

SHAP Values of RF, XGBoost, and CatBoost for Loss Modulus 

 Feature importance ranking Shap summary plot 
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b. LIME  

The Local Interpretable Model-agnostic Explanations (LIME) was used as a second 

approach in this research to evaluate the local effect of each feature in influence on both storage 

and loss modulus for 8 randomly selected instances. The figure below shows the result of LME 

for the three models used. For each of them, only two instances are presented in this section 

and six are in the appendice section. LIME values help in understanding how each feature 

contributes to individual predictions locally, around a specific instance. Here, the red bars 

represent the positive LIME values indicating features that increase the model’s prediction 

while green bars represent the negative LIME values which indicate the features that decrease 
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the model’s prediction. From the result, it can be observed that Shear Stress is the most 

influential feature across all models, with high positive LIME values indicating a significant 

impact on increasing the prediction of Loss Modulus followed by frequency which has also a 

notable impact, with positive LIME values in most models, suggesting it generally increases 

the prediction. Temperature varies in impact but often has a significant positive effect, though 

in some models, it might have a lesser impact compared to other features in addition, the 

softening point generally has a smaller but still notable impact, with positive LIME values. 

Finally, viscosity: Often has the least impact on the prediction of Loss Modulus, indicated by 

lower LIME values, and, binder type varies in impact, with some models showing it as more 

influential than others. 

Figure 5.  

LIME Values of RF, XGBoost, and CatBoost for Loss Modulus 
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For Random Forest, shear stress is the dominant feature, followed by Frequency and 

Temperature. The impact of Binder Type and Softening Point is less pronounced but still 

present. In the XGBoost model again, Shear stress leads in importance. Frequency and 

Temperature follow, with Temperature having a mixed impact. The softening point and 

viscosity have lesser impacts, with viscosity being the least influential. For CatBoost, similar 

pattern with Shear stress being the most influential. Frequency and Temperature are also 

significant but show varied impacts. Softening Point and Viscosity have smaller impacts, with 

viscosity being the least influential 

4.2.2 Local importance model interpretation for loss modulus 

The local importance analysis was evaluated using the Individual Conditional 

Importance (ICI) approach for different features with average ICI for the Top 100% of 

Instances (All Test Set) (left plots) and ICI for Selected Instances (right plots) of three models 

when predicting the loss modulus. The ICI plots illustrated in Figure 6 are used to interpret the 

performance of the machine learning model.  

For XGBoost, shear stress is the most important feature with high values of ICI across 

all instances, indicating that it is a crucial feature when predicting loss modulus, followed by 

temperature but this shows variability across instances. Frequency is also a third important 

feature but less than the first two top ones. Its importance varies, meaning it interacts with other 

features. Softening point, binder type, and viscosity have lower values of ICI this means that 

they are less critical features with lower importance but they still contribute to the model. 

For the Random Forest model, shear stress again is the most important feature, 

indicating its critical role in predictions. The consistency across instances confirms its 

significance. Temperature is important but not as much as Shear Stress. The variability in its 

importance across instances suggests it might not always be a decisive factor. Frequency shows 

some importance but less than temperature, indicating it might be less universally applicable 

or its effect might be weak in certain conditions. In contrast to XGBoost, the softening point, 

binder type, and viscosity characteristics seem to be even less significant in this model. This 

suggests that because Random Forest incorporates several decision trees, these qualities may 

not be as important in Random Forest or their influence may be depicted differently. 

As demonstrated by its consistent importance across models, shear stress is still the 

most important parameter in the CatBoost model for forecasting Loss Modulus. In other 

situations, temperature is found to be highly significant, indicating that its effects may be more 
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situation-specific. In comparison to other models, frequency is also very important, which may 

suggest a more important or subtle role for CatBoost. The importance of viscosity, binder type, 

and softening point vary; in certain cases, these characteristics are more important than others. 

This fluctuation may suggest that, depending on their interactions with other variables or the 

particular context of the prediction, certain features may occasionally be crucial inside the 

CatBoost framework. 

Figure 6.  

ICI Values of RF, XGBoost, and CatBoost for Loss Modulus 
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4.2.3 Global Effect Model Interpretation for Loss Modulus 

The three models were interpreted using a global effect method called the Partial 

Dependency Plot (PDP). By averaging the effects of all features, PDP enables us to 

comprehend the relationship between each feature and the anticipated loss or storage modulus. 

It can examine how modifications to a single feature may impact the model's prediction.  

The x-axis represents the range for feature value, while the y-axis indicates the effect 

of the feature on the prediction. The curves on PDP illustrated how predictions change in the 

model’s prediction as the feature value changes. If the curve rises as you move along the x-

axis, it means that increasing the feature's value results in higher predictions from the model, 

If the curve falls or downward slope, it indicates that increasing the feature's value leads to 

lower predictions. A horizontal or flat PDP curve suggests that changes in the feature's value 

do not significantly affect the model's predictions.   

For the CatBoost model, the plot in Figure 7. shows a gradual increase in the partial 

dependence as the Binder Type value increases. This indicates that higher binder-type values 

tend to increase the predicted Loss Modulus. However, there is a noticeable decrease in the 

partial dependence as the temperature increases from around 50 to 70. This suggests that the 

Loss Modulus prediction decreases with increasing temperature up to a certain point, after 

which it stabilizes. The partial dependence increases linearly with frequency and sharply with 

the shear stress up to around 5000, followed by a rise curve. This implies that higher 

frequencies and shear stress values significantly increase the predicted Loss Modulus, but the 

effect diminishes after a certain point for shear stress. Furthermore, there is a little upward trend 

as viscosity and softening point rise, suggesting that greater values of these two characteristics 

result in somewhat larger Loss Modulus estimates. 
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Figure 7.  

PDP Values of CatBoost for Loss Modulus 

 

The PDP results for the Random Forest (RF) and XGBoost models are presented in 

Figures 8 and 9. The results indicate that for the RF model, the loss modulus increases slightly 

with rising binder types. Conversely, the plot demonstrates a downward trend concerning 

temperature, showing that the loss modulus decreases as temperature increases. There is also a 

modest upward trend in loss modulus with increasing frequency, indicating that higher 

frequency leads to an increase in the loss modulus. Additionally, there is a sharp increase in G" 

as the shear stress approaches 10000, after which it stabilizes. The softening point and viscosity 

have little to no significant effect on the loss modulus.  

For XGBoost, loss modulus behaves a little differently as shown in Figure 9, where it 

remains relatively constant for lower binder types but increases slightly with higher binder 

types, indicating a minor positive effect. G" decreased as the temperature rises beyond 60 C, 

showing a strong negative impact of higher temperatures on predictions. Similar to storage 

modulus, G" increases with frequency in a linear pattern. There is a sharp and consistent 

increase in G" with increasing shear stress, particularly at lower levels. G" decreases slightly 
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with increasing softening points, showing a weak negative impact. There is no influence in 

viscosity because G" remains unaffected by changes. 

Figure 8.  

PDP Values of Random Forest for Loss Modulus 

 

Figure 9.  

PDP Values of XGBoost for Loss Modulus 
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4.2.4 Global Importance Model Interpretation for Loss Modulus  

Permutation Feature Importance (PFI) analysis was used in this research to identify the 

most significant features of each model for the prediction of both loss and storage modulus. 

Here are the results of the three models for loss modulus illustrated in subplots a,b, and c 

expressed as the mean decrease in accuracy: 

In Figure (a), for CatBoost permutation importance, temperature is the most important 

feature, with the highest mean decrease in accuracy when permuted, followed by frequency 

and shear stress with less impact than temperature. Softening point and viscosity have very 

small mean decreases, meaning that they have a minimal contribution to the model’s accuracy. 

The binder type is the smallest important feature, showing negligible impact. 

In Figure (b), Random Forest model, shear stress is the most important feature, followed 

by temperature, but its impact is lower compared to the shear stress, and frequency ranked 

third. Softening point and viscosity both have minimal influence, similar to CatBoost and 

binder type again is the last with no impact. In Figure (c), for XGBoost, temperature dominates 

as the most important feature, similar to CatBoost, followed by shear stress and frequency. 

Softening point and viscosity have less impact, comparable to the other models, and binder 

type is still negligible.  

 It can be observed that temperature and shear stress were the most important features 

and varied between models, with XGBoost and CatBoost ranking temperature, while RF was 

shearing stress, and across all the models, frequency ranks third influential feature. The 

softening point, viscosity, and binder type have less contribution. 
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Figure 10.  

Permutation Feature Importance (PFI) analysis of (a) CatBoost, (b) Random Forest, and (c) 

XGBoost for loss modulus prediction                                                             

 

 
                                         (a) 

 
                                           (b) 

 

                            

                                                                 (c) 

4.3 Machine Learning Model Training and Testing Results of Storage Modulus 

266 data were used again for the prediction of storage modulus G' and divided into 65% 

for training and 35% for testing. However, seven inputs were used to train the model which 

were the six previous plus the failure temperature. The same metrics are also used in Table 4. 

to evaluate the model's predictive performance. Using scatter plots, the observed and predicted 

values of G' are compared by applying the same models (RF, XGBoost, and CatBoost). 

 In training, all models show a strong positive correlation between predicted and actual values, 

with data points closely aligned along the diagonal, indicating good model fit. XGBoost and 

CatBoost achieved a perfect score with an R2 value of 1 than RF which was slightly lower but 
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still very high as shown in Figure 11.  XGBoost had the lowest RMSE, MAE, and MAPE 

values of 0.298, 0.209, and 1.6% respectively. 

The model testing shows more variation, especially for the RF and XGBoost model, 

which shows a deviation from the diagonal line. This indicated that while the models work well 

overall, they are not as precise as they were during training. In contrast, CatBoost predictions 

are closer to the diagonal line than the others, indicating it has better accuracy with an R2 value 

of 0.9062 and the lowest error metrics with values of 542.064 and 198.703 for RMSE and MAE 

respectively. 

Table 4.  

Fit-Accuracy of Statistical Regression Models' Prediction of Storage Modulus 

 Training Testing 

Models RF XGBoost CatBoost RF XGBoost CatBoost 

R² 0.9392 1 1 0.7526 0.8332 0.9062 

RMSE 1761.531 0.298 37.285 1362.277 697.476 542.064 

MAE 535.01 0.209 25.969 462.643 220.748 198.703 

MAPE 38.4% 1.6% 169.9% 69.4% 38.8% 498.6% 

Figure 11.  

The model training and testing scatter plots between predicted and measured storage 

modulus for RF, XGBoost, and CatBoost models 
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4.3.1 Local Effect Model Interpretation for Storage Modulus 

a. SHAP values 

In the predicting storage modulus, the result of each model demonstrated that, for 

Random Forest, Similarly, to loss modulus, shear stress remains the most important feature 

with the largest mean SHAP value. Temperature and frequency are next followed by softening 

point, binder type, and viscosity with smaller contributions for G'. On the other hand, SHAP 

summary plots demonstrated that shear stress has a significant positive influence on the model 

FR model, although G's prediction, has some negative consequences that tend to decrease the 

prediction. Temperature and frequency affect positively predictions, but their impact is less 

than that of shear stress. The softening point, binder type, and viscosity have a smaller but still 

noticeable effect, with high values contributing positively in most cases.  

For XGBoost, the feature importance is ranked and we can see that shear stress has the 

largest mean SHAP value making it the most important feature, followed by temperature and 

frequency. Binder type and softening point contribute minimally, consistent with the results 

from the Random Forest (RF) model. Interestingly, viscosity shows no impact on the XGBoost 

predictions, which contrasts with the other two models, where it had a small positive 

contribution. While the summary plot illustrated that shear stress consistently increases the 

predictions of G'. High temperatures still decrease the predicted storage modulus while high-

frequency values increase the storage modulus. Although binder type and softening point show 

higher values, indicating they also contribute positively, their influence is less than that of the 

top three features. The lack of viscosity influence in XGBoost suggests it may not capture 

minor dependencies as effectively as RF. 

For the CatBoost model, temperature is the top feature with the higher mean SHAP 

value, indicating a strong influence on the model’s prediction, with high temperature reducing 

the storage modulus, followed by shear stress and frequency. Softening point, viscosity, and 

binder type have lower SHAP values with a small impact compared to other features. 
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Figure 12.  

SHAP Values of RF, XGBoost, and CatBoost for Storage Modulus 

 Feature importance ranking Shap summary plot 
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b. Local Interpretable Model-agnostic Explanations (LIME) 

CatBoost seems to place high importance on temperature and shear stress for predicting 

storage modulus, with Temperature's effect being more pronounced in the left plot instance and 

Shear Stress in the right plot instance.  Frequency has a consistently negative but small effect 

while the Softening point shows a positive impact in both plots. However, viscosity and binder 

type have a minor negative impact on the model’s prediction.  

Random Forest relies heavily on Shear Stress for both instances, indicating it's a 

dominant feature. Temperature has a significant but variable impact, being negative in both 

instances but more so in the right plot. Frequency shows a slight shift from negative to positive 

impact, suggesting variability in its influence. XGBoost consistently highlights Shear Stress 

and Temperature as key positive contributors to the storage modulus prediction. Frequency 
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consistently has a minor negative impact across both instances, indicating a stable influence 

pattern. 

Figure 13.  

LIME Values of RF, XGBoost, and CatBoost for Storage Modulus 
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4.3.2 Local importance model interpretation for storage modulus 

In the prediction of storage modulus, the result demonstrated that for the XGBoost 

model, shear stress, temperature, and frequency are the most important features, indicating a 

strong influence on the storage modulus. Softening point and binder type have lower 

importance but they still have a considerable role in the model’s prediction. Viscosity has no 

ICI value, meaning that it is not an important feature and does not contribute to the model’s 

prediction. In terms of selected instances, the variation in ICI values across instances for each 

feature, particularly for shear stress, temperature, and frequency, indicates that while these 
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features are generally important, their impact can vary significantly depending on the specific 

context of each instance. This suggests potential interactions or dependencies among features. 

For Random Forest, shear stress, frequency, and temperature are the major predictor 

features while, softening point, binder type, and viscosity still have lower importance with a 

contribution to the model. The lines illustrated in the right plot show variability in importance 

across instances, particularly for Shear Stress and Frequency. This could imply that the model's 

predictions are sensitive to the specific combinations of these features in different instances, 

highlighting potential feature interactions or instance-specific effects. 

Figure 14.  

Values of RF, XGBoost, and CatBoost for Storage Modulus 
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In CatBoost, features behave a little differently, where frequency is the most important, 

followed by temperature and shear stress which are less important than in the other models. 

This might reflect how the CatBoost model processes and weights features. The three last 

features remain the same with lower importance but still contribute. The individual lines for 

different instances show that frequency consistently has high importance across all instances, 

with temperature and shear stress showing variability.  

 4.3.3 Global Effect Model Interpretation for Storage Modulus 

Figure 15. Shows the result of PDP of XGBoost for storage modulus prediction and the 

result reveals that, G' increases with the binder type, showing that changes in binder type have 

a small effect on predictions. At lower temperatures, G' remains stable. However, when the 

temperature goes above 60°C, G' begins to decrease rapidly, indicating a strong negative 

impact at high temperatures. G' also increases linearly with frequency, meaning higher 

frequencies improve predictions. There is a steep rise in G' with increased shear stress, 

especially at lower levels, which indicates a strong positive relationship. G' increases slightly 

with the softening point, indicating a weak positive correlation, while viscosity has little effect, 

as G' stays nearly constant regardless of changes in viscosity. 

For Random Forest, the storage modulus slightly increases as the binder type rises, but 

the effect is minor and less pronounced as shown in Figure 16.  It significantly decreases with 

the temperature but has a positive effect frequency because it steadily increases. Shear stress is 

a dominant factor in predictions, this is because G' increases sharply as shear stress rises, 

especially in the lower range. G' slightly increases with the softening point and viscosity but 

the effect is little.  

For the CatBoost model, figure 17. illustrated that the storage modulus shows a slight 

upward trend as the binder type increases, indicating a minor positive effect. There is a 

significant decline in G' with increasing temperature, but a strong positive relationship is 
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observed between frequency and storage modulus, with higher frequencies leading to higher 

G' values. G' increases steadily as shear stress rises, with a sharper increase in the lower range, 

making shear stress one of the dominant factors. It shows a slight increase with the softening 

point. There is a slight upward trend in storage modulus as viscosity increases, suggesting a 

minor positive effect. 

Figure 15.  

PDP Values of XGBoost for Storage Modulus 
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Figure 16.  

PDP Values of Random Forest for Storage Modulus 
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Figure 17.  

PDP Values of CatBoost for Storage Modulus 

 

4.3.4 Global Importance Model Interpretation For Storage Modulus  

Permutation Importance plots are represented in Figure 18 (a-c) for different machine 

learning models in predicting storage modulus. Here are the results of each model: 

For CatBoost, as shown in Figure (a), temperature is the most important feature, with a strong 

significant mean decrease in accuracy when permuted, followed by frequency, with moderate 

importance. Shear stress ranked third with a smaller mean decrease accuracy but a notable 

impact. Softening point and viscosity have minimal contribution to the model’s accuracy and 

binder type is the last important feature, with almost no influence on the prediction. 

In Figure (b), for the Random Forest model, temperature is the most important variable 

and consistently crucial across the RF model followed by frequency. Shear stress has a 

moderate influence similar to frequency but slightly lower. Softening point, viscosity, and 

binder type were similar to Loss Modulus showing negligible influence. For XGBoost 

permutation importance, in Figure (c), temperature, frequency, and shear stress ranked as the 
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most influential features. Softening point and viscosity have little contribution, with very low 

mean decreases in accuracy and binder type has negligible importance. For storage modulus 

prediction, temperature shows the highest impact on predictions in all three models and is the 

most important feature across all models. Followed by frequency and shear stress mean that 

they are second feature contributors. The softening point, viscosity, and binder type have little 

impact in all models, suggesting they are not crucial for predicting storage modulus in this 

dataset. 
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Figure 18.  

Permutation Feature Importance (PFI) analysis of (a) CatBoost, (b) Random Forest, and (c) 

XGBoost for Storage Modulus prediction 
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Chapter V 

Conclusion and Recommendations 

 

5.1 Conclusion 

This research focused on the prediction of storage modulus and loss modulus of 

modified asphalt binders. For this purpose, three different machine learning techniques namely 

Random Forest, XGBoost, and CatBoost were developed using the Python tool. Due to a lack 

of insufficient model interpretation, the research utilized the model interpretability approach to 

interpret the predictions of the used machine learning models by providing insights into the 

feature's contributions and their impact on the model’s prediction at local and global levels.  

The computational models were evaluated using four different performance criteria: R² 

(coefficient of determination), RMSE (Root Mean Square Error), MAE (Mean Absolute Error), 

and MAPE (Mean Absolute Percentage Error), after modelling, CatBoost outperformed other 

models (RF and XGBoost) in predicting the loss modulus (G") and storage modulus (G') for 

both training and testing datasets. It achieved the highest R² and MAPE values, with the lowest 

RMSE and MAE, indicating its superior accuracy and prediction consistency. 

LIME (Local Interpretable Model-agnostic Explanations), SHAP (Shapley Additive 

explanations), ICI (Interaction-based Contribution Index), PDP (Partial Dependence Plots), 

and PFI (Permutation Feature Importance were analyzed to identify the effect and importance 

of features that contribute significantly to the model’s predictions. The result indicated that 

shear stress and temperature emerged as the most influential and significant features across all 

models, since they positively impact the predictions of both storage and loss modulus, followed 

by frequency which contributes less than the other two features. The softening point, binder 

type, and viscosity were found to have negligible contributions to the model's prediction, but 

they had a positive impact.   

It was also noticed that the temperature played a crucial role in predicting storage and 

loss modulus across all model, whereas temperature increases, both G', and G" decrease, 

emphasizing the importance of temperature control in applications involving geopolymer-

modified asphalt binders. Similarly, viscosity shows no influence in the XGBoost model.  
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5.2 Recommendation 

For the performance of high temperature in predicting Storage and Loss modulus, the 

CatBoost model should be prioritized since it demonstrated the best performance. Based on the 

result, future research should focus on the most influential features identified across the model 

including shear stress, temperature, and frequency to enhance prediction accuracy. It is crucial 

to control temperature during experiments since it impacts the model’s prediction. 
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APPENDICES 

Appendix A 

 

Supplementary LIME illustrations 

The figure below shows the result of LME for the three models used. Here is the finding 

of the remain six instances as said in chapter four which were presented in this section.  

Figure 19  

LIME of storage modulus for CatBoost 
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Figure 20  

LIME of storage modulus for Random Forest 
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Figure 21  

LIME of storage modulus for XGBoost 
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Figure 22  

LIME of loss modulus for CatBoost 

  

  

  

 

 

 

 

 

 

 

 

 

 

 



58 
 

Figure 23  

LIME of loss modulus for Random Forest 
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Figure 24  

LIME of loss modulus for XGBoost 
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Supplementary ICI illustrations

Figure 25

ICI Values of different models for Loss Modulus prediction
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Figure 26

 ICI Values of different models for Storage Modulus prediction
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