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Abstract 

 

EARLY DETECTION OF ALZHEIMER’S DISEASE USING ARTIFICIAL 

INTELLIGENCE AND MRI BRAIN IMAGES  

Hadeel Qasim Sattar 

M.Sc., Department of Biomedical Engineering 

May, 2025,84 pages  

Abstract  

The early diagnosis of Alzheimer’s Disease (AD). Early and correct diagnosis of 

Alzheimer’s Disease (AD) would play an essential role in the timely intervention but is 

hampered by subtle changes in the structural brain (and the variable MRI protocols). In 

this work, we utilize a very unbalanced Kaggle Alzheimer’s MRI dataset with 6,400 axial 

T1 weighted scans in four diagnostic classes (“No Impairment” 3,200, “Very Mild” 2,240; 

“Mild” 896; “Moderate” 64)—to design a strong two-stage architecture that incorporates 

sophisticated non-parametric preprocessing with ensemble of state-of-the-art CNNs 

(ResNet-50, EfficientNetV2-S, ConvNeXt-Base). First, non-parametric localization 

identifies areas of interest (e.g., hippocampus) and specifies ideal bounding volumes. 

After that, image enhancement (bias-field correction, adaptive histogram equalization) 

enhances low-contrast features. The improved volumes are resampled to 128 × 128 128 

and piped to each CNN backbone; their outputs are averaged for final classification. 

Individually, ConvNeXt-Base achieved 91% accuracy, EfficientNetV2-S 98.8%, and 

ResNet-50 97.5%; the ensemble achieved 98.1% overall accuracy, where sensitivity and 

specificity were both over 97% on a multi-center test set. These results indicate that 

preprocessing-informed localization and enhancement significantly increase the power of 

deep learning classifiers, having a trustworthy, high-accuracy, and scalable solution to 

early AD detection in various clinical environments. 

 Keywords: Alzheimer’s Disease, Artificial Intelligence, MRI, Convolutional Neural 

Network, Early Detection, Diagnostic Accuracy. 
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Özet 

ALZHEIMER HASTALIĞININ ERKEN TESPİTİ İÇİN YAPAY ZEKA VE MRI 

BEYİN GÖRÜNTÜLERİNİ KULLANMA  

Hadeel Qasim Sattar  

Biyomedikal Mühendisliği Bölümü, Yüksek Lisans  

Mayıs 2025, 84 sayfa sayısı 

Alzheimer Hastalığı’nın (AH) erken teşhisi, zamanında müdahale açısından kritik 

öneme sahip olmakla birlikte, beyin yapısındaki ince değişiklikler ve değişken MRI 

protokolleri nedeniyle zorluklarla karşılaşmaktadır. Bu çalışmada, dört tanı sınıfını 

içeren (“Hasar Yok” 3.200, “Çok Hafif” 2.240, “Hafif” 896, “Orta” 64) toplam 6.400 

aksiyel T1 ağırlıklı MRI taramasından oluşan ve oldukça dengesiz bir Kaggle 

Alzheimer veri setini kullanarak, gelişmiş parametrik olmayan ön işleme 

adımlarıyla desteklenen ve ResNet-50, EfficientNetV2-S ile ConvNeXt-Base 

modellerinden oluşan bir topluluk (ensemble) mimarisini birleştiren güçlü bir iki 

aşamalı çerçeve tasarladık. İlk aşamada, parametrik olmayan lokasyon 

yöntemleriyle ilgi alanları (örn. hipokampüs) belirlenip optimal sınırlayıcı hacimler 

tanımlanır. İkinci aşamada ise önyüz düzeltme (bias-field correction) ve 

uyarlanabilir histogram eşitleme gibi görüntü güçlendirme teknikleriyle düşük 

kontrastlı özellikler vurgulanır. Güçlendirilmiş hacimler 128×128×128 boyutlarına 

yeniden örneklenerek her bir CNN çekirdeğine beslenir; modellerin çıkışları 

ortalanarak nihai sınıflandırma yapılır. Tek başına ConvNeXt-Base %91; 

EfficientNetV2-S %   98 ; ResNet-50 ise %97,5 doğruluk elde ederken; topluluk 

modeli %98,1 genel doğruluk, %97’nin üzerinde duyarlılık ve özgüllük değerleri 

sunmuştur. Elde edilen sonuçlar, ön işleme tabanlı lokasyon ve görüntü 

güçlendirmenin derin öğrenme sınıflandırıcılarının performansını önemli ölçüde 

artırdığını, erken AH tespiti için güvenilir, yüksek doğruluklu ve ölçeklenebilir bir 

çözüm sunduğunu göstermektedir.Anahtar Kelimeler: Alzheimer Hastalığı • Yapay 

Zeka • MRI • Konvolüsyonel Sinir Ağları • Erken Teşhis • Tanısal Doğruluk 
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Definition of Terms 

 Alzheimer’s Disease (AD): A progressive neurodegenerative disorder associated with 

loss of memory, loss of cognitive function, and formation of amyloid-β plaques and tau 

tangles in the brain.  

Mild Cognitive Impairment (MCI): A midway condition between normal aging and 

dementia, characterized by detectable—but not paralyzing—cognitive decline, which 

migrates to AD.  

Magnetic Resonance Imaging (MRI): A non-surgical method for using powerful 

magnetic fields and radio waves to create clear images of the brain’s soft tissue without 

surgery.  

Functional MRI (fMRI): An MRI scan with an option to map human brain activity based 

on blood-flow variation, showing functional rather than structural information. 

Artificial Intelligence (AI): Computer science that engineers systems that can complete 

tasks calling for human perception, reasoning, and decision-making.  

Machine Learning (ML) is also classified as a subset of AI, where algorithms learn to 

recognize patterns from data and make judgments or predictions based on the patterns 

learned without specific programming.  

Deep Learning (DL): ML division based on multi-layer neural networks to identify 

hierarchical features for complex data automatically. 

 Convolutional Neural Network (CNN): DL architecture tuned on grid-like data (e.g., 

images), where we use convolutional layers to learn the spatiotemporal structure of feature 

hierarchies.  

Residual Network (ResNet): A CNN with the “skip” connections that would remove 

vanishing-gradient problems and allow for the development of deeper models.  

EfficientNetV2: A CNN family that mixes depth, width, and resolution by compound 

scaling – high accuracy with fewer parameters. 

 ConvNeXt: A contemporary CNN design using blocks inspired by the Transformers and 

normalization improvements for better image-processing performance.  

Vision Transformer (ViT): A DL model that uses Transformer self-attention on image 

patches and extracts local and global context.  
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Trustworthy AI (TAI): Framework for making AI systems transparent, fair, robust, and 

clinically reliable, which is vital in medical imaging.  

Biomarkers: Quantifiable biological measures of diseases (hippocampal volume, cortical 

thickness, amyloid load) used to indicate the presence or progression of the disease.  

Classification: The process describing how input data (e.g., an MRI scan) is assigned into 

pre-defined categories using data learned features (e.g., Healthy, MCI, AD).  

Sensitivity & Specificity: Metrics of classifier performance – sensitivity being the true-

positive rate, specificity the true-negative rate, required for a reliable diagnosis.  

Explainable AI (XAI): Techniques such as Grad-CAM that map where such input regions 

have come from, supporting clinical trust and interpretability.  
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CHAPTER I 

 Introduction 

 

Alzheimer’s Disease (AD) constitutes a significant segment of worldwide 

Dementia burdens while remaining the most widespread and dangerous form of 

Dementia. The progressive neurological illness known as Dementia destroys memory-

related cognitive abilities along with comprehension and intelligence until both patients 

and their family members experience absolute disability. Neurodegenerative Alzheimer’s 

Disease manifests as a cunning brain disease that degenerates neural pathways while 

amyloid plaques, together with tau tangles, accumulate as neurons slowly break down 

(Ahmad et al., 2022). 

The goal of this study on Alzheimer’s Disease relies on MRI as the ideal imaging 

method because its noninvasive brain visualization with high-resolution capabilities 

solves imaging limitations. We mainly measure Alzheimer’s Disease symptoms through 

structural and functional changes in distinct brain regions, with particular attention to the 

medial temporal lobe. The hippocampus emerges as a vital brain area because it controls 

memory formation and retrieval activities (Bao et al. 2021). 

Through MRI technology, users have obtained fundamental brain information, 

including structural size features, cortical thickness measurements, and densities of white 

and gray matter, for many years. An early diagnosis of the disease might be possible by 

detecting minimal changes in these metrics, which can help identify illness manifestations 

ahead of prominent clinical indications. Early identification of diseases enables healthcare 

professionals to implement therapeutic actions that prevent disease progression and 

enhance patient quality of life (Diogo et al., 2022).  

Artificial Intelligence (AI) and Machine Learning enable quick and automated 

MRI data evaluation through recently developed systems. Research institutions should 

integrate these advanced technologies to generate predictive brain models that enhance 

the quality of diagnosis and inform exclusive treatment methods. Technological advances 

in MRI imaging have become essential because of Alzheimer's growing global impact, so 
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healthcare professionals can better understand and develop better patient care strategies 

(V, Nisha A et al. 2024).    

During the last two years, Deep Learning (DL) methods have achieved superior 

results in diverse application fields, including computer vision, natural Language 

Processing, healthcare, remote sensing, and Natural Language Processing. Nevertheless, 

the foundational psychological paradigm has transitioned to distributed-based meaning 

interpretation versus formal symbolic systems (Mirzaei et al., 2025; Ahmadzadeh et al., 

2024). New model systems and training methods have led to computational models with 

better performance than previous Machine Learning systems, alongside capabilities that 

match human-level achievement for specific tasks (Zhang et al., 2022).         

Medical staff can detect AD biomarkers in their early stages through MRI 

techniques. Even though MRI data evaluation by hand requires great dedication, it is 

prone to subjective reading errors and frequently demands expert handling skills. High-

dimensional imaging data makes Machine Learning challenging because it requires 

expert-designed features and encounters obstacles from diverse data patterns. The need 

for data-driven, innovative solutions arises to identify specific elements in major features 

of data, neuroimaging information, and other datasets that aid in earlier diagnosis of 

conditions while enhancing patient care (Wasim et al., 2023). 

1.1 Background 

              As a mildly progressive brain illness, Alzheimer’s Disease causes the 

deterioration of mental functions through amyloid-beta plaque accumulation and tau 

protein tangle formation, which interferes with neuron connections and leads to brain 

atrophy. The disease shows initial signs of brain changes in memory-learning areas such 

as the hippocampus, leading to advanced cognitive breakdown and decreased daily 

functioning capabilities. The integration of histogram-based approaches, employing MRI 

equipment and deep learning (DL) methods, demonstrates promise in detecting initial 

neuroanatomical indicators of the illness, thus enabling targeted medical treatments 

during this stage of development. Early detection and diagnosis of Alzheimer’s Disease 
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remain critical because they enhance patient life quality while minimizing healthcare 

system costs (Zia‐ur‐Rehman et al. 2024).  

MRI is one of the non-invasive image modalities that uses high-strength magnetic 

fields with radiofrequency pulses rather than ionizing radiation to provide detailed soft-

tissue contrast views of body internals. Hardware improvements to superconducting 

magnets, alongside software modifications, have enhanced the imaging ability of the 

system to display intricate body elements, including brain tissue components, 

cerebrospinal fluid, and vascular systems. The acceptance of neuroimaging reports about 

MRI has led to widespread professional and practical applications for clinical research of 

neurological disorders, disease monitoring, and therapy evaluation (Benson et al. 2020).          

DL has made significant advancements in the last decade due to improved neural 

networks, optimization algorithms, and increased computational power. DNNs process 

large multidimensional information to detect intricate patterns while self-learning without 

requiring pre-defined characteristic features. The integration of Vision Transformers and 

improved versions of convolutional networks and graph-based networks delivers top 

performance in different task domains. Unsupervised and semi-supervised learning 

methods allow researchers to reduce dataset labeling needs, making these systems 

available to broader applications even with minimal resources. Studies aimed at increasing 

the interpretability and robustness alongside ensuring the fairness of models solve the 

“black-box” problems and bias found in DL systems. DL has matured enough to use its 

power in healthcare decisions while considering explainable AI, ethical alignment, and 

computational efficiency to maintain trustworthiness within AI systems (Gohel et al. 

2021). 

 Both Alzheimer’s Disease and common Neurodegenerative disorders exist 

together as they represent the worldwide leader in the Dementia generation despite 

demonstrating symptoms of cognitive decline and memory loss. Standard medical 

procedures cannot identify minor alterations in the brain during the early stages. DL is a 

promising solution against this issue through automated processes that extract complex 

neuroimaging data, including MRI and PET, to boost early disease identification. 

Healthcare professionals benefit from using DL techniques to analyze genetic data 
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alongside cognitive data, which enables the detection of disease biomarkers and disease 

advancement to deliver customized medical solutions (Zhang et al., 2022).          

   Convolutional Neural Networks (CNNs) are a basic DL model for processing 

grid-like topology data, especially images, which automatically extract spatial features 

from raw input data. CNNs use convolutional layers to pass filters on image data, 

detecting patterns from edges to textures to more complex structures, then pooling layers 

for dimensionality reduction, retaining important information. These architectures allow 

CNNs to extract low-level and high-level hierarchical features from the image efficiently, 

making CNNs highly suitable for image classification, object detection, and 

segmentation-based tasks (Tan et al. 2020) 

The development of DL exceeded 2020 standards using advanced neural network 

designs, optimization strategies, and increased computation availability. DNNs extract 

complex data patterns from high-dimensional data types, which include medical images 

and genomic sequences, without needing user-defined features. The integration of Vision 

Transformers and improved versions of convolutional networks and graph-based 

networks delivers top performance in different task domains. The advancement of 

unsupervised and semi-supervised learning leads toward decreasing the requirement of 

labeled data, which extends these technologies to various applications and trains them 

using fewer resources. Weatherproofing models, guaranteeing interpretability and 

fairness, and eliminating the black-box architecture issues characterize DL system 

improvement efforts. The advancing capabilities of Deep Learning technology continue 

to transform decision processes within medical care and financial management. At the 

same time, environmental science focuses on explainable AI solutions, ethical alignment, 

and operational efficiency for building trustful and transparent AI systems (Gohel et al. 

2021).  

Both Alzheimer’s Disease and common Neurodegenerative disorders exist 

together as they represent the worldwide leader in the Dementia generation despite 

demonstrating symptoms of cognitive decline and memory loss. Standard medical 

procedures cannot identify minor alterations in the brain during the early stages. DL is a 

promising solution against this issue through automated processes that extract complex 
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neuroimaging data, including MRI and PET, to boost early disease identification. 

Healthcare professionals benefit from using DL techniques to analyze genetic data 

alongside cognitive data, which enables the detection of disease biomarkers and disease 

advancement to deliver customized medical solutions (Zhang et al., 2022). 

1.2 Problem Statement 

  The field of medical imaging continues to face significant challenges when 

attempting early detection of Alzheimer’s Disease (AD) in its accurate form. The adoption 

of DL methods for neurodegenerative condition classification has recently increased, 

although current CNN designs struggle to detect subtle MCI patterns that precede AD, 

along with AD signs. Standard modeling approaches face limited applicability across 

diverse patient populations, along with adverse effects from variations in image quality, 

limited available data, and the unclear nature of brain changes related to AD. Current AD 

diagnosis relies on manual interpretations by clinicians and researchers since there are no 

reliable automated tools for early diagnosis. This remains crucial for activating 

intervention methods to minimize disease advancement and enhance treatment outcomes.  

This work will examine the limitations in previous research through three cutting-

edge DL frameworks, ResNet, EfficientNetV2, and ConvNeXt, to develop an advanced 

CNN model dedicated to AD diagnosis. The goal is to implement recent state-of-the-art 

architectures into models to boost feature extraction capabilities while providing 

robustness to enhance diagnostic precision. The proposed methodology addresses these 

gaps in AD detection methods to develop an automated solution that provides clinical 

support for informed medical decisions, driving improved patient outcomes. 
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1.3 Aim of the Study 

This thesis seeks to perform an extensive comparative analysis of three of the latest 

convolutional neural network structures for the early identification of Alzheimer’s disease 

from weighted MRI brain images, namely, ResNet-50, EfficientNetV2-S, and ConvNeXt-

Base. More specifically, we will train and validate each model on a standardized, multi-

center Alzheimer’s MRI dataset to measure and compare the accuracy, sensitivity, 

specificity, precision, and F1-score results over healthy control, mild cognitive 

impairment, and Alzheimer’s cohorts. We will also investigate various ensemble 

strategies, including weighted averaging and stacking, to see if the combination of these 

models can subsequently enhance diagnostic robustness and early-stage detection 

capability. Finally, to ensure that regions highlighted by each network correspond to 

known Alzheimer’s biomarkers and hence both quantitatively and potentially clinically 

interpretable, we will analyze model explainability using saliency mapping (e.g., Grad-

CAM).  

1.4 Purpose of the Study 

This Study aims to develop and test a novel convolutional neural network (CNN) 

model that combines ResNet with EfficientNetV2 and ConvNeXt architecture to achieve 

superior accuracy alongside robustness in Alzheimer’s Disease (AD) detection. The 

research incorporates state-of-the-art CNN architecture networks, which improve AD 

detection in early stages with superior accuracy rates. The proposed diagnostic tool aims 

to deliver high scalability and performance excellence for clinical support systems that 

enable early treatment while improving patient results. 

 

1.5 Research Questions 

 1. The classification accuracy of Alzheimer’s Disease diagnoses using combined ResNet, 

EfficientNetV2, and ConvNeXt outlooks exceeds the accuracy rates of individual CNN 

models to what degree? 
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 2. Additional analysis must evaluate the accuracy level of early AD vs everyday subject 

discrimination from the improved CNN framework compared to single-CNN models.  

3. Implementing distinct leading-edge architectural methods produces benefits for model 

performance stability across multiple MRI databases under different imaging conditions.  

4. The combination model may boost diagnostic accuracy by minimizing image errors, 

enabling earlier and more precise AD diagnosis. 

 5. The new combined model does not substantially affect clinical outcome measures, 

including intervention duration and psychiatric symptom distribution. 

1.6 Significance of the Study 

Individuals who have Alzheimer’s Disease require accurate early diagnosis of 

their condition since this enables healthcare providers to start interventions that delay 

disease development while improving patient quality of life. The clinical goal of early 

Alzheimer's disease (AD) detection requires improved imaging methods to screen patients 

for their evolving brain structure. However, current diagnostic tools prove unsuccessful 

in identifying the early stages of AD because standard imaging methods lack sufficient 

sensitivity and struggle to comprehend the disease's heterogeneity. We address these 

restraints by creating a new CNN model that combines architectural components from 

ResNet, EfficientNetV2, and ConvNeXt to achieve superior AD classification results 

(Fuad et al., 2021).  

Using multiple state-of-the-art DL architectures creates essential contributions to 

medical imaging practice and Artificial Intelligence development. The consolidated 

model draws positive features from the ResNet residual structure with EfficientNetV2 

scaling rules, and ConvNeXt revitalized CNN frameworks to boost MRI pattern-finding 

ability and feature retrieval function. The combined capabilities strengthen classification 

accuracy while improving reliability and enabling better dataset and imaging scenario 

generalization performance. The paper helps establish accurate and usable diagnostic 

tools that medical institutions need to reach widespread clinical adoption (Diogo et al., 

2022). 
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A clinical diagnosis using this study offers dramatically heightened precision, 

which allows healthcare professionals to identify AD at earlier stages for implementing 

preventive measures. People who initiate care treatment early achieve better symptom 

management and reduced disease progression, which yields favorable results. The 

automatic system of the proposed CNN model reduces healthcare providers' dependency 

on specialized expertise for image analysis. However, this makes AD diagnostics more 

accessible throughout various healthcare facilities, including low-resource settings (Ye et 

al., 2024).  

The research holds significance in exploring how brain anatomical changes enable 

better predictions about the efficacy of DL models through upgraded preprocessing 

solutions. The enhanced detection of AD becomes possible through these improvements 

while uncovering essential AD pathological principles that lead to new biomarkers and 

therapeutic targets for treating AD disease. This research is vital because it presents a 

practical approach to diagnosing Alzheimer's disease (AD) early, which can inform future 

diagnostic methods. State-of-the-art Deep Learning approaches form part of this proposed 

work to address automatic diagnosis (AD) classification limitations while building next-

generation artificial intelligence-medical imaging convergence methods, thereby 

contributing to better clinical outcomes and advancing the fight against Alzheimer’s 

disease (Minaee et al., 2022).  
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CHAPTER II 

Literature Review 

This chapter examines scholarly works about the Early Detection of Alzheimer’s 

Disease Using Artificial Intelligence and MRI Brain Images found in previous research. 

The research investigations follow a three-step structure. The following section discusses 

studies that implement traditional methods for proposal and execution work. Then, 

machine Learning-Based Systems are reviewed. The last section provides an overview of 

research directions on complex methodology developments, including deep learning (DL) 

approaches (such as CNN), Artificial Intelligence technologies, and equivalent systems.  

2.1 Traditional Method-Based Systems 

 The research and development of Artificial Intelligence (AI) technology to 

identify early-stage Alzheimer’s Disease (AD) from MRI brain images have relied on 

statistical methods and Machine Learning algorithm-based traditional approaches 

(Hussain et al., 2021; Sekeroglu and Emirzade, 2018). The analysis of MRI scans using 

hand-engineered features relies on domain specialists who create and measure specific 

biological markers and morphological characteristics within the images. The algorithms 

employ multiple classifiers, including SVM, Random Forests, Logistic Regression, k-NN, 

and plenty more. Traditional approaches remain relevant within Machine Learning due to 

their interpretability advantages and occasional benefits in resource management. The 

article evaluates studies concerning AD classification that were published after 2020 

while using established analytical methods. 

Dara et al. (2023)  An MRI image processing model uses Machine Learning 

algorithms to detect Alzheimer’s Disease (AD). It was a three-stage system. Before 

analysis, the researchers normalized the intensity values in raw MRI images through 

Gaussian filtering for de-noising purposes. Relevant features, which included 

hippocampal volume and cortical thickness, were extracted in this stage through statistical 

and morphological operations. The SVM classifier implemented a radial basis function 

(RBF) kernel to train features from this stage. The system tested its classification 

performance on the ADNI dataset, which yielded accuracy results and sensitivity and 
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specificity rates of 92%, 89%, and 94%, respectively. These methods validate the use of 

traditional features as a tool to detect Alzheimer’s disease.  

Arafa et al. (2022) established a new hybrid model combining Machine Learning 

with DL methods to detect Alzheimer’s Disease (AD) in MRI images during early stages. 

The model built its system through three successive development phases. The proposed 

preprocessing method includes skull stripping and intensity normalization, which 

transforms raw MR images. The first analysis stage delivered hippocampal volume and 

cortical thickness values, but additional disease markers came from varied morphological 

and statistical methods. The processing system delivered its features to a DL-based CNN 

to perform the classification. The system achieved groundbreaking validation through 

real-world ADNI data, which enabled it to identify MCI cases at an outstanding 95.3% 

success rate, thus helping to differentiate AD, MCI, and normally aging brains. An 

integrated approach shows remarkable effectiveness in diagnosing and predicting diseases 

through traditional and high-end methods, for instance. The correct diagnosis of Dementia 

requires implementing advanced methods at various levels.              

Sharma and Mandal (2023)  describe a new Machine Learning prediction model 

for Alzheimer’s disease that operates as the core element within a multi-modal 

neuroimaging-based system. The system operates through three sequentially planned 

stages. The first processing stage for raw neuroimaging data (such as MRI and fMRI 

scans) included multiple operations, which started with intensity normalization, followed 

by advanced filtering methods for denoising. Various statistical methods, combined with 

feature extraction algorithms, enabled the extraction of essential features, including 

hippocampal volume, cortical thickness, and other biomarkers, from the dataset during 

the second stage. Three essential features were processed for classifier execution through 

an SVM classifier equipped with an RBF kernel. A 92% classification outcome and 94% 

specificity of 94% emerged when the model was tested on the ADNI dataset. The system 

exemplifies combining classical and statistical approaches alongside machine learning for 

Alzheimer's disease diagnostic systems. 

 Upadhyay et al. (2024) suggested how to identify Alzheimer's Disease (AD) in 

neuroimaging data through an integration of DL (DL) and Machine Learning (ML) 
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systems. It was done in three steps. The first step demanded that preprocessing techniques 

be applied to raw brain images for noise filtering and normalization to enhance image 

quality while removing extraneous features. A second step in this process uses the 

extracted key features as input for DL-based feature extraction that strengthens all 

obtained features. The classification process occurred on a hybrid model that consisted of 

Support Vector Machines (SVMs) and CNNs. The developed method reaches 94% 

sensitivity and 96% specificity, which leads to a 95.1% accurate classification of subjects 

within the ADNI dataset. The unified approach showed how classic ML algorithms and 

advanced DL models should operate together to develop efficient yet interpretable AD 

diagnosis methods. Singh and Thakur (2021) developed a system that utilized manually 

derived texture and shape features extracted from structural MRI images to perform AD 

classification. GLCM analysis and Shape Descriptors identified features, while an SVM 

radial basis function kernel (RBF) served as the classification algorithm. The system 

obtained 89% accuracy, 91% sensitivity, and 87% specificity during testing on data from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The analysis demonstrated 

how texture-based features successfully identify the minimal changes in brain structures 

that AD produces.  

Chen et al. (2023) developed a method for AD detection by isolating specific 

regions for feature extraction and adding a classifier operated through Random Forests. 

Volumetric and intensity-based feature analysis became possible by segmenting particular 

brain regions, including the hippocampus, entorhinal cortex, and other relevant brain 

regions. This system obtained 92% accuracy in classification. It achieved a hippocampus 

segmentation Dice coefficient of 0.85 through testing and training in the OASIS (Open 

Access Series of Imaging Studies) dataset, containing information on 398 subjects. The 

system performs strong feature extraction from brain areas with maximum AD-related 

atrophy. 

El-Gawady et al. (2023) developed a hybrid feature selection method that utilizes 

PCA and RFE on Logistic Regression for AD classification. PCA was used for 

dimensionality reduction, and the approach selected the most discriminative elements 

from volumetric and intensity-based features. These analysis results demonstrated 90% 
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accuracy, 88% sensitivity, and 92% specificity on the Australian Imaging, Biomarkers & 

Lifestyle (AIBL) dataset, thus proving that proper feature selection enhances the 

performance of classifiers efficiently. 

             2.2 Machine Learning-Based Systems 

                Shrestha & Das, (2022) An ML system is not only an algorithm; it also collects, 

processes and applies data. In the beginning, we collect raw data such as scans, profiles 

and text and afterward we fill in missing information, clear outliers and possibly normalize 

or extract important data. The next step is the main training period, where chosen machine 

learning models are taught findings from the prepared features based on the required goal 

(classification, regression, recommendation and so on). After finishing training, the 

system checks how it works on data it hasn’t seen yet, using accuracy, precision, recall or 

AUC-ROC and may improve or adjust parameters to enhance the results. Importantly, 

when a ML system is ready to use, it includes tools to catch changes in data, displays 

influencing elements for users to see (such as feature importance) and provides protection 

from bias to guarantee fairness. The deployed model is added to APIs or user interfaces 

which allow any downstream application to use it for predictions and to keep a record of 

inputs and outputs for continual updating. 

Teodorescu et al., )2021) A machine‐learning system is designed to turn raw information 

into automated outcomes by linking data set elements and models together. First, it reads 

the data, fills the gaps, scales them properly and looks for or builds features that describe 

the problem (like hippocampal volume in an MRI or user–item interactions in 

recommender systems). Next, algorithms, for instance support vector machines, decision 

trees, neural networks or various ensembles are prepared to learn using labeled 

information, with the help of varying hyperparameters. As soon as the model is validated, 

it is used behind APIs or user interfaces to generate real‐time outputs. Also such a system 

features ongoing checks for data drift, a decrease in system effectiveness and any 

unfairness; it also uses interpretable tools like feature-weight scores or saliency maps and 

prompts people to be involved at various steps to catch and deal with biased results before 

users are affected. 
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Martino et al.,( 2025) In machine‐learning systems act as complete systems that 

take raw data such as traffic logs, binaries and user actions and turn them into useful threat 

intelligence. The process first requires thorough data engineering: cleaning and 

standardizing the data, identifying both manually chosen and deep learning created 

features (such as network stats, opcode usage or behavior embeddings) and handling any 

issues caused by imbalanced classes by applying SMOTE or cost‐sensitive sampling. 

After that, algorithms like support vector machines, decision trees, deep neural networks 

and ensemble models are taught and checked with cross-validation and using statistical 

indicators such as AUC-ROC, precision and recall. Once deployed, these models work 

behind APIs that monitor data in real-time or SIEM platforms and any time a shift in 

results is noticed, the models are retrained. Strong ML tools have built-in functions that 

make it easy to understand the system (like feature‐importance scores) and allow analysts 

to see any mistakes, so automation complements, not competes with, people’s skills. 

Merging automatic pattern detection with professional monitoring, modern ML 

technology provides broad and flexible protection from sudden intrusions, different kinds 

of malware and anything that seems unusual in computer networks.  

2.3 CNN-Based Systems 

AbdulAzeem et al. (2021) developed the deep segment architecture according to 

AbdulAzeem et al. (2021) to segment markers from MRI scans that indicate Alzheimer’s 

Disease (AD). The system operated in two main, distinctive stages. The U-Net framework 

received architectural alterations in the first development phase, creating an improved 

structure for extracting features from neuroimaging datasets. This modified U-Net 

architecture used the original decoder part to segment markers. Still, it replaced its 

encoder section with VGGNet, ResNet, DenseNet, Xception, MobileNet, NASNet, and 

MobileNetV2 functions to improve detection capability. The model received training with 

k-fold cross-validation using a two-fold configuration to secure a reliable training and 

validation process. The model's generalization improved through data augmentation 

strategies, including flipping, rotation, and elastic transformation methods, to increase the 

quantity of the training sample. The system was tested using sensitivity and specificity 

metrics and distance and dice score metrics through a combination of the BRATS 2019 
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dataset and a custom study-specific dataset. The modified U-Net with Xception achieved 

remarkable results on the BRATS 2019 dataset, demonstrating a dice score of 0.86, a 

specificity of 99.8%, and a sensitivity of 91%. Equally, good results were obtained on the 

self-made dataset.                

AlSaeed and Omar (2022) Researchers developed the Deep Segment architecture 

according to AbdulAzeem et al. (2021) to segment markers from MRI scans that indicate 

Alzheimer’s Disease (AD). The system operated in two main, distinctive stages. The 

initial part of the study made architectural changes to the U-Net framework layers while 

optimizing neuroimaging dataset feature extraction efficiency. This modified U-Net 

architecture used the original decoder part to segment markers. Still, it replaced its 

encoder section with VGGNet, ResNet, DenseNet, Xception, MobileNet, NASNet, and 

MobileNetV2 functions to improve detection capability. The model received training with 

k-fold cross-validation using a two-fold configuration to secure a reliable training and 

validation process. The model's generalization improved through data augmentation 

strategies, including flipping, rotation, and elastic transformation methods, to increase the 

quantity of the training sample. The system was tested using sensitivity and specificity 

metrics and distance and dice score metrics through a combination of the BRATS 2019 

dataset and a custom study-specific dataset. The modified U-Net with Xception achieved 

remarkable results on the BRATS 2019 dataset, demonstrating a dice score of 0.86, a 

specificity of 99.8%, and a sensitivity of 91%. Equally, good results were obtained on the 

self-made dataset. 

Shukla et al. (2023) The novel research by Shukla et al. (2023) developed two proposed 

systems for AD detection through hybrid feature extraction and DL operations based on 

multimodal imaging input. The system operated through three successive levels, 

beginning with Digital Engineering, then Hardware, and ending with Software. MRI and 

PET images underwent preprocessing to enhance image quality, including skull stripping, 

intensity normalization, and motion artifact removal. After extracting handcrafted features 

from hippocampal volume and cortical thickness, the system added DL features produced 

by 3D Convolutional Neural Network (3D-CNN) capabilities. An ensemble decision 

system made robust predictions by combining Support Vector Machines with SVM and 
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3D-CNN features. The method received 99% AD detection accuracy in the ADNI dataset 

through feature-level fusion-based methods, alongside solid performance for both ADNI 

binary and multi-class classification tasks. 

               Sharmili et al.(2023) developed a 3D U-Net architecture as the base of their 

proposed system, which contained two essential components for segmenting brain tumors 

from MRI images. The first operational step of the model used pre-processing treatments 

on images to achieve suitable segmentation results. The initial processing stage used area 

cropping to cut brain region pieces from the input data, thus making processing more 

efficient. After normalization processes, the intensity scales of various scanned images 

were matched. The split data consisted of three subsets: the train received 82%, the 

validation acquired 6%, and the test acquired 12% of the data for comprehensive 

evaluation. Small portioned image patches served as inputs for the simpler PEs throughout 

the first network layer to reduce the high computational and memory requirements from 

processing complete, extensive volumetric data from all available Magnetic Resonance 

Imaging (MRI) scans. The methods, which depended on data augmentation with rotations 

and mirroring to improve model robustness and prevent overfitting, were not applied 

according to our experience. The segmentation process of tumors in stage two utilized the 

3D U-Net architecture. The 3D U-Net architecture was created to process volumetric data 

with dependencies in spatial hierarchies crucial to medical image segmentation work. 

Researchers tested the system by measuring its performance through dice score and 

Hausdorff95 metrics when applying it to the BRATS 2019 and BRATS 2020 datasets. 

These results demonstrated highly accurate segmentation ability because the algorithms 

achieved dice scores of 0.78 and 0.72. 

                 Mohi Ud Din et al. (2023) proposed Alzheimer’s Disease Classification 

Using MRI Images using a new system architecture named MVP-Net. The methodology 

contained four separate stages. The first stage involved MRI image preprocessing, which 

consisted of changing the images to 224x224 pixel resolution combined with intensity 

value normalization for data synchronization. The training set became more robust 

through image transformations, including rotation, scaling, and flipping procedures. The 

second phase of code development introduced elements for multi-view processing that 
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extracted spatial characteristics through 2D and channel-wise convolutional layers. 

Hierarchical Batch Norms are implemented after concatenation layers to optimize filter 

maps and minimize parameter counts. The third phase incorporated cross-entropy loss and 

batch normalization to enhance learning efficiency in the architecture design. A complete 

validation occurred when the model underwent a five-way classification analysis on 

ADNI data. Each measurement included accuracy alongside precision and sensitivity, 

which, combined with the F1-score, reached 96.6% in determining Alzheimer's disease 

stage using MVP-Net. A framework was developed to demonstrate strength through its 

ability to maximize sophisticated neuroimaging data with an efficient minimal model. 

2.4 Summary and Future Directions 

The thread research points to substantial Developments in the use of AI and MRI 

brain images for early detection of Alzheimer’s Disease. Shallow learning techniques 

within traditional methods have operated as the fundamental approaches to feature 

extraction and data classification from the beginning. New deep learning systems, 

particularly convolutional neural networks (CNNs) and transformer-based models have 

improved both accuracy and robustness in diagnosis through their ability to extract 

automatic features while recognizing complex data patterns. The advancement of AD 

classification methods needs to concentrate on these main areas in future research.  

• Through DL, medical professionals can eliminate the requirement of human-

generated feature engineering techniques, which reveal delicate and intricate AD-

related brain changes. 

• Develop a comprehensive diagnosis system that unites MRI information with 

genetic information, assessment results, and specific medical indicators.  

• Explainable AI systems need development to present valid predictions and helpful 

explanations, enhancing clinical staff confidence and acceptance of adoption. 

• Applying generalized and robust models depends on massive, widespread datasets 

combined with advanced regularization methods to maintain stable performance 

across various demographic groups and picture documentation protocols.  
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• AI models used in clinical operations must offer immediate availability and 

implementation of AI classification systems to assist AD diagnosis and prognosis 

so doctors can make personalized, real-time patient care decisions. Follow-up 

research designs enabling the monitoring of disease advancement will improve AI 

system prediction capabilities across multiple periods. 

• The combination of classical Machine Learning methods alongside DL 

approaches in hybrid models enables organizations to derive both methods' 

strengths for possibly achieving better and more precise classification systems. 

Researchers must address these difficulties to develop increasingly accurate measurement 

methods for Alzheimer’s Disease detection. These methods will produce more reliable 

clinical assessments, which will help patients experience better outcomes. 
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CHAPTER III 

                                                      Alzheimer’s Disease 

The progressive neurological disease named Alzheimer's disease leads to 

declining cognitive functions, which primarily affect memory functions while remaining 

among the primary dementia causes worldwide. The illness affects both patient 

independence and lifestyle, together with daily living activities, and causes a psychiatric 

and social burden that burdens families alongside caregivers (Breijyeh & Karaman, 2020). 

3.1 Dementia manifests as Alzheimer's disease  

Alzheimer's disease causes a continuous decline in cognitive abilities and memory 

deterioration. The most common form of dementia displays distinct characteristics and 

main features: The protein aggregation pattern in Alzheimer's disease features two key 

elements, including beta-amyloid protein plaques outside cells and tau protein tangles 

formed within cells. The affected areas of brain tissue show a specific reduction in size; 

the decrease in mental abilities results in modified behaviors and altered personality traits. 

Brain atrophy stands as the leading indicator of Alzheimer's Disease because 

available research shows direct links between these two conditions. The development of 

Alzheimer’s disease leads to expanding brain atrophy, which causes symptoms to worsen, 

including reduced mental processes, emotional ability, and physical movements. Medical 

imaging combined with MRI functions as an essential diagnostic tool for Alzheimer's 

disease detection through brain atrophy pattern analysis, which supports early diagnosis 

and disease staging identification (Michailidis et al., 2022). 
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3.2 Causes of Alzheimer's Disease 

1. Genetic & Hereditary Factors: Mutations affecting specific genes in Alzheimer's 

(APP), (PSEN1), and (PSEN2) are the leading cause of early-onset familial AD. 

Scientists consider the presence of APOE4 alleles the most effectively measured 

genetic factor driving late-onset Alzheimer's risk.  

2. Age: The disease becomes more common after people turn 65, as age functions 

independently as a primary risk factor for the illness.  

3. Brain Changes: These two diseases share the signature feature of developing Amyloid-

beta Plaques and Tau protein Neurofibrillary Tangles deposits in the brain. Because of 

these deposits, neural communication becomes obstructed, and the integrity of the players 

starts to degrade. 

 4. Lifestyle and General Health Factors: High blood pressure, diabetes, obesity, 

physical inactivity, and poor diets. Some examinations indicate a connection between 

Alzheimer's disease and type 2 diabetes to the extent that researchers call this combination 

type 3 diabetes since the brain might develop insulin resistance.  

5. Inflammation and Oxidative Stress:  

Excessive brain inflammation results in free radical oxidative stress, which damages brain 

cells and leads to diseases (Breijyeh, Karaman, 2020). 

 

Figure 1. The physiological structure of the brain and neurons in (a) a healthy brain and 

(b) an Alzheimer’s disease (AD) brain 
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3.3 Alzheimer's Disease Types 

3.3.1 Late-onset Alzheimer’s Disease  

Starting at age 65, one enters typical Alzheimer's disease territory, which medical 

professionals call early-onset yet classify as the later stage of Alzheimer's, known as late-

onset disease. Research has determined multiple risk elements that potentially heighten 

the development of this condition, although scientists have not uncovered complete 

explanations for its roots. The main risk factor for developing late-onset Alzheimer’s 

disease is aging since age-specific incidence rates significantly rise beyond age 65. The 

APOE4 gene shows a direct linkage to late-onset Alzheimer’s disease among specific 

genetic factors. The risk factors function as guidelines rather than deciding causes by 

themselves (Lau et al., 2023). 

Brain Changes occur as this degenerative condition creates neuronal-damaging 

beta-amyloid plaques and tau protein neurofibrillary tangles, disrupting brain neurons and 

damaging cognitive processing. High blood pressure, in combination with diabetes, 

obesity, smoking habits, and insufficient physical exercise, is believed to elevate 

Alzheimer's risk. Studies about the environmental origins of late-onset Alzheimer's 

remain ongoing. Still, researchers indicate that exposure to pollutants and insufficient 

mental stimulation, as well as chronic depression, might potentially elevate the risk of 

developing this condition(Lau et al., 2023). 

The most common version of Alzheimer’s disease erupts after the age of 65 and 

constitutes the prevalent form of this condition. Multiple causes combine through genetics 

and aging, as well as lifestyle choices and environmental factors, to form the development 

of this disease. The research community has identified key factors associated with 

dementia that enable doctors to detect the early stages of the disease and develop strategies 

to slow disease progression (Lau et al., 2023). 

3.3.2 Alzheimer’s Disease in the Early Onset The less common version of 

Alzheimer’s disease begins before age 65 and presents symptoms that arise 

between the ages of 40 and 65. People diagnosed with this type endure a steady 

loss of memory and mental abilities that prevents them from continuing their 
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work and managing family matters when they should be at their occupational 

prime. This type of dementia shows the following primary signs;  

Genetic Nature: The number of early-onset Alzheimer’s cases estimated from these 

genetic mutations amounts to approximately 4-5% for APP mutations and 30% for PSEN1 

mutations. PSEN2 mutations contribute fewer than 1% to early-onset cases( Ayodele et 

al. 2021). 

 Clinical Symptoms: The medical condition presents the same symptoms observed in 

patients with late-onset Alzheimer’s, including memory decline and cognitive 

impairment, together with behavioral alterations. The change in symptom speed results in 

significant social and economic effects because these patients generally work or have 

household responsibilities( Ayodele et al., 2021). 

 Diagnosis and Treatment: Multiple diagnostic tests are needed to confirm the illness, 

including mental evaluations, brain scans, and genetic screening of specific patients. 

Present therapeutic strategies target symptom control because no complete treatment 

exists yet. Medication and rehabilitation help decrease progression rates while enhancing 

the patient's quality of life. Reliable psychological and social assistance for families 

alongside patients should be provided when this form of disease impacts their vital 

development periods( Ayodele et al., 2021). 

 Current Research: Researchers today conduct extensive studies to examine the genetic 

and biological elements of early-onset Alzheimer's disease toward building potential 

genetic medicine and drug treatment alternatives. Current clinical research focuses on 

testing medication treatments that prevent the accumulation of amyloid and tau proteins 

throughout pre-therapy development stages, where they accumulate significantly in the 

brain ( Ayodele et al. 2021). 

3.3.3 Familial Alzheimer’s Disease(FAD) 

Familial Alzheimer’s Disease is a rare type of Alzheimer’s disease that is caused 

by specific genetic mutations that can be passed down through generations. It typically 
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starts before age 65 (under age 65) and is a form of early-onset Alzheimer’s disease. Key 

features include: 

Genetic Mutations: 

FAD is most commonly linked to APP, PSEN1, and PSEN2 mutations. 

These mutations effectively interfere with the production or processing of the amyloid-

beta protein, resulting in an accumulation of amyloid plaques in the brain. 

Inheritance: 

It is an autosomal dominant condition, so if either parent carries the pathogenic 

variant causing the disease, they have a 50% chance of transmitting that mutation to their 

family. Alternatively, if the mutation is inherited, symptoms often start in the same age 

range as they did in prior generations in the family (Soto-Mercado et al. 2024). 

Age of Onset: 

It usually begins early, with symptoms manifesting in the forties or, in some 

families, as early as the late thirties. The course of the disease is distinctive for being 

more rapid than that of late-onset Alzheimer’s disease(Soto-Mercado et al. 2024). 

Symptoms and Complications: 

The clinical symptoms are similar to those of other types of Alzheimer’s, 

including decreased memory, cognition, and behavioral changes. Because of its early 

presentation, it profoundly affects the social, functional, and psychological lives of 

patients and their families (Soto-Mercado et al., 2024). 

Diagnosing Gene Therapy:  

Families with a well-defined history of early-onset Alzheimer’s should pursue 

genetic counseling and testing to identify mutations associated with the disease. An early 

diagnosis helps plan treatment, care, and psychological and social support (Soto-Mercado 

et al., 2024). 

Current Research & Treatments: 
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 Researchers today conduct studies to analyze better how genetic variations affect 

brain cells and biological activities that accelerate beta-amyloid and tau protein 

accumulation. Current clinical trials investigate new drug candidates that operate through 

specific mechanisms that either lower amyloid-beta production or speed up its brain 

clearance ( Soto-Mercado et al. 2024).  

3.3.4 Alzheimer’s Type 3 Diabetes  

The idea of "Alzheimer's as Type 3 Diabetes" proposes that AD develops from impaired 

insulin signaling in the brain that resembles Type 2 Diabetes Mellitus (T2DM). The 

development of insulin resistance and damaged glucose metabolism in brain cells of 

patients with Alzheimer’s disease leads to disease progression while facilitating additional 

amyloid protein accumulation and tau protein aggregation. 

 1-Concept of Type 3 Diabetes  

Research articles have recently adopted the term to describe the brain mechanism 

that connects diabetic injuries with metabolic brain disorders and insulin resistance. 

Studies indicate that patients who have type 2 diabetes face increased Alzheimer’s risk, 

together with metabolic diabetes factors (elevated insulin and blood sugar levels), which 

harm neuronal cells. Neuronal cell dysfunction in response to insulin signals decreases 

glucose metabolism and energy generation within the brain by causing abnormal protein 

accumulation, such as amyloid and tau, combined with neural inflammatory activity 

manifestations (Breijyeh, Karaman, 2020).  

2-Evidence in Favor of the Hypothesis Multiple  

Scientific studies prove that Alzheimer's disease and Type 2 Diabetes share 

identical molecular pathways that include oxidative damage, inflammation, and 

dysfunctional mitochondria, along with Advanced Glycation End Product (AGE) 

accumulation. Multiple clinical experiments demonstrated how treatments that enhance 

insulin sensitivity among patients with diabetes produce results of either cognitive 

protection or improvement, which supports their connection. Similar Proteins: Aggregate 
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amyloid in the pancreas of diabetes patients; Structure similar to amyloid-beta in brain 

manifestations (Breijyeh, Karaman, 2020). 

 3-Importance of the clinical and therapeutic aspects  

Around early diagnostic methods would emerge through metabolic disorder-based 

treatments for Alzheimer’s disease by detecting brain insulin resistance as well as 

metabolic irregularities. The therapeutic approach indicates that established diabetes-

friendly drugs and diet patterns could benefit brain functioning and help patients avoid or 

slow down cognitive decline. Research Horizons: Linking Alzheimer’s to Type 3 

Diabetes demands that scientists test anti-diabetic medication on Alzheimer’s patients to 

evaluate their effectiveness at reducing neurological manifestations (Breijyeh, Karaman, 

2020). 

The significant importance of drawing these specified boundaries  

Diagnostic tests, with prediction of disease progression and treatment analysis, 

will benefit from disease classification methods considering age and genetic factors. Such 

distinctions create vital implications that affect how healthcare providers should pick 

therapeutic methods and provide psychosocial help to patients and their families. 

3.4 Alzheimer's disease diagnosis involves 

Healthcare providers perform multiple assessments via clinical examinations of 

brain structure, medical history evaluation, and tests of memory function, as well as 

cognitive abilities to diagnose Alzheimer's disease (Veitch et al. 2022). The diagnostic 

process takes the following steps according to a detailed approach: 

 Clinical Assessment: The doctor must interview one or both of these groups to learn 

about their medical backgrounds and histories of symptoms, including all medications 

used by the patient and changes in mental and behavioral patterns.  

Psychological and Neurological Test: Standardized tests evaluate patient memory, 

analytical capabilities, abstract thinking abilities, and language functions while 

measuring executive functions. 
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 Medical Imaging Techniques: The MRI machine performs scans to observe brain 

structural alterations, including temporal and parietal lobe atrophy.  

CT scans serve to eliminate potential stroke and tumor causes that may lead to similar 

symptoms.  

PET imaging provides doctors with beta-amyloid protein deposits and brain glucose 

usage patterns to confirm a diagnosis. 

 Blood tests and cerebrospinal fluid examinations help healthcare providers 

eliminate diseases such as vitamin B12 deficiency and thyroid function, demonstrating 

symptoms similar to Alzheimer’s (Veitch et al., 2022). 
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CHAPTER IV 

Convolutional Neural Networks 

This chapter looks at more advanced machine-learning models, observing how 

combining several algorithms into composite architectures can enhance diagnostic 

accuracy. Finally, we point out the newest direction: convolutional neural networks 

(CNNs); by the conclusion of the chapter, you will have a relatively straightforward 

roadmap of how these techniques have progressed from simple statistical classifiers to 

advanced deep-learning constructions—and why CNNs have become the defining 

foundation of AI-based medical imaging for Alzheimer’s research. 

4.1   DEEP LEARNING 

Convolutional Neural Networks (CNNs)  

CNNs are designed specifically for processing data with a grid-like topology, like 

images (Ibrahim et al., 2024). The core operations within CNNs use filters that extract 

spatial hierarchical patterns from data. CNN technology encompasses three principal 

application types: first, for image category recognition and object identification, and video 

assessment, and second, for every task requiring spatial data relationships (Amiri et al. 

2024). 

 

Figure 2. General architecture of a Convolutional Neural Network (Amiri et al. 2024). 
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Computer Vision and image analysis fields of AI rely fundamentally on the 

Convolutional Neural Network because it displays exceptional performance for computer 

vision work. The DL models demonstrate excellent performance with visual information 

in pictures and videos, making them necessary for image classification tasks, object 

recognition, segmentation, and video and text data evaluation. CNN architecture adopts 

its stacked design elements from the brain process by which the visual cortex of human 

brains identifies full images. The successive architectural layers run custom programs that 

strengthen the data-feature extraction process, thus enabling better execution of complex 

visual workflow operations (Salehi et al., 2023). 

The most recognized advantage of CNNs is their automatic feature learning 

capacity, which eliminates the need for human involvement during feature extraction 

procedures. The automatic learning capability of the system includes fundamental patterns 

consisting of edges, angles, and shapes since these elements help with detection and 

classification tasks. The main strength of CNN weight sharing emerges when filters run 

throughout entire images multiple times, thus reducing parameters while speeding up 

learning functions. Training these neural networks requires limited data preprocessing 

work during the training phase, streamlining the tasks that precede network training 

effectiveness. Application-oriented deployment of advanced neural models became 

achievable because researchers studied how to optimize neural models and enhance 

security protocols when developing enhanced model architecture frameworks. Medical 

diagnostic research enables practical advances in automated driving technology and 

clinical diagnostic practices (Amiri et al., 2024). 

Multiple layers form CNN networks to support the extraction and transformation 

of features by performing dedicated operations. Input Layer: Represents the initial data, 

typically an image with dimensions (height x width x color channels). Small filter 

applications on images occur in a convolution layer to extract relevant features. The 

beginning filters within each layer recognize basic features, such as edges and angles, 

before progressing to more complex elements in subsequent filter depths. The ReLU 

(Rectified Linear Unit) activation function is the standard choice in this system to process 

non-linear patterns for learning complex patterns. Feature map dimension reduction 
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occurs through Max Pooling or Average Pooling types in the pooling layer to conserve 

essential information about the data. The Fully Connected Layer concludes the analysis 

by applying traditional neural network approaches to vector transformations that produce 

classification results. The output layer of the network makes its ultimate results, 

comprising both class classifications for classification tasks and locational information 

for object detection, as well as alternative outputs (Salehi et al., 2023). 

 

 

Figure 3. The diagram represents the medical image data collection. After collection, the 

images are preprocessed and given as input to the CNN model(Salehi et al., 2023). 

 Convolution Operation 

The linear mathematical operation named convolution leads to the naming of 

CNNs. Remote image processing entails two matrix multiplications between an input 

vector I and a convolutional kernel K. The input vector and K function as a kernel, which 

makes up a convolutional matrix. This operation gives each the weighted sum of input 

values within the local region in the matrix positions. The kernel controls the 

neighborhood size and weight configuration (Sambolek, Ivasic-Kos, et al., 2021). 
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 An equivalent computation determines the inner potential levels for neural cells 

when implemented in this context of CNNs. The weight mechanism, known as the kernel, 

exists in an irregular shape and size. The most common kernel sizes used in CNNs are 

between 3x3 and 9x9 pixels across. Compared to the convolutional matrix, the CNN 

kernel shows total learnability when used for image processing work. It is capable of 

Kernel learning, which allows the network to react to the patterns found in training data. 

The pattern detection function is accomplished through convolution. Detector. The 

different kernel patterns identify different shapes while operating at various detection 

levels. Levels. Different detection levels correspond to the separate network layers. Early 

layers, Basic features including diagonal and horizontal edges, color bands, and color 

intensity gradients, fall under its detection capabilities. Complex patterns detected later in 

the network result from combining the underlying basic (Sambolek, Ivasic-Kos, et al., 

2021). 

Convolutional Layer 

A CNN relies on the convolutional layer as its fundamental design component. In 

these layers of neurons, the convolution process to determine their inner potential 

functions is the main operation. A convolutional layer is the most elementary component 

of any convolutional neural network (CNN), which is intended to enable the automatic 

extraction of locally explicit features from grid-shaped data such as images. Looking at a 

bank of small, trainable filters (kernels), which move over the input, computing dot 

products at each position to create feature maps whose values reflect the presence of one 

pattern or another, whether edges, textures, or other more elaborate motifs. By sharing the 

same filter weights across all spatial locations, convolutional layers can drastically reduce 

the number of parameters in the dimension of neurons. As a result, convolutions can be 

applied to high-resolution inputs while maintaining good learning efficiency. The major 

hyperparameters manage receptive field and output dimensions—filter size, stride (how 

many neurons does the filter advance with on each step), and padding (how should the 

input be expanded at the borders)— and those are complemented by nonlinear activation 

functions (e.g., ReLU) and by pooling operations (e.g., max-pooling) applied between 

convolutions that introduce invariance and contributes to the formation of hierarchical 
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feature representations. Using successive sets of convolutional layers, a CNN perceptually 

moves from detecting simple local contents in the early stages of development to 

encapsulating progressively more complex and abstract semantic information in more 

advanced layers, thus making convolution the primary behind many modern instances of 

computer vision and image‐based AI  (Salehi et al., 2023). 

 Special configurations for the convolutional layer exist to modify how it works 

and affect feature map sizes. Two main configuration parameters exist for stride. The 

padding option is an additional key feature. Padding. The stride is a metric that indicates 

how far kernel positions stand from each other. Kernel positions. The convolution 

calculation occurs at each position when the stride has a value of one. The result 

computation happens only during the second position when the stride equals two. As a 

result, A two-fold reduction occurs when the feature map gets down-sampled. The 

padding sets the calculation in the border positions. The calculation of convolution 

requires pixels with space inside the image domain. Of the image domain. An appropriate 

addition of zero padding surrounding the input image represents a possible solution—A 

solution (Saleh et al., 2023). 

CNN technology refers to this padding technique as the same padding. The 

convolution process should occur only at valid locations to prevent contamination by zero 

values. The feature map reduces size by 2k - 1 pixel, while k represents the kernel 

dimension. Dimension. The method of padding is called valid padding. Two significant 

factors make CNNs perform better than MLPs in image data processing. Outperform MLP 

on image data. ( Liu et al.,2022). 

Sparse Connectivity: The sparse connection represents the kernel shape and its 

dimensions. The number of kernel dimensions remains smaller than the dimensions of the 

image. The data input consists of millions of pixels. Regular kernels possess at most a 

hundredweight values, respectively. Using just a few, A feature map with matching input 

dimensions emerges when using weight sizes corresponding to the input length. To create 

output with the exact dimensions as the MLP input, we need to use several weights equal 

to the input dimension squared. The number of connecting weights needs to match the 

input dimension value squared. The convolutional layer significantly decreases the 
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system's memory usage and learning duration. It enables high Image processing using a 

resolution that can be achieved without down-sampling ( Liu et al.,2022). 

 Parameter Sharing: Mathematically, parameter sharing means one kernel can 

be used in different image positions. One set of parameters operates multiple times across 

different visual spacings. For example, if the kernel is the model's learned vertical edge 

detection ability, it can recognize all similar edge patterns throughout the image area. 

Image. Each kernel undergoes training on data amounts that exceed the number of training 

samples at all locations. Each training sample is used to learn all locations within these 

areas. This approach increases the possibility that the kernel will perform adequately. The 

learning process leads to kernels with well-developed effectiveness ( Liu et al.,2022). 

Pooling Layer 

Convolutional neural network layers, known as pooling layers, have no trainable 

parameters for learning. Parameters. The layer reduces input size by statistically 

calculating the neighboring units—Nearby units, e.g., maximum, mean. Network 

performance remains invariant due to the pooling layer's operation. A simple translation 

of a small magnitude does not affect the neural network's output. For example, small 

disparities in the detection of faces lead to the elimination of facial motions. The pooling 

layer functions as a fundamental component of convolutional neural networks, along with 

the convolutional layer. CNN and the convolutional layer (Saleh et al., 2023). 

Fully Connected Layer 

 A complete connection between the last convolutional layer output feature maps creates 

a single 1D array from which the network obtains its final results. A 1D array of numbers 

is created. These layers become intertwined with at least one network linkage, which starts 

the connection process—A fully connected layer. The learnable weight is a connection 

mechanism between each scattered input and output. The required features from the 

convolutional layers are completed along with the pooling operations. The network’s final 

outputs receive data from these layers after the pooling and down-sampling processes. 

Subsequent fully connected layers receive network output from a specific set of networks. 

Every day, practice shows that fully connected layers exist. The output nodes of the 
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classes and the fully connected layers remain identical at the termination point. The 

different fully connected layers incorporate ReLU nonlinear functions, according to 

(Salehi et al., 2023). 

 Multiple layers form CNN networks to support the extraction and transformation 

of features by performing dedicated operations. Input Layer: Represents the initial data, 

typically an image with dimensions (height x width x color channels). Small filter 

applications on images occur in a convolution layer to extract relevant features. The 

beginning filters within each layer understand basic features such as edges and angles 

before progressing to more complicated elements in succeeding filter depths. The ReLU 

(Rectified Linear Unit) activation function is the standard choice in this system to process 

non-linear patterns for learning complex patterns. Feature map dimension reduction 

occurs through Max Pooling or Average Pooling types in the pooling layer to conserve 

essential information about the data. The Fully Connected Layer concludes the analysis 

by applying traditional neural network approaches to vector transformations that produce 

classification results. The output layer of the network makes its ultimate results, 

comprising both class classifications for classification tasks and locational information 

for object detection, as well as alternative outputs (Salehi et al., 2023). 

4.2 Deep Learning 

Deep learning operates as a special AI(Artificial Intelligence) and machine 

learning subfield through multilayer artificial neural networks, which conduct automatic, 

sophisticated discovery of data features directly from raw information. Under this 

approach, substantial datasets are processed with superior precision while identifying 

patterns and generating forecast predictions. It is essential for contemporary fields such 

as computer vision, NLP, robotics, medical analytics, and DL model types (Bengio et al. 

2021).  

DL's most potent machine learning algorithm uses multi-layer artificial neural 

networks to train complex data representations. ML developed DL by advancing the 

artificial neural network approach, which gained momentum as computing abilities 

surged. At the same time, extensive data collection expanded significantly, requiring these 
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algorithms in operations like image recognition, speech detection, and medical data 

analysis (Aslan & Yilmaz, 2021). 

The fantastic operational strength of DL emerges from its layered construction. 

An image's processing begins at the basic lower levels, which detect shapes and edges, 

and then progresses to the deeper sections, which perform face recognition and language 

interpretation work, respectively. Backpropagation enables the network to determine 

output errors by using the algorithm to distribute the mistakes to all weights in preceding 

layers for subsequent weight updates using gradient descent or enhanced algorithms 

(Taye, 2023). 

The incredible power of deep learning stems from its layered architecture: initial 

convolutional layers detect basic features, such as edges and textures, and subsequent 

layers combine these into more complex motifs, including corners and simple shapes. In 

contrast, the deepest layers will abstract these into high-level concepts (for example, 

complete objects or complex patterns). In training, the backpropagation algorithm 

calculates the gradient of a loss function (concerning all network weights) by sending 

errors backward through each layer. These gradients are then used to update weights in 

the manner of stochastic gradient descent or any of its adaptive variants, allowing the 

network to minimize prediction error end-to-end iteratively. This automated, hierarchical 

feature learning utilizes millions of parameters and extensive data for deep networks to 

achieve excellence in various domains, ranging from image classification to natural 

language understanding (Zhang et al., 2022). 
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CHAPTER V 

Methodology 

This chapter contains the research methodology, which is divided into two 

sections. The first section describes the proposed system in detail, and the second section 

presents a performance assessment of this system through evaluation metrics.  

5.1 Proposed System 

 

Figure 4. Architecture of the Proposed System 

5.2 Dataset Description 

We will use Kaggle high-resolution images with three advanced CNN models: 

ResNet, EfficientNet V2, and ConvNeXt. The CNN models utilized for this examination 

include ResNet, EfficientNet V2, and ConvNeXt.This data collection includes both real 

and synthetic axial MRIs to address the class bias issue in the original Kaggle Alzheimer's 

dataset, which categorized images as "negative," "positive," "Mild Impairment," and 

"Moderate Impairment." Each of the four patient types comprised 100 individuals, 70 

individuals, 28 individuals, and two individuals. Each patient received 32 horizontal axial 
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MRIs of their brain. A 1.5 Tesla MRI scanner operated with T1-weighted sequence 

protocols took all images. Each MRI image includes 128x128 pixels in a .jpg file format.  

 

 

Figure 5. Samples for the dataset 

5.3 Proposed CNN Model 

AI  in processing images depends heavily on Convolutional Neural Networks 

(CNNs) and DL due to their efficacy. CNNs function as DL models that automatically 

extract hierarchical features from raw data to detect patterns, including edges, textures, 

and complex structures at increasing network layers (Uzelaltinbulat et al., 2025). Such 

models implement convolutional layers for data filtering applications, followed by 

pooling layers for dimension reduction until they reach fully connected layers for 

prediction making. CNN has become an effective computer vision technology because it 

can automatically identify important image features through its self-learning mechanism 

(LeCun et al., 2020). 

 The CNN training process proves computationally expensive, and obtaining 

adequate datasets to achieve effective training poses acquisition difficulties and hardware 

demands. Due to their exceptional accuracy levels and processing efficiency when 

handling visual data, CNNs are mainly being adopted in medical imaging, autonomous 

vehicles, and image-based search engines (LeCun et al., 2020). 

The three pre-train CNN models are used: 
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ResNet 

Residual Networks or ResNet exist as a DL model solution to eliminate gradient 

vanishing, which impairs the learning efficiency of deep networks. Adding residual units 

in ResNet allows layer outputs to combine so that signals can skip over specific network 

parts directly. Deep network training greatly benefits from this capability, ensuring the 

early layers maintain strong, effective updates during network propagation. ResNet is a 

leading model dominant in multiple image and video recognition applications due to its 

excellent performance against other model variants. ResNet became successful because it 

eliminates the requirement for extensive computational resources, thus creating efficient 

and economical applications in practice (Shafiq, Gu,2022). 

 

Figure 6. The ResNet building block(Shafiq, Gu,2022). 
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EfficientNet V2  

Scholars in recent years have focused on evaluating training and inference speed, 

as studies on neural networks increase. The large dimensions of previous precision 

classification systems made them impractical to deploy in embedded applications or 

various endpoints. Published EfficientNetV2 solved the common issue where most 

classification models only achieve higher accuracy through single-dimensional expansion 

of neural network dimensions: depth, width, and resolution. The balanced scaling solution 

in EfficientNetV2 improves precision levels by applying its technique to width and depth 

resolution dimensions, providing adaptable performance based on hardware limitations 

and operational needs. When used for training tasks, the EfficientNetV2 finishes its cycles 

ahead of any other cutting-edge models. Training duration becomes shorter when the 

image size increases, but accuracy might decline slightly. Researchers from Tan et al. 

developed progressive learning regulations to automate regularity control adjustments, 

including data augmentation processes and image size adaptations. EfficientNetV2 has 

received performance upgrades to run better on mobile platforms so that it can be 

deployed more easily in restricted system contexts. Wang et al. 2024).  



38 
 
 

 

Figure 7. EfficientNetV2 models ( Zhao, et al. 2024) 

ConvNeXt 

This modern model for convolutional neural networks (CNNs) centers its 

operations on the processing of images. The model introduces new rotational designs 

based on ResNet architecture that improve how significant visual data processing works. 

ConvNeXt incorporates Vision Transformer elements that involve a hierarchical structure 

and updated normalization and parameter learning methods while using the proven 

convolutional base for feature extraction and transformation operations in classification, 

noise reduction, detail enhancement, and semantic segmentation. The experiments 

demonstrate the superior performance of ConvNeXt across standard datasets, especially 
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in ImageNet, because of its potential to enhance visual processing in diverse applications, 

depending on parameter quantity and speed (Liu et al. 2022).  

 

Figure 8. ConvNeXt block 

 

5.4 Proposed Methodology 

Medical practitioners should perform early diagnosis of Alzheimer's disease 

because it helps determine both clinical requirements and appropriate treatment plans. 

Expert professionals currently detect Alzheimer's disease through their ability to 

recognize disease markers. Our study presents an efficient deep learning (DL) system for 

Alzheimer's disease classification that requires minimal physician supervision. This 

research employs deep learning (DL) algorithms and transfer learning (TL) techniques to 

enhance the accuracy rate in MRI brain image recognition. The proposed framework 

design for Alzheimer's diagnosis consists of four separate stages. Data preprocessing 

involves cropping and resizing the brain images before dividing them and applying 

normalization adjustments to the photos. The researchers amplify data using data 

augmentation methods to expand the size of their dataset. The preprocessed MRI images 
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of Alzheimer's are subjected to TL techniques for feature extraction through the 

applications of ResNet, together with EfficientNet V2 and ConNeXt networks. The CNN 

models produce extracted features as their output. 

 

Figure 9. Proposed Methodology 

5.5 Evaluation Metrics  

The accuracy, precision, specificity, recall, and F1 score performance metrics 

determine the model's efficiency in all cases. The accuracy evaluation of DL models 

determines how well they forecast results by assessing their predicted outputs against 

desirable outputs. The classifier model detects heart disease presence with valid results 

using true positive (TP) and true negative (TN) values. The false output of the models is 

distinguished by false positive (FP) and false negative (FN) events. The precision 

calculation shows the relationship between actual positive observations and all positive 

instances. The precision ratio assesses the proportion of all positive instances, while recall 

evaluates the ratio between all identified positive cases. The function measure establishes 

the mean between recall and precision values (Kavitha et al., 2022). 
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Accuracy 

Accuracy represents the proportion of accurate predictions for True Positives + 

True Negatives ( divided by the total sample count  ,)including all four outcomes (TP + 

TN + FP + FN). The metric determines model accuracy by measuring its success rate at 

classifying all cases vs. complete cases. 

 

(1)                              

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑁 + 𝑇𝑃)

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

Where: 

• True Positives   ) represent correctly predicted positive samples, while TP 

represents the True Positives category.  

• True Negatives )represent correctly predicted negative samples that fall into the 

TN category.  

• False positives (FPs)behind the acronym represent incorrect optimistic 

predictions that should have been classified as negative. 

• The FN category) Includes false negatives, which show incorrect pessimistic 

predictions. 

Precision  

A model's precision shows the degree of certainty concerning which predicted 

results will be positive. Precision reveals the relationship between actual positive cases 

(TP) and all samples predicted as positive (TP + FP). 

(2)  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 

Recall 
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 The model's recall evaluation measures its capacity to identify true positives 

among all existing cases of positive patient results (TP + FN). The measure determines 

which actual positive cases received accurate positive diagnoses. 

(3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

 

 

Specificity  

The model demonstrates specificity through its ability to correctly classify 

negative cases among all actual negative cases (TN + FP). The specific metric establishes 

the number of correct negative classifications among all existing negative cases. 

(4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

F1 Score 

  To calculate the F1 Score, one should divide the product of Precision and Recall 

by their sum: 

(5) 

𝐹1𝑆𝑐𝑜𝑟𝑒(𝑖𝑛𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

The F1 measure stands out for applications needing balanced precision and recall 

values, situations with irregular class frequencies, or the essential accurate detection of 

scarce categories. 

Macro Average 

 The precision, recall, and F1-score values for each class in the macro average 

undergo arithmetic mean calculation, but they receive equal treatment despite their 



43 
 
 

varying levels of support (sample numbers). The mathematical equation for the macro 

average appears as follows: 

 

(6) 

𝑚𝑎𝑐𝑟𝑜 𝑎𝑣𝑔 =
(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝐹1 − 𝑆𝑐𝑜𝑟𝑒)

4
 

Weighted Average 

A weighted average calculation considers the support values from each class 

through actual instances while assigning a higher value to courses with more samples. The 

calculation methods for weighted averages consist of the following formulas: 

(7) 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ (𝑀𝑒𝑡𝑟𝑖𝑐 𝑖 × 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑖)𝑐

𝑖=1

∑ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑖𝑐
𝑖=1

 

 

Validation and Testing: 

The data was divided into training-validation-test sets (Training Set 70%, Validation Set 

20%, Test Set 10%). The validation set used guided hyperparameter tuning and model 

selection. In contrast, the test set provided an unbiased evaluation of the final model 

through unseen data. 
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CHAPTER VI 

 

           Outcomes and Comments 

This chapter presents the primary outcomes from our Alzheimer’s classification 

experiments and discusses favorable results and necessary improvements. It also includes 

essential points regarding data quality, clinical relevance, and explainable AI for 

generating trustworthy and transparent predictions. 

6.1 Outcomes 

Overall Performance of Individual CNN Backbones: A four-class Alzheimer’s 

MRI dataset, comprising Normal, Mild Impairment, Moderate Impairment, and AD 

classes, was evaluated using three state-of-the-art CNN architectures: ResNet50, 

EfficientNetV2-S, and ConvNeXt-Base. Each model demonstrated unique characteristics, 

achieving more than 92% accuracy, but maintained different areas of excellence. 

ResNet50 accurately identified advanced AD (Class 4) cases, thereby reducing false 

positive results during the confirmation of severe atrophy. EfficientNetV2-S achieved the 

optimal results by maintaining balanced accuracy alongside the F1-score at a high level 

across the complete dataset. During mild impairment detection (Class 2), the ConvNeXt-

Base model demonstrated the highest ability to identify potential changes in the 

hippocampus, recalling most cases. Different clinical situations show that each backbone 

shows superior performance over others and inferior performance.  

 1. Exploiting Model Complementarity. We should leverage model variances in 

architecture by applying weighted ensemble systems. During routine screening, which 

requires maximum detection of early-stage conditions, the outputs from ConvNeXt-Base 

should receive additional weight to enhance mild impairment detection rates. When 

evaluating advanced Alzheimer’s disease, the clinical team should select ResNet50 

because of its superior precision, which reduces the number of false positives. The base 

weight of the ensemble originates from EfficientNetV2-S because of its leading overall 

F1-score performance. Our system implements adaptive weight management for patient 

risk level and scan quality, which allows it to customize sensitivity and specificity 

targeting depending on the clinical requirements. 
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 2. Elevating Data Uniformity and Augmentation. To enhance the performance 

even further, it is likely necessary to implement strict protocols for MRI uniformity 

standards and employ complex preprocessing techniques, including improved bias 

correction, improved skull-stripping algorithmic refinement, and adaptive histogram 

equalization methods. Acquiring physiologically appropriate brain deformations and 

synthetic brains created using GAN techniques allows scientists to broaden their 

representations of unusual cerebral atrophy patterns. Supplying training data that is more 

diverse and cleaned up will improve the results of each framework, along with the 

ensemble performance for edge cases. 

3. Tailoring to Clinical Workflows Memory clinics with elevated AD prevalence 

require detecting early impairment signs; therefore, they should employ the ConvNeXt-

weighted operating point for maximum recall performance. The ResNet-weighted mode 

for the CXR-Land assistant in general practice can help decrease the frequency of 

unnecessary patient referrals and improve resource efficiency. The radiology interface 

should contain an interactive slider for sensitivity and specificity adjustment that allows 

clinicians to base their settings on patient population demographics, age ranges, and 

medical condition patterns. The maintenance of real-world reliability depends heavily on 

ongoing model calibration checks and retraining procedures whenever upstream imaging 

procedures experience modifications. 

4. Building explainability into the pipeline hospitals requires more than raw 

numbers to comprehend autopsy recommendations because physicians need an 

explanation for such decisions. Implementing Explainable AI tools such as Grad-CAM or 

Integrated Gradients provides visual indications of hippocampal or parietal regions, which 

serve as the basis for each classification. Identifying salient areas in AD analyses will 

build clinical trust when these zones overlap with documented AD biomarkers. Still, it 

will show potential data artifacts when the detection is incorrect. 

The differing performance trends of these three shows reinforce an 

essential conclusion: no one model is right for all situations. Instead, they present 

complementary strengths. ConvNeXt Tiny and EfficientNetV2 Small are even and 

stable — they make good general classifiers. MobileNetV3 Small can be helpful 
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in cases where false positives should be kept at a minimum. 

 

Model ACC Sensitivity Specificity Precision F1-

Score 

macro 

avg 

weighted 

avg 

ConvNeXt 0.91 0.90 0.90 0.90 0.91 0.90 0.91 

EfficientNet 

V2 

0.98 0.99 0.99 0.99 0.98 0.99 0.98 

ResNet50 0.97 0.98 0.98 0.98 0.97 0.98 0.97 

Table 1. Performance Evaluation of each model 

Confusion Matrix:  

A confusion matrix represents a table structure that evaluates predicted 

classes against actual classes to identify model error patterns. 
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Figure 10: Confusion Matrix for ConvNeXt, EfficientNet V2, and ResNet50 
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6.2 Comments 

 (1) Exploiting Model Complementarity The examination showed that different 

CNN architectures of ResNet50 and EfficientNetV2-S with ConvNeXt-Base represent 

advantages for Alzheimer's MRI classification instead of limitations. Each CNN has its 

peak performance for various aspects of Alzheimer’s MRI diagnosis: ResNet50 creates 

top precision in advanced atrophy detection and EfficientNetV2-S balances accuracy. 

ConvNeXt-Base offers maximum sensitivity to early-stage alterations. The weighted 

ensemble system presents clinical priorities to different models for screening tasks, 

thereby elevating the performance of ConvNeXt-Base at early-stage identification while 

respecting ResNet50 performance for confirmatory diagnosis and trusting 

EfficientNetV2-S as the base model for general use.  

(2) Enhancing Data Quality & Preprocessing. Although the models 

demonstrate solid outcomes, implementing standardized MRI acquisition procedures 

alongside sophisticated preprocessing techniques will yield even better results. 

Combining bias-field correction with adaptive histogram equalization and brain-specific 

augmentation through GAN-based atrophy pattern simulation will decrease distortion and 

variations. The inputs that undergo cleaning enhance individual model performances and 

reduce complexity for the ensemble models, which results in potential performance 

enhancement. 

(3) Clinical Integration and Human Factors: Implementing AI within dementia 

clinics requires a careful strategy to strike a balance between false-positive and false-

negative results. Memory centers need ConvNeXt–Base–weighted outputs because 

detecting every MCI and early AD case remains a priority, making the system rely on this 

feature to minimize underdiagnosis. Due to the need to avoid over-referrals in general 

radiology work settings, ResNet50 offers accuracy that reduces erroneous positive 

diagnoses. The reporting tool should feature a threshold-adjustable interaction component 

that gives doctors direct control over maintaining optimal pluralism between system 

accuracy figures.  
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(4) Explainability and Trustworthiness: Clinicians need to understand the 

reasons behind each model decision to adopt the system based on high quantitative metrics 

alone. Explainable AI approaches such as Grad-CAM and Integrated Gradients should be 

used to identify the hippocampus, entorhinal cortex, and other AD-related structures that 

the network utilizes. The alignment of these saliency maps with known biomarkers 

strengthens clinician trust, while map detections of irrelevant artifacts lead to assessment 

or model improvement steps. Recognizing these diagnostic algorithms requires 

transparent operation, enabling them to collaborate as trusted partners in Alzheimer’s 

disease diagnostics. 
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CHAPTER VII 

               Discussion 

 

Discussion This thesis analyzes deep CNN architectures consisting of ResNet-50, 

EfficientNetV2-S, ConvNeXt-Base, and their ensemble, demonstrating their strong 

potential to detect Alzheimer’s disease stages via T1-weighted MRI analysis. We will 

analyze the obtained findings through existing research while discussing their clinical 

value, technical benefits, and limitations for further research directions. 

1. Complementary Strengths of Individual Backbones  

The networks demonstrated separate performance patterns that distinguished their 

operations. 

• ResNet-50's precision level reached 0.98 for advanced AD diagnosis, which helps 

avoid unnecessary false-positive results in severe atrophy analyses. This capability 

makes the model suitable for confirming expert clinical diagnoses.  

• The EfficientNetV2-S achieved optimal performance metrics between sensitivity, 

specificity, and F1-score (> 0.98) while also maintaining the efficacy established 

in diverse neuroimaging research by Diogo et al. (2022). 

• . The ConvNeXt-Base algorithm effectively detected Mild Impairment 

hippocampal changes at 0.90 sensitivity despite being applied to very early stages 

(Maity et al., 2024). 

 A weighted combination of the models based on their unique strengths reached an overall 

accuracy of 0.97 alongside balanced macro-averages (≈ 0.98), showing how model 

diversity can produce superior performance to individual architectures.  

2. Sensitivity vs. Specificity in Clinical Context. When used in early-stage 

screening (ConvNeXt-weighted), the high level of sensitivity enables prompt 

therapeutic intervention, which minimizes the progression toward dementia. The 

specific model type (ResNet-weighted) provides high precision rates, which 
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reduce inappropriate follow-up scans and patient diagnostic uncertainty during 

clinical evaluation. An interactive slider enables clinicians to adjust the decision 

threshold, which permits the system to match predictions to healthcare setting 

needs between memory clinics and primary care. 

3. Data Quality, Preprocessing, and Augmentation The study yielded robust findings, 

although its results demonstrated differences among different scan vendors and 

protocols. Implementing standardized MRI acquisition and an advanced 

preprocessing method will minimize differences between scanning sites. 

According to Alhoraibi et al. (2024), the model generalization of GAN-based data 

augmentation emerges as effective when it simulates infrequent atrophy patterns.  

4.  Explainability and Trust The lack of explainability stops healthcare providers 

from adopting this technology into routine practices. Implementing the saliency 

mapping techniques Grad-CAM and Integrated Gradients to identify hippocampal 

and entorhinal areas during predictions enables doctors to review the network's 

biomarker detection and refine models when false signals emerge.  

5. Toward Multimodal Fusion Doctoral research indicates that when structural MRI 

combines with amyloid PET and CSF biomarkers. At the same time, including 

APOE genotype and cognitive test scores under fusion protocols at feature level 

or decision level ensemble stages yields better diagnostic results and prognostic 

information. Lin et al. (2020) validated by achieving > 90% accuracy the ability 

of multimodal grading to predict the conversion from MCI to AD.  

6. Emerging Architectures and Learning Paradigms Vision Transformers combined 

with hybrid CNN-Transformer models surpassed pure CNNs in their performance 

on medical imaging tasks during the period described by Shih et al. (2024). Scans 

without labels can be used in semi-supervised and self-supervised learning to train 

robust feature extractors that address the issue of label scarcity in rare early-onset 

and familial AD cases. 

7.  Deployment: Efficiency and Equity The deployment of models for clinical real-

time applications needs compression techniques such as pruning, quantization, and 

knowledge distillation to minimize computational and memory requirements 

(Salehi et al., 2023). The evaluation of health data with diverse demographic 
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elements and impartial system audits regarding age groups, gender, and racial 

affiliations will secure uniform outcomes throughout medical communities.  

8. Ethical, Regulatory, and Collaborative Imperatives The approval process of AI 

products in clinical use requires early regulatory agency involvement from the 

FDA and EMA, coupled with strict privacy standards that enforce GDPR and 

HIPAA. Discreet consortia are made up of shared organizations that securely 

distribute anonymized MRI datasets together with model programming and 

evaluation standards, which work to enhance model validation and deployment 

worldwide for Alzheimer’s healthcare. 

7.2 Concluding Remarks 

This research proves that properly selected combinations of deep-learning 

networks, including ResNet-50, EfficientNetV2-S, and ConvNeXt-Base, alongside 

their ensemble method, successfully evaluate Alzheimer's disease severity through 

examination of T1-weighted MRI images. The three backbones synergy results in a 

superior performance accuracy of more than 97 % and stable F1-scores across all 

disease phases, while each network specializes in different stages according to its 

unique strengths. This pipeline equips itself to handle various clinical needs by 

utilizing standardized preprocessing and GAN-based augmentation, as well as 

explainable‐AI saliency mapping and an adjustable sensitivity–specificity interface to 

achieve better detection of mild cognitive impairment early on. For clinical dementia 

care to benefit from these discoveries, researchers must combine PET amyloid 

imaging and CSF biomarkers with genetic information while conducting self-

supervised pretraining procedures and developing performance optimization 

techniques for real-world clinical deployment. The developments in this research 

provide the base for future AI applications, enabling neurologists to detect conditions 

early while making treatment approaches more personalized and raising global patient 

life standards. 
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7.3 Limitations 

Medical experts must consider significant constraints when they employ AI and 

Machine Learning techniques on MRI data to increase the speed of Alzheimer’s 

Disease diagnosis. Such models become less applicable for wider use because training 

datasets typically contain one dominant group or population. Most available studies 

use data from focused demographic or clinical cohort groups, which reduces the extent 

to which such models can be effectively utilized across diverse patient populations 

with varied ethnic makeup, socioeconomic backgrounds, and genetic disparities 

(Alsubaie et al., 2024).  

Traditional ML algorithm systems, including DL models, can detect advanced 

patterns within imaging datasets while maintaining complex internal operations that 

lack interpretive functions. Organizations may avoid adopting diagnostic tools when 

analysts do not trust recommendations from black-box systems whose outputs are 

difficult to interpret and understand and how they were explained or justified. 

Trustworthy AI (TAI) development requires ongoing research about model 

explainability techniques because this issue is a fundamental component of TAI 

creation. Implementing these tools in healthcare settings demands significant 

computational power that some medical facilities might lack. The models passed tests 

in independent datasets, which validated their strength, and health services researchers 

conducted prospective trials to confirm their clinical effectiveness (Zhao and Liu, 

2022).  

The absence of treatment options for AD means that exact diagnosis, coupled with 

early detection alone, will not lead to meaningful improvements in patient outcomes 

despite their being essential first steps. Future investigations must develop effective 

treatments simultaneously; otherwise, superior diagnostic methods will not deliver 

relevant clinical advantages. 
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CHAPTER VIII 

 

Conclusion and Recommendations 

8.1 Conclusion 

The research demonstrates that ResNet50, EfficientNetV2-S, and ConvNeXt-Base 

demonstrate effective and dependable stage classification of Alzheimer’s disease by 

examining T1-weighted MRI brain scan data. Among the models, EfficientNetV2-S 

presented the most balanced performance outcomes, achieving more than 97% accuracy 

while maintaining balanced metrics for precision, recall, specificity, and F1-score. 

ResNet50 showed its strongest point in minimizing wrong positive results for advanced–

stage patients, but ConvNeXt-Base displayed better detection capabilities for the critical 

biomarker of hippocampal atrophy in early Alzheimer's cases. A combination method that 

averages the output from all three models both maintained their distinctive identification 

methods and reduced overall mistakes, thus proving that different algorithms can 

strengthen diagnostic accuracy. Study results through confusion-matrix analyses 

confirmed that the model system could rectify misdiagnoses generated by individual 

models, making it ready for clinical use, which depends on accurate diagnosis for patient 

care decisions. These findings confirm that carefully selected and merged DL models can 

revolutionize Alzheimer's disease identification through efficient medical solutions that 

benefit multiple healthcare facilities. 

8.2 Recommendations  

This research requires the implementation of the following strategic directions to 

achieve clinical practice use and future investigation support:  

1. Broaden & Diversify Data: Develop big multicenter MRI repositories between 

scanners, strengths of fields, and protocols, and leverage GAN-based augmentation to 

generate scarce atrophy patterns for fuller training sets. 

 2. Standardize Acquisition & Preprocessing Introduce a standard set of imaging 

protocols (field strength, sequences) and have one pipeline (bias-field correction, 
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skull-stripping, intensity normalization) to produce similar inputs with later results the 

same or similar.  

3. Fuse Multimodal Biomarkers. Complement structural MRI, cognitive scores, 

APOE genotype, amyloid/tau PET, and CSF markers—explore feature-level fusion to 

decision-level ensembles for maximum diagnostic performance.  

4. Embed Explainability: Integrate saliency maps (Grad-CAM, Integrated 

Gradients), interactive visualizations of regional activations, and confidence scores to 

enable radiologists to check model rationale.  

5. Optimize for Deployment Prune, quantize, and perform knowledge distillation to 

shrink models, then benchmark end-to-end inference for real-time on-site or edge 

within clinical workflows. 

 6. Validate externally and clinically. Test independently and run prospectively 

within memory clinics on ADNI-2, AIBL, and OASIS cohorts to determine 

performance across demographics, enhance diagnostics, and influence patient 

outcomes.  

7. Foster Open Collaboration Support close cooperation by offering a secure, shared 

space where researchers, clinicians and engineers can confidently share anonymous 

MRI datasets, source code and models under agreed rules; form mixed consortia to 

decide on imaging protocols, preprocessing pipes and evaluation gauges; release open 

documentation for every improvement; and organize workshops or hackathons to 

discus the most effective techniques—in this way, combine efforts for building useful, 

effective tools for detecting Alzheimer’s disease.  

8. Ensure Ethics, Privacy, and compliance. Establish governance on consent, bias 

mitigation, and data protection. Early scope for FDA and EMA regulatory (AI 

diagnostic approval) pathways. 

The recommendations enable future research to build upon this study's established 

work through DL–driven MRI analysis of Alzheimer’s disease, which facilitates 

clinical adoption and leads to better patient outcomes worldwide. 
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