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Abstract 

The Kudryashov Methods for Constructing Solitary Waves of Schrödinger 

Equations 

Boakye Gilbert 

MSc, Department of Mathematics 

August 14, 2023, (52) pages 

This thesis investigates the use of the Kudryashov methods for the construction of 

Solitary wave solutions in Schrödinger equations with applications in nonlinear optics.  

More precisely, the Kudryashov methods, established in 2012 and 2022, are 

formally adopted to extract solitary wave solutions of generalized Schrödinger 

equations involving distinct laws, such as the Kerr law and the parabolic law.  

The derived solitary wave solutions provide valuable insights into the dynamics of 

optical pulses and their behavior in different nonlinear media. 

Chapter I introduces solitary waves, outlines the study’s goals, and highlights the 

relevance of the Kudryashov methods among others.  

Chapter II reviews key literature on nonlinear PDEs, focusing on solution 

techniques for the Schrödinger equation.  

Chapter III details two versions of the Kudryashov method, applying them to the 

KdV equation to demonstrate their effectiveness.  

In Chapter IV, both methods are used to derive solitary wave solutions for 

generalized Schrödinger equations, revealing how changes in nonlinearity coefficients 

affect wave amplitude and width.  

Chapter V concludes that while both methods are effective, Method II is more 

flexible and is recommended for equations where Method I is limited. 

 

Keywords: Schrödinger equations, Kerr law, parabolic law, Kudryashov methods, 

solitary waves 

 

 



v 
 

 

Özet 

Bu tez, doğrusal olmayan optikte uygulamaları olan Schrödinger denklemleri 

için soliter dalga çözümlerinin elde edilmesinde Kudryashov yöntemlerinin 

kullanımını incelemektedir. 2012 ve 2022’de geliştirilen Kudryashov yöntemleri, Kerr 

ve parabolik yasalar içeren genelleştirilmiş Schrödinger denklemlerine uygulanmıştır. 

Elde edilen çözümler, optik darbelerin farklı doğrusal olmayan ortamlardaki 

davranışlarını anlamada faydalıdır.  

Birinci bölümde konunun amacı ve önemi açıklanmış, ikinci bölümde ilgili 

literatür incelenmiştir. Üçüncü bölümde Kudryashov yöntemleri tanıtılmış ve KdV 

denklemi üzerinde denenmiştir.  

Dördüncü bölümde bu yöntemler Schrödinger denklemlerine uygulanarak 

çeşitli soliter çözümler elde edilmiştir. Son olarak, beşinci bölümde Yöntem II’nin 

daha esnek olduğu ve Yöntem I’in sınırlı kaldığı durumlarda tercih edilmesi gerektiği 

sonucuna varılmıştır. 

 

Anahtar Kelimeler: Schrödinger denklemleri, Kerr yasası, parabolik yasa, 

Kudryashov yöntemleri, soliter dalgalar 
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CHAPTER I 

Introduction 

The study of solitary waves, due to their real applications (Wazwaz, 2009), has 

garnered significant attention in various scientific disciplines. These wave phenomena 

emerge in nonlinear systems and play a crucial role in fields such as fluid dynamics, 

quantum mechanics, and nonlinear optics (Wazwaz, 2009). More especially, each type 

of solitary wave possesses unique properties, making them fundamental objects of 

study in physics (Wazwaz, 2009). 

In recent years, the Kudryashov methods (Ayati et al., 2017) have emerged as 

effective tools for constructing solitary wave solutions in nonlinear partial differential 

equations (Özişik et al., 2022). These methods have demonstrated their applicability 

across diverse domains, ranging from fluid dynamics to plasma physics (Özişik et al., 

2022).  

This thesis focuses on a comprehensive exploration of the Kudryashov methods in 

the context of Schrödinger equations. The Kudryashov methods provide innovative 

approaches to extracting solitary wave solutions of Schrödinger equations, shedding 

light on the underlying physics of solitary wave formation and propagation. 

Background of the Study 

Solitary waves discovery dates back to the 19th century when Scottish engineer 

John Scott Russell observed a solitary wave in a canal (Wazwaz, 2009). They have 

since been extensively studied in various disciplines, including physics and 

engineering. 

Formulated in 1925 by Erwin Schrödinger, the Schrödinger equation concept was 

introduced by considering the de Broglie hypothesis (Figueiredo et al., 2019). 

According to this hypothesis, matter particles are characterized by a wave packet 

spread out over space (Figueiredo et al., 2019). 

Schrödinger equations find wide-range applications in different scientific fields. 

Originally introduced as a key equation in quantum mechanics to describe the behavior 

of quantum particles, the Schrödinger equation has also found relevance beyond its 

original domain (Schrödinger’s Equation: Explained & Amp; How to Use It, 2021). It 

arises as a model in nonlinear optics, Bose-Einstein condensates (Liu & Kengne, 
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2019), plasma physics, and other physical systems exhibiting wave-like behavior 

(Wazwaz, 2009).  

The search for solitary wave solutions in Schrödinger equations is of great 

importance due to such waves possess unique characteristics (Arora et al., 2022 & 

Wazwaz, 2009). For example, solitons as a type of solitary waves can carry energy, 

information, and other conserved quantities without distortion (Turitsyn et al., 2012). 

Several existing methods have been developed to construct solitary wave solutions 

for Schrödinger equations. In this context, the "Kudryashov Methods" offer new 

approaches to constructing solitary waves of Schrödinger equations. These methods, 

developed by Kudryashov (Özişik et al., 2022), introduce innovative ideas and 

techniques that expand the repertoire of available solitary wave solutions (Özişik et 

al., 2022. By applying the Kudryashov methods, this study aims to explore their 

advantages, limitations, and applications in generating solitary wave solutions. 

Research Objectives 

The main objectives of this research are twofold. First, we delve into a detailed 

examination of the Kudryashov methods, referred to as Method I and Method II. These 

methods are applied to nonlinear PDEs to extract solitary wave solutions, with a 

particular focus on their differences and advantages in handling different types of 

equations. Second, the thesis extends the application of these methods to more 

generalized forms of the Schrödinger equation, introducing different nonlinearities 

such as the Kerr and parabolic laws.  

By doing so, we aim to provide a comprehensive understanding of the capabilities 

and limitations of the Kudryashov methods in capturing solitary wave dynamics in 

various nonlinear settings. 

Significance of the Study 

Solitary waves constitute a crucial component in describing a diverse array of 

nonlinear phenomena across various branches of applied sciences. Their inherent 

capacity to propagate energy, information, and other conserved quantities devoid of 

distortion underscores their significance (Turitsyn et al., 2012). These useful 

characteristics underscore the imperative to investigate solitary waves within the realm 

of NLPDs. 
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Research Questions 

1. What are the merits of the Kudryashov methods in handling Schrödinger 

equations? 

2. What are the demerits of the Kudryashov methods in handling Schrödinger 

equations? 

Scope and Limitations of the Study 

The scope of the study revolves around the Kudryashov methods (Ayati et al., 

2017) and their applications in finding solitary waves of nonlinear PDEs. It focuses on 

the two versions of the method, proposed in 2012 and 2022. 

Ethical Considerations 

In the course of conducting this research, ethical considerations have been of 

paramount importance. Ensuring the ethical integrity of this study involves 

maintaining a commitment to objectivity, accuracy, and transparency in the 

presentation of findings and results. The use of existing literature and resources is 

appropriately attributed and referenced. Moreover, the research respects the 

intellectual property rights of other researchers and scholars by accurately citing their 

work. 

Moreover, this research avoids any form of plagiarism, fabrication, or 

misrepresentation of information. The goal is to contribute to the academic community 

with the highest ethical standards, maintaining credibility and scholarly rigor 

throughout the study. 

Organization of the Study 

This thesis is structured as follows: In Chapter 1, there is a comprehensive 

introduction encompassing the study’s significance, research questions, objectives, 

and ethical considerations. Chapter 2 delineates the examination of pertinent literature. 

Chapter 3 concentrates on the methodologies and approaches employed in the study. 

Specifically, it scrutinizes and draws comparisons between the Kudryashov Methods 

I and II, offering intricate explanations of how they are employed to determine solitary 

wave solutions for NLPDEs, notably focusing on the KdV equation. The fourth chapter 

delves into the efficacy of the Kudryashov methods in tackling a generalized 

Schrödinger equation with different nonlinearities. 

The concluding chapter encapsulates a summary of the entire thesis along with 

presenting recommendations derived from the study’s findings. It also serves to 
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provide a concise overview of the key points discussed throughout the thesis, 

highlighting the main contributions and insights obtained from the research. In 

essence, this chapter brings closure to the thesis by reiterating its significance, 

summarizing its core contents, and suggesting avenues for future exploration and 

implementation. 
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CHAPTER II 

Literature Review 

This chapter presents a literature review aimed at providing a comprehensive 

overview of the existing research and advancements regarding Schrödinger equations, 

the Kudryashov methods, and solitary waves. Additionally, it encompasses a thorough 

examination of the literature on PDEs in general, delving into various definitions and 

approaches to studying such equations. 

Theoretical Background 

As mentioned in the earlier portions of this thesis by Wazwaz (2009), solitary 

waves have found significant applications in various fields of physics, such as optics, 

fluid dynamics, and quantum mechanics. The Schrödinger equations on the other hand 

are a class of nonlinear PDEs that describe wave propagation in quantum mechanics, 

nonlinear optics, and other wave-related phenomena (Liu & Kengne, 2019). Moreover, 

the Kudryashov methods (Ayati et al., 2017) are effective techniques used to construct 

exact solutions, particularly solitary waves, for a wide range of nonlinear PDEs 

(Ryabov et al., 2011).  

Schrödinger Equations 

Schrödinger equations have emerged in a wide range of phenomena from plasma 

physics to nonlinear optics (Wazwaz, 2009). However, unlike the linear Schrödinger 

equation, nonlinear Schrödinger equations involve additional nonlinear terms 

(Wazwaz, 2009), making them more complex and challenging to solve. Therefore, 

researchers often employ various numerical methods to obtain numerical solutions for 

them. In this thesis, the Kudryashov methods emerge as potent techniques employed 

to discover exact solitary wave solutions for a diverse array of NLPDEs. 

Kudryashov Methods 

The Kudryashov methods (Ayati et al., 2017), devised in 2012 and 2022 as method 

I and method II respectively, are influential mathematical techniques employed to 

discover exact solutions, including solitary wave solutions, for a diverse range of 

NLPDEs. In recent years, the Kudryashov method I has been used to find solitary wave 

solutions of many nonlinear PDEs by different authors (Ayati et al., 2017 & 

Mirzazadeh et al., 2014).  
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Partial Differential Equations 

PDEs are equations in which the unknown function, often known as the dependent 

variable, and its partial derivatives are both present (Wazwaz, 2009; Exner et al., 2021 

& Partial Differential Equations). ODEs only need the dependent variable to depend 

on one independent variable, but PDEs demand that the dependent variable depends 

on several independent variables (Wazwaz, 2009).  

For instance, the function 𝑢 relies on both 𝑥 and 𝑡 in PDEs like 𝑢 = 𝑢(𝑥, 𝑡) or 𝑢 =

𝑢(𝑥, 𝑦, 𝑡), or on 𝑥, 𝑦, and 𝑡, respectively (Wazwaz, 2009).  

PDEs may explain a wide range of physical phenomena. For instance, according 

to Wazwaz (2009), equations that illustrate heat flow in one-, two-, and three-

dimensional spaces include the following:  

𝑢𝑡 = 𝑘𝑢𝑥𝑥  (1.1) 

𝑢𝑡 = 𝑘(𝑢𝑥𝑥 + 𝑢𝑦𝑦)  (1.2) 

and                      

𝑢𝑡 = 𝑘(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧) (1.3)

The dependent variable 𝑢 = 𝑢(𝑥, 𝑡) in Eq. (1) is dependent on the position 𝑥 and the 

time 𝑡. 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) in Eq. (2) is reliant on the three independent variables 𝑥, 𝑦, and 

𝑡 (Wazwaz, 2009). The dependent variable 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) in Eq. (1.3) depends on 

the four independent variables 𝑥, 𝑦, 𝑧, and 𝑡 (Wazwaz, 2009). The equations 

𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥  (1.4) 

𝑢𝑡𝑡 = 𝑐2(𝑢𝑥𝑥 + 𝑢𝑦𝑦)      (1.5)    

𝑢𝑡𝑡 = 𝑐2(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧)    (1.6) 

which describe one-dimensional, two-dimensional, and three-dimensional spaces, 

respectively, are examples of wave propagation equations (Wazwaz, 2009). The 

unknown functions are specified as 𝑢 = 𝑢(𝑥, 𝑡), 𝑢 = 𝑢(𝑥, 𝑦, 𝑡), and 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡), 

respectively, in Eqs. (1.4), (1.5), and (1.6) (Wazwaz, 2009). 

Furthermore, 𝑢𝑡 + 𝑢𝑢𝑥 − 𝑣𝑢𝑥𝑥 = 0 and 𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 respectively, are 

used to describe the Burgers equation and the Korteweg-de Vries (KdV) equation 

(Wazwaz, 2009). The variables 𝑥 and 𝑡 affect the function 𝑢 in these equations.  

The Order of PDEs 

The order of a partial differential equation is determined by the highest order of 

the partial derivatives in the equation (Wazwaz, 2009). It provides information about 
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the complexity and characteristics of the equation (Wazwaz, 2009). Detailed below is 

the concept of order in PDEs with some vivid examples: 

First-Order PDE: A first-order PDE involves only first-order partial derivatives 

(Rhee et al., 2014 & Ghasemi, 2019). One example is the linear transport equation: 

𝑎(𝑥, 𝑦)𝑢𝑥 +  𝑏(𝑥, 𝑦)𝑢𝑦 = 𝑐(𝑥, 𝑦). Here, 𝑢(𝑥, 𝑦) is the unknown function, and 

𝑎(𝑥, 𝑦), 𝑏(𝑥, 𝑦), and 𝑐(𝑥, 𝑦) are given coefficients (Rhee et al., 2014 & Ghasemi, 

2019). The first-order derivatives 𝑢𝑥 and 𝑢𝑦 appear in the equation. 

Second-Order PDE: A second-order PDE contains second-order partial 

derivatives and is more complex than a first-order PDE. The Laplace equation is a 

classic example: 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 (Strauss, 2007).  

This equation appears in various fields, including electrostatics and fluid dynamics 

(Vogt, 2007). It involves second-order derivatives 𝑢𝑥𝑥 and 𝑢𝑦𝑦 (Strauss, 2007). 

Third-Order PDE: A third-order PDE includes third-order partial derivatives 

(Evans, 2010 & Mechee et al., 2014). One example is the KdV equation, 𝑢𝑡 +

6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 which represents lengthy internal waves in a stratified ocean, 

weakly interacting shallow water waves, ion-acoustic waves in plasma, and 

acoustic waves on crystal lattice (Lewis et al., 2022).  

This nonlinear equation describes certain types of waves and involves third-order 

derivative 𝑢𝑥𝑥𝑥 (Wazwaz, 2009). 

Higher-Order PDEs: The fourth, fifth, and even higher orders of PDEs are 

possible. For example, when considering both the momentum and the continuity 

equations simultaneously, the well-known Navier-Stokes equations, which 

describe fluid flow (Hosch, 2023), are fourth-order PDEs (Society for Industrial 

and Applied Mathematics, Hosch, 2023). 

 Linear and Nonlinear PDEs 

Based on the structure of the equations, partial differential equations may be 

divided into two basic categories: linear and nonlinear (Wazwaz, 2009). The 

subsequent sections investigate each category using concrete instances.  

Linear PDEs: A linear PDE is one in which the dependent variable and its 

derivatives appear linearly (Wazwaz, 2009). This means that the dependent 

variable and its derivatives are raised to the power of 1 and do not multiply or 

divide each other (Wazwaz, 2009). Linear PDEs have particularly nice 
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mathematical properties and often have well-developed solution methods. A 

typical example is the Linear Heat Equation: 𝑢𝑡 = 𝑘𝑢𝑥𝑥 (Wazwaz, 2009).  

This equation describes the diffusion of heat and is a classic example of a linear 

PDE (Kovács, 2021). The dependent variable 𝑢 and its derivatives appear linearly, 

with no nonlinear terms (Wazwaz, 2009). Other examples of linear PDEs 

according to Wazwaz (2009), are the wave equation (𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥), the Laplace 

equation (𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0), and the Klein-Gordon equation 

(𝛻2𝑢 −
1

𝑐2 𝑢𝑡𝑡 = 𝜇2𝑢), among others. 

Nonlinear PDEs: When the dependent variable and its derivatives do not behave 

linearly, the PDE is considered nonlinear (Wazwaz, 2009). The dependent 

variable’s derivatives, as well as any of its products, powers, or other nonlinear 

processes, are included in nonlinear terms (Wazwaz, 2009).  

In comparison to linear PDEs, nonlinear PDEs are typically harder to solve and 

analyze. Wazwaz (2009) lists a few examples of nonlinear partial differential 

equations such as the Burgers equation (𝑢𝑡 + 𝑢𝑢𝑥 = 𝛼𝑢𝑥𝑥), the KdV equation 

(𝑢𝑡 + 𝛼𝑢𝑢𝑥 + 𝑏𝑢𝑥𝑥 = 0), the mKdV equation (𝑢𝑡 − 6𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0),  and the 

Sine-Gordon equation (𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 𝛼 sin 𝑢), etc. These types of equations model 

various phenomena, including fluid flow and traffic flow (Wazwaz, 2009).  

Homogenous and Inhomogeneous PDEs 

Homogeneous and inhomogeneous partial differential equations (PDEs) are 

classifications based on the nature of the forcing term or source in the equation 

(Wazwaz, 2009). 

Homogeneous PDEs: Homogeneous PDEs are equations in which the dependent 

variable and its derivatives combine to form a homogeneous expression, meaning 

that the equation is equal to zero (Wazwaz, 2009 & Fog & Fog, 2017). In other 

words, the equation lacks any external sources or forcing terms (Wazwaz, 2009). 

The wave equation is a classic example of a homogeneous PDE. In one dimension, 

it is given by 𝑢𝑡𝑡 − 𝑐2𝑢𝑥𝑥 = 0 (Wazwaz, 2009). This means that when the source 

term is zero (0), the equation is homogeneous (Fog & Fog, 2017).   

Here, 𝑢(𝑥, 𝑡) represents the displacement or amplitude of the wave, 𝑐 is the wave 

speed, and 𝑢𝑡𝑡  and 𝑢𝑥𝑥 are the second partial derivatives of 𝑢 with respect to time 

(𝑡) and position (𝑥), respectively (Fog & Fog, 2017). The absence of any external 
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forcing term makes it a homogeneous PDE (Wazwaz, 2009). Notably, 

homogeneous PDEs have certain characteristics that cannot be overlooked. A few 

of such characteristics have been detailed below:  

First, homogeneous PDEs have a special characteristic known as superposition 

(Linear PDEs and the Principle of Superposition, n.d. & Choksi, 2022), which 

states that if 𝑢1(𝑥, 𝑡) and 𝑢2(𝑥, 𝑡) are solutions to the homogeneous PDE, then any 

linear combination of them, such as 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) is likewise a solution 

(Linear PDEs and the Principle of Superposition, n.d. & Choksi, 2022). Due to this 

characteristic, generic solutions can be created using linear combinations. Also, 

homogeneous PDEs can often be solved using separation of variables, Fourier 

series, Laplace transforms, or other analytical techniques (Wazwaz, 2009).  

The superposition principle, combined with these methods, allows for the 

construction of general solutions (Wazwaz, 2009). Boundary and initial conditions 

are typically used to determine specific solutions within a given problem (Wazwaz, 

2009). In terms of their applications, homogeneous PDEs find applications in 

various fields. For example, the wave equation is used to describe vibrations of 

strings, membranes, and other wave phenomena (Cas, 2022) while the Laplace 

equation appears in electrostatics and steady-state heat conduction problems 

(Holagh et al., 2019). The homogeneous nature of these equations simplifies their 

analysis and allows for the discovery of fundamental solutions and characteristic 

behaviors. 

Inhomogeneous PDEs: Inhomogeneous PDEs include a non-zero source term or 

forcing function, representing external influences or interactions in the system 

being modeled (Wazwaz, 2009). This term causes the equation to be non-

homogeneous. The heat equation with a heat source is an example of an 

inhomogeneous PDE (Huang et al., 2013). In one dimension, it is given by 𝑢𝑡 −

𝑘𝑢𝑥𝑥 = 𝑓(𝑥, 𝑡)  where 𝑢(𝑥, 𝑡)  represents the temperature distribution, 𝑘  is the 

thermal diffusivity constant, 𝑢𝑡 and 𝑢𝑥𝑥 are the first and second partial derivatives 

of 𝑢 with respect to time (𝑡) and position (𝑥), respectively, and 𝑓(𝑥, 𝑡) is the heat 

source term (Hancock, n.d.). The presence of the non-zero function 𝑓(𝑥, 𝑡) makes 

it an inhomogeneous PDE (Wazwaz, 2009). 
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Solutions to PDEs 

Different solutions for PDEs can be considered (Polyanin et al., 2008; Wazwaz, 

2009).  

Exact solutions: When it is possible to identify explicit mathematical formulations 

that fulfill the PDE, exact solutions are discovered. These solutions can include 

approaches like the variable separation (Wazwaz, 2009) and symmetry methods 

(Hydon, 2000). Since they give accurate formulae for the related dependent 

variables, exact solutions are greatly desired (Wazwaz, 2009).  

It is however important to note that the choice of solution method depends on the 

specific characteristics of the PDE, boundary conditions, and the problem at hand. 

In some cases, a combination of different solution techniques may be necessary to 

obtain a complete understanding of the solution behavior. 

By solving nonlinear differential equations exactly, we can gain a clearer 

understanding of complex effects such as spatial localization of transfer processes, 

the presence or absence of stationary states under certain conditions, blow-up 

solutions, and the possibility of no smoothness or discontinuity of unknown 

(Polyanin & Sorokin, 2021).  

An essential step in comprehending the behavior of physical systems and 

foretelling their long-term evolution is the analytical solution of PDEs and the 

discovery of exact solutions. Exact solutions serve as standards for testing 

numerical techniques and indicate significant trends while also offering insights 

into the underlying dynamics (Roy & Sinclair, 2009). However, due to the 

complexity of the equations and the wide range of boundary or initial conditions 

that may be applied, finding exact solutions to PDEs is frequently a difficult task.  

Here, a number of potent strategies and approaches have been proposed to deal 

with such problems, allowing the creation of exact mathematical expressions that 

fulfill the PDEs. Each method possesses unique characteristics and is suited to 

particular types of PDEs and boundary conditions. Detailed below are some of 

them. 

Method of Separation of Variables: The key aspect of this method lies in its 

ability to transform the partial differential equation into a system of ordinary 

differential equations (Wazwaz, 2009). In this system, each ODE depends on just 

one variable, enabling independent solutions (Wazwaz, 2009). By involving the 
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boundary conditions and initial conditions, the constants of integration can be 

determined, leading to a complete solution (Wazwaz, 2009). 

Transform Methods: The PDE can be transformed into an algebraic or ordinary 

differential equation using transform techniques such as Fourier, Laplace, or 

Mellin transforms (Spence, 2015). Utilizing the appropriate transform and inverse 

transform can yield the exact solution. This is especially beneficial for linear partial 

differential equations with constant coefficients, where transform techniques have 

proven to be advantageous (Manssour et al., 2021). 

Numerical Solutions: Numerical solutions are essential when exact analytical 

solutions are challenging or not feasible to obtain. Numerical methods allow for 

approximating the solution by discretizing the domain and applying computational 

techniques to solve the resulting system of algebraic equations (Wazwaz, 2009). 

The first step in obtaining a numerical solution is to discretize the PDE domain 

(Wikipedia contributors, 2023).  

This involves dividing the continuous domain into a finite number of grid points 

or elements (Wikipedia contributors, 2023). There are several numerical methods 

available for solving PDEs, depending on the nature of the problem and the desired 

accuracy.  

Finite Difference Method: In this approach, the derivatives in the PDE are 

approximated by finite difference formulas (Liu, 2018). The PDE is transformed 

into a system of algebraic equations, which can be solved using iterative techniques 

(Liu, 2018). 

Finite Element Method: This method involves dividing the domain into smaller 

subdomains (elements) and approximating the solution within each element using 

a set of basic functions (Krishnamoorthi et al., 2013). The problem is then 

transformed into a system of equations that can be solved using numerical 

techniques (Krishnamoorthi et al., 2013). 

Approximate Solutions: When it is possible to identify explicit mathematical 

formulations that satisfy the PDE approximately, approximate solutions are 

discovered. Some techniques for finding the approximate solution of partial 

differential equations are as follows: 
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Perturbation Method: The perturbation method (Nayfeh, 2000) is a systematic 

approach for finding approximate solutions to PDEs by expanding the solution as 

a series in terms of a small parameter. It is particularly useful for problems with 

small perturbations or nonlinearity (Shen & Huang, 2007). 

Homotopy Analysis Method: The Homotopy analysis method (Liao, 2012) is a 

powerful analytical technique that has been drawing more and more attention from 

researchers in various fields. It serves as an effective approach to address strongly 

nonlinear problems by providing convergent series solutions (Yang & Lin, 2022).  

Classification and Types of PDEs 

PDEs can be broadly classified into three (3) main categories based on their 

properties, including elliptic, parabolic, and hyperbolic equations (Karapetyants & 

Kravchenko, 2022). For example, 

Elliptic PDEs: For second-order elliptic PDEs in the form of 𝐴𝛻2𝑢 + 𝐵𝛻𝑢 +

𝐶𝑢 = 𝑓, where 𝐴, 𝐵, and 𝐶 are coefficients, 𝑓 represents the source term, and the 

discriminant is given by the expression 𝛥 = 𝐵² − 4𝐴𝐶 . The discriminant helps 

determine the nature of the solutions (Wazwaz, 2009). If 𝛥 < 0, the PDE is called 

elliptic and has complex conjugate solutions. 

Parabolic PDEs: If 𝛥 = 0, the PDE is called parabolic (Wazwaz, 2009). 

Hyperbolic PDEs: If 𝛥 > 0, the PDE is called hyperbolic PDE and has a real 

and distinct solutions (Wazwaz, 2009). 

Boundary Conditions 

Boundary conditions are essential in solving partial differential equations as they 

specify the behavior of the solution at the boundaries of the domain (Wazwaz, 2009). 

They play a crucial role in determining a unique solution to the PDE. Let’s discuss 

some common types of boundary conditions: 

Dirichlet Boundary Condition: A Dirichlet boundary condition specifies the 

exact value of the solution at the boundary (Galbusera & Niemeyer, 2018). 

Moreover, according to a study by Wazwaz (2009), Dirichlet boundary conditions 

are imposed when specifying the function 𝑢 on the boundary of a bounded domain. 

For example, using a rod with length 𝐿, where 0 < 𝑥 < 𝐿, as a case study, Wazwaz 
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(2009) suggested that the boundary conditions are set as follows: 𝑢(0) = 𝛼 and 

𝑢(𝐿) = 𝛽, where 𝛼 and 𝛽 represent constants. 

Similarly, for a rectangular plate with dimensions 0 < 𝑥 < 𝐿1 and 0 < 𝑦 < 𝐿2, the 

boundary conditions are prescribed for the edges of the plate: 𝑢(0, 𝑦), 𝑢(𝐿1, 𝑦), 

𝑢(𝑥, 0), and 𝑢(𝑥, 𝐿2) (Wazwaz, 2009). 

These boundary conditions are classified as homogeneous when the dependent 

variable 𝑢  is equal to zero at any point on the boundary (Wazwaz, 2009). 

Conversely, if 𝑢  is non-zero at any point on the boundary, the conditions are 

termed inhomogeneous (Wazwaz, 2009). 

Neumann Boundary Condition: Here, the prescribed condition is related to the 

normal derivative 
𝑑𝑢

𝑑𝑛
 of function  𝑢  along the outward normal direction of the 

boundary (Wazwaz, 2009). For instance, for a rod with length 𝐿, Wazwaz (2009) 

again recounts that the Neumann boundary conditions take the form of 𝑢𝑥(0, 𝑡)  =

 𝛼 and 𝑢𝑥(𝐿, 𝑡)  =  𝛽, where 𝛼 and 𝛽 are specified constants. 

Robin Boundary Condition: In the region 𝛺, for an elliptic partial differential 

equation, Robin boundary conditions are defined by prescribing the sum of 𝛼𝑢 and 

the normal derivative of 𝑢 (
𝑑𝑢

𝑑𝑛
= 𝑓) at all points on the boundary of 𝛺 (Wolfram 

Research, Inc., n.d.). Here, 𝛼 and 𝑓 are constants that are provided as part of the 

boundary conditions. 

Mixed Boundary Condition: A mixed boundary condition involves a 

combination of different types of boundary conditions at different portions of the 

boundary (What Are Boundary Conditions? Numerics Background | SimScale, 

2023). For example, a mixed boundary condition could specify a combination of 

Dirichlet and Neumann conditions at different sections of the boundary. 

Initial Conditions 

Initial conditions are still another essential element in the solution of partial 

differential equations, in addition to boundary conditions. Initial conditions describe 

how the solution behaves at the beginning of the issue or in its initial state (Wazwaz, 

2009). 
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Related Research 

Numerous branches of physics and mathematics contain the intriguing and 

important phenomenon known as the solitary wave. Solitary waves are extremely 

important for understanding complicated wave behaviors and nonlinear dynamics due 

to their distinctive properties.  

The discovery of solitary waves traces back to the remarkable observations made 

by the Scottish scientist John Scott Russell in 1844 (Wazwaz, 2009). John Russell had 

the opportunity to witness a unique phenomenon during his observation of a boat being 

rapidly drawn along a narrow channel by a pair of horses (Wazwaz, 2009).  

When the boat suddenly came to a stop, a bulge of water it had set in motion 

continued to travel along the channel with undiminished speed and unchanged form. 

Russell eloquently described this solitary elevation as "a rounded, smooth, and well-

defined heap of water," which he dubbed a "Wave of translation" (Wazwaz, 2009). 

It was this single humped wave of water, retaining its identity even after the 

interaction, that later became known as a soliton (Wazwaz, 2009). The experimental 

discovery of solitary waves and their remarkable properties was an important 

milestone in the study of nonlinear waves. 

In 1895, Diederik Johannes Korteweg and his Ph.D. student, Gustav de Vries, 

mathematically derived the KdV equation, a nonlinear partial differential equation 

given by 
𝜕𝑢

𝜕𝑡
+ 𝑎𝑢

𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑥3 = 0 where 𝑢(𝑥, 𝑡) is the dependent variable representing 

the wave amplitude as a function of spatial coordinate 𝑥 and time 𝑡, and 𝑎 is a constant 

representing the wave speed (Wazwaz, 2008).  

The KdV equation describes the propagation of long waves with finite amplitude 

in dispersive media (Wazwaz, 2009). The KdV equation incorporated both 

nonlinearity and dispersion, accounting for the steepening and spreading effects of the 

wave, respectively (Wazwaz, 2009). Solitary waves emerged as a solution to this 

equation, where the competing effects of nonlinearity and dispersion strikingly 

balanced each other, resulting in highly stable and localized wave packets (Wazwaz, 

2009). 

Categories of Traveling Waves Solutions 

According to Wazwaz (2009), studying equations that model wave phenomena 

necessitate an exploration of traveling wave solutions. A traveling wave solution 

denotes a steady pattern that moves at a constant speed (Wazwaz, 2009). These 
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solutions are often obtained by simplifying nonlinear evolution equations into 

associated ordinary differential equations (Wazwaz, 2009). This is typically 

accomplished using the ansatz 𝑢(𝑥, 𝑡) = 𝑢(𝜉), where 𝜉 = 𝑥 − 𝑐𝑡. Here, 𝑐 represents 

the wave speed, and this transformation converts the partial differential equation in 

terms of 𝑥 and 𝑡 into an ordinary differential equation in terms of 𝜉, which can be 

solved using various suitable methods (Wazwaz, 2009). 

There are several types of traveling wave solutions which are of particular interest, 

particularly in the domain of solitary wave theory, which is rapidly advancing in 

various scientific fields, from shallow water waves to plasma physics (Wazwaz, 2009). 

Notably, traveling waves manifest in numerous forms, and only a few are solitary 

waves (described before) and periodic waves (traveling waves that exhibit periodicity).  

Some Well-Known Solitary Waves 

Here, some well-known solitary waves such as kink solitary wave, bright soliton, 

and dark soliton are introduced. 

Kink Solitary Wave:  

According to Zhu et al. (2022), the kink is a type of solitary wave that features a 

sharp bend in its waveform, transitioning between a stable base and several smaller 

oscillations.  

A kink in a three-dimensional portrait has been represented in Figure 2.  

  

Figure 2: An example of a kink solitary wave (Alsheekhhussain et al., 2025) 

Bright and Dark Soliton Waves: Bright solitons are identified by a concentrated 

peak of intensity against a uniform backdrop, whereas dark solitons are defined by 

a localized decrease in intensity within a continuous wave environment (Gandzha 

& Sedletsky, 2017)  

However, dark solitons are deemed more suitable for implementation in optical 

communications compared to bright solitons (Ma et al., 2016). Most essentially, 
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according to Horikis and Ablowitz (2015), dark solitons demonstrate greater 

resistance to perturbations during propagation when compared to bright solitons.  

Bright and dark solitons have been given in Figures 3 and 4 respectively. 

   

Figure 3: An example of a dark soliton (Yıldırım et al., 2023) 

 

 

  

Figure 4: An example of a bright soliton (Hosseini et al., 2024) 
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CHAPTER III 

Methodologies 

In this chapter, we are interested in reviewing some types of the Kudryashov 

method which are useful in constructing solitary waves of nonlinear PDEs in applied 

sciences. More precisely, we review two types of the Kudryashov method proposed 

and established in 2012 and 2022 respectively, and compare their efficacies in 

handling nonlinear PDEs. 

3.1. Kudryashov Method I 

Here, the study proceeds with reviewing the basic ideas of the Kudryashov 

method I (Kudryashov, 2012) to find solitary wave solutions of nonlinear PDEs. To 

this end, we consider the following nonlinear PDE 

𝑃(𝑢, 𝑢𝑥 , 𝑢𝑡 , … ) = 0,     (3.1) 

where 𝑃 is a known function and 𝑢 = 𝑢(𝑥, 𝑡) is unknown. Using the transformation 

𝑢 = 𝑈(𝜖) where 𝜖 = 𝑥 − 𝑐𝑡 (𝑐 is the velocity of Solitary), we find 

𝑂(𝑈(𝜖), 𝑈′(𝜖), 𝑈′′(𝜖), … ) = 0.     (3.2) 

The Kudryashov method I assumes the solution of Eq. (3.2) can be written as  

𝑈(𝜖) = 𝑎0 + 𝑎1𝐾(𝜖) + 𝑎2𝐾2(𝜖) + ⋯ + 𝑎𝑁𝐾𝑁(𝜖),     𝑎𝑁 ≠ 0,            (3.3)               

In (3.3), 𝑎𝑖, 𝑖 = 0,1, . . . , 𝑁 are unknowns, 𝑁 is derived by the balance approach, and 

𝐾(𝜖) is  

𝐾(𝜖) =
1

1+𝑑𝑎𝜖,     

satisfying 

𝐾′(𝜖) = 𝐾(𝜖)(𝐾(𝜖) − 1)ln(𝑎).  

Based on Eq. (3.2) and Eq. (3.3), a nonlinear algebraic system is generated 

whose solution yields solitary waves of Eq. (3.1).   

The 2014 article ‘’The modified Kudryashov method for solving some 

fractional-order nonlinear equations’’ by Ege and Misirli provides more details on the 

Kudryashov method I. 

3.2. Kudryashov method II 

In the current subsection, the key concepts of the Kudryashov method II 

(Kudryashov, 2022) in establishing solitary waves of nonlinear PDEs are presented. 

Let’s consider a nonlinear PDE of the form 

𝑃(𝑢, 𝑢𝑥 , 𝑢𝑡 , … ) = 0,     (3.4) 
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where 𝑃  is a known function and 𝑢 = 𝑢(𝑥, 𝑡)  is unknown. By applying the 

transformation 𝑢 = 𝑈(𝜖) where 𝜖 = 𝑥 − 𝑐𝑡, Eq. (3.4) can be reduced a nonlinear ODE 

as  

𝑂(𝑈(𝜖), 𝑈′(𝜖), 𝑈′′(𝜖), … ) = 0.     (3.5) 

Now, suppose that Eq. (3.5) can be written as follows 

𝑈𝜖
2 = 𝑃(𝑈)𝐸(𝑈),     (3.6) 

where 𝑃 and 𝐸 are the polynomials of 𝑈 and 𝑈 = 𝑈(𝜖). The first step is considering 

𝑈(𝜖) = 𝐹(𝜉),   𝜉 = 𝜙(𝜖),     (3.7) 

for Eq. (3.6) and looking for 𝐹(𝜉) and 𝜙(𝜖). By employing the chain rule to (3.7), we 

get 

𝑈𝜖 = 𝐹𝜉𝜉𝜖 .       (3.8) 

Substituting (3.7) and (3.8) into Eq. (3.6) yields 

𝐹𝜉
2𝜉𝜖

2 = 𝑃(𝐹)𝐸(𝐹).      (3.9) 

Now, letting 𝜉𝜖
2 = 𝑃(𝐹) and solving  

𝐹𝜉
2 = 𝐸(𝐹),     (from Eq. (3.9)) 

𝜖 = 𝜖0 + ∫
𝑑𝜉

√𝑃(𝐹)
,  

Solitary wave solutions of Eq. (1) are derived. 

3.3. Applications of Kudryashov methods 

In this part of the study, we consider applying the Kudryashov methods to the 

KdV equation to generate solitary wave solutions. The KdV equation under 

consideration is of the form 

𝜕𝑢

𝜕𝑡
+

𝜕3𝑢

𝜕𝑥3 − 6𝑢
𝜕𝑢

𝜕𝑥
= 0                    (4.1)  

which can be rewritten as  

𝑢𝑡 + 𝑢𝑥𝑥𝑥 − 6𝑢𝑢𝑥 = 0 (4.2)  

By utilizing the travelling wave transformation given as  

𝑢 = 𝑈(𝜖),   𝜖 = 𝑥 − 𝑐𝑡      (4.3) 

where 𝑐 is the solitary wave speed, we obtain  

𝜕𝑢

𝜕𝑡
=

𝜕𝑈

𝜕𝜖

𝜕𝜖

𝜕𝑡
= 𝑈′(𝜖)(−𝑐) = −𝑐𝑈′  (4.4) 

𝑢𝑥𝑥𝑥 = 𝑈′′′(𝜖)  (4.5)  

𝑢𝑢𝑥 = 𝑈𝑈′  (4.6)  

As a result, we get the reduced form of the KdV equation  
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−𝑐𝑈′(𝜖) + 𝑈′′′(𝜖) − 6𝑈(𝜖)𝑈′(𝜖) = 0  (4.7) 

Now, by integrating Eq. (4.7) with respect to 𝜖, we get the following ordinary 

differential equation 

−𝑐𝑈′ + 𝑈′′ − 3𝑈2 = 0  (4.8)  

By employing the balance principle to Eq. (4.8), we get the balance number 

as  

𝑁 + 2 = 2𝑁 ⇒ 𝑁 = 2  (4.9) 

3.3.1. Applying the Kudryashov Method I 

By taking 𝑁 = 2 on Eq. (3.3), a finite series is derived as  

𝑈(𝜖) = 𝑎0 + 𝑎1𝐾(𝜖) + 𝑎2𝐾2(𝜖)  (4.10)  

where 𝑎0, 𝑎1, and 𝑎2 are unknown constants, and 

𝐾′(𝜖) = 𝐾(𝜖)(𝐾(𝜖) − 1)ln(𝑎)  (4.11)  

Based on Eq. (4.8), we need to find 𝑈′(𝜖) and 𝑈′′(𝜖). It can be done by differentiating 

Eq. (4.10) and considering Eq. (4.11) as follows: 

𝑈′(𝜖) = 𝑎1𝐾′(𝜖) + 2𝑎2𝐾′(𝜖)(𝐾(𝜖) ⇒ 𝑈′(𝜖) = 𝑎1(𝐾(𝜖)(𝐾(𝜖) −

1) ln(𝑎)) + 2𝑎2𝐾(𝜖)(𝐾(𝜖)(𝐾(𝜖) − 1) ln(𝑎)) = 2𝑎2ln(𝑎)𝐾3(𝜖) +

(𝑎1ln(𝑎) − 2𝑎2ln(𝑎)) − 𝐾2(𝜖) − 𝑎1ln(𝑎)𝐾(𝜖)      (4.12)  

𝑈′′(𝜖) = 6𝑎2(ln(𝑎))2𝐾4(𝜖) + (−6𝑎2(ln(𝑎))2 +  2(ln(𝑎))2(𝑎1 −

 2𝑎2))𝐾3(𝜖) + (−2(ln(𝑎))2(𝑎1 −  2𝑎2) − 𝑎1(ln(𝑎))2)𝐾2(𝜖) +

𝑎1(ln(𝑎))2𝐾(𝜖)      (4.13) 

Substituting (4.10), (4.12), and (4.13) into Eq. (4.8) and collecting the terms in 

different powers of 𝐾(𝜖), we find the following system of algebraic-type 

𝑎0 +
1

3
𝑐 = 0 

 𝑎1(ln(𝑎))2 − 3 (𝑎0 +
1

3
𝑐) 𝑎1 − 3𝑎0𝑎1 = 0  

6 (−
1

2
𝑎1 +

2

3
𝑎2) (ln(𝑎))2 − 3 (𝑎0 +

1

3
𝑐) 𝑎23𝑎1

2 − 3𝑎0𝑎2 = 0  

6 (−
5

3
𝑎2 +

1

3
𝑎1) (ln(𝑎))2 − 6𝑎1𝑎2 = 0  

6𝑎2(ln(𝑎))2 − 3𝑎2
2 = 0 

By applying a symbolic computation like MAPLE, we will derive 

𝑎1 = −2(ln(𝑎))2 

𝑎2 = 2(ln(𝑎))2 

𝑐 = (ln(𝑎))2 − 6𝑎0 
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Therefore, the following Solitary solution to the KdV equation is constructed  

𝑢(𝑥, 𝑡) = 𝑎0 − 2(ln(𝑎))2 1

1+𝑑𝑎𝑥−((ln(𝑎))2−6𝑎0)𝑡
+ 2(ln(𝑎))2 (

1

1+𝑑𝑎𝑥−((ln(𝑎))2−6𝑎0)𝑡
)

2

  

The dynamic of the above dark solitary wave has been presented in Figure 5 for 𝑎0 =

0.1, 𝑎 = 2.7, and 𝑑 = 1. 

 

Figure 5: 𝑢(𝑥, 𝑡) for 𝑎0 = 0.1, 𝑎 = 2.7, and 𝑑 = 1. 

3.3.2. Applying the Kudryashov Method II 

To derive Solitary waves of the KdV equation, we first try to rewrite Eq. (4.8) 

as follows  

𝑈𝜖𝜖 − 𝐴𝑈 + 𝐵𝑈2 = 0   (4.14) 

where 𝐴 = 𝑐,   𝐵 = −3   

Multiplying Eq. (4.14) by 𝑈𝜖 and integrating with respect to 𝜖 yields 

1

2
𝑈𝜖

2 −
1

2
𝐴𝑈2 +

1

3
𝐵𝑈3 = 0   (4.15) 

The Kudryashov method II seeks the solitary wave solution of Eq. (4.15) as 

𝑈(𝜖) = 𝐹(𝜉),   𝜉 = 𝜙(𝜖)     (4.16) 

By applying the chain rule to (4.16), we derive 

𝑈𝜖 = 𝐹𝜉𝜉𝜖       (4.17) 

Substituting (4.16) and (4.17) into Eq. (4.15) leads to 

1

2
𝐹𝜉

2𝜉𝜖
2 =

1

2
𝐴𝐹2 −

1

3
𝐵𝐹3     (4.18) 

Now, by assuming 𝜉𝜖 = 𝐹(𝜉), Eq. (4.18) is written as 

3𝐹𝜉
2 = 3𝐴 − 2𝐵𝐹             (4.19) 

The exact solution of Eq. (4.19) is 

𝑈(𝜖) = 𝐹(𝜉) =
−𝑐2𝐵2+2𝑐𝐵2𝜉−𝐵2𝜉2+9𝐴

6𝐵
     (4.20) 

By using the following integral 

𝜖 = 𝜖0 + ∫
𝑑𝜉

𝐹(𝜉)
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we have 

𝜖 = 𝜖0 −
arctanh(

2𝑐𝐵2−2𝐵2𝜉

6𝐵√𝐴
)

√𝐴
       (4.21) 

From Eq. (4.20), we find 

𝜉 =
𝑐𝐵+√9𝐴−6𝐵𝐹

𝐵
      (4.22) 

By inserting Eq. (4.22) into Eq. (4.21), we find 

𝜖 = 𝜖0 +
2 arctanh(

√9𝐴−6𝐵𝐹

3√𝐴
)

√𝐴
    (4.23) 

By rewriting Eq. (4.23) as 

√𝐴

2
(𝜖 − 𝜖0) = arctanh (

√9𝐴−6𝐵𝐹

3√𝐴
)      

and solving it for 𝐹, we find  

𝑈(𝜖) =
6𝐴𝑒√𝐴(𝜖−𝜖0)

𝐵(1+2𝑒√𝐴(𝜖−𝜖0)+e2√𝐴(𝜖−𝜖0))
     

Therefore, the Solitary solution of the KdV equation is constructed as 

𝑢(𝑥, 𝑡) = −2𝑐
𝑒√𝑐(𝑥−𝑐𝑡−𝜖0)

1+2𝑒√𝑐(𝑥−𝑐𝑡−𝜖0)+e2√𝑐(𝑥−𝑐𝑡−𝜖0)
   

or 

𝑢(𝑥, 𝑡) = −2𝑐
𝑒√𝑐(𝑥−𝑐𝑡−𝜖0)

(1+𝑒√𝑐(𝑥−𝑐𝑡−𝜖0))
2  

The dynamic of the above dark solitary wave has been presented in Figure 6 for 𝑐 =

0.1 and 𝜖0 = 0. 

 

Figure 6: 𝑢(𝑥, 𝑡) for 𝑐 = 0.1 and 𝜖0 = 0 
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CHAPTER IV 

Results and Analysis 

In the current chapter, the efficiency of the Kudryashov methods in extracting 

solitary wave solutions of a generalized Schrödinger equation with different 

nonlinearities such as Kerr and parabolic laws is examined in detail. All computations 

have been performed by the MAPLE package.  

4.1. Generalized Schrödinger equation involving the Kerr law 

To start, consider the following generalized Schrödinger equation involving 

the Kerr law nonlinearity 

𝑖
𝜕𝑢

𝜕𝑡
+

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦𝜕𝑥
+

𝜕2𝑢

𝜕𝑦2 + 𝑢 + 𝛼|𝑢|2𝑢 = 0 (4.1) 

Suppose a transformation such as  

𝑢 = 𝑈(𝜖)𝑒𝑖(𝜅2𝑥+𝜆2𝑦−𝜔𝑡),   𝜖 = 𝜅1𝑥 + 𝜆1𝑦 − 𝑣𝑡 

where 𝑣 and 𝜔 are the speed and frequency of the solitary wave respectively. After 

inserting the above transformation into Eq. (4.1) and distinguishing real and imaginary 

portions, we find 

((2𝜆2 + 𝜅2)𝜆1 + 𝜅1𝜆2 + 𝜅1𝜅2 − 𝑣)
𝑑𝑈(𝜖)

𝑑𝜖
= 0   

(𝜅1
2 + 𝜅1𝜆1 + 𝜆1

2)
𝑑2𝑈(𝜖)

𝑑𝜖2 + (−𝜅2
2 − 𝜅2𝜆2 − 𝜆2

2 + 𝜔 + 1)𝑈(𝜖) + 𝛼𝑈3(𝜖) = 0

 (4.2) 

From the imaginary part, we have the speed of the Solitary as 

𝑣 = 2𝜅1𝜅2 + 𝜅1𝜆2 + 𝜅2𝜆1 + 2𝜆1𝜆2 

By considering 𝑈′′(𝜖) and 𝑈3(𝜖) and applying the balance principle, we derive 

𝑁 + 2 = 3𝑁 ⇒ 𝑁 = 1 

It is worth mentioning that the special case of Eq. (4.1) has been solved using 

the Kudryashov method I in (Hosseini et al., 2017). 

4.1.1. Applying the Kudryashov method I 

By effecting 𝑁 = 1 on Eq. (3.3), a finite series is acquired as  

𝑈(𝜖) = 𝑎0 + 𝑎1𝐾(𝜖)  (4.3)  

where 𝑎0, 𝑎1, and 𝑎2 are unknown constants, and 

𝐾′(𝜖) = 𝐾(𝜖)(𝐾(𝜖) − 1)ln(𝑎)  (4.4)  

Substituting (4.3) and (4.4) into Eq. (4.2) and collecting the terms in different powers 

of 𝐾(𝜖), we find the following system of algebraic-type 
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𝛼𝑎0
2 − 𝜅2

2 − 𝜅2𝜆2 − 𝜆2
2 + 𝜔 + 1 =  0   (4.5) 

𝑎1(𝜅1
2 + 𝜅1𝜆1 + 𝜆1

2)ln(𝑎)2 + 2𝑎0
2𝛼𝑎1 + 𝑎1(𝛼𝑎0

2 − 𝜅2
2 − 𝜅2𝜆2 − 𝜆2

2 + 𝜔 +

1)  =  0 (4.6) 

−3𝑎1(𝜅1
2 + 𝜅1𝜆1 + 𝜆1

2)ln(𝑎)2 + 3𝑎0𝛼𝑎1
2  =  0 (4.7) 

2𝑎1(𝜅1
2 + 𝜅1𝜆1 + 𝜆1

2)ln(𝑎)2 + 𝛼𝑎1
3  =  0 (4.8) 

By applying a symbolic computation like MAPLE, we will derive 

𝑎0 = √−
𝜅1

2+𝜅1𝜆1+𝜆1
2

2𝛼
ln(𝑎)    (4.9) 

𝑎1 =
ln(𝑎)(𝜅1

2+𝜅1𝜆1+𝜆1
2)

𝛼√−
𝜅1

2+𝜅1𝜆1+𝜆1
2

2𝛼
 

   (4.10) 

𝜔 =
1

2
(ln(𝑎))2𝜅1

2 +
1

2
(ln(𝑎))2𝜅1𝜆1 + (ln(𝑎))2𝜆1

2 + 𝜅2
2 + 𝜅2𝜆2 + 𝜆2

2 − 1

 (4.11) 

Therefore, the following solitary wave solution to the generalized Schrödinger 

equation involving the Kerr law is constructed  

𝑢(𝑥, 𝑡) = (√−
𝜅1

2+𝜅1𝜆1+𝜆1
2

2𝛼
ln(𝑎) +

ln(𝑎)(𝜅1
2+𝜅1𝜆1+𝜆1

2)

𝛼√−
𝜅1

2+𝜅1𝜆1+𝜆1
2

2𝛼
 

1

1+𝑑𝑎𝜅1𝑥+𝜆1𝑦−𝑣𝑡) 𝑒𝑖(𝜅2𝑥+𝜆2𝑦−𝜔𝑡) (4.12) 

where 

𝑣 = 2𝜅1𝜅2 + 𝜅1𝜆2 + 𝜅2𝜆1 + 2𝜆1𝜆2 

𝜔 =
1

2
(ln(𝑎))2𝜅1

2 +
1

2
(ln(𝑎))2𝜅1𝜆1 + (ln(𝑎))2𝜆1

2 + 𝜅2
2 + 𝜅2𝜆2 + 𝜆2

2 − 1  

The dynamic of the above dark Solitary has been presented in Figure 7 for 𝜅1 =

0.5, 𝜆1 = 0.2, 𝜅2 = 0.2, 𝜆2 = 0.5, 𝑎 =  2.7, 𝑑 =  1, 𝑦 =  0 when (a) 𝛼 = −1 and 

(b) 𝛼 = −1.5. From Figure 1, it is obviously determined that by increasing the value 

of |𝛼|, the amplitude of the solitary waves decreases whiles its width increases.         

 

 

 

 

 

 

 



35 
 

 

(a)                                     (b) 

 

(c) 

 

Figure 7: 𝑢(𝑥, 𝑡) for 𝜅1 = 0.5, 𝜆1 = 0.2, 𝜅2 = 0.2, 𝜆2 = 0.5, 𝑎 =  2.7, 𝑑 =  1, 

𝑦 =  0 when (a) 𝛼 = −1 and (b) 𝛼 = −1.5. 

4.1.2. Applying the Kudryashov method II 

To extract solitary waves of the governing equation, we first try to rewrite Eq. 

(4.2) as follows  

𝑈𝜖𝜖 − 𝐴𝑈 + 𝐵𝑈3 = 0   (4.13) 

 where 

𝐴 =
𝜅2

2+𝜅2𝜆2+𝜆2
2−𝜔−1

𝜅1
2+𝜅1𝜆1+𝜆1

2 ,   𝐵 =
𝛼

𝜅1
2+𝜅1𝜆1+𝜆1

2   

Multiplying Eq. (4.13) by 𝑈𝜖 and integrating with respect to 𝜖 leads to 

𝑈𝜖
2 − 𝐴𝑈2 +

1

2
𝐵𝑈4 = 0   (4.14) 

The generalized method seeks the solitary wave solution of Eq. (4.14) as 

𝑈(𝜖) = 𝐹(𝜉),   𝜉 = 𝜙(𝜖)     (4.15) 

By applying the chain rule to (4.15), we derive 

𝑈𝜖 = 𝐹𝜉𝜉𝜖       (4.16)
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Setting (4.15) and (4.16) in Eq. (4.14) results in 

𝐹𝜉
2𝜉𝜖

2 = 𝐴𝐹2 −
1

2
𝐵𝐹4     (4.17) 

Now, by assuming 𝜉𝜖 = 𝐹(𝜉), Eq. (4.17) is written as 

𝐹𝜉
2 = 𝐴 −

1

2
𝐵𝐹2             (4.18) 

The exact solution of Eq. (4.18) is 

𝑈(𝜖) = 𝐹(𝜉) = √
2𝐴

𝐵
sin (

√2𝐵

2
(𝜉0 − 𝜉))     (4.19) 

where 𝜉0 denotes a free constant. 

By using the following integral 

𝜖 = 𝜖0 + ∫
𝑑𝜉

𝐹(𝜉)
  

we have 

𝜖 = 𝜖0 −
ln(csc(

√2𝐵

2
(𝜉−𝜉0))−cot(

√2𝐵

2
(𝜉−𝜉0)))

√𝐵√
𝐴

𝐵

      (4.20) 

From Eq. (4.19), we find 

𝜉 = 𝜉0 − √
2

𝐵
sin−1 (

1

√
2𝐴

𝐵

𝑈(𝜖))      (4.21) 

By inserting Eq. (4.21) into Eq. (4.20), we find 

𝜖 = 𝜖0 −
√𝐵

√𝐴𝐵
ln (

√𝐴𝐵(−√2𝐴+√(−𝐵𝑈2(𝜖)+2𝐴)𝐴)

𝐴𝐵𝑈(𝜖)
)    (4.22) 

By rewriting Eq. (4.22) as 

√𝐴𝐵

√𝐵
(𝜖 − 𝜖0) = −ln (

√𝐴𝐵(−√2𝐴+√(−𝐵𝑈2(𝜖)+2𝐴)𝐴)

𝐴𝐵𝑈(𝜖)
)     

considering the base 𝑒 to both sides of it and solving the resulting equation for 𝑈(𝜖), 

we obtain 

𝑈(𝜖) = 2√2√
𝐴

𝐵

𝑒√𝐴(𝜖−𝜖0)

1+e2√𝐴(𝜖−𝜖0)
.   

So, the solitary wave solution of the generalized Schrödinger equation with the Kerr 

law is derived as 

𝑢(𝑥, 𝑡) = 2√2√
𝐴

𝐵

𝑒√𝐴(𝜅1𝑥+𝜆1𝑦−𝑣𝑡−𝜖0)

1+e2√𝐴(𝜅1𝑥+𝜆1𝑦−𝑣𝑡−𝜖0)
𝑒𝑖(𝜅2𝑥+𝜆2𝑦−𝜔𝑡)  

where 
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𝐴 =
𝜅2

2+𝜅2𝜆2+𝜆2
2−𝜔−1

𝜅1
2+𝜅1𝜆1+𝜆1

2   

𝐵 =
𝛼

𝜅1
2+𝜅1𝜆1+𝜆1

2  

𝑣 = 2𝜅1𝜅2 + 𝜅1𝜆2 + 𝜅2𝜆1 + 2𝜆1𝜆2 

Figure 8 signifies the dynamic of the above bright Solitary for 𝜅1 = 0.5, 𝜆1 =

0.2, 𝜅2 = 0.2, 𝜆2 = 0.5, 𝜔 = 1, 𝑦 = 0 when (a) 𝛼 = 1 and (b) 𝛼 = 1.5. From Figure 

1, it is obviously determined that by increasing the value of 𝛼, both the amplitude and  

width of the solitary wave decrease. 

 

(a)                                                     (b) 

 

 

                                                             (c) 

 

Figure 8: 𝑢(𝑥, 𝑡) for 𝜅1 = 0.5, 𝜆1 = 0.2, 𝜅2 = 0.2, 𝜆2 = 0.5, 𝜔 = 1, 𝑦 = 0 when 

(a) 𝛼 = 1 and (b) 𝛼 = 1.5. 

4.2. Generalized Schrödinger equation involving the parabolic law 

Foremost, we consider the following generalized Schrödinger equation 

involving the parabolic law nonlinearity 

𝑖
𝜕𝑢

𝜕𝑡
+

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦𝜕𝑥
+

𝜕2𝑢

𝜕𝑦2 + 𝑢 + 𝛼|𝑢|2𝑢 + 𝛽|𝑢|4𝑢 = 0 (4.23) 

Assume a transformation such as  
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𝑢 = 𝑈(𝜖)𝑒𝑖(𝜅2𝑥+𝜆2𝑦−𝜔𝑡),   𝜖 = 𝜅1𝑥 + 𝜆1𝑦 − 𝑣𝑡 

where 𝑣 and 𝜔 are the speed and frequency of the solitary wave respectively. After 

inserting the above transformation into Eq. (4.23) and distinguishing real and 

imaginary portions, we find 

((2𝜆2 + 𝜅2)𝜆1 + 𝜅1𝜆2 + 𝜅1𝜅2 − 𝑣)
𝑑𝑈(𝜖)

𝑑𝜖
= 0   

(𝜅1
2 + 𝜅1𝜆1 + 𝜆1

2)
𝑑2𝑈(𝜖)

𝑑𝜖2
+ (−𝜅2

2 − 𝜅2𝜆2 − 𝜆2
2 + 𝜔 + 1)𝑈(𝜖) + 𝛼𝑈3(𝜖) + 𝛽𝑈5(𝜖)

= 0 

From the imaginary part, we have the speed of the Solitary as 

𝑣 = 2𝜅1𝜅2 + 𝜅1𝜆2 + 𝜅2𝜆1 + 2𝜆1𝜆2 

Now, the transformation 𝑈(𝜖) = √𝛹(𝜖) results in 

1

2
(𝜅1

2 + 𝜅1𝜆1 + 𝜆1
2)𝛹(𝜖)

𝑑2𝛹(𝜖)

𝑑𝜖2
−

1

4
(𝜅1

2 + 𝜅1𝜆1 + 𝜆1
2) (

𝑑𝛹(𝜖)

𝑑𝜖
)

2

+ (−𝜅2
2 −

𝜅2𝜆2 − 𝜆2
2 + 𝜔 + 1)𝛹2(𝜖) + 𝛼𝛹3(𝜖) + 𝛽𝛹4(𝜖) = 0  (4.24) 

By considering 𝛹′′(𝜖)𝛹(𝜖) and 𝛹4(𝜖) and applying the balance principle, we derive 

2𝑁 + 2 = 4𝑁 

and so 𝑁 = 1 

4.2.1. Applying the Kudryashov Method I 

By effecting 𝑁 = 1 on Eq. (3.3), a finite series is acquired as  

𝛹(𝜖) = 𝑎0 + 𝑎1𝐾(𝜖)  (4.25)  

where 𝑎0 and 𝑎1 are unknown constants, and 

𝐾′(𝜖) = 𝐾(𝜖)(𝐾(𝜖) − 1)ln(𝑎)  (4.26)  

Substituting (4.25) and (4.26) into Eq. (4.24) and collecting the terms in different 

powers of 𝐾(𝜖), we find a system of algebraic type whose solution gives 

𝑎0 = 0   

𝑎1 = −
3α

4𝛽
    

𝜔 =
16𝛽𝜅2

2+16𝛽𝜅2𝜆2+16𝛽𝜆2
2+3𝛼2−16𝛽

16𝛽
  

𝜅1 = −
𝛽𝜆1ln(𝑎)+√−3𝛽2𝜆1

2(ln(𝑎))2−3𝛼2𝛽

2𝛽ln(𝑎)
  

Therefore, the following solitary wave solution to the generalized Schrödinger 

equation involving the parabolic law is constructed  

𝑢(𝑥, 𝑡) = √−
3α

4𝛽

1

1+𝑑𝑎𝜅1𝑥+𝜆1𝑦−𝑣𝑡 𝑒𝑖(𝜅2𝑥+𝜆2𝑦−𝜔𝑡)   
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where 

𝑣 = 2𝜅1𝜅2 + 𝜅1𝜆2 + 𝜅2𝜆1 + 2𝜆1𝜆2,   𝜔 =
16𝛽𝜅2

2+16𝛽𝜅2𝜆2+16𝛽𝜆2
2+3𝛼2−16𝛽

16𝛽
,   𝜅1 =

−
𝛽𝜆1ln(𝑎)+√−3𝛽2𝜆1

2(ln(𝑎))2−3𝛼2𝛽

2𝛽ln(𝑎)
  

The dynamic of the above kink solitary wave has been presented in Figure 9 

for 𝜅1 = 0.5 , 𝜆1 = 0.2 , 𝜅2 = 0.2 , 𝜆2 = 0.5, 𝛼 = −1, 𝑎 = 2.7 , 𝑑 = 1 , 𝑦 = 0  when 

(a) 𝛽 = −1 and (b) 𝛽 = −1.1. From Figure 9, it is obviously determined that by 

increasing the value of |𝛽|, the amplitude of the solitary wave decreases.  

(a)                                       (b) 

 

(c) 

 

Figure 9: 𝑢(𝑥, 𝑡) for 𝜅1 = 0.5, 𝜆1 = 0.2, 𝜅2 = 0.2, 𝜆2 = 0.5, 𝛼 = −1, 𝑎 = 2.7, 𝑑 =

1, 𝑦 = 0 when (a) 𝛽 = −1 and (b) 𝛽 = −1.1.   

4.2.2. Applying the Kudryashov Method II 

To construct the solitary wave solution of the governing equation, we first consider 

𝜅1 = 1, 𝜅2 = 1, 𝜆1 = 1, and 𝜆2 = 1. Accordingly, we find 

(𝑣 − 6)
𝑑𝑈(𝜖)

𝑑𝜖
= 0   

𝑑2𝑈(𝜖)

𝑑𝜖2 +
𝜔−2

3
𝑈(𝜖) +

1

3
𝛼𝑈3(𝜖) +

1

3
𝛽𝑈5(𝜖) = 0 (4.27) 
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From the imaginary part, we have the speed of the solitary wave as 𝑣 = 6 

We first rewrite Eq. (4.27) as follows   

𝑈𝜖𝜖 +
𝜔−2

3
𝑈(𝜖) +

1

3
𝛼𝑈3(𝜖) +

1

3
𝛽𝑈5(𝜖) = 0   (4.28) 

Letting 𝜔 − 2 = 0 yields the simpler ODE 

𝑈𝜖𝜖 +
1

3
𝛼𝑈3(𝜖) +

1

3
𝛽𝑈5(𝜖) = 0   (4.29) 

Multiplying Eq. (4.29) by 𝑈𝜖 and integrating w.r.t. 𝜖 leads to  

𝑈𝜖
2 +

1

6
𝛼𝑈4(𝜖) +

1

9
𝛽𝑈6(𝜖) = 0.   (4.30) 

The generalized method seeks the solitary wave solution of Eq. (4.30) as 

𝑈(𝜖) = 𝐹(𝜉),   𝜉 = 𝜙(𝜖).     (4.31) 

By applying the chain rule to (4.31), we derive 

𝑈𝜖 = 𝐹𝜉𝜉𝜖       (4.32) 

Setting (4.31) and (4.32) in Eq. (4.30) results in 

𝐹𝜉
2𝜉𝜖

2 = −
1

6
𝛼𝐹4(𝜖) −

1

9
𝛽𝐹6(𝜖)     (4.33) 

Now, by assuming 𝜉𝜖 = 𝐹(𝜉), Eq. (4.33) is written as 

𝐹𝜉
2 = −

1

6
𝛼𝐹2(𝜖) −

1

9
𝛽𝐹4(𝜖)             (4.34) 

The exact solution of Eq. (4.34) is 

𝑈(𝜖) = 𝐹(𝜉) = −
24𝛼𝑒

−
√−6𝛼

6
(𝜉0−𝜉)

𝑒
−

√−6𝛼
3

(𝜉0−𝜉)
−96𝛼𝛽

     (4.35) 

where 𝜉0 denotes a free constant. 

By using the following integral 

𝜖 = 𝜖0 + ∫
𝑑𝜉

𝐹(𝜉)
  

we have 

𝜖 = 𝜖0 +
√6(96𝛼𝛽𝑒

−
√−6𝛼

6
(𝜉0−𝜉)

+𝑒
−

√−6𝛼
6

(𝜉0−𝜉)
)

24(−𝛼)
3
2

      (4.36) 

From Eq. (4.35), we find 

𝜉 =

√6 ln(
4(−3𝛼+√6𝛼𝛽𝑈2+9𝛼2)+𝜉0√−𝛼

𝑈
)

√−𝛼
       (4.37) 

By inserting Eq. (4.37) into Eq. (4.36), we find 

𝜖 = 𝜖0 −
√6(−2𝛽𝑈2+√3√2𝛼𝛽𝑈2+3𝛼2−3𝛼)

(√3√2𝛼𝛽𝑈2+3𝛼2−3𝛼)√−𝛼𝑈
    (4.38) 
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From Eq. (4.38), 𝑈 can be found as 

𝑈(𝜖) =
√−6(𝛼2𝜖2−2𝛼2𝜖0𝜖+𝛼2𝜖0

2+4𝛽)𝛼

𝛼2𝜖2−2𝛼2𝜖0𝜖+𝛼2𝜖0
2+4𝛽

  

So, the exact solution of the generalized Schrödinger equation with the parabolic law 

is derived as 

𝑢(𝑥, 𝑡) =
√−6(𝛼2(𝑥+𝑦−6𝑡)2−2𝛼2𝜖0(𝑥+𝑦−6𝑡)+𝛼2𝜖0

2+4𝛽)𝛼

𝛼2(𝑥+𝑦−6𝑡)2−2𝛼2𝜖0(𝑥+𝑦−6𝑡)+𝛼2𝜖0
2+4𝛽

𝑒𝑖(𝑥+𝑦−2𝑡)    

The dynamic of the above exact solution has been presented in Figure 10 for 

𝛼 = 10 , 𝜖0 = 0 , 𝑦 = 0  when (a) 𝛽 = 10  and (b) 𝛽 = 15 . From Figure 10, it is 

obviously determined that by increasing the value of 𝛽, both the amplitude and width 

of the solitary wave decrease.  

 

(a)                                        (b) 

 

(c) 

 

Figure 10: 𝑢(𝑥, 𝑡) for 𝛼 = 10, 𝜖0 = 0, 𝑦 = 0 when (a) 𝛽 = 10 and (b) 𝛽 = 15. 
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CHAPTER V 

Conclusion and Recommendations 

The primary focus of this thesis was on utilizing various forms of the 

Kudryashov methods to construct solitary waves for generalized Schrödinger 

equations involving the Kerr law and the parabolic law. Both methods demonstrated 

their efficacy in generating diverse solitary wave solutions for the nonlinear models 

under consideration. 

In the first case, we considered the following generalized Schrödinger equation 

involving the Kerr law nonlinearity, i.e. 

𝑖
𝜕𝑢

𝜕𝑡
+

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦𝜕𝑥
+

𝜕2𝑢

𝜕𝑦2
+ 𝑢 + 𝛼|𝑢|2𝑢 = 0 

and derived its dark and bright solitary wave. We showed that  

 by increasing the value of |𝛼|, the amplitude of the dark solitary wave decreases while 

its width increases; 

 by increasing the value of |𝛼|, both the amplitude and width of the solitary wave 

decrease.  

In the second case, we employed the following generalized Schrödinger equation 

involving the parabolic law nonlinearity, i.e. 

𝑖
𝜕𝑢

𝜕𝑡
+

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦𝜕𝑥
+

𝜕2𝑢

𝜕𝑦2
+ 𝑢 + 𝛼|𝑢|2𝑢 + 𝛽|𝑢|4𝑢 = 0 

and obtained its kink solution and rational solitary wave. We demonstrated that 

 by increasing the value of |𝛽|, the amplitude of the kink solitary wave decreases; 

 by increasing the value of 𝛽, both the amplitude and width of the rational solitary wave 

decrease.  

Regarding Kudryashov method I, it is evident that this approach adeptly addresses a 

wide array of nonlinear partial differential equations, particularly those of higher order, 

with notable efficiency. However, it is important to note that the applicability of this 

method hinges on the prerequisite that the assumed balance number is an integer; 

otherwise, it cannot be employed to address the governing model. 

In contrast, Kudryashov method II presents an intriguing alternative, as it does 

not impose the constraint of the balance number being an integer. This method proves 
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capable of handling equations in the form of 𝑈𝜖
2 = 𝑃(𝑈)𝐸(𝑈),  provided that the 

integral ∫
𝑑𝜉

√𝑃(𝐹)
 exists or remains well-defined.  

In light of these findings, it is recommended that researchers and practitioners 

consider the specific characteristics of the nonlinear equations at hand when selecting 

an appropriate method from the Kudryashov toolkit. Additionally, further exploration 

could be undertaken to investigate the potential applicability of Kudryashov method II 

in scenarios where the balance number constraint becomes a limiting factor for method 

I. This could contribute to expanding the versatility and utility of the Kudryashov 

techniques in tackling a broader range of nonlinear problems. 
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