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Abstract

The Kudryashov Methods for Constructing Solitary Waves of Schrodinger

Equations

Boakye Gilbert

MSc, Department of Mathematics
August 14, 2023, (52) pages

This thesis investigates the use of the Kudryashov methods for the construction of
Solitary wave solutions in Schrodinger equations with applications in nonlinear optics.

More precisely, the Kudryashov methods, established in 2012 and 2022, are
formally adopted to extract solitary wave solutions of generalized Schrodinger
equations involving distinct laws, such as the Kerr law and the parabolic law.

The derived solitary wave solutions provide valuable insights into the dynamics of
optical pulses and their behavior in different nonlinear media.

Chapter I introduces solitary waves, outlines the study’s goals, and highlights the
relevance of the Kudryashov methods among others.

Chapter 11 reviews key literature on nonlinear PDEs, focusing on solution
techniques for the Schrodinger equation.

Chapter 111 details two versions of the Kudryashov method, applying them to the
KdV equation to demonstrate their effectiveness.

In Chapter 1V, both methods are used to derive solitary wave solutions for
generalized Schrodinger equations, revealing how changes in nonlinearity coefficients
affect wave amplitude and width.

Chapter V concludes that while both methods are effective, Method Il is more

flexible and is recommended for equations where Method I is limited.

Keywords: Schrodinger equations, Kerr law, parabolic law, Kudryashov methods,

solitary waves



Ozet

Bu tez, dogrusal olmayan optikte uygulamalar1 olan Schrodinger denklemleri
icin soliter dalga c¢oOziimlerinin elde edilmesinde Kudryashov yontemlerinin
kullanimini incelemektedir. 2012 ve 2022°de gelistirilen Kudryashov yontemleri, Kerr
ve parabolik yasalar i¢ceren genellestirilmis Schrédinger denklemlerine uygulanmastir.

Elde edilen ¢ozlimler, optik darbelerin farkli dogrusal olmayan ortamlardaki
davraniglarin1 anlamada faydalidir.

Birinci boliimde konunun amaci ve énemi agiklanmis, ikinci boliimde ilgili
literatiir incelenmistir. Uciincii bolimde Kudryashov yontemleri tanitilmis ve KdV
denklemi ilizerinde denenmistir.

Dordiincii boliimde bu yontemler Schrodinger denklemlerine uygulanarak
cesitli soliter ¢oziimler elde edilmistir. Son olarak, besinci bolimde Yontem II’nin
daha esnek oldugu ve Yontem I’in sinirh kaldig1 durumlarda tercih edilmesi gerektigi

sonucuna varilmaistir.

Anahtar Kelimeler: Schrodinger denklemleri, Kerr yasasi, parabolik yasa,

Kudryashov yontemleri, soliter dalgalar
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CHAPTER |

Introduction

The study of solitary waves, due to their real applications (Wazwaz, 2009), has
garnered significant attention in various scientific disciplines. These wave phenomena
emerge in nonlinear systems and play a crucial role in fields such as fluid dynamics,
quantum mechanics, and nonlinear optics (Wazwaz, 2009). More especially, each type
of solitary wave possesses unique properties, making them fundamental objects of

study in physics (Wazwaz, 2009).

In recent years, the Kudryashov methods (Ayati et al., 2017) have emerged as
effective tools for constructing solitary wave solutions in nonlinear partial differential
equations (Ozisik et al., 2022). These methods have demonstrated their applicability

across diverse domains, ranging from fluid dynamics to plasma physics (Ozisik et al.,
2022).

This thesis focuses on a comprehensive exploration of the Kudryashov methods in
the context of Schrodinger equations. The Kudryashov methods provide innovative
approaches to extracting solitary wave solutions of Schrédinger equations, shedding

light on the underlying physics of solitary wave formation and propagation.

Background of the Study

Solitary waves discovery dates back to the 19th century when Scottish engineer
John Scott Russell observed a solitary wave in a canal (Wazwaz, 2009). They have
since been extensively studied in various disciplines, including physics and
engineering.

Formulated in 1925 by Erwin Schrodinger, the Schrédinger equation concept was
introduced by considering the de Broglie hypothesis (Figueiredo et al., 2019).
According to this hypothesis, matter particles are characterized by a wave packet
spread out over space (Figueiredo et al., 2019).

Schrodinger equations find wide-range applications in different scientific fields.
Originally introduced as a key equation in quantum mechanics to describe the behavior
of quantum particles, the Schrodinger equation has also found relevance beyond its
original domain (Schrédinger’s Equation: Explained & Amp,; How to Use It, 2021). It

arises as a model in nonlinear optics, Bose-Einstein condensates (Liu & Kengne,
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2019), plasma physics, and other physical systems exhibiting wave-like behavior
(Wazwaz, 2009).

The search for solitary wave solutions in Schrodinger equations is of great
importance due to such waves possess unique characteristics (Arora et al., 2022 &
Wazwaz, 2009). For example, solitons as a type of solitary waves can carry energy,
information, and other conserved quantities without distortion (Turitsyn et al., 2012).

Several existing methods have been developed to construct solitary wave solutions
for Schrodinger equations. In this context, the "Kudryashov Methods" offer new
approaches to constructing solitary waves of Schrédinger equations. These methods,
developed by Kudryashov (Ozisik et al.,, 2022), introduce innovative ideas and
techniques that expand the repertoire of available solitary wave solutions (Ozisik et
al., 2022. By applying the Kudryashov methods, this study aims to explore their

advantages, limitations, and applications in generating solitary wave solutions.

Research Objectives

The main objectives of this research are twofold. First, we delve into a detailed
examination of the Kudryashov methods, referred to as Method | and Method I1. These
methods are applied to nonlinear PDEs to extract solitary wave solutions, with a
particular focus on their differences and advantages in handling different types of
equations. Second, the thesis extends the application of these methods to more
generalized forms of the Schrodinger equation, introducing different nonlinearities
such as the Kerr and parabolic laws.

By doing so, we aim to provide a comprehensive understanding of the capabilities
and limitations of the Kudryashov methods in capturing solitary wave dynamics in

various nonlinear settings.

Significance of the Study

Solitary waves constitute a crucial component in describing a diverse array of
nonlinear phenomena across various branches of applied sciences. Their inherent
capacity to propagate energy, information, and other conserved quantities devoid of
distortion underscores their significance (Turitsyn et al., 2012). These useful
characteristics underscore the imperative to investigate solitary waves within the realm
of NLPDs.
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Research Questions

1. What are the merits of the Kudryashov methods in handling Schrodinger
equations?

2. What are the demerits of the Kudryashov methods in handling Schrédinger

equations?

Scope and Limitations of the Study
The scope of the study revolves around the Kudryashov methods (Ayati et al.,
2017) and their applications in finding solitary waves of nonlinear PDEs. It focuses on

the two versions of the method, proposed in 2012 and 2022.

Ethical Considerations

In the course of conducting this research, ethical considerations have been of
paramount importance. Ensuring the ethical integrity of this study involves
maintaining a commitment to objectivity, accuracy, and transparency in the
presentation of findings and results. The use of existing literature and resources is
appropriately attributed and referenced. Moreover, the research respects the
intellectual property rights of other researchers and scholars by accurately citing their
work.

Moreover, this research avoids any form of plagiarism, fabrication, or
misrepresentation of information. The goal is to contribute to the academic community
with the highest ethical standards, maintaining credibility and scholarly rigor

throughout the study.

Organization of the Study

This thesis is structured as follows: In Chapter 1, there is a comprehensive
introduction encompassing the study’s significance, research questions, objectives,
and ethical considerations. Chapter 2 delineates the examination of pertinent literature.
Chapter 3 concentrates on the methodologies and approaches employed in the study.
Specifically, it scrutinizes and draws comparisons between the Kudryashov Methods
I and I, offering intricate explanations of how they are employed to determine solitary
wave solutions for NLPDEs, notably focusing on the KdV equation. The fourth chapter
delves into the efficacy of the Kudryashov methods in tackling a generalized

Schrodinger equation with different nonlinearities.

The concluding chapter encapsulates a summary of the entire thesis along with

presenting recommendations derived from the study’s findings. It also serves to
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provide a concise overview of the key points discussed throughout the thesis,
highlighting the main contributions and insights obtained from the research. In
essence, this chapter brings closure to the thesis by reiterating its significance,
summarizing its core contents, and suggesting avenues for future exploration and

implementation.
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CHAPTER I

Literature Review

This chapter presents a literature review aimed at providing a comprehensive
overview of the existing research and advancements regarding Schrodinger equations,
the Kudryashov methods, and solitary waves. Additionally, it encompasses a thorough
examination of the literature on PDESs in general, delving into various definitions and

approaches to studying such equations.

Theoretical Background

As mentioned in the earlier portions of this thesis by Wazwaz (2009), solitary
waves have found significant applications in various fields of physics, such as optics,
fluid dynamics, and quantum mechanics. The Schrodinger equations on the other hand
are a class of nonlinear PDEs that describe wave propagation in quantum mechanics,
nonlinear optics, and other wave-related phenomena (Liu & Kengne, 2019). Moreover,
the Kudryashov methods (Ayati et al., 2017) are effective techniques used to construct
exact solutions, particularly solitary waves, for a wide range of nonlinear PDEs
(Ryabov et al., 2011).

Schrodinger Equations

Schrodinger equations have emerged in a wide range of phenomena from plasma
physics to nonlinear optics (Wazwaz, 2009). However, unlike the linear Schrodinger
equation, nonlinear Schrodinger equations involve additional nonlinear terms
(Wazwaz, 2009), making them more complex and challenging to solve. Therefore,
researchers often employ various numerical methods to obtain numerical solutions for
them. In this thesis, the Kudryashov methods emerge as potent techniques employed
to discover exact solitary wave solutions for a diverse array of NLPDES.

Kudryashov Methods

The Kudryashov methods (Ayati et al., 2017), devised in 2012 and 2022 as method
I and method Il respectively, are influential mathematical techniques employed to
discover exact solutions, including solitary wave solutions, for a diverse range of
NLPDEs. In recent years, the Kudryashov method I has been used to find solitary wave
solutions of many nonlinear PDEs by different authors (Ayati et al., 2017 &
Mirzazadeh et al., 2014).
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Partial Differential Equations

PDEs are equations in which the unknown function, often known as the dependent
variable, and its partial derivatives are both present (Wazwaz, 2009; Exner et al., 2021
& Partial Differential Equations). ODEs only need the dependent variable to depend
on one independent variable, but PDEs demand that the dependent variable depends
on several independent variables (Wazwaz, 2009).

For instance, the function u relies on both x and t in PDEs like u = u(x, t) oru =
u(x,y,t),oron x, y, and t, respectively (Wazwaz, 2009).

PDEs may explain a wide range of physical phenomena. For instance, according
to Wazwaz (2009), equations that illustrate heat flow in one-, two-, and three-

dimensional spaces include the following:

U = ki, (1.2)

U = k(Uy + uyy) (1.2)
and

U = KUy + Uyy + Uy,) (1.3)

The dependent variable u = u(x, t) in Eq. (1) is dependent on the position x and the
time t. u = u(x, y, t) in Eq. (2) is reliant on the three independent variables x, y, and
t (Wazwaz, 2009). The dependent variable u = u(x,y, z,t) in Eq. (1.3) depends on

the four independent variables x, y, z, and t (Wazwaz, 2009). The equations

U = ColUxy (1-4)
U = C2 (uxx + uyy) (15)
U = Co(Uyyx + Uyy + Uyz) (1.6)

which describe one-dimensional, two-dimensional, and three-dimensional spaces,
respectively, are examples of wave propagation equations (Wazwaz, 2009). The
unknown functions are specified as u = u(x, t), u = u(x,y,t), and u = u(x,y, z, t),
respectively, in Egs. (1.4), (1.5), and (1.6) (Wazwaz, 2009).

Furthermore, u; + uu, — vu,, = 0 and u; + 6uu, + u,,, = 0 respectively, are
used to describe the Burgers equation and the Korteweg-de Vries (KdV) equation

(Wazwaz, 2009). The variables x and t affect the function u in these equations.

The Order of PDEs
The order of a partial differential equation is determined by the highest order of

the partial derivatives in the equation (Wazwaz, 2009). It provides information about
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the complexity and characteristics of the equation (Wazwaz, 2009). Detailed below is

the concept of order in PDEs with some vivid examples:

First-Order PDE: A first-order PDE involves only first-order partial derivatives
(Rhee et al., 2014 & Ghasemi, 2019). One example is the linear transport equation:
a(x,y)u, + b(x,y)u, = c(x,y). Here, u(x,y) is the unknown function, and
a(x,y), b(x,y), and c(x, y) are given coefficients (Rhee et al., 2014 & Ghasemi,
2019). The first-order derivatives u, and u,, appear in the equation.
Second-Order PDE: A second-order PDE contains second-order partial
derivatives and is more complex than a first-order PDE. The Laplace equation is a
classic example: uy, + u,, = 0 (Strauss, 2007).

This equation appears in various fields, including electrostatics and fluid dynamics

(Vogt, 2007). It involves second-order derivatives u,, and u,, (Strauss, 2007).

Third-Order PDE: A third-order PDE includes third-order partial derivatives
(Evans, 2010 & Mechee et al., 2014). One example is the KdV equation, u; +
6uu, + u,,., = 0 which represents lengthy internal waves in a stratified ocean,
weakly interacting shallow water waves, ion-acoustic waves in plasma, and
acoustic waves on crystal lattice (Lewis et al., 2022).

This nonlinear equation describes certain types of waves and involves third-order

derivative u,,, (Wazwaz, 2009).

Higher-Order PDEs: The fourth, fifth, and even higher orders of PDEs are
possible. For example, when considering both the momentum and the continuity
equations simultaneously, the well-known Navier-Stokes equations, which
describe fluid flow (Hosch, 2023), are fourth-order PDEs (Society for Industrial
and Applied Mathematics, Hosch, 2023).

Linear and Nonlinear PDEs
Based on the structure of the equations, partial differential equations may be
divided into two basic categories: linear and nonlinear (Wazwaz, 2009). The

subsequent sections investigate each category using concrete instances.

Linear PDEs: A linear PDE is one in which the dependent variable and its
derivatives appear linearly (Wazwaz, 2009). This means that the dependent
variable and its derivatives are raised to the power of 1 and do not multiply or

divide each other (Wazwaz, 2009). Linear PDEs have particularly nice
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mathematical properties and often have well-developed solution methods. A
typical example is the Linear Heat Equation: u; = ku,, (Wazwaz, 2009).

This equation describes the diffusion of heat and is a classic example of a linear
PDE (Kovacs, 2021). The dependent variable u and its derivatives appear linearly,
with no nonlinear terms (Wazwaz, 2009). Other examples of linear PDEs
according to Wazwaz (2009), are the wave equation (u;; = c?u,,), the Laplace

equation (uy, + u,, = 0), and the Klein-Gordon equation

(V?u — Cizutt = p?u), among others.

Nonlinear PDEs: When the dependent variable and its derivatives do not behave
linearly, the PDE is considered nonlinear (Wazwaz, 2009). The dependent
variable’s derivatives, as well as any of its products, powers, or other nonlinear
processes, are included in nonlinear terms (Wazwaz, 2009).

In comparison to linear PDEs, nonlinear PDEs are typically harder to solve and
analyze. Wazwaz (2009) lists a few examples of nonlinear partial differential
equations such as the Burgers equation (u; + uu, = au,, ), the KdV equation
(up + auu, + bu,, = 0),the mKdV equation (u, — 6u?u, + Uy, = 0), and the
Sine-Gordon equation (u;; — u,, = asinu), etc. These types of equations model

various phenomena, including fluid flow and traffic flow (Wazwaz, 2009).

Homogenous and Inhomogeneous PDEs

Homogeneous and inhomogeneous partial differential equations (PDEs) are
classifications based on the nature of the forcing term or source in the equation
(Wazwaz, 2009).

Homogeneous PDEs: Homogeneous PDEs are equations in which the dependent
variable and its derivatives combine to form a homogeneous expression, meaning
that the equation is equal to zero (Wazwaz, 2009 & Fog & Fog, 2017). In other
words, the equation lacks any external sources or forcing terms (Wazwaz, 2009).
The wave equation is a classic example of a homogeneous PDE. In one dimension,
it is given by u,, — c?u,, = 0 (Wazwaz, 2009). This means that when the source
term is zero (0), the equation is homogeneous (Fog & Fog, 2017).

Here, u(x, t) represents the displacement or amplitude of the wave, c is the wave
speed, and u;; and u,, are the second partial derivatives of u with respect to time

(t) and position (x), respectively (Fog & Fog, 2017). The absence of any external
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forcing term makes it a homogeneous PDE (Wazwaz, 2009). Notably,
homogeneous PDEs have certain characteristics that cannot be overlooked. A few
of such characteristics have been detailed below:

First, homogeneous PDEs have a special characteristic known as superposition
(Linear PDEs and the Principle of Superposition, n.d. & Choksi, 2022), which
states that if u; (x, t) and u,(x, t) are solutions to the homogeneous PDE, then any
linear combination of them, such as u,(x,t) + u,(x,t) is likewise a solution
(Linear PDEs and the Principle of Superposition, n.d. & Choksi, 2022). Due to this
characteristic, generic solutions can be created using linear combinations. Also,
homogeneous PDEs can often be solved using separation of variables, Fourier
series, Laplace transforms, or other analytical techniques (Wazwaz, 2009).

The superposition principle, combined with these methods, allows for the
construction of general solutions (Wazwaz, 2009). Boundary and initial conditions
are typically used to determine specific solutions within a given problem (Wazwaz,
2009). In terms of their applications, homogeneous PDEs find applications in
various fields. For example, the wave equation is used to describe vibrations of
strings, membranes, and other wave phenomena (Cas, 2022) while the Laplace
equation appears in electrostatics and steady-state heat conduction problems
(Holagh et al., 2019). The homogeneous nature of these equations simplifies their
analysis and allows for the discovery of fundamental solutions and characteristic

behaviors.

Inhomogeneous PDEs: Inhomogeneous PDEs include a non-zero source term or
forcing function, representing external influences or interactions in the system
being modeled (Wazwaz, 2009). This term causes the equation to be non-
homogeneous. The heat equation with a heat source is an example of an
inhomogeneous PDE (Huang et al., 2013). In one dimension, it is given by u, —
ku,, = f(x,t) where u(x,t) represents the temperature distribution, k is the
thermal diffusivity constant, u; and u,., are the first and second partial derivatives
of u with respect to time (t) and position (x), respectively, and f(x, t) is the heat
source term (Hancock, n.d.). The presence of the non-zero function f(x, t) makes

it an inhomogeneous PDE (Wazwaz, 2009).
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Solutions to PDEs
Different solutions for PDEs can be considered (Polyanin et al., 2008; Wazwaz,
2009).

Exact solutions: When it is possible to identify explicit mathematical formulations
that fulfill the PDE, exact solutions are discovered. These solutions can include
approaches like the variable separation (Wazwaz, 2009) and symmetry methods
(Hydon, 2000). Since they give accurate formulae for the related dependent
variables, exact solutions are greatly desired (Wazwaz, 2009).

It is however important to note that the choice of solution method depends on the
specific characteristics of the PDE, boundary conditions, and the problem at hand.
In some cases, a combination of different solution techniques may be necessary to
obtain a complete understanding of the solution behavior.

By solving nonlinear differential equations exactly, we can gain a clearer
understanding of complex effects such as spatial localization of transfer processes,
the presence or absence of stationary states under certain conditions, blow-up
solutions, and the possibility of no smoothness or discontinuity of unknown
(Polyanin & Sorokin, 2021).

An essential step in comprehending the behavior of physical systems and
foretelling their long-term evolution is the analytical solution of PDEs and the
discovery of exact solutions. Exact solutions serve as standards for testing
numerical techniques and indicate significant trends while also offering insights
into the underlying dynamics (Roy & Sinclair, 2009). However, due to the
complexity of the equations and the wide range of boundary or initial conditions
that may be applied, finding exact solutions to PDEs is frequently a difficult task.
Here, a number of potent strategies and approaches have been proposed to deal
with such problems, allowing the creation of exact mathematical expressions that
fulfill the PDEs. Each method possesses unique characteristics and is suited to
particular types of PDEs and boundary conditions. Detailed below are some of

them.

Method of Separation of Variables: The key aspect of this method lies in its
ability to transform the partial differential equation into a system of ordinary
differential equations (Wazwaz, 2009). In this system, each ODE depends on just
one variable, enabling independent solutions (Wazwaz, 2009). By involving the
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boundary conditions and initial conditions, the constants of integration can be

determined, leading to a complete solution (Wazwaz, 2009).

Transform Methods: The PDE can be transformed into an algebraic or ordinary
differential equation using transform techniques such as Fourier, Laplace, or
Mellin transforms (Spence, 2015). Utilizing the appropriate transform and inverse
transform can yield the exact solution. This is especially beneficial for linear partial
differential equations with constant coefficients, where transform techniques have

proven to be advantageous (Manssour et al., 2021).

Numerical Solutions: Numerical solutions are essential when exact analytical
solutions are challenging or not feasible to obtain. Numerical methods allow for
approximating the solution by discretizing the domain and applying computational
techniques to solve the resulting system of algebraic equations (Wazwaz, 2009).
The first step in obtaining a numerical solution is to discretize the PDE domain
(Wikipedia contributors, 2023).

This involves dividing the continuous domain into a finite number of grid points
or elements (Wikipedia contributors, 2023). There are several numerical methods
available for solving PDEs, depending on the nature of the problem and the desired
accuracy.

Finite Difference Method: In this approach, the derivatives in the PDE are
approximated by finite difference formulas (Liu, 2018). The PDE is transformed
into a system of algebraic equations, which can be solved using iterative techniques
(Liu, 2018).

Finite Element Method: This method involves dividing the domain into smaller
subdomains (elements) and approximating the solution within each element using
a set of basic functions (Krishnamoorthi et al., 2013). The problem is then
transformed into a system of equations that can be solved using numerical

techniques (Krishnamoorthi et al., 2013).

Approximate Solutions: When it is possible to identify explicit mathematical
formulations that satisfy the PDE approximately, approximate solutions are
discovered. Some techniques for finding the approximate solution of partial

differential equations are as follows:
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Perturbation Method: The perturbation method (Nayfeh, 2000) is a systematic
approach for finding approximate solutions to PDEs by expanding the solution as
a series in terms of a small parameter. It is particularly useful for problems with
small perturbations or nonlinearity (Shen & Huang, 2007).

Homotopy Analysis Method: The Homotopy analysis method (Liao, 2012) is a
powerful analytical technique that has been drawing more and more attention from
researchers in various fields. It serves as an effective approach to address strongly
nonlinear problems by providing convergent series solutions (Yang & Lin, 2022).

Classification and Types of PDEs

PDEs can be broadly classified into three (3) main categories based on their
properties, including elliptic, parabolic, and hyperbolic equations (Karapetyants &
Kravchenko, 2022). For example,

Elliptic PDEs: For second-order elliptic PDEs in the form of AVZu + BVu +
Cu = f,where A, B, and C are coefficients, f represents the source term, and the
discriminant is given by the expression 4 = B> — 4AC. The discriminant helps
determine the nature of the solutions (Wazwaz, 2009). If 4 < 0, the PDE is called

elliptic and has complex conjugate solutions.
Parabolic PDEs: If 4 = 0, the PDE is called parabolic (Wazwaz, 2009).

Hyperbolic PDEs: If 4 > 0, the PDE is called hyperbolic PDE and has a real

and distinct solutions (Wazwaz, 2009).

Boundary Conditions

Boundary conditions are essential in solving partial differential equations as they
specify the behavior of the solution at the boundaries of the domain (Wazwaz, 2009).
They play a crucial role in determining a unique solution to the PDE. Let’s discuss

some common types of boundary conditions:

Dirichlet Boundary Condition: A Dirichlet boundary condition specifies the
exact value of the solution at the boundary (Galbusera & Niemeyer, 2018).
Moreover, according to a study by Wazwaz (2009), Dirichlet boundary conditions
are imposed when specifying the function u on the boundary of a bounded domain.

For example, using a rod with length L, where 0 < x < L, as a case study, Wazwaz
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(2009) suggested that the boundary conditions are set as follows: u(0) = a and
u(L) = B, where a and S represent constants.

Similarly, for a rectangular plate with dimensions 0 < x < L; and 0 < y < L,, the
boundary conditions are prescribed for the edges of the plate: «(0,y), u(L1,y),
u(x,0), and u(x, L,) (Wazwaz, 2009).

These boundary conditions are classified as homogeneous when the dependent
variable u is equal to zero at any point on the boundary (Wazwaz, 2009).
Conversely, if u is non-zero at any point on the boundary, the conditions are

termed inhomogeneous (Wazwaz, 2009).

Neumann Boundary Condition: Here, the prescribed condition is related to the
normal derivative Z—Z of function u along the outward normal direction of the

boundary (Wazwaz, 2009). For instance, for a rod with length L, Wazwaz (2009)
again recounts that the Neumann boundary conditions take the form of w,.(0,t) =

a and u, (L, t) = B, where a and § are specified constants.

Robin Boundary Condition: In the region 2, for an elliptic partial differential

equation, Robin boundary conditions are defined by prescribing the sum of au and
the normal derivative of u (Z—Z = f) at all points on the boundary of 2 (Wolfram

Research, Inc., n.d.). Here, a and f are constants that are provided as part of the

boundary conditions.

Mixed Boundary Condition: A mixed boundary condition involves a
combination of different types of boundary conditions at different portions of the
boundary (What Are Boundary Conditions? Numerics Background | SimScale,
2023). For example, a mixed boundary condition could specify a combination of

Dirichlet and Neumann conditions at different sections of the boundary.

Initial Conditions

Initial conditions are still another essential element in the solution of partial
differential equations, in addition to boundary conditions. Initial conditions describe
how the solution behaves at the beginning of the issue or in its initial state (Wazwaz,
2009).
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Related Research

Numerous branches of physics and mathematics contain the intriguing and
important phenomenon known as the solitary wave. Solitary waves are extremely
important for understanding complicated wave behaviors and nonlinear dynamics due
to their distinctive properties.

The discovery of solitary waves traces back to the remarkable observations made
by the Scottish scientist John Scott Russell in 1844 (Wazwaz, 2009). John Russell had
the opportunity to witness a unique phenomenon during his observation of a boat being
rapidly drawn along a narrow channel by a pair of horses (Wazwaz, 2009).

When the boat suddenly came to a stop, a bulge of water it had set in motion
continued to travel along the channel with undiminished speed and unchanged form.
Russell eloquently described this solitary elevation as "a rounded, smooth, and well-
defined heap of water," which he dubbed a "Wave of translation” (Wazwaz, 2009).

It was this single humped wave of water, retaining its identity even after the
interaction, that later became known as a soliton (Wazwaz, 2009). The experimental
discovery of solitary waves and their remarkable properties was an important
milestone in the study of nonlinear waves.

In 1895, Diederik Johannes Korteweg and his Ph.D. student, Gustav de Vries,

mathematically derived the KdV equation, a nonlinear partial differential equation
given by Z—lt‘ + auz—z + % = 0 where u(x, t) is the dependent variable representing

the wave amplitude as a function of spatial coordinate x and time ¢, and a is a constant
representing the wave speed (Wazwaz, 2008).

The KdV equation describes the propagation of long waves with finite amplitude
in dispersive media (Wazwaz, 2009). The KdV equation incorporated both
nonlinearity and dispersion, accounting for the steepening and spreading effects of the
wave, respectively (Wazwaz, 2009). Solitary waves emerged as a solution to this
equation, where the competing effects of nonlinearity and dispersion strikingly
balanced each other, resulting in highly stable and localized wave packets (Wazwaz,
2009).

Categories of Traveling Waves Solutions
According to Wazwaz (2009), studying equations that model wave phenomena
necessitate an exploration of traveling wave solutions. A traveling wave solution

denotes a steady pattern that moves at a constant speed (Wazwaz, 2009). These
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solutions are often obtained by simplifying nonlinear evolution equations into
associated ordinary differential equations (Wazwaz, 2009). This is typically
accomplished using the ansatz u(x,t) = u($), where ¢ = x — ct. Here, c represents
the wave speed, and this transformation converts the partial differential equation in
terms of x and t into an ordinary differential equation in terms of &, which can be

solved using various suitable methods (Wazwaz, 2009).

There are several types of traveling wave solutions which are of particular interest,
particularly in the domain of solitary wave theory, which is rapidly advancing in
various scientific fields, from shallow water waves to plasma physics (Wazwaz, 2009).
Notably, traveling waves manifest in numerous forms, and only a few are solitary

waves (described before) and periodic waves (traveling waves that exhibit periodicity).

Some Well-Known Solitary Waves
Here, some well-known solitary waves such as kink solitary wave, bright soliton,

and dark soliton are introduced.

Kink Solitary Wave:
According to Zhu et al. (2022), the kink is a type of solitary wave that features a
sharp bend in its waveform, transitioning between a stable base and several smaller
oscillations.

A kink in a three-dimensional portrait has been represented in Figure 2.
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Figure 2: An example of a kink solitary wave (Alsheekhhussain et al., 2025)

Bright and Dark Soliton Waves: Bright solitons are identified by a concentrated
peak of intensity against a uniform backdrop, whereas dark solitons are defined by
a localized decrease in intensity within a continuous wave environment (Gandzha
& Sedletsky, 2017)

However, dark solitons are deemed more suitable for implementation in optical

communications compared to bright solitons (Ma et al., 2016). Most essentially,
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according to Horikis and Ablowitz (2015), dark solitons demonstrate greater

resistance to perturbations during propagation when compared to bright solitons.

Bright and dark solitons have been given in Figures 3 and 4 respectively.
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Figure 3: An example of a dark soliton (Yildirim et al., 2023)
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Figure 4: An example of a bright soliton (Hosseini et al., 2024)
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CHAPTER IlII
Methodologies

In this chapter, we are interested in reviewing some types of the Kudryashov
method which are useful in constructing solitary waves of nonlinear PDEs in applied
sciences. More precisely, we review two types of the Kudryashov method proposed
and established in 2012 and 2022 respectively, and compare their efficacies in

handling nonlinear PDEs.

3.1. Kudryashov Method |

Here, the study proceeds with reviewing the basic ideas of the Kudryashov
method | (Kudryashov, 2012) to find solitary wave solutions of nonlinear PDEs. To
this end, we consider the following nonlinear PDE

P(u,uy, ug,...) =0, (3.2)
where P is a known function and u = u(x, t) is unknown. Using the transformation

u = U(e) where e = x — ct (c is the velocity of Solitary), we find

0(U(e),U'(e),U"(e),...) =0. (3.2)
The Kudryashov method I assumes the solution of Eq. (3.2) can be written as
U(e) = ap + a,;K(e) + a,K?(e) + -+ ayKN(e), ay #0, (3.3)

In (3.3), q;,i = 0,1,..., N are unknowns, N is derived by the balance approach, and
K(e)is

1
1+da€’

satisfying
K'(e) = K(e)(K(e) — DIn(a).
Based on Eq. (3.2) and Eq. (3.3), a nonlinear algebraic system is generated

K(e) =

whose solution yields solitary waves of Eq. (3.1).

The 2014 article “’The modified Kudryashov method for solving some
fractional-order nonlinear equations’” by Ege and Misirli provides more details on the

Kudryashov method I.

3.2. Kudryashov method 11

In the current subsection, the key concepts of the Kudryashov method Il
(Kudryashov, 2022) in establishing solitary waves of nonlinear PDEs are presented.
Let’s consider a nonlinear PDE of the form

P(u,u,, ug,...) =0, (3.4)
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where P is a known function and u = u(x,t) is unknown. By applying the

transformation u = U(e) where € = x — ct, Eq. (3.4) can be reduced a nonlinear ODE

as
0(U(e),U'(e),U"(e),..) =0. (3.5)
Now, suppose that Eq. (3.5) can be written as follows
Uz = P(U)E(V), (3.6)
where P and E are the polynomials of U and U = U(e). The first step is considering
U(e) =F(§), &= ¢(e), (3.7)
for Eq. (3.6) and looking for F (&) and ¢ (e). By employing the chain rule to (3.7), we
get
Ue = Fgée. (3.8)
Substituting (3.7) and (3.8) into Eq. (3.6) yields
FE¢2 = P(F)E(F). (3.9

Now, letting £2 = P(F) and solving
F¢ = E(F), (fromEq. (3.9))

e—eo+fm

Solitary wave solutions of Eq. (1) are derived.

3.3. Applications of Kudryashov methods
In this part of the study, we consider applying the Kudryashov methods to the
KdV equation to generate solitary wave solutions. The KdV equation under

consideration is of the form

—+§—6u2—2=0 (4.1)
which can be rewritten as

Up + Uy — 6UU, =0 4.2)

By utilizing the travelling wave transformation given as

u=U(e), e=x—ct (4.3)

where c is the solitary wave speed, we obtain

6u o0U de

5 = ea = V@G == (.4)

Uyxx = U”’(E) (4.5)
u, = U’ (4.6)

As a result, we get the reduced form of the KdV equation
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—cU'(e)+U""(e) —6U(e)U'(e) =0 4.7)

Now, by integrating Eq. (4.7) with respect to €, we get the following ordinary

differential equation

—cU'+U"-3U%=0 (4.8)

By employing the balance principle to Eq. (4.8), we get the balance number

as

N+2=2N=>N=2 (4.9)
3.3.1. Applying the Kudryashov Method |

By taking N = 2 on Eq. (3.3), a finite series is derived as

U(e) = ag + a,K(€) + a,K?%(e) (4.10)
where a,, a;, and a, are unknown constants, and
K'(e) = K(e)(K(e) — DIn(a) (4.11)

Based on Eq. (4.8), we need to find U’ (e) and U"' (¢). It can be done by differentiating
Eqg. (4.10) and considering Eq. (4.11) as follows:
U'(e) = a;K'(€) + 2a,K'(e)(K(e) = U'(e) = a,(K(e)(K(e) —
1 In(a)) + 2a,K(e)(K(e)(K(e) — 1) In(a)) = 2a,In(a)K3(e) +
(a,1n(a) — 2a,In(a)) — K%(e) — a;In(a)K (¢) (4.12)
U"(€) = 6a,(In(a))?K*(€) + (—6a,(In(a))? + 2(In(a))?*(a, —
2a,))K3(€) + (—2(In(a))?(ay — 2ay) — a;(In(a))?)K?(e) +
a,(In(a))?K (¢e) (4.13)
Substituting (4.10), (4.12), and (4.13) into Eq. (4.8) and collecting the terms in

different powers of K (e), we find the following system of algebraic-type
t2c=0
ag 3 c=
2 1

a;(In(a))* -3 (ao + gc) a; —3aga; =0

1 2 1
6 (—Ea1 + gaz) (In(a))? -3 (ao + Ec) a,3a? —3aga, =0

5
6 (—gaz + éal) (In(a))? — 6a,a, =0

6a,(In(a))? —3a2 =0

By applying a symbolic computation like MAPLE, we will derive
a; = —2(In(a))?

a; = 2(In(a))?

¢ = (In(a))? — 6a,
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Therefore, the following Solitary solution to the KdV equation is constructed

1

1 2
u(x, t) =0ao — Z(IH(CI))Z 1+dax—((ln(a))2—6a0)t + 2(ln(a))2 (1+dax—((ln(a))2—6a0)t)

The dynamic of the above dark solitary wave has been presented in Figure 5 for a, =
0.1,a=27,andd = 1.

Figure 5: u(x,t) foray, = 0.1,a =2.7,and d = 1.

3.3.2. Applying the Kudryashov Method 11

To derive Solitary waves of the KdV equation, we first try to rewrite Eq. (4.8)
as follows

Ue— AU +BU? =0 (4.14)
whereA=¢, B=-3

Multiplying Eq. (4.14) by U, and integrating with respect to € yields

2UZ—2AU+:BU% =0 (4.15)
2 2 3

The Kudryashov method Il seeks the solitary wave solution of Eq. (4.15) as
U(e) = F(S), & =¢(e) (4.16)
By applying the chain rule to (4.16), we derive

Ue = Fg&, (4.17)

Substituting (4.16) and (4.17) into Eq. (4.15) leads to

1,.2,2 1 1

> Fe &2 = EAF2 - EBF3 (4.18)

Now, by assuming é, = F(£), Eq. (4.18) is written as

3Ff = 3A — 2BF (4.19)
The exact solution of Eq. (4.19) is

—c?B?+2cB%?&-B?%£%2494

Ule)=F(&) = — (4.20)
By using the following integral
€=¢p+ fﬂ

F(§)
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we have
tanh 2cB2-2B%¢
e = e — o > ) (4.21)
From Eq. (4.20), we find
f — CB+\/9I;4—GBF (422)
By inserting Eq. (4.22) into Eq. (4.21), we find
VOA—6BF
2 arctanh
€=¢y+ \/(Z VA ) (4.23)
By rewriting Eq. (4.23) as
VA _ V9A—6BF
7(6 —€g) = arctanh( T )

and solving it for F, we find

U _ GAQVE(E_EO)
(€) = B(1+2eﬂ(6—60)+62ﬂ(e—eo))

Therefore, the Solitary solution of the KdV equation is constructed as

e\/E(x—ct—eo)

u(x, t) = —2c¢ L+ 20VC(i—ct—eg) 1 g2VC(x—ct—cg)
or

ex/E(x—ct—eo)
u(x,t) = —2c¢

(1+e\/E(x—ct—eo))2

The dynamic of the above dark solitary wave has been presented in Figure 6 for ¢ =
0.1and ey = 0.

Figure 6: u(x,t) forc =0.1and e, = 0
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CHAPTER IV

Results and Analysis

In the current chapter, the efficiency of the Kudryashov methods in extracting
solitary wave solutions of a generalized Schrodinger equation with different
nonlinearities such as Kerr and parabolic laws is examined in detail. All computations

have been performed by the MAPLE package.

4.1. Generalized Schriodinger equation involving the Kerr law
To start, consider the following generalized Schrodinger equation involving

the Kerr law nonlinearity

.0u  0%u 0%u
at  9x2  0Oyox

+ 2wt alulPu =0 (4.1)
dy?

Suppose a transformation such as

u = U(e)eltaX+hay=0t) - ¢ — 1o x + 1y — vt

where v and w are the speed and frequency of the solitary wave respectively. After

inserting the above transformation into Eq. (4.1) and distinguishing real and imaginary

portions, we find

du(e) _
de -

0

((212 + KZ)AI + KIAZ + K1K2 - v)

d2U(e)

—+ (k5 — KAy — A5+ w + 1DU(e) + aU3(e) =0

(k2 + Ky Ay + 22

(4.2)

From the imaginary part, we have the speed of the Solitary as
UV = 2K1Ky + KAy + KAy + 2044,
By considering U" (¢) and U3(e) and applying the balance principle, we derive
N+2=3N=>N=1

It is worth mentioning that the special case of Eq. (4.1) has been solved using
the Kudryashov method I in (Hosseini et al., 2017).
4.1.1. Applying the Kudryashov method |
By effecting N = 1 on Eq. (3.3), a finite series is acquired as

U(e) = ay + a,K(e) (4.3)
where a,, a,, and a, are unknown constants, and
K'(e) = K(e)(K(e) — DIn(a) 4.4

Substituting (4.3) and (4.4) into Eqg. (4.2) and collecting the terms in different powers
of K(e), we find the following system of algebraic-type
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aad — k5 —Kkydy — A3 +w+1 =0 (4.5)
a, (k% + Kk Ay + A3)In(a)? + 2a3aa, + a (aag — k2 — kA, — 53+ w +

1) = 0 (4.6)
—3a,(k? + k1 A1 + 19)In(a)? + 3agaa? = 0 4.7
2a, (k2 + kKA + AD)In(a)? + aa3 = 0 (4.8)

By applying a symbolic computation like MAPLE, we will derive

ap = |~ St ) ) (4.9)

_ In(@)(k2+x,2,+2%)
1 K%-HC]_A]_ +ﬂ%
ay 2a

w = (n(@)?x? + 2 (In(@) 1 Ay + ()23 + 12 + 1,2, + 13 — 1

(4.10)

(4.11)

Therefore, the following solitary wave solution to the generalized Schrodinger

equation involving the Kerr law is constructed

2 2
u(x, t) = /—%ln(a) +

In(a)(xc2+1c1 1, +42) 1

a K%+K111+A% 1+daK1x+Aly_Vt
2a

ei(K2x+lzy—wt) (4.12)

where
UV = 2K1Ky + KAy + KAy + 2044,
w = (n(@)?K? + > (In(@) 2 Ay + (n(@))223 + 13 + K dy + 23 — 1

The dynamic of the above dark Solitary has been presented in Figure 7 for k; =
05,4, =02,k,=02,4,=05,a = 27,d = 1,y = 0when (d) a = —1 and
(b) @ = —1.5. From Figure 1, it is obviously determined that by increasing the value

of ||, the amplitude of the solitary waves decreases whiles its width increases.
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Figure 7: u(x,t) fork;, = 0.5,14; = 0.2, x, = 0.2, 1, = 0.5, a
y = Owhen (@) a = —1and (b) « = —1.5.

4.1.2. Applying the Kudryashov method 11
To extract solitary waves of the governing equation, we first try to rewrite Eq.

(4.2) as follows

U, — AU + BU3 =0 (4.13)
where
A= K3+K, 2, +A5—w—1 _ a
- K%""Clll"‘l% ’ K%+K111+A%

Multiplying Eq. (4.13) by U, and integrating with respect to € leads to
UZ— AU +-BU*=0 (4.14)
The generalized method seeks the solitary wave solution of Eq. (4.14) as

U(e) =F(S), ¢ =¢(e) (4.15)
By applying the chain rule to (4.15), we derive
UE = FEEE (416)
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Setting (4.15) and (4.16) in Eq. (4.14) results in
FZ§2 = AF? —~BF* (4.17)
Now, by assuming &, = F(§), Eq. (4.17) is written as
1
F¢=A- S BF? (4.18)

The exact solution of Eq. (4.18) is
U(e) = F(§) = \/%sin (ﬁ (& - €)> (4.19)

where &, denotes a free constant.

By using the following integral

ag
€ =€+ fﬁs‘)
we have
1n<csc<%_3(f—fo))—cot(@(&—%)))
€= eq— (4.20)
s

From Eq. (4.19), we find

£=¢& — \Esin‘l —=U(e) (4.21)

&

By inserting Eq. (4.21) into Eq. (4.20), we find
\/51 <\/ﬁ(—\/§A+w/(—BU2(6)+2A)A)>

€=¢€y——In
0 vaB ABU(€)

(4.22)

By rewriting Eq. (4.22) as
JAB m(—\/ﬁA+1/(—BU2(6)+2A)A)
7 (e—€p) =—In

ABU(€)

considering the base e to both sides of it and solving the resulting equation for U(e),
we obtain

A e«/Z(e—eo)

U(e) = 2V2

B 1+4¢2VA(e—€g)"
So, the solitary wave solution of the generalized Schrédinger equation with the Kerr

law is derived as

A +A1y-vt— .
A eVAlk1x+21y-vt—¢o) i(kyx+A,y—wt)

u(x,t) = 242

B 1+4¢2VA(K1x+211y-vt—€g)

where
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K2 +i A+ A3 —w—1
K2 +KA14+A3

A=

_ a
K% +K1/11 +/‘{%

UV = 2K Ky + KAy + Koy + 2444,

Figure 8 signifies the dynamic of the above bright Solitary for kx; = 0.5, 4; =
0.2,k, =02,4, =05, w=1,y=0when (a) a =1 and (b) « = 1.5. From Figure
1, itis obviously determined that by increasing the value of «, both the amplitude and

width of the solitary wave decrease.
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Figure 8: u(x,t) fork; = 0.5,y = 0.2, k, = 0.2, 4, = 0.5, w = 1, y = 0 when
(@ a=1and(b) a = 1.5.
4.2. Generalized Schrodinger equation involving the parabolic law

Foremost, we consider the following generalized Schrodinger equation

involving the parabolic law nonlinearity

. ou . 9%u 9%u 92u ) 4
15 T om2 Y ayox Tayz T U T alul®ut Bluffu =0 (4.23)

Assume a transformation such as
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u = U(e)eltaX+hy=0t) ¢ = 1o x + A,y — vt
where v and w are the speed and frequency of the solitary wave respectively. After
inserting the above transformation into Eq. (4.23) and distinguishing real and

imaginary portions, we find

dU(e) —0

((212 + KZ)Al + Kllz + K1K2 - v)

2
(K2 + 1,04 + 22) U( )+( K5 —Kydy — A3+ w + DU(e) + aU3(€) + U (e)

=0
From the imaginary part, we have the speed of the Solitary as
V= 2K1K2 + K'1/12 + K2/11 + 211/12
Now, the transformation U(e) = /¥ (€) results in

a2 lp(e) dv¥(e)

0 + 10, + 23)W(e) — 2 (k3 + e dy + 23) (B ) + (—K2 —

Kody — A5+ w + 1)W2(6) + a®3(e) + pP*(e) = 0 (4.24)
By considering ¥ (e)¥ (¢) and ¥*(¢) and applying the balance principle, we derive
2N + 2 =4N

andsoN =1

4.2.1. Applying the Kudryashov Method |
By effecting N = 1 on Eq. (3.3), a finite series is acquired as

Y(e) =ay+ a,K(e) (4.25)
where a, and a, are unknown constants, and
K'(e) = K(e)(K(e) — DIn(a) (4.26)

Substituting (4.25) and (4.26) into Eqg. (4.24) and collecting the terms in different

powers of K (e), we find a system of algebraic type whose solution gives

ao = 0
dn = 3a
_ 16PK5+16PBK,A,+16B25+3a%—16f

168

ﬁllln(a)+\/—3[>’2/1§(ln(a))2—30:2[)’
2PB1In(a)

K1 = —

Therefore, the following solitary wave solution to the generalized Schrodinger

equation involving the parabolic law is constructed

— 3a 1 i(kyx+1,y—wt)
u(x,t) = \/—Eme
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where

16 K3 +16BK,1,+168A3+3a?—16p
168

V= 2K1Ky + KAy + KAy + 244, w = , Kq

ﬁ/llln(a)+J—3BZA§(ln(a))2—3a2ﬂ
2B1In(a)
The dynamic of the above kink solitary wave has been presented in Figure 9
forx; =05,4,=02,k,=02,4,=05,a=-1,a=2.7,d=1, y =0 when
@ B =-1and (b) § =—1.1. From Figure 9, it is obviously determined that by

increasing the value of | 3], the amplitude of the solitary wave decreases.

(a) (b)

(©)

0.8
0.7
0.6
0.5

04 — f=-1
0.3 — pB=-1.1
0.2
0.1

Figure 9: u(x,t) forx;, =05,4, =02,k, =02,4, =05, a=-1,a=2.7,d =
1,y=0when(a) f =—1and (b) § = —1.1.

4.2.2. Applying the Kudryashov Method 11
To construct the solitary wave solution of the governing equation, we first consider

k; =1,k, =1,4; =1,and A, = 1. Accordingly, we find
du(e) _
(17 - 6) 7 =0

d?ue) | w=2 1ou3 LoU5(e) =
= T U(e)+3aU (e)+3[3U (e)=0 (4.27)




From the imaginary part, we have the speed of the solitary wave as v = 6

We first rewrite Eq. (4.27) as follows

Uee + wT_ZU(e) + gaU3(e) + gﬁUS(e) =0
Letting w — 2 = 0 yields the simpler ODE
Uee +aU3(e) +5BUS(e) = 0
Multiplying Eq. (4.29) by U, and integrating w.r.t. € leads to
UZ +=aU*(e) + 3 BUS(e) = 0.
The generalized method seeks the solitary wave solution of Eq. (4.30) as
U(e) =F (&), &= ¢(e).
By applying the chain rule to (4.31), we derive
Ue = F&é,
Setting (4.31) and (4.32) in Eq. (4.30) results in
FE§2 = —;aF*(e) = ; pF*(e)
Now, by assuming é, = F(§), Eq. (4.33) is written as
FE = —=aF2(e) — 5 BF*(e)
The exact solution of Eq. (4.34) is

V=6a
240e” 6 ($0—%)

Ule) =F@) =——=
e_ingb_a—96aﬁ

where &, denotes a free constant.

By using the following integral

a§
e=¢+ [ ©
we have
\/g<96aﬁe——v_66a(s‘o—f) +e—v‘(f“(fo—f)>
€ =¢€y+

3
24(—a)2z

From Eq. (4.35), we find

(4(—3a+/6aBU2+9a2>+€oJ:E>
V61In

U

E = \/__a
By inserting Eq. (4.37) into Eq. (4.36), we find

V6(-2BU+V3\2apU%+3a2-3a)
(V3y2apUZ+3a2-3a V=av

€ =€g—
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(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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From Eq. (4.38), U can be found as

—-6(a%e2—2a%epe+aZel+4f)a

U(e) =‘/

aZe?—2a%ege+aed+4p
So, the exact solution of the generalized Schrodinger equation with the parabolic law

is derived as

—6(a?2(x+y—6t)2—2a2ey(x+y—6t)+a2ei+48)a
(@ eyt 2reoary-6trateprap)a

ulx,t) = a?(x+y—6t)2—2a%eo(x+y—6t)+aZed+4f

The dynamic of the above exact solution has been presented in Figure 10 for
a=10,€,=0, y=0when (@) § =10 and (b) 8 = 15. From Figure 10, it is
obviously determined that by increasing the value of 8, both the amplitude and width

of the solitary wave decrease.

(b)

OO =

1.04

0.81
2 0.6 — B_
— B
0.4

0.21

-10 -5 0 5 10

X

Figure 10: u(x,t) fora = 10,¢, =0,y = 0 when (a) # = 10 and (b) B = 15.
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CHAPTER V

Conclusion and Recommendations

The primary focus of this thesis was on utilizing various forms of the
Kudryashov methods to construct solitary waves for generalized Schrédinger
equations involving the Kerr law and the parabolic law. Both methods demonstrated
their efficacy in generating diverse solitary wave solutions for the nonlinear models

under consideration.

In the first case, we considered the following generalized Schrodinger equation
involving the Kerr law nonlinearity, i.e.
ou 0*u 9%*u d%*u

- 2 =0
6t+6x2+6y6x+6y2+u+a|u| u

[
and derived its dark and bright solitary wave. We showed that

by increasing the value of ||, the amplitude of the dark solitary wave decreases while
its width increases;
by increasing the value of ||, both the amplitude and width of the solitary wave
decrease.
In the second case, we employed the following generalized Schrodinger equation
involving the parabolic law nonlinearity, i.e.

ou 9*u 9%*u 0%u

—+==+ +-—+u+alulfu+Blul*u=0
ot T axz Tayax Tayz Tt alulut Blultu

i

and obtained its kink solution and rational solitary wave. We demonstrated that

by increasing the value of |£], the amplitude of the kink solitary wave decreases;

by increasing the value of 3, both the amplitude and width of the rational solitary wave
decrease.

Regarding Kudryashov method I, it is evident that this approach adeptly addresses a
wide array of nonlinear partial differential equations, particularly those of higher order,
with notable efficiency. However, it is important to note that the applicability of this
method hinges on the prerequisite that the assumed balance number is an integer;

otherwise, it cannot be employed to address the governing model.

In contrast, Kudryashov method Il presents an intriguing alternative, as it does

not impose the constraint of the balance number being an integer. This method proves
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capable of handling equations in the form of UZ = P(U)E(U), provided that the

integral f\/% exists or remains well-defined.

In light of these findings, it is recommended that researchers and practitioners
consider the specific characteristics of the nonlinear equations at hand when selecting
an appropriate method from the Kudryashov toolkit. Additionally, further exploration
could be undertaken to investigate the potential applicability of Kudryashov method Il
in scenarios where the balance number constraint becomes a limiting factor for method
I. This could contribute to expanding the versatility and utility of the Kudryashov

techniques in tackling a broader range of nonlinear problems.
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