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ABSTRACT 

 

The Role of ESG Factors and Artificial  

Intelligence in Improving Environmental Quality:  

Insight from Five Leading Industrial Robotics Installed Economies. 

 

Igunnu, Peter Oluwasegun 

M.Sc., Department of Banking and Finance 

January 2025, 76 pages 

This study analyzes the influence of artificial intelligence (AI), environmental, social, 

and governance (ESG) metrics, economic development, technical innovation, and population 

on the environmental quality of the five leading nations in industrial robot installations from 

2011 to 2022. Diverse econometric methodologies are used to examine these interactions, 

including the CIPS and CADF unit root tests for variable stationarity and the Pesaran and 

Yamagata (2008) test for slope heterogeneity. The RALS-EG cointegration tests are used to 

investigate long-term relationships among the variables, while the Driscoll-Kraay, Rogers, and 

White estimators are applied for linkage analysis. Furthermore, CS-ARDL and MMQR 

estimators are used to guarantee robustness. The results indicate that AI markedly degrades 

environmental quality, mostly due to heightened energy consumption and greenhouse gas 

emissions linked to AI-driven operations in industrial environments. Conversely, ESG 

measures are essential in alleviating environmental deterioration by fostering sustainable 

practices and enhancing corporate accountability. Economic development enhances 

environmental quality when integrated with sustainable policies and effective resource 

management. Technological innovation enhances environmental quality by increasing energy 

efficiency and decreasing emissions via new technology. Population dynamics enhance 

environmental quality by fostering knowledge and the implementation of sustainable practices; 

nonetheless, issues persist in reconciling resource demand with ecological conservation. The 

paper offers pragmatic policy suggestions for governments in the chosen countries to mitigate 

the detrimental impacts of AI on environmental quality while optimizing the advantages of ESG 

measures, economic development, technological innovation, and demographic changes. The 

research delineates avenues for future inquiries, highlighting the need to address the 

shortcomings identified in this study. 
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ÖZET  

 

Çevresel Kalitenin Artırılmasında ESG Faktörleri  

ve Yapay Zekânın Rolü: Beş Önde Gelen Endüstriyel Robot  

Kurulumuna Sahip Ekonomiden İçgörüler 

 

Igunnu, Peter Oluwasegun 

Yüksek Lisans, Bankacılık ve Finans Bölümü 

Ocak 2025, 76 sayfa 

Bu çalışma, 2011'den 2022'ye kadar sanayi robot kurulumlarında lider beş ülkenin çevresel 

kalitesi üzerindeki yapay zeka (YZ), çevresel, sosyal ve yönetişim (ESG) metrikleri, ekonomik 

kalkınma, teknik yenilik ve nüfusun etkisini analiz etmektedir. Bu etkileşimleri incelemek için 

CIPS ve CADF birim kök testleri gibi değişken durağanlığını değerlendiren yöntemler ve eğim 

heterojenliğini test etmek için Pesaran ve Yamagata (2008) testi gibi çeşitli ekonometrik 

metodolojiler kullanılmaktadır. Değişkenler arasındaki uzun dönemli ilişkileri araştırmak için 

RALS-EG eşbütünleşme testleri uygulanmakta; Driscoll-Kraay, Rogers ve White tahmincileri 

ise bağ analizinde kullanılmaktadır. Ayrıca, CS-ARDL ve MMQR tahmincileri sağlamlık 

sağlamak amacıyla kullanılmaktadır. Sonuçlar, YZ'nin çevresel kaliteyi önemli ölçüde 

kötüleştirdiğini göstermektedir; bu durum, YZ ile yönlendirilen operasyonlarda artan enerji 

tüketimi ve sera gazı emisyonlarından kaynaklanmaktadır. Buna karşılık, ESG önlemleri 

sürdürülebilir uygulamaları teşvik ederek ve kurumsal hesap verebilirliği artırarak çevresel 

bozulmayı azaltmada hayati bir rol oynamaktadır. Ekonomik kalkınma, sürdürülebilir 

politikalar ve etkili kaynak yönetimi ile entegre edildiğinde çevresel kaliteyi artırmaktadır. 

Teknolojik yenilik, enerji verimliliğini artırarak ve yeni teknolojiler aracılığıyla emisyonları 

azaltarak çevresel kaliteyi artırmaktadır. Nüfus dinamikleri ise bilgi birikimi ve sürdürülebilir 

uygulamaların hayata geçirilmesini teşvik ederek çevresel kaliteyi iyileştirmektedir; ancak, 

kaynak talebi ile ekolojik koruma arasında denge sağlama konusunda sorunlar devam 

etmektedir. Makale, seçilen ülkelerde hükümetlere, YZ'nin çevresel kalite üzerindeki olumsuz 

etkilerini azaltırken ESG önlemleri, ekonomik kalkınma, teknolojik yenilik ve demografik 

değişimlerin avantajlarını optimize etmeleri için pratik politika önerileri sunmaktadır. 

Araştırma, bu çalışmada belirlenen eksikliklerin ele alınması gerekliliğini vurgulayarak 

gelecekteki incelemeler için yeni alanlar tanımlamaktadır. 

 



 

 VII 

Keywords: Yapay zeka, ekonomik büyüme, teknolojik inovasyon, nüfus, çevresel kalite. 

 



 

 VIII 

 
TABLE OF CONTENTS 

Approval……………………………………………………………………………………….I 

Declaration ........................................................................................................................... II 

Acknowledgments............................................................................................................... III 

Abstract .............................................................................................................................. IV 

List of Tables ....................................................................................................................... X 

List of Figures ..................................................................................................................... XI 

List of Equation ................................................................................................................. XII 

List of Appendices ............................................................................................................XIII 

List of Abbreviations ....................................................................................................... XIV 

CHAPTER 1 ......................................................................................................................... 1 

1 Introduction ....................................................................................................................... 1 

1.1 Background of the Study ............................................................................................. 1 

1.2 Problem Statement ...................................................................................................... 3 

1.3 Motive of the Investigation .......................................................................................... 4 

1.4 Research Questions ..................................................................................................... 4 

1.5 Hypothesis................................................................................................................... 4 

1.6 Contributions of the Investigation. ............................................................................... 4 

1.7 Scope of the Investigation. ........................................................................................... 6 

1.8 Definition of Variables ................................................................................................ 6 

1.9 Limitations of the Investigation ................................................................................... 8 

CHAPTER 2 ......................................................................................................................... 9 

2 Literature Review ............................................................................................................... 9 

2.1 Empirical Literature..................................................................................................... 9 

2.2 Research Gap ............................................................................................................ 12 

2.3 Theoretical Review .................................................................................................... 13 



 

 IX 

2.4 Conceptual Framework (Conceptual Model) .............................................................. 14 

CHAPTER 3 ....................................................................................................................... 15 

3 Methodology .................................................................................................................... 15 

3.1 Introduction ............................................................................................................... 15 

3.2 Data Collection and Sources ...................................................................................... 15 

3.3 The Variables ............................................................................................................ 15 

3.4 Estimation Techniques .............................................................................................. 18 

CHAPTER 4 ....................................................................................................................... 23 

4 Findings and Discussion ................................................................................................... 23 

4.1 Introduction ............................................................................................................... 23 

4.2 Preliminary Outcomes ............................................................................................... 23 

4.3 Driscoll-Kraay, Roger’s and White Estimations ......................................................... 25 

4.4 Robustness Estimations ............................................................................................. 27 

CHAPTER 5 ....................................................................................................................... 31 

5 Discussion ........................................................................................................................ 31 

CHAPTER 6 ....................................................................................................................... 40 

6 Conclusion and Recommendations ................................................................................... 40 

6.1 Introduction ............................................................................................................... 40 

6.2 Summary of the Conclusion ....................................................................................... 40 

6.3 Recommendations and Policy Implications ................................................................ 41 

References .......................................................................................................................... 41 

Appendices ......................................................................................................................... 49 

 

 
  



 

 X 

LIST OF TABLES 

Table 1: PCA and Eigenvectors. .......................................................................................... 17 

Table 2: Variables information ............................................................................................ 17 

Table 3: Descriptive Statistics ............................................................................................. 23 

Table 4: Cross-sectional dependence, unit root and slope heterogeneity estimations ............ 24 

Table 5: Multicollinearity outcomes .................................................................................... 25 

Table 6: Weak CD outcomes ............................................................................................... 25 

Table 7: Heteroskedasticity and Autocorrelation Outcomes ................................................. 25 

Table 8: Cointegration Outcomes ........................................................................................ 25 

Table 9: Driscoll-Kraay, Rogers and White outcomes ......................................................... 27 

Table 10: CS-ARDL and MMQR robustness outcomes ....................................................... 29



 

 XI 

 

LIST OF FIGURES 

Figure 1: Kernel Density Chart .............................................................................................. 3 

Figure 2: Theoretical Framework ........................................................................................ 14 

Figure 3: Methodological Flow ........................................................................................... 22 

Figure 4: Overview of the impact of AI, ESG, EG, TI and POP on EQ. ............................... 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 XII 

LIST OF EQUATION 

Equation 1 ........................................................................................................................... 18 

Equation 2 ........................................................................................................................... 18 

Equation 3 ........................................................................................................................... 18 

Equation 4 ........................................................................................................................... 18 

Equation 5 ........................................................................................................................... 19 

Equation 6 ........................................................................................................................... 19 

Equation 7 ........................................................................................................................... 19 

Equation 8 ........................................................................................................................... 19 

Equation 9 ........................................................................................................................... 20 

Equation 10 ......................................................................................................................... 20 

Equation 11 ......................................................................................................................... 20 

Equation 12 ......................................................................................................................... 21 

Equation 13 ......................................................................................................................... 21 

 



 

 XIII 

LIST OF APPENDICES 

Appendix A: Synopsis of existing literature ........................................................................ 49 

Appendix B: Top 5 industrial robots installed countries....................................................... 55 

Appendix C: Matrix of correlations ..................................................................................... 56 

Appendix D: Turnitin Similarity Report……………………………………………………..57 

Appendix E: Ethical Approval……………………………………………………………….58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 XIV 

LIST OF ABBREVIATIONS 

AFF  Affluence 

AI  Artificial Intelligence 

CGS  Corporate Governance Scores 

CO2 emissions Carbon Emissions 

EC  Energy Consumption 

ESG  Environmental, Social, and Governance 

ED  External Debt 

EE  Energy Efficiency 

EG Economic Growth 

EI Environmental Innovation 

EP Energy Price 

EPU Economic Policy Uncertainty 

ET Environmental Tax 

ETS Emission Trading System 

EQ Environmental Quality 

FA Financial Accessibility 

FD Financial Development 

FDI Foreign Direct Investment 

FF Fossil Fuels 

FG Financial Globalization 



 

 XV 

FI Fixed Asset Investment 

FO Foreign Ownership 

FS Firm Size  

GE Green Energy 

GF Green Finance 

GMI Green Management Innovation  

GPI Green Product Innovation 

GT Green Tax 

GTI Green Technological Innovation 

HC Human Capital 

IF Investment Freedom 

INC Income 

IQ Institutional Quality 

LCF Load Capacity Factor 

ME Methane Emissions 

MPS Manufacturing Production Structure 

NE Nuclear Energy 

NRBV Natural Resource-Based View 

NRE Non-Renewable Energy 

PIS Political Instability 

POP Population 



 

 XVI 

R&D Research and Development 

RBV Resource-Based View 

RE Renewable Energy 

TI Technological Innovation 

TO Trade Openness 

TRI Traditional Innovation 

UA Cultural Uncertainty Avoidance  

URB Urbanization. 

 



 

 1 

CHAPTER 1 

1 Introduction 

1.1 Background of the study 

In recent decades, climate change has emerged as a critical global issue, compelling 

governments across the spectrum, both developed and developing, to re-evaluate their energy 

policies and environmental legislation. Global environmental conferences have repeatedly 

advocated for coordinated actions to decrease CO2 emissions (Petroleum, 2012). However, the 

environment remains under significant stress. The relentless pursuit of economic development 

has exacerbated pollutant emissions, sea-level rise, food and water insecurity, ocean 

acidification, extreme droughts, security risks, biodiversity loss, agricultural disruptions, rising 

healthcare costs, and resource depletion (Akpanke et al., 2024; Akram et al., 2020; Ali, Samour, 

et al., 2024; Faraji Abdolmaleki et al., 2023). These challenges have exacerbated ecological 

vulnerabilities, especially in emerging nations. Alarmingly, prevailing detrimental trends 

indicate that greenhouse gas concentrations will likely double from pre-industrial levels by 

2035, possibly resulting in a global temperature increase above 2°C (Khalid & Özdeşer, 2021). 

Since CO2 constitutes over 70% of the emissions of greenhouse gases, it plays a major role in 

environmental degradation. This issue has attracted the attention of economics, environmental 

scientists, politicians, and governments globally (Meo et al., 2023). The urgent challenge is to 

continuously improve ecological quality while facilitating a sustainable and low-carbon 

transition in economic and social advancement (Zhao et al., 2024). Achieving this dual goal 

requires innovative solutions that go beyond traditional approaches, since the intricacy and 

magnitude of environmental challenges need systemic and revolutionary measures. 

In this regard, the integration of artificial intelligence (AI) with Environmental, Social, 

and Governance (ESG) approaches has surfaced as a viable technique for maintaining and 

enhancing environmental quality in response to these difficulties. Artificial intelligence, has 

proven to facilitate the advancements in green transition initiatives and has offered technical 

advances for the mitigation of environmental pollution (Luo et al., 2024). AI has two primary 

characteristics in macroeconomic functions: serving as an automation instrument and 

functioning as a multipurpose technology. AI, as an automation tool, decreases energy and 

resource utilization in standardized, repetitive manufacturing operations, hence improving 

efficiency, quality, and cost-effectiveness. AI, as a general-purpose technology, enhances many 

production sectors by its flexibility, ongoing innovation, and complementary uses, hence 

fostering economic development (Zhao et al., 2024). Current research emphasizes AI's capacity 
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to enhance productivity while decreasing energy use, facilitating green industrial 

transformation, and mitigating carbon emissions (Liu et al., 2021). These technologies provide 

novel frameworks for reducing urban pollution and enabling green, low-carbon transitions (Luo 

& Feng, 2024). Researchers mostly concur that the incorporation of AI into economic systems 

may attain ecological sustainability while providing economic advantages (Bag & Pretorius, 

2022; Li et al., 2022).  

Simultaneously with the progress in artificial intelligence, the incorporation of ESG 

practices has surfaced as an important strategy for countries to maintain environmental 

integrity. The environmental aspect of ESG focuses on minimizing national carbon emissions, 

responsibly managing natural resources, and complying with international climate obligations 

(Qian & Liu, 2024). This aligns with AI-driven initiatives designed to reduce environmental 

pollution and promote sustainable transitions in national economies. Governments 

implementing ESG policies are progressively synchronizing their environmental initiatives 

with sustainability indicators, including carbon neutrality and biodiversity preservation, hence 

aiding global climate objectives (Alandejani & Al-Shaer, 2023). 

ESG frameworks promote openness and accountability at the national level, especially 

in environmental reporting (Wong et al., 2021). Nations that integrate ESG principles into their 

policies are often mandated to report comprehensive statistics on greenhouse gas emissions, 

energy consumption, and water use (Singhania & Saini, 2022). This transparency not only 

bolsters public confidence but also stimulates innovation in policy-making since governments 

are motivated to implement cleaner technology and sustainable practices. The adoption of ESG 

policies in national government facilitates the allocation of green money to renewable energy 

projects, waste management initiatives, and conservation activities, hence aiding in the 

mitigation of environmental deterioration (Bank, 2020; Nasir & Ahmed, 2024). The 

governance component of ESG guarantees the constant incorporation of environmental goals 

into national policy formulation (Nõmmela & Kõrbe Kaare, 2022). Integrating sustainable 

development objectives into governance frameworks enables states to address environmental 

concerns more efficiently while striving for economic growth. Effective governance guarantees 

the establishment of regulatory frameworks that facilitate green transitions and uphold 

environmental norms, which are crucial for attaining long-term sustainability. 
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Figure 1: Kernel Density Chart 

1.2 Problem statement  

The foremost threat of our era is the changing climate due to its profound effects on 

environmental degradation. Human actions are accountable for its existence. Water levels are 

rising, storms are intensifying, food shortages are escalating, economic difficulties are 

mounting, and natural disasters are proliferating. Both domestic and international initiatives, 

together with policy adjustments, are essential to address climate change. Individuals, families, 

and communities all fulfill significant responsibilities. Today, even many who formerly denied 

climate change have acknowledged that human activities related to Carbon dioxide and other 

releases of greenhouse gases significantly contribute to environmental degradation. For the last 

20 years, the threat presented by rapidly changing climates has garnered significant worldwide 

attention. Extensive studies on the impact of climate change on the global economy have been 

done since the mid-1990s. To alleviate the most severe consequences of global warming or 

climate change, many international organizations, including the UN, have been striving to 

establish legally binding agreements among states. Many nations have been exerting significant 

effort to mitigate the threats posed to the environment by human activity. Initiatives like 

CEFIM have been established to promote the development and use of renewable energy sources 

that are environmentally sustainable, while discouraging the use of non-renewable energy 

sources that are ecologically detrimental. Advocating for ecologically-focused technological 

breakthroughs is increasingly recognized as a crucial strategy in combating activities that 

deplete the environment, such as the emissions of CO2. Nevertheless, other are being held 

accountable for failing to implement significant measures to reduce the use of carbon-based 
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fuels. It is essential for legislative bodies and individuals to collaborate on strategies for 

reconstruction. The potential for sustainable employment and innovations stimulates enhanced 

performance and excitement, since it will enable us to maintain competitiveness in the next 

years. The objective of this research is to reveal the effects of AI, ESG, EG, TI, and POP on 

the environmental quality of the five nations with the greatest number of deployed robots. 

1.3 Motive of the investigation  

The ongoing issues of flooding, erosion, food hunger, increasing sea levels, 

deforestation, altered rainfall patterns, and habitat degradation are all consequences of human 

activity, which are inversely connected to environmental quality. The extensive use of fossil 

fuels resulting from industrial growth significantly degrades environmental quality. Previous 

study studies indicate that AI has several beneficial effects on environmental sustainability and 

quality. Chen et al. (2022) indicate that AI substantially decreases carbon emissions by 

optimizing industrial frameworks, advancing green technology innovation, and augmenting 

information infrastructure. The aim of this study is to reveal the impact of AI, ESG, EG, TI, 

and POP on the environmental quality of the five nations with the biggest number of deployed 

robots: China, Germany, Japan, South Korea, and the United States. These economies are 

diligently striving to achieve green economies by investing in environmentally sustainable 

technology and enacting regulations. 

1.4 Research questions  

 What is the impact of artificial intelligence on environmental quality? 

 To what extent does the ESG framework influence environmental quality? 

 How does economic growth contribute to changes in environmental quality? 

 What role does technological innovation play in shaping environmental quality? 

 How significantly does population size affect the quality of the environment? 

1.5 Hypothesis  

This research employs two hypotheses: H0, the null hypothesis, positing that the 

increase in AI, ESG, EG, TI, and POP does not significantly impact environmental quality in 

the chosen nations of analysis. The second hypothesis is H1, representing the alternative 

hypothesis, which contrasts with the null hypothesis.  

 H₀: AI has no notable effect on environmental quality. 

 H₀: ESG framework does not meaningfully influence environmental quality. 
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 H₀: EG does not have a meaningful impact on environmental quality. 

 H₀: TI does not noticeably affect environmental quality. 

 H₀: POP does not meaningfully influence the quality of the environment. 

 H₁: AI meaningfully impacts environmental quality. 

 H₁: ESG framework noticeably affects environmental quality. 

 H₁: EG has a meaningful influence on environmental quality. 

 H₁: TI notably impacts environmental quality. 

 H₁: POP meaningfully affects environmental quality. 

 

1.6 Contributions of the investigation 

Despite increasing evidence of AI's capacity to improve environmental results and the 

significance of ESG frameworks in fostering sustainability, considerable gaps persist. Initially, 

current research often examines AI or ESG in isolation, neglecting their synergistic effects on 

environmental quality. The particular function of industrial robots, a crucial application of AI 

in developed economies, remains little examined. Moreover, while much focus has been 

directed towards nations such as China and the United States, there is limited comparative study 

concerning the top five countries with the greatest industrial robot installations: “China, 

Germany, Japan, South Korea, and the USA”. In addition to being top industrial robots installed 

countries, these nations exhibit varied economic frameworks, technical progress, and 

environmental regulations, rendering them ideal case studies for examining the interplay 

between AI, ESG, and EQ. Also, unlike previous study that utilize CO2 Emissions (metric tons 

per capita), PM2.5 Air Pollution (Micrograms per cubic meter), Adjusted Net Savings, 

Particulate Emission Damage (% of GNI) as proxy for environmental quality, this study utilize 

the load capacity factor (LCF) as a proxy for environmental quality, defined as 

(
BIOCAPACITY(BC) 

ECOLOGICAL FOOTPRINT (EF)
) from the Global Footprint Network (GFN)1. LCF evaluates a 

nation's ecological sustainability relative to a specified benchmark. Furthermore, it enables 

comprehensive research on environmental degradation (Ali, Samour, et al., 2024). In light of 

this backdrop, this study aims to investigate the impacts of AI and ESG, while also 

incorporating EG, TI, and POP as control variables, on EQ in the world’s top five countries 

with the highest industrial robot installations (China, Germany, Japan, South Korea, and the 

                                                

1 For more information, kindly visit: 

https://data.footprintnetwork.org/#/countryTrends?cn=5001&type=BCtot,EFCtot  

https://data.footprintnetwork.org/#/countryTrends?cn=5001&type=BCtot,EFCtot
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United States). Our research contributes to the understanding of the impact of AI and ESG on 

the environmental quality in the five nations with the largest robot deployment. We enhance 

the literature by synthesizing the Resource-Based View (RBV) and the Natural Resource-Based 

View (NRBV) theory in our research, providing a solid theoretical framework. We use the 

newly developed Residual Augmented Least Squares-Engle and Granger (RALS-EG) co-

integration approach to successfully tackle cointegration challenges. To enhance empirical 

precision, we use the econometric methodologies of Driscoll and Kraay (1998), White (1980), 

and Rogers (1993), addressing heteroscedasticity, autocorrelation, and cross-sectional 

dependence. Additionally, we use the Cross-Sectional Autoregressive Distributed Lag (CS-

ARDL) and Method of Moments Quantile Regression (MMQR) methodologies to guarantee 

robust and dependable estimates. Our study offers practical insights for policymakers engaged 

in the green transformation of industrial sectors by concentrating on the five leading industrial 

economies. 

1.7 Scope of the investigation.  

This study pertains to the relationship between artificial intelligence, ESG, economic 

development, technical innovation, population, and environmental quality in the world's five 

leading nations for industrial robot installations: “China, Germany, Japan, South Korea, and 

the United States”. 

1.8 Definition of variables  

Environmental quality (EQ) - A collection of environmental attributes affects humans and 

other living organisms. These attributes may be general or particular. It assesses the extent to 

which an ecosystem fulfills the requirements of humans and other species inhabiting the 

environment. The quality of the environment encompasses issues such as noise, water quality, 

air quality, and several other elements that may impact humans and other living organisms 

within the ecosystem. 

Artificial intelligence (AI) - denotes systems that demonstrate intelligent behavior by 

assessing environmental data, including air, water, and soil quality, and autonomously 

executing actions or offering insights to enhance or preserve environmental sustainability. 

These systems use data-driven reasoning, predictive modeling, and adaptive learning to tackle 

issues such as pollution reduction, resource optimization, and climate change mitigation, 

therefore promoting healthier ecosystems and sustainable development. 
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Environmental, Social and Governance (ESG) - is a framework used to assess an 

organization's influence and efficacy in advancing environmental sustainability, encouraging 

social responsibility, and upholding ethical governance standards. In terms of environmental 

quality, ESG emphasizes the assessment and management of a company's role in diminishing 

pollution, preserving natural resources, alleviating climate change, and enhancing general 

ecological well-being via responsible practices and creative strategies. 

Economic growth (EG) - refers to the increase in a nation's production capacity concerning 

its goods, assessed comparatively between two time periods while adjusting for inflation. An 

economy is seen to be increasing if the value of its goods increases, generating substantial 

income for businesses. Consequently, stock prices increase. This provides firms with capital to 

expand and hire extra personnel. Income increases due to the creation of many new work 

possibilities. With sufficient financial resources, consumers may acquire more products and 

services, resulting in accelerated growth. Every country seeks favorable GDP growth as a 

consequence of this. 

Technological innovations (TI) - refer to the economic process by which new technologies 

are integrated into production and consumption. It involves identifying novel technical 

opportunities, coordinating the necessary people and financial resources to convert them into 

valuable goods and processes, and maintaining the essential operations. Technological 

advancements are crucial since they have significantly enhanced levels of life. Innovation is 

considered endogenous; that is, it reacts to fluctuations in demand and supply situations. A 

straightforward model differentiating between demand-pull and technology-push advances is 

introduced. Innovators sometimes fail to secure all the incremental economic advantages 

generated by their contributions, resulting in incentive failures known as 'the appropriability 

dilemma.' Innovative endeavors also include significant risks of technical failure and, notably, 

the misinterpretation of market needs. In response to these issues, mechanisms like the patent 

system and entities such as high-technology venture capital markets have developed. 

 

Population (POP) - The aggregate of persons residing in a certain region, whose growth, 

distribution, and consumption behaviors substantially impact environmental quality. 

Population dynamics, including size, density, and migration, influence resource demand, waste 

production, and ecosystem health, consequently significantly impacting air and water quality, 

land use, and overall environmental sustainability. 
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1.9 Limitations of the investigation  

This study has several drawbacks. The time range of data collected for this study is 

constrained (2011-2022) owing to unavailability. This study focuses only on the top five 

nations with the highest installation of industrial robots. This research study is quantitative and 

utilizes a secondary data source. This study ultimately used AI, ESG, EG, TI, and POP. 

Consequently, future researchers may use datasets with an expanded time range depending 

upon data availability. Furthermore, further study may conduct a comprehensive statistical 

analysis using time series methods to evaluate the differences among these countries. 

Additionally, prospective researchers may enhance this study model by including additional 

variables, such as research and development, environmental legislation, green energy 

investment, climate financing, green insurance, and green bonds. Ultimately, qualitative and 

quantitative research methodologies may be used concurrently in the future to bolster the 

findings and assertions of this study. The subsequent chapter, chapter two, concentrates on the 

literature research pertaining to the study's variables. The chapter includes both empirical and 

theoretical literature, along with the research gap between current inquiry and prior 

investigations. Chapter three outlines the methodological issues used in the empirical study. 

Chapter four concentrates on the outcomes and the analysis of the findings. Chapter five offers 

a brief but comprehensive analysis of the model's outputs, while chapter six addresses 

conclusions and suggestions. 
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CHAPTER 2 

2 Literature Review 

This chapter discusses the relevant prior research conducted by scholars worldwide, both 

empirically and theoretically. Furthermore, Appendix A presents a summary of the existing 

literature. 

2.1 Empirical Literature 

2.1.1 AI and Environmental Quality 

AI has been identified as a pivotal tool in addressing environmental challenges and 

optimizing load capacity factor (LCF). Chen et al. (2022), utilizing the Bartik method across 

270 Chinese cities, demonstrated that AI considerably diminishes carbon emissions through 

the optimization of industrial frameworks, improving green technology innovation, and 

enhancing information infrastructure. These findings are complemented by Ding et al. (2024), 

who applied emissions savings estimation in the United States and projected that employing 

AI could decrease energy use and emission levels by 8–19%. Their study further suggested that 

combining AI with low-carbon policies and energy generation could amplify these benefits, 

achieving up to a 40% reduction in energy consumption. Likewise, the research by Chen and 

Jin (2023) reveals that the amalgamation of AI and green innovation may facilitate low-carbon 

growth inside China's industrial sector. Liu et al. (2022) used the STIRPAT model to examine 

the impact of artificial intelligence on carbon intensity within China's industrial sector. The 

research demonstrated that AI significantly decreases carbon intensity, exhibiting more 

pronounced impacts in labour- and technology-intensive sectors; nevertheless, the influence 

fluctuates according to industrial phases and policy durations. 

Similarly, Akhter et al. (2024), through ARDL bounds testing in the United States, 

underscored AI's positive impact on LCF by improving financial accessibility and institutional 

quality. However, Gaur et al. (2023), employing a System of Systems (SoS) analysis, warned 

of AI’s potential to contribute to emissions, especially through unsustainable AI model 

development. Such contrasting perspectives underscore the need for sustainability-focused AI 

deployment, as highlighted by Saggar and Nigam (2023), who argue that AI’s application in 

energy-intensive industries could significantly reduce greenhouse gas emissions through 

innovative solutions beyond conventional methods.  
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2.1.2 ESG and Environmental Quality 

The integration ESG factors into economic activities plays a critical role in influencing 

LCF, albeit with varied outcomes across different conditions. Alandejani and Al-Shaer (2023), 

utilizing ordinary least squares (OLS) regression across the USA, China, and the UK, found 

that economic policy uncertainty drives higher ESG engagement, which indirectly enhances 

environmental goals and reduces carbon emissions. This perspective aligns with Khalil et al. 

(2024), who, through fixed-effects panel regression in 10 Asian countries, demonstrated that 

ESG investments not only positively affect firm value but also improve environmental 

performance, thereby supporting LCF enhancement. 

In contrast, Işık et al. (2024), using a CS-ARDL model in G7 nations, observed a complex 

dynamic where governance factors within ESG frameworks positively impact LCF, but 

economic components have adverse effects, potentially undermining environmental goals. 

Wang et al. (2022) also highlighted the role of ESG bond issuance in Korea, linking it to firm 

size, foreign ownership, and carbon trading, yet observed no significant stock market reaction 

to these instruments. These findings suggest that while ESG frameworks have substantial 

potential to improve LCF, their economic dimensions must be carefully managed to prevent 

adverse environmental implications. Furthermore, Sun et al. (2024), using the SEM-ANN 

approach investigated the impact of green tax and energy efficiency on ESG performance of 

Bangladesh. The study reveals that green tax policies and energy efficiency positively impact 

ESG performance, with green tax mediating this relationship 

2.1.3 EG and Environmental Quality 

EG is a fundamental driver of environmental and energy systems, with mixed impacts 

on LCF depending on energy use and policy structures. Dai et al. (2024), employing the cross-

sectionally augmented ARDL model in ASEAN nations, found that higher income levels and 

green energy adoption significantly boost LCF, demonstrating the potential of sustainable 

growth policies. Similarly, Jahanger et al. (2024), utilizing MMQR in top SDG nations, 

established a positive association between EG and LCF, emphasizing that economic expansion 

can align with environmental sustainability when complemented by green innovations. 

Conversely, studies like Raihan et al. (2023) in Mexico and Xu et al. (2022) in Brazil 

suggest that economic growth can undermine LCF when driven by fossil fuel dependency. 

Their findings highlight that EG, when coupled with non-renewable energy reliance, reduces 

LCF while exacerbating urbanization’s adverse effects on environmental quality. Akhter et al. 
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(2024) further underscore the role of financial accessibility and institutional quality in 

moderating EG’s impact on LCF. In the same vein, the study of (Ali, Igunnu, et al., 2024) using 

RALS-EG cointegration and ARDL model discovered that economic growth and gas prices 

increase emissions long term, however, economic growth decreases emissions in the short term. 

Also, the study of Wang et al. (2024) reveals that EG reduces the impact of carbon emissions 

in the near term as well as in the long term.  

2.1.4 TI and Environmental Quality 

Technological innovation (TI) exerts a profound yet context-dependent influence on 

LCF, shaped by its interaction with energy policies and resource utilization. Jahanger et al. 

(2024), using MMQR in SDG-focused nations, revealed that while TI alone negatively impacts 

LCF, its integration with renewable energy significantly enhances LCF across all quantiles. 

Similarly, Ali et al. (2023), through Driscoll-Kraay estimations in MINT nations, highlighted 

that TI’s reliance on non-renewable energy decreases LCF, underscoring the importance of 

prioritizing green compliance and research and development. 

 Aydin et al. (2024), employing regularized common correlated effects in 19 countries, 

demonstrated mixed outcomes where TI enhanced LCF in Germany but reduced it in 

Singapore, reflecting variations in energy policies and industrial contexts. Akhter et al. (2024) 

and Guloglu et al. (2023) further emphasize the interplay between TI, renewable energy 

adoption, and human capital in determining LCF outcomes. Similarly, Ali, Igunnu, et al. (2024) 

using the RALS-EG cointegration and ARDL model, it was discovered that technological 

innovation has a negative effect on carbon emissions in Pakistan. In the same vein, Lin and Ma 

(2022) the STIRPAT framework and ARDL techniques revealed that technical collaboration 

also reduces environmental pollution in the near term. Conversely, Mehmood et al. (2024) 

investigated the relevance of green industrial transformation in reducing the emission of 

carbon. using a Robust least-squares approach. The outcome of the study shows that FDI 

inflows, technological innovations and R&D investments increase emissions. 

2.1.5 POP and Environmental Quality 

Population dynamics significantly influence LCF by shaping environmental demands 

and resource utilization. Djedaiet et al. (2024), using PMG-ARDL across seven African oil-

producing countries, revealed that population growth exacerbates environmental pressures, 

reducing LCF through increased demand for goods, services, and resource depletion. Similarly, 
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Dai et al. (2024) identified population density as a critical factor in ASEAN nations, finding it 

contributes to environmental deterioration, further straining LCF. 

However Liu et al. (2022), applying the STIRPAT model in China’s industrial sector 

argued that the impact of population on LCF varies based on affluence, industrial development 

stages, and policy interventions. Their findings suggest that effective management of 

population growth through investment in green infrastructure and sustainable urban planning 

could mitigate its adverse effects. Moreover, Akhter et al. (2024) the ARDL bounds test, 

FMOLS, DOLS, and CCR were used to assess the impact of private investment in AI and 

financial globalization on load capacity factor: evidence from the United States. The outcomes 

reveal that urbanization reduces the load capacity factor in both the short and long run. 

Similarly, Guloglu et al. (2023) examined the factors influencing the load capacity factor in 

OECD nations and found that human capital, resource rent, and renewable energy enhance the 

load capacity factor, whereas urbanization adversely impacts environmental quality. 

Furthermore, Raihan et al. (2023) examined the dynamic effects of economic expansion, 

financial globalization, fossil fuels, renewable energy, and urbanization on the load capacity 

factor in Mexico. The outcomes of the study indicated that economic growth, fossil fuel 

consumption, and urbanization reduce Mexico's LCF, while renewable energy adoption and 

financial globalization have positive effects on LCF. However, the study Xu et al. (2022) 

revealed that urbanization has no effect on LCF in Brazil. 

2.2 Research gap 

Despite increasing evidence of AI's capacity to improve environmental results and the 

significance of ESG frameworks in fostering sustainability, considerable gaps persist. Initially, 

current research often examines AI or ESG in isolation, neglecting their synergistic effects on 

environmental quality. The particular function of industrial robots, a crucial application of AI 

in developed economies, remains little examined. Third, while much focus has been directed 

towards nations such as China and the United States, there is a limited comparative study 

concerning the top five countries with the greatest industrial robot installations: “China, 

Germany, Japan, South Korea, and the USA”. Given the circumstances, the present research 

seeks to examine the effects of AI, ESG, EG, TI and POP on EQ in the world’s top 5 industrial 

robots installed countries (“China, Germany, Japan, South Korea and the United State”). 

Appendix B provide a pictorial presentation of the countries selected for the study. 
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2.3 Theoretical Review 

This study examines the influence of AI and ESG initiatives on environmental quality using 

the theoretical lenses of the Resource-Based View (RBV) and the Natural Resource-Based 

View (NRBV). These theories provide a comprehensive framework for understanding how 

resources and capabilities contribute to sustainable performance and eco-innovation. The RBV, 

introduced by Barney (1991), posits that a firm’s competitive advantage lies in its possession 

of valuable, rare, inimitable, and non-substitutable (VRIN) resources. In this context, AI is 

conceptualized as a technological resource that enables firms to optimize operations, improve 

decision-making, and enhance innovation. ESG strategies, on the other hand, represent 

organizational resources that guide firms in aligning with environmental, social, and 

governance standards, promoting ethical practices and sustainability. However, the RBV has 

faced criticism for its inability to fully address the challenges posed by dynamic external 

environments, particularly environmental constraints. As DeSarbo et al. (2005) argue, while 

the RBV emphasizes the strategic value of resources, it does not adequately explain how firms 

can deploy these resources to achieve a competitive advantage in the face of increasing 

environmental pressures. Building on the RBV, Hart (1995) introduced the NRBV, which 

integrates environmental concerns into the resource-based framework. The NRBV recognizes 

that firms can achieve sustainable competitive advantage by leveraging resources and 

capabilities that address environmental challenges. According to Hart (1995, 2005), the NRBV 

emphasizes long-term strategies, such as investing in sustainable technologies and developing 

green capabilities, to create value while minimizing environmental harm. The NRBV suggests 

that firms must focus on accumulating resources and managing capabilities with a forward-

looking perspective, prioritizing sustainability over short-term profits. For instance, the 

integration of AI and ESG initiatives aligns with the NRBV by enabling firms to adopt eco-

innovative practices, such as energy-efficient systems and predictive environmental 

monitoring. These techniques not only mitigate environmental effect but also augment 

competitiveness. 

The RBV and NRBV provide complementary perspectives for analyzing the role of AI and 

ESG in improving environmental quality. While the RBV highlights the strategic value of AI 

and ESG as resources, the NRBV underscores the importance of addressing environmental 

constraints and leveraging green capabilities for long-term sustainability. Recent studies, such 

as Menguc and Ozanne (2005), Dangelico and Pujari (2010) and Hart and Dowell (2011), have 

demonstrated how these theories can be applied to eco-innovation and environmental 
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strategies. This study extends these theoretical frameworks by exploring the combined impact 

of AI and ESG initiatives on environmental quality, contributing to the growing body of 

literature on sustainable resource management and eco-innovation. 

2.4 Conceptual framework 

A conceptual framework denotes a graphic illustrating the normal relationship between 

the dependent and independent variables. The framework encompasses several factors and 

incorporates predictions by considering assumptions on their interrelations. This structure is a 

tool used prior to doing research. Consequently, a conceptual framework serves as an analytical 

unit. Robust conceptual underpinnings facilitate the attainment of specific objectives. It serves 

as a conduit for the inquiry, facilitating visualization and execution of a task. It enumerates the 

relevant parameters for the investigation and demonstrates probable correlations among them. 

The dependent variable is environmental quality, whereas the independent indicators are 

artificial intelligence and environmental, social, and governance (ESG) factors. 

 

Figure 2: Theoretical Framework 
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CHAPTER 3 

3 Methodology 

3.1 Introduction 

This chapter analyzes the impact of artificial intelligence, environmental, social, and 

governance metrics, economic growth, technological innovation, and population on 

environmental quality in the five foremost countries for industrial robot installations: China, 

Germany, Japan, South Korea, and the United States. Econometric methods are employed to 

determine the impact of independent variables on the dependent variable. The study's variables 

are accompanied with a succinct elucidation. 

3.2 Data collection and sources  

This study employs secondary data derived from existing literature. This facilitates 

comparisons between prior investigations and the current one. The analysis comprises five 

independent variables: artificial intelligence, environmental, social and governance metrics, 

economic growth, technical innovation, and population. The data parameters are sourced from 

the World Bank (WB), Global Network Footprint (GNF), and International Federation of 

Robotics (IFR). The inquiry employs panel data sourced from secondary materials to analyze 

the influence of the study's variables on environmental quality in the chosen nations. The 

investigation's sample size consists of data gathered from 2011 to 2022. These countries are 

selected based on two criteria. Initially, these countries have shown considerable progress and 

dedication in establishing a low-carbon future. Secondly, the accessibility of data on the 

selected economies is an additional aspect. 

3.3 The Variables 

The dependent variable is environmental quality. Various studies employ distinct 

proxies to assess this phenomenon (Ali, Igunnu, et al., 2024; Bashir et al., 2020; Costantiello 

& Leogrande, 2023; Khan et al., 2022; Saggar & Nigam, 2023) , however, we opted to utilize 

the load capacity factor (LCF) as a proxy for environmental quality, defined as 

(
BIOCAPACITY(BC) 

ECOLOGICAL FOOTPRINT (EF)
) from the Global Footprint Network (GFN)2. LCF evaluates a 

nation's ecological sustainability relative to a specified benchmark. Furthermore, it enables 

comprehensive research on environmental degradation (Ali, Samour, et al., 2024). 

                                                

2 For more information, kindly visit: 

https://data.footprintnetwork.org/#/countryTrends?cn=5001&type=BCtot,EFCtot  

https://data.footprintnetwork.org/#/countryTrends?cn=5001&type=BCtot,EFCtot
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Incorporating LCF into environmental assessment is essential since it quantifies a nation's 

capacity to sustain its populace at existing living standards.  

Additionally, this research employs two explanatory variables: Artificial Intelligence 

(AI) and the ESG index.  

Recent empirical research identifies three primary methods for measuring AI. Total 

Factor Productivity (TFP) (Autor & Salomons, 2018) aims to quantify the levels of AI 

technology by assessing computational efficiency. Nonetheless, a shortcoming of this approach 

is its incapacity to differentiate whether technical progress originates from conventional 

technology or artificial intelligence, making it unsuitable for measuring AI. The alternative 

approach use the metric of "social fixed asset investment in information transmission, computer 

services, and software sectors" to evaluate AI advancement (McGaughey, 2022). This indicator 

largely signifies the expansion of the whole Information Technology (IT) sector, including both 

hardware and software components. Considering that AI represents a unique domain within the 

IT industry, this approach, albeit rational, has inherent limits. Moreover, while assessing AI 

capabilities across various nations, a frequently used metric is the inventory of industrial robots 

(Liu et al., 2020; Wang et al., 2023; Wang et al., 2024). This metric, derived from the (IFR, 

2024), offers national-level statistics on robot stock inventories. Industrial robots are primarily 

divided into industrial and service robots, with the former accounting for the bulk of robotic 

energy usage (Iqbal & Khan, 2017). The sales volume of industrial robots serves as an indicator 

of the extent of artificial intelligence infrastructure (Zhang et al., 2021). Furthermore, since 

artificial intelligence comprises several technologies, it needs an appropriate medium for 

operation. The amalgamation of AI techniques with contemporary robotics has established 

industrial robots as the foremost embodiment of practical AI applications. Consequently, this 

research posits that the quantity of industrial robots serves as a more objective metric for 

assessing the extent of industrial AI. 

Moreover, regarding ESG, various studies have employed distinct indicators 

(Alandejani & Al-Shaer, 2023; Khalil et al., 2024; Sun et al., 2024) , and in the absence of a 

universally recognized measure, we consequently develop an ESG index derived from the 

sixteen ESG indicators of the World Bank utilizing Principal Component Analysis (PCA) 

(Wold et al., 1987). The PCA is warranted due to the multitude of ESG measures and the 

sometimes-substantial correlation among them, complicating the identification of the most 

representative or relevant indicator for empirical analysis. The ESG index has a robust and 

positive correlation with all factors, as seen in Appendix C, indicating that the ESG index 

effectively elucidates all variables concurrently.  
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The first component of the ESG index has an eigenvalue of 9.0312, representing its 

variance. The first component accounts for 56.45% of the shared variance in the series, while 

the sixteenth component has an eigenvalue of 0.0065 and accounts for 0.04% of the variation. 

A number above one indicates that the component accounts for a larger proportion of variation 

than its expected share of the overall variance of the variables. Consequently, the first 

component is used in this case. An further measure of sample adequacy is the Kaiser–Meyer–

Olkin (KMO) index, which assesses the relationship between partial correlations and 

correlations among variables. The use of PCA is warranted by a value over 0.50. Therefore, a 

KMO of 0.8028 validates the use of PCA. Table 1 presents essential attributes of the calculation 

of the ESG index.  

Table 1: PCA and Eigenvectors. 

Variables  Sample  

PCA eigenvectors (highest) 9.0312 

Proportion explained  0.5645 

Kaiser-Meyer-Olkin  0.8028 
Source: Author(s) compilation. Data retrieved from Stata. 

Furthermore, to comprehensively assess the interaction between the explained and 

explanatory variables, three control variables are included to decrease variability from missing 

variables. Economic growth (EG) (Ali, Igunnu, et al., 2024; Djedaiet et al., 2024; Raihan et al., 

2023), technological innovation (TI) (Aydin et al., 2024; Jahanger et al., 2024) and population 

(POP) (Chen et al., 2022; Liu et al., 2022). Additionally, Table 2 presents substantial details on 

the study variables. 

Table 2: Variables information 

Variables Abb. Measurement Sources 
 Explained Variable  

Environmental 

Quality 
EQ 

Derived by dividing biocapacity (per capita) by the 

ecological footprint (global hectares per capita) 
Global Network Footprint3 

 Explanatory Variables  

Artificial Intelligence AI Annual industrial robots installed International Federation of 

Robotics4 

Environment Social 

and Governance 
ESG Environment Social and Governance Index Authors’ Compilation  

 Control Variables  

Economic Growth EG GDP growth (annual %) WorldBank5 

                                                

3 For data, visit: https://data.footprintnetwork.org/#/countryTrends?cn=5001&type=BCtot,EFCtot  
4 For data, visit: https://ourworldindata.org/grapher/annual-industrial-robots-installed  
5 For data, visit: https://databank.worldbank.org/reports.aspx?source=World-Development-Indicators  

https://data.footprintnetwork.org/#/countryTrends?cn=5001&type=BCtot,EFCtot
https://ourworldindata.org/grapher/annual-industrial-robots-installed
https://databank.worldbank.org/reports.aspx?source=World-Development-Indicators
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Technological 

Innovation 
TI Patent applications, non-residents 

Population POP Population, total 

 source: Author(s) Compilation 

 

3.4 Estimation Techniques 

The model of this study is presented below:  

𝑙𝑛𝐸𝑄𝑖𝑡 = 𝛽0 + 𝛽1𝑙𝑛𝐴𝐼𝑖𝑡 + 𝛽2𝐸𝑆𝐺𝑖𝑡 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑖𝑡 + 𝜉𝑖𝑡 

           Equation 1 

In the model above, environmental quality is represented by 𝐸𝑄𝑖𝑡; artificial intelligence 

is represented by 𝐴𝐼𝑖𝑡; environmental, social and governance is represented by 𝐸𝑆𝐺𝑖𝑡. 

Moreover, 𝛽0 represents the intercept, while 𝛽1 and 𝛽2 the coefficients of the variables Also, 𝑖, 

𝑡 and 𝜉 denote the countries and the study period (2011–2022), and the error term, respectively. 

Furthermore, after incorporating the control variables, into equation (1), we derived at the 

equation below. 

𝑙𝑛𝐸𝑄𝑖𝑡 = 𝛽0 + 𝛽1𝑙𝑛𝐴𝐼𝑖𝑡 + 𝛽2𝐸𝑆𝐺𝑖𝑡 + 𝛽3𝑙𝑛𝐸𝐺𝑖𝑡 +  𝛽4𝑙𝑛𝑇𝐼𝑖𝑡 +  𝛽5𝑙𝑛𝑃𝑂𝑃𝑖𝑡 + 𝜉𝑖𝑡 

           Equation 2 

In the equation above, economic growth is represented by 𝐸𝐺𝑖𝑡; technological 

innovation is represented by 𝑇𝐼𝑖𝑡; while population is represented by 𝑃𝑂𝑃𝑖𝑡. 

3.4.1 Cross-sectional estimations 

We evaluated cross-sectional dependence using the Cross-Sectional Dependence (CSD) 

estimator. This method assists in ascertaining the appropriate use of either the first or second 

order unit root test. If CSD is not evaluated, the results may be prejudiced and unreliable instead 

of resilient and trustworthy (Ali & Seraj, 2022). The equation for CSD is as follows: 

𝐶𝑆𝐷 = (
𝜏

ℕ
)  

           Equation 3 

In Eq. (3), 𝜏 and ℕ denote time and cross-sectional units, respectively. The term 𝜙 is denoted 

as:  

𝜙 = (
2

ℕ(ℕ − 1)
)∑  

ℕ−1

𝑖=1
∑  

ℕ

𝑗=𝑖+1
𝑄𝑖𝑗
  

           Equation 4 
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In Eq. (4), 𝑄𝑖𝑗  is the coefficient correlation of the ADF residuals.  

3.4.2 Unit root estimations  

According to the results of the CSD test, the estimators for the first-generation unit root 

test are considered inappropriate. Consequently, we evaluated unit roots in the panel data using 

second-generation methods, namely CIPS and CADF, to provide more robust and accurate 

results. The mathematical formulations of these assessments are as follows:  

Δ𝓎𝑖𝑡 = ∆ψ𝑖𝑡 + 𝛽𝑖𝑋𝑖𝑡 + 𝜎𝑖𝑡 + ∑𝜗𝑖𝑗∆𝑋𝑖,𝑡−𝑗 + 𝜉𝑖𝑡

𝑛

𝑗=1

 

           Equation 5 

𝐶𝐼𝑃𝑆 =  ℕ−1∑𝐶𝐴𝐷𝐹𝐼

ℕ

𝐼=1

 

           Equation 6 

Where  ∆ψ𝑖𝑡, 𝑋𝑖𝑡, ∆, 𝑡, and 𝜉𝑖𝑡 denote the intercept, factor, variance, time, and error 

term, respectively.  

3.4.3 Slope homogeneity estimations 

In panel data econometrics, when the weights of many nations differ, the analysis of 

slope heterogeneity is crucial. To evaluate the initial slope heterogeneity, we use the test 

proposed by Pesaran and Yamagata (2008), which examines the dispersion of the weighted 

slopes across all nations. This evaluation is broken down by the relevant test statistics outlined 

in Equations (7) and (8). 

∆̂ =  √Ζ (
Ζ−1𝕊% − 𝐾

√2𝐾
) 

           Equation 7 

∆̂𝑎𝑑𝑗  =  √Ζ 

(

 
Ζ−1𝕊%− 𝐾

√2𝐾(𝑇 − 𝐾 − 1)
𝑇 + 1 )

  

           Equation 8 
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3.4.4 Co-integration estimations 

Subsequently, informed by the outcomes of the CIPS and CADF stationary analysis, 

which reveal that the roots lie outside the unit circle, we utilized the RALS-EG methodology 

introduced by Lee et al. (2015) and the cointegration technique of Westerlund and Edgerton 

(2007) to ascertain the cointegration relationship between the dependent and independent 

variables. The RALS-EG test framework consists of two stages. Initially, unit root tests were 

conducted to assess the integration order of each variable. Consequently, the OLS regression 

equation was formulated. 

Υ𝑡 = Φ𝓏𝑡 + 𝓋𝑡 

           Equation 9 

Afterwards, residuals 𝑣𝑡 were obtained and an ADF test based on these residuals was 

carried out. 

∆𝑣𝑡 = Ҡ0 + Ҡ1∆𝑣𝑡−1 + ∑Ҡ𝑖+1∆𝑣𝑡−1 + 𝛿𝑡

𝑛

𝑖=1

  

                    Equation 10 

Equation (10) indicates that if the error term deviates from a normal distribution, it 

yields valuable insights into non-normal residuals via increased moments of the residuals. The 

RALS methodology, proposed by Im and Schmidt (2008), may integrate high-moment 

information from non-normal errors inside linear model frameworks, effectively addressing 

non-normally distributed error components, hence enhancing its efficacy. Consequently, the 

EG approach introduced by Lee et al. (2015), enhanced the RALS technique and included a 

new term for assessing cointegration. This was accomplished via the second and third seconds 

of the residuals. Conventional cointegration testing produces these residuals. This equation 

extends Equation 10. 

𝛼̂𝑡 =  𝒿(𝛿̂𝑡) − Ẑ𝑡 − 𝛿̂𝑡Ê𝑡    𝑡 = 1, 2, 3,… . . , 𝑇 

Here, 𝛿̂𝑡 represents the residuals generated from Equation 6 and  

𝒿(𝛿̂𝑡) =  [𝛿̂𝑡 
2
, 𝛿̂𝑡 

3
  ] ,    Ẑ = 

1

𝑇
 ∑ 𝒿(𝛿̂𝑡)

𝑇

𝑖=1
 𝑎𝑛𝑑  Ê = 

1

𝑇
 ∑ 𝒿′(𝛿̂𝑡),

𝑇

𝑖=1
 

The term for RALS procedure was given by Meng et al. (2017), as described. 

𝛼̂𝑡 = [𝛿̂𝑡 
2
− 𝑎2, 𝛿̂𝑡 

3
− 𝑎3 − 3𝑎2 𝛿̂𝑡 ] 

          Equation 11 
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Where 𝑎𝑗 = 𝑇
−1 ∑ 𝛿̂𝑡 

𝑗𝑇
𝑖=1 . By substituting equation 11 into equation 10, we get the 

RALS cointegration regression. It is represented below: 

∆𝑣𝑡 = Ҡ1∆𝑣𝑡−1 + ∑Ҡ𝑖+1𝑣𝑡−1 + 𝛼̂𝑡

𝑛

𝑖=1

ƴ 

                     Equation 12 

Using ordinary t-statistics, the assumption of no cointegration relationship between the 

two series (Ҡ1 = 0) can be tested for null hypothesis. The examined series (ϕ1 = 0) can be 

evaluated by employing standard t-statistics. The test statistic's asymptotic distribution can be 

expressed as 

𝑡∗ →  𝜚. 𝑡 + √(1 − 𝜚2).Ψ 

 𝑡 stands for test statistics of EG test, while 𝑡∗ represents test statistics of RALS-EG test. Ψ is 

a standard normal random variable and ϱ is correlation coefficient between residuals generated 

from equation (12) and Equation (10). 

Subsequently, we examined the multicollinearity among explanatory variables using 

the Variance Inflation Factor (VIF) test. The model must not include highly correlated 

explanatory variables, since the presence of multicollinearity may result in biased model 

outcomes. Fourth, we used the Weak CD test to evaluate the weak cross-sectional dependency 

inside the model. We used two methods, namely Friedman (1937)  and Pesaran (2015) for 

Weak Cross-Sectional Dependence (CD). 

3.4.5 Driscoll-Kraay standard error approach 

The Driscoll and Kraay econometric estimator, introduced by(Driscoll & Kraay, 1998) 

is the optimal approach for achieving robust findings from the SH, Weak CD, and cointegration 

test estimates. The Driscoll-Kraay standard error technique in panel data analysis is used to 

mitigate problems of heteroskedasticity, cross-sectional dependency, and autocorrelation. It has 

significant benefit when used on large datasets with cross-sectional and temporal relationships. 

The methodology includes adjustments for calculating standard errors amid autocorrelation and 

heteroskedasticity, employs nonparametric estimation for robust results across diverse 

conditions, and is particularly effective for extensive panels where temporal dimensions exceed 

cross-sectional dimensions. In accordance with previous research (Ali et al., 2023; Shah et al., 

2021; Sultana & Rahman, 2024), we have used this technique, and the equation is shown below: 

𝛾𝑖𝑡 = 𝜒𝑖𝑡 + 𝜉𝑖𝑡 , 𝑖 = 1,…… ,𝑁, 𝑡 = 1,… . . , 𝑇 

         Equation 13 
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The explained variable, denoted as 𝛾𝑖𝑡represents the EQ. The explanatory variables, 

denoted as 𝜒𝑖𝑡includes AI, ESG, EG, TI and POP. To ensure the reliability of the Driscoll and 

Kraay estimator, we used the methods proposed by White (1980) and Rogers (1993). Moreover, 

we employed the CS-ARDL and MMQR estimators to validate the robustness of the Driscoll 

and Kraay results. 

 

Figure 3: Methodological Flow 



 

 23 

CHAPTER 4 

4 Findings and Discussion 

4.1 Introduction  

This chapter outlines the results of the several econometric methodologies used 

in the data analysis. This chapter presents and interprets the findings of each tool outlined 

in Chapter 3. This analysis reveals the influence of artificial intelligence (AI), 

environmental, social, and governance (ESG) factors, economic growth (EG), 

technological innovation (TI), and population (POP) on environmental quality from 2011 

to 2022. This is accomplished by the use of the Driscoll-Kraay, Rogers, and White 

methodologies. Additionally, CS-ARDL and MMQR estimators are used for robustness 

analysis. 

4.2 Preliminary Outcomes 

Table 3 displays the results of the descriptive statistics. The EQ exhibits a mean of 

0.259 and a low standard deviation of 0.134, signifying consistency around the mean. The 

interval from 0.107 to 0.530 illustrates the variability within the dataset. The AI exhibits a mean 

of 10.513 and a standard deviation of 0.657, indicating minimal variability around the mean. 

The interval from 9.798 to 12.578 illustrates the degree of variability in the data. The ESG has 

a mean of 0.284 and a standard deviation of 2.543, signifying considerable variability. The 

interval from -6.557 to 2.931 signifies a broad distribution of values. EG exhibits a mean of 

0.828 and a standard deviation of 0.992, indicating moderate variability around the mean. The 

interval from -3.738 to 2.257 indicates considerable variability in the data. The mean of TI is 

11.197, accompanied by a moderate standard deviation of 0.976, indicating a relatively low 

degree of variability. The interval from 9.430 to 12.726 illustrates the degree of variability 

within the data. POP exhibits a mean of 19.055 and a standard deviation of 1.178, signifying 

substantial variability around the mean. The interval from 17.726 to 21.069 illustrates the 

variability within the dataset. 

Table 3: Descriptive Statistics 

Variable Mean Std. dev. Min Max 

EQ 0.259 0.134 0.107 0.530 

AI 10.513 0.657 9.798 12.578 

ESG 0.284 2.543 -6.557 2.931 

EG 0.828 0.992 -3.738 2.257 

TI 11.197 0.976 9.430 12.726 
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POP 19.055 1.178 17.726 21.069 
Source: Author(s); data derived from EViews 17. EQ = Environmental Quality; AI = Artificial Intelligence; ESG = Environment Social and 

Governance; EG = Economic Growth; TI = Technological Innovation and POP = Population. 

 

Moreover, Table 4. shows the outcomes of cross-sectional dependence, unit root and 

slope heterogeneity. The outcomes affirmed the presence of cross-sectional dependence in the 

data; however, the unit root outcomes are in mixed order, such as ESG and EG are stationary 

at level whereas, EQ, AI, TI and POP are stationary at 1st difference as shown by CIPS and 

CADF test. However, the SH outcomes affirmed the existence of the slope in the coefficients 

of tested variables. 

Table 4: Cross-sectional dependence, unit root and slope heterogeneity estimations 

 CD-test Level  First Difference  
Variable CD-test CIPS CADF RALS-ADF CIPS CADF RALS-ADF 

EQ 0.40 -1.44 -1.441 2.805 -2.683 -2.683 5.664 

AI 8.14 -2.021 -2.021 14.400 -3.096 -3.096 - 

ESG 0.51 -2.613 -2.613 -1.756 - - - 

EG 8.43 -3.29 -3.294 5.177 - - - 

TI 9.22 -2.08 -2.082 13.214 -3.38 -3.38 - 

POP 2.65 -2.21 -1.103 -14.264 -2.481 -2.481 - 

Slope Heterogeneity       

Δ̂  P− value   Δ̂Adj  P− value     

2.403 0.016  3.723 0.000    

Source: Author(s); data derived from EViews 17. EQ = Environmental Quality; AI = Artificial Intelligence; ESG = Environment Social and 

Governance; EG = Economic Growth; TI = Technological Innovation and POP = Population; Note: “***, **, and * show the significance 

level at 1%, 5%, and 10% 

 

The outcomes of the Variance Inflation Factor (VIF) test are presented in Table 5. The VIF 

values for all variables are less than 10, indicating no multicollinearity issues among the test 

variables in the model. Table 6 presents the results of the cross-sectional dependence (CD) 

tests. The CD statistic values for the Pesaran and Friedman weak CD tests are 1.666 and 17.862, 

respectively, which are significant at the 10% and 1% significance levels. These results indicate 

the presence of cross-sectional dependence in the panel data. Furthermore, Table 7 summarizes 

the findings related to heteroscedasticity and autocorrelation. The Breusch–Pagan test yields 

a 𝜒2 statistic of 5.43 with a p-value of 0.0198, suggesting evidence of heteroscedasticity in the 

dataset. Similarly, the Modified Wald test produces a 𝜒2 statistic of 191.21 with a p-value of 

0.0000, further confirming the presence of heteroscedasticity. Additionally, the Wooldridge 

test for autocorrelation provides an F-statistic of 354.136 with a p-value of 0.0000, indicating 

the presence of serial correlation in the dataset. 
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Table 5: Multicollinearity outcomes 

Variable VIF 1/VIF 

AI 1.95 0.512899 

ESG 2.63 0.380475 

EG 2.28 0.439309 

TI 1.49 0.672408 

POP 1.26 0.794237 

Mean VIF 1.92  

Source: Author(s); data derived from EViews 17. EQ = Environmental Quality; AI = Artificial Intelligence; ESG = Environment Social and 

Governance; EG = Economic Growth; TI = Technological Innovation and POP = Population 

 

Table 6: Weak CD outcomes 

Method CD Statistics P-value 

Pesaran's test 1.666 0.0957 

Friedman's test 17.862 0.0013 
Source: Authors compilation 

Table 7: Heteroskedasticity and Autocorrelation Outcomes 

Diagnostic tests Results P-value 

Breusch–Pagan/Cook–Weisberg test for heteroskedasticity  5.43 0.0198 

Modified Wald test for groupwise heteroskedasticity 191.21 0.0000 

Wooldridge test for autocorrelation in panel data 354.136 0.0000 
Source: Authors compilation 

Additionally, the outcomes of the RALS-EG cointegration test are presented in Table 8. The 

results indicate that the EG test statistic is 0.9715, which is greater than the critical value of 

−3.98, while the RALS-EG test statistic is 7.1676, which is also greater than the critical value 

of −3.88. These findings suggest that neither test rejects the null hypothesis of no cointegration 

at the given significance level. Thus, both the RALS-EG and EG tests demonstrate that there 

is no long-term correlation between the dependent and independent variables. 

Table 8: Cointegration Outcomes  

Method K T-test Rho 

EG 0 0.9715  

RAL-EG 0 7.1676 0.196085 

Note: K shows the optimum lag length found using recursive statistics; the 1%, 5% and 10% critical values for the EG test are −5.02, −4.32 

and −3.98, respectively; the 1%, 5% and 10% critical values for the RALS-EG test are −4.80, −4.19 and −3.88, respectively. 

4.3 Driscoll-Kraay, Roger’s and White Estimations 

The Driscoll-Kraay Estimator is used to ascertain the long-term relationship between 

the dependent and independent variables. The results are shown in Table 10. The results of the 



 

 26 

White and Rogers estimators are shown in Table 9, which are used to validate the dependability 

of Driscoll-Kraay’s results. The Driscoll-Kraay results reveal a noteworthy significant negative 

correlation between AI and environmental quality, with a coefficient of -0.135 and a p-value 

of 0.000. This research indicates that heightened AI deployment correlates with a deterioration 

in environmental quality, likely attributable to the energy-intensive and resource-dependent 

characteristics of AI technology. Although AI has the capacity to enhance resource efficiency, 

its environmental repercussions may surpass its advantages, especially in scenarios lacking the 

incorporation of sustainable practices in AI research. Furthermore, the results of the research 

correspond with those of Gaur et al. (2023), Ding et al. (2023) and Luan et al. (2022). 

The correlation between ESG practices and environmental quality is positive, with a 

coefficient of 0.077; nevertheless, this impact is statistically negligible, as shown by a 

probability value of 0.715. This result suggests that while ESG frameworks are often intended 

to enhance sustainability, their effect on environmental quality may be restricted or vary across 

various areas or industries. Furthermore, the results correspond with the research conducted by 

Işık et al. (2024), Khalil et al. (2024) and Wang et al. (2022). 

Economic growth has a modest but statistically significant positive impact on 

environmental quality, shown by a coefficient of 0.004 and a p-value of 0.036. This outcome 

indicates that economic growth may enhance environmental quality, maybe via investments in 

sustainable infrastructure or technology. Nevertheless, the extent of the impact is 

comparatively limited, suggesting that economic expansion by itself may not be enough to 

achieve substantial environmental enhancements without further policies or interventions. 

Moreover, the results correspond with the research conducted by Ali, Igunnu, et al. (2024), 

Djedaiet et al. (2024), Jahanger et al. (2024) and Khan et al. (2024). 

Technological innovation significantly enhances environmental quality, shown by a 

coefficient of 0.038 and a probability value of 0.000. This highlights the essential function of 

technical progress in tackling environmental issues, since breakthroughs often result in 

enhanced resource efficiency, reduced emissions, and the creation of cleaner technology. 

Furthermore, the results of the research correspond with the findings of  Ali, Igunnu, et al. 

(2024) and Aluko and Obalade (2020). 

Population has a substantial positive correlation with environmental quality, shown by 

a coefficient of 0.221 and a p-value of 0.000. This discovery may indicate that greater 

populations contribute to heightened environmental awareness, activism, and the enactment of 

sustainability-oriented policy. Although population expansion is often linked to environmental 

deterioration, this outcome indicates that population dynamics may also have a beneficial 
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impact under some circumstances, particularly when cultures exhibit heightened environmental 

awareness. Furthermore, the result corresponds with the research conducted by Chen et al. 

(2022) and Wang et al. (2024). 

A comparison of the estimators by Rogers (1993) and White (1980) reveals that their 

outcomes closely align with those of the Driscoll-Kraay Estimator, hence enhancing the 

dependability of the regression findings. The findings indicate that environmental quality 

improves with rising ESG, economic expansion, technical innovation, and population, whereas 

it deteriorates with the advancement of artificial intelligence. 

Table 9: Driscoll-Kraay, Rogers and White outcomes 

Driscoll-Kraay estimator    

Variables Coefficient Std. Dev (SD) t-Statistics Probability 

AI -0.135 0.014 5.44 0.000 

ESG 0.077 0.011 0.37 0.715 

EG 0.004 0.016 2.39 0.036 

TI 0.038 0.031 7.25 0.000 

POP 0.221 0.411 -6.41 0.000 

 Rogers estimator  White estimator  

Variables Coefficient Probability Coefficient Probability 

AI -0.135 0.005 -0.135 0.005 

ESG 0.077 0.063 0.077 0.063 

EG 0.004 0.947 0.004 0.947 

TI 0.038 0.000 0.038 0.000 

POP 0.221 0.023 0.221 0.023 

F Statistics 113.77 Probability 0.000  

Root- MSE 0.093 
 

 
Source: Author(s); data derived from EViews 17. EQ = Environmental Quality; AI = Artificial Intelligence; ESG = Environment Social and 

Governance; EG = Economic Growth; TI = Technological Innovation and POP = Population 

4.4 Robustness Estimations 

The robustness check is conducted with CS-ARDL and MMQR estimators. The results 

of CS-ARDL shown in Table 10 indicate that the long-term coefficient of AI demonstrates a 

negative and significant correlation with environmental quality (coefficient = -0.13479, p < 

0.01), suggesting that greater dependence on AI is associated with a decline in environmental 

quality over time. Similarly, in the medium run, AI persists in demonstrating a detrimental 

impact on environmental quality, although to a lesser extent (coefficient = -0.11046, p < 0.10). 

Moreover, based on MMQR results, AI adversely affects environmental outcomes (Q1 

coefficient = -0.11615, p < 0.01), with this impact intensifying in higher quantiles (Q4 

coefficient = -0.160687, p < 0.01). This suggests that the environmental deterioration linked to 
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AI is more significant in areas with superior environmental quality, perhaps owing to a greater 

dependence on resource-intensive AI technology in developed contexts. 

In the long run, ESG practices have a positive and substantial correlation with 

environmental quality (coefficient = 0.077321, p < 0.01), indicating that the implementation of 

ESG frameworks improves environmental results. Furthermore, over the long term, ESG 

maintains a favorable and substantial impact (coefficient = 0.045876, p < 0.05), underscoring 

its essential function in enhancing environmental circumstances across both temporal 

dimensions. The results of MMQR indicate that ESG practices consistently have a positive and 

substantial effect across all quantiles, with their influence intensifying as environmental quality 

improves (Q1 coefficient = 0.058678, p < 0.01; Q4 coefficient = 0.103214, p < 0.01). This 

indicates that ESG frameworks are more efficacious in improving environmental quality in 

areas that already implement superior environmental norms, possibly attributable to enhanced 

institutional capacity and compliance with governance principles. 

Furthermore, EG positively impacts environmental quality in the long run (coefficient 

= 0.037515, p < 0.05), but to a lesser extent. Notably, EG demonstrates no substantial short-

term impact, indicating that its environmental advantages may only emerge over an extended 

timeframe. Furthermore, the results of MMQR indicate that EG has a favorable albeit less 

consistent effect. The effect is notable in Q1 (coefficient = 0.036293, p < 0.10) and Q2 

(coefficient = 0.037447, p < 0.10), but it wanes at elevated quantiles, suggesting that the 

advantages of economic growth on environmental quality are more substantial in places with 

lower environmental development.  

TI, however, does not have a statistically significant impact, suggesting that its 

contribution to enhancing environmental quality remains indeterminate over the long term. 

Nonetheless, TI (coefficient = 0.031624, p < 0.10) has a modest but substantial positive impact 

in the near term, perhaps signifying the nascent adoption of ecologically beneficial technology. 

TI, however, remains statistically insignificant over the majority of quantiles, indicating a 

restricted direct influence on environmental quality. 

POP has a significant positive effect (coefficient = 0.221228, p < 0.01), underscoring 

its role in enhancing environmental quality, maybe indicative of the advantages of bigger 

populations embracing eco-friendly activities or policies. Similarly, in the short run, POP has 

a significant favorable effect (coefficient = 0.115394, p < 0.01). Moreover, MMQR results 

demonstrate that POP consistently has a substantial beneficial effect on environmental quality 

across all quantiles, with its influence intensifying in higher quantiles (Q1 coefficient = 

0.170051, p < 0.01; Q4 coefficient = 0.29231, p < 0.01). This suggests that population 
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expansion might favorably influence environmental results, especially in areas with superior 

environmental practices, perhaps via heightened environmental consciousness and policy 

implementation.  

The error correction term (ECT = -1.06188, p < 0.01) is very substantial, highlighting 

the model's capacity to rectify disequilibrium and progress towards long-term equilibrium. 

Additionally, Figure 4 provides a graphical overview of the impact of each explanatory 

variables on the explained variable. 

Table 10: CS-ARDL and MMQR robustness outcomes 

CS-ARDL Outcomes    

Variables 
Long term Short term 

Coefficient Std. Dev (SD) Coefficient Std. Dev (SD) 

AI -0.13479*** 0.025 -0.11046* 0.063 

ESG 0.077321*** 0.020 0.045876** 0.019 

EG 0.037515** 0.018 -0.00086 0.021 

TI 0.004082 0.022 0.031624* 0.019 

POP 0.221228*** 0.049 0.115394*** 0.041 

ECT   -1.06188*** 0.112 

MMQR Outcomes     

 Q1 Q2 Q3 Q4 

AI 
-0.11615*** 

(0.021) 

-0.13377*** 

(0.022) 

-0.14937*** 

(0.027) 

-0.160687*** 

(0.036) 

ESG 
0.058678*** 

(0.019) 

0.076295*** 

(0.020) 

0.091903*** 

(0.025) 

0.103214*** 

(0.033) 

EG 
0.036293* 

(0.021) 

0.037447* 

(0.021) 

0.03847 

(0.027) 

0.039212 

(0.032) 

TI 
0.024463 

(0.023) 

0.005204 

(0.024) 

-0.01186 

(0.030) 

-0.024227 

(0.040) 

POP 
0.170051*** 

(0.045) 

0.218411*** 

(0.047) 

0.261259*** 

(0.058) 

0.29231*** 

(0.081) 
Source: Author(s); data derived from EViews 17. EQ = Environmental Quality; AI = Artificial Intelligence; ESG = Environment Social and 

Governance; EG = Economic Growth; TI = Technological Innovation and POP = Population; Note: “***, **, and * show the significance 

level at 1%, 5%, and 10% and the standard errors are in parentheses  
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Figure 4: Overview of the impact of AI, ESG, EG, TI and POP on EQ. 

 



 

 31 

CHAPTER 5 

5 Discussion 

The negative relationship between artificial intelligence (AI) and environmental 

quality that this study found highlights a significant conundrum that developed countries must 

deal with. On the one hand, artificial intelligence (AI) has become a game-changing 

technology that boosts economic competitiveness, optimizes industrial processes, and greatly 

increases productivity. However, because AI technologies are energy-intensive and 

significantly strain ecosystems, their rapid adoption has revealed environmental weaknesses. 

This dichotomy highlights a recurring problem: how to strike a balance between AI's industrial 

and economic advantages and the pressing need to lessen its negative environmental effects. 

Advanced computing infrastructure, including data centers, cloud computing platforms, and 

machine learning techniques, is essential to AI technology. In many nations, a large portion 

of the energy used by these systems still comes from fossil fuels. Therefore, in addition to 

increased energy use, AI's environmental impact also involves the depletion of natural 

resources and the production of greenhouse gas emissions. In developed countries like China 

and the US, where AI-driven procedures have been widely adopted to promote manufacturing 

and industrial innovation, these difficulties are especially noticeable. Despite being leaders in 

the deployment of technology, these nations' reliance on traditional energy sources makes the 

environmental effects of AI use worse. A striking illustration of this dynamic can be seen in 

China. A key component of the country's push for modernization and worldwide economic 

leadership has been the quick integration of AI into industrial operations. In sectors ranging 

from manufacturing to logistics, artificial intelligence (AI) technologies have proved crucial 

in increasing operational effectiveness, lowering production costs, and enabling predictive 

maintenance. But the ecology has paid a price for this advancement. According to Dong et al. 

(2024) and Zhang et al. (2024), despite the nation's aggressive renewable energy targets, the 

growing reliance on AI technologies has led to an increase in carbon emissions. The disparity 

is caused by the fact that China's energy grid is still mostly dependent on coal, even with large 

investments in renewable energy infrastructure. As a result, the electricity needed to run AI-

driven operations frequently comes from non-renewable sources, which compromises the 

technology' potential environmental advantages. The size of China's industrial sector, which 

increases the environmental impact of AI adoption, further complicates this scenario. The 

continuous and significant energy inputs required by large industrial facilities using AI 

systems have not been adequately countered by the use of renewable energy sources. For 

instance, China's renewable energy capacity has increased significantly in recent years, but 
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the adoption of AI and the energy requirements that go along with it have outpaced the 

country's shift to cleaner energy sources. This emphasizes the pressing need for methods to 

hasten the decarbonization of the energy grid and specific policies that give energy efficiency 

in AI applications first priority. Similar worries about the environmental costs of incorporating 

AI into industrial and manufacturing processes have surfaced in the US. Nepori (2024) 

emphasizes that although AI has greatly increased operational efficiency and productivity in 

the US manufacturing sector, these developments have come at the expense of higher energy 

consumption. This is especially noticeable in sectors like supply chain optimization, advanced 

robotics, and driverless cars that mostly rely on data-intensive operations. When these AI-

driven systems are fuelled by non-renewable energy sources, the massive electricity 

consumption of the data centers that support them raises carbon emissions. Discussions over 

the sustainability of AI's broad adoption in the US have been triggered by the technology's 

energy-intensive nature. While the United States has made progress in increasing its capacity 

for renewable energy, the rate of expansion has not kept up with the increasing energy 

requirements of AI infrastructure. Furthermore, it is difficult to consistently adopt laws that 

encourage the use of green energy in AI operations due to the decentralized architecture of 

the US energy market. Nepori (2024) highlights the significance of implementing energy-

efficient AI systems and legislative actions that encourage the use of renewable energy sources 

to power AI systems. In the absence of such steps, AI's carbon footprint may exceed its 

environmental advantages, jeopardizing more general sustainability objectives. The results of 

this study demonstrate the pressing need for calculated actions to reduce the hazards that 

artificial intelligence poses to the environment. Making energy-efficient AI research and 

development a top priority is one of the best strategies. The environmental impact of AI 

adoption could be considerably lessened by innovations like decentralized AI systems that use 

less energy, energy-optimized data center designs, and low-power machine learning 

techniques. In order to guarantee that sustainability is ingrained in the development and 

implementation of these technologies, governments and businesses must work together to 

create international standards for energy efficiency in AI applications. To solve the 

environmental issues raised by AI, policy changes are just as important as technical 

developments. For industries to switch to renewable energy, policymakers must provide 

incentives like green energy project subsidies or fines for over-reliance on fossil fuels. Since 

the environmental effects of AI adoption frequently cross national boundaries, international 

cooperation is also crucial. Initiatives for knowledge exchange and collaborative research can 

assist nations in creating and putting into practice best practices for the deployment of AI in a 
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sustainable manner. The contribution of public awareness and education to the advancement 

of sustainable AI techniques is another crucial factor. By raising awareness of AI's negative 

environmental effects, stakeholders from a variety of industries can be persuaded to embrace 

more environmentally friendly methods. Customers can increase demand for AI-powered 

environmentally friendly goods and services, in addition to businesses and legislators. By 

combining the knowledge of the private sector with the financial and regulatory resources of 

governments, public-private partnerships can strengthen these initiatives even more. 

Environmental, social, and governance (ESG) activities have a positive and 

statistically significant impact on environmental quality, which emphasizes how important 

sustainable business practices are to promoting environmental preservation while sustaining 

economic growth. In technologically sophisticated countries, where the incorporation of ESG 

frameworks has improved corporate governance and reduced environmental degradation, this 

association is especially noticeable. These countries show how ESG practices may balance 

the conflicting needs of environmental preservation and economic advancement by integrating 

sustainability concepts into corporate operations and governance frameworks. One prominent 

example of the effective application of ESG frameworks is Germany. The nation is well-

known for its steadfast dedication to sustainability and has enacted strong laws to integrate 

environmental concerns into business and industrial operations. According to Ammermann 

and Ruf (2021), Germany's ESG efforts have been crucial in lowering emissions in a number 

of sectors while preserving economic expansion. These policies include required 

sustainability reporting for businesses, incentives for the use of renewable energy, and strict 

environmental restrictions. According to Meacci (2024), these regulations guarantee that 

German firms maintain their competitiveness in the worldwide market in addition to being in 

line with global environmental standards. The German experience demonstrates how ESG 

frameworks can be a useful instrument for striking a balance between environmental 

responsibility and corporate productivity. Other examples of how ESG principles might 

influence sustainability outcomes in technologically sophisticated countries are South Korea 

and Japan. Given the strategic importance of ESG practices in accomplishing long-term 

sustainability objectives, both nations have incorporated environmental issues into their 

corporate governance frameworks. According to Gunawan (2023), in order to incentivize 

companies to embrace eco-friendly practices, South Korea has put in place extensive ESG 

laws, such as carbon reduction targets and subsidies for green energy projects. Japan's 

attempts to integrate environmental sustainability into its corporate governance frameworks 

are also documented by Park et al. (2024). Adopting carbon neutrality targets and encouraging 
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ecologically friendly developments in important industrial sectors are two examples of these 

initiatives. The efficacy of ESG practices in addressing environmental issues has been 

demonstrated by the observable improvements in environmental quality brought about by 

these policies taken together. The study's conclusions show that, especially in countries with 

highly developed technological capacities, the effective application of robust ESG 

frameworks can play a significant role in balancing environmental preservation with 

economic advancement. The capacity of ESG practices to tackle the environmental issues 

brought about by industrialization and economic growth highlights this relationship. Countries 

can accomplish two goals by incorporating sustainability considerations into company plans 

and governance structures: promoting economic growth and protecting the environment for 

next generations. ESG frameworks' capacity to encourage corporate accountability and 

transparency is another factor contributing to their efficacy in improving environmental 

quality. Businesses that follow ESG criteria are frequently compelled to report their 

sustainability and environmental performance, which fosters an accountable culture and 

promotes ongoing development. As stakeholders place a greater emphasis on sustainable 

practices when making investment decisions, this transparency not only helps the environment 

but also boosts investor trust. As a result, implementing ESG principles can help firms achieve 

substantial financial and reputational gains, which encourages their incorporation into 

corporate governance frameworks. Nevertheless, there are obstacles to overcome before ESG 

frameworks may be successfully implemented. Regulatory frameworks, cultural perspectives 

on sustainability, and economic development levels can all have an impact on how effective 

ESG practices are in different countries. For example, although South Korea, Japan, and 

Germany have made great progress in incorporating ESG principles, other countries may 

encounter challenges like insufficient legislative frameworks, restricted access to green 

technologies, and opposition from sectors that depend on non-renewable energy sources. A 

coordinated effort is needed to address these issues by promoting knowledge sharing among 

states, harmonizing ESG standards globally, and offering financial and technical assistance to 

underdeveloped nations. Innovations that promote sustainability have also been connected to 

the incorporation of ESG principles in technologically advanced countries. ESG frameworks 

that place a high priority on environmental stewardship frequently aid in the adoption of 

environmentally friendly technology, such as low-carbon innovations and energy-efficient 

production systems. This connection between technical innovation and ESG practices 

emphasizes even more how revolutionary ESG can be in advancing sustainability. For 

instance, improvements in energy-efficient industrial processes and renewable energy 
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technology have resulted from South Korea's emphasis on green innovation, which is 

bolstered by its ESG regulations. Similarly, Japan's emphasis on incorporating ESG concepts 

into business operations has sparked advancements in environmentally friendly transportation 

and manufacturing technologies. 

The study's contradictory findings about how Economic Growth (EG) affects 

environmental quality highlight the complex relationship between economic development and 

environmental quality in developed countries. The difficulty of balancing environmental 

sustainability with economic advancement is highlighted by the fact that some models show 

a statistically negligible association, while others show a minor positive benefit. These results 

highlight the dual nature of economic growth, whereby funds produced by development can 

help fund environmental projects but can also worsen environmental deterioration by 

increasing emissions and resource exploitation. Increased industrial activity, urbanization, and 

energy use are frequently associated with economic expansion, and these factors all exacerbate 

environmental problems. The need for economic growth has frequently come at the expense 

of environmental quality in countries like South Korea and Japan, especially in industries that 

rely significantly on fossil fuels. These economies, which are renowned for their highly 

developed technological capacities, struggle mightily to separate environmental damage from 

economic growth. For example, because of its reliance on non-renewable energy sources, 

Japan's industrial sector has historically contributed significantly to greenhouse gas emissions. 

The enormous expenses and infrastructure difficulties involved in modernizing current energy 

systems have hampered efforts to switch to renewable energy. In a similar vein, South Korea 

has had trouble balancing its goals for environmental sustainability and economic growth. The 

country's dependence on coal and other non-renewable energy sources has hindered the 

efficacy of its environmental policies, even if it is a pioneer in technological innovation and 

green technology development. In order to strike a balance between economic expansion and 

environmental preservation, South Korea continues to face significant challenges in 

integrating green development initiatives, such as the use of renewable energy and energy-

efficient technologies. These countries' continued reliance on fossil fuels emphasizes the 

necessity of extensive legislative changes and clean energy expenditures in order to lessen the 

negative environmental effects of economic expansion. Economic growth's ability to supply 

funding for environmental projects is more proof of its dual character. Governments and 

businesses may invest in sustainable infrastructure, pollution prevention technologies, and 

renewable energy projects thanks to economic development. However, how much 

environmental factors are given priority in national development objectives will determine 
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how beneficial these investments are. For instance, although both South Korea and Japan have 

put regulations in place to encourage sustainability, the rate of advancement has not been fast 

enough to offset the environmental costs of economic growth. This emphasizes how crucial it 

is to incorporate green development strategies that give equal weight to economic goals and 

environmental quality. In order to solve the environmental issues brought on by economic 

expansion in developed countries, green development methods are very important. These 

tactics entail implementing laws and procedures that minimize emissions, cut down on 

resource usage, and encourage the use of renewable energy sources. For example, a major step 

toward incorporating sustainability into its economic structure is Japan's pledge to become 

carbon neutral by 2050. Increased energy efficiency, increased capacity for renewable energy, 

and a shift to low-carbon technology are all part of this program. Similar to this, South Korea's 

Green New Deal seeks to promote sustainable economic growth by funding climate adaption, 

renewable energy, and green infrastructure initiatives. These programs show how green 

development strategies may balance environmental sustainability with economic 

advancement. However, governments, businesses, and communities must be committed to 

adopting sustainable practices for green development policies to be successful. By enacting 

laws that favor green growth, offering financial incentives for renewable energy projects, and 

encouraging the development of sustainable technology, policymakers can create a climate 

that is conducive to green growth. Furthermore, because environmental issues are global in 

scope, international cooperation is crucial. Countries may overcome the obstacles of putting 

green development methods into practice and achieving their sustainability goals by working 

together to share best practices, resources, and information. 

As a key factor in enhancing environmental quality, technological innovation (TI) has 

demonstrated its indispensability in promoting sustainability in developed countries. TI's 

potential to transform waste management technologies, manufacturing procedures, and energy 

systems gives it the ability to tackle environmental issues. In addition to being a tool for 

reducing emissions, TI has become a key component of sustainable economic growth for 

major industrial powers like China, Japan, South Korea, and Germany. When it comes to using 

technical innovation to accomplish environmental goals, Germany is a global leader. 

Innovation may revolutionize energy systems, as seen by the nation's dedication to renewable 

energy, which is embodied in its "Energiewende" (energy transition) policy. Germany has 

made great strides in wind and solar power technologies, as well as energy storage systems 

that improve grid efficiency, by making large investments in research and development 

(R&D). Additionally, German firms have been able to minimize waste and maximize resource 
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utilization because to advancements in production processes, such as the implementation of 

Industry 4.0 principles. These developments in technology highlight Germany's capacity to 

incorporate environmental sustainability into its industrial structure, establishing a standard 

for green innovation around the world. In a similar vein, Japan has shown how revolutionary 

TI can be when it comes to solving environmental issues. The nation's technological 

developments in waste management and energy efficiency have played a key role in cutting 

emissions and advancing circular economy principles. Japan is committed to become carbon 

neutral by 2050, which is reflected in its focus on creating high-efficiency energy systems like 

hydrogen-based technology. Furthermore, Japan is now a leader in sustainable urban 

development thanks to advancements in waste management, such as sophisticated recycling 

technology and waste-to-energy systems. These accomplishments demonstrate how TI can 

help resource-intensive economies, especially those in highly populated areas, develop 

sustainable solutions. The focus placed by South Korea on investments in green technology 

serves as another evidence of TI's transformative potential in enhancing environmental 

quality. R&D in smart grid technology, electric vehicles, and renewable energy has been given 

top priority under the nation's Green New Deal program. South Korea hopes to become a 

global center for green technology and move away from reliance on fossil fuels by 

encouraging innovation in these fields. Energy-efficient technology, like sophisticated battery 

systems and low-carbon industrial processes, have developed more quickly thanks to 

government backing for startups and research institutes. These initiatives show how South 

Korea views TI as a crucial facilitator of both environmental preservation and sustainable 

economic growth. China's strategy for technical innovation, especially its attempts to control 

the world's renewable energy market, is a prime example of how TI may revolutionize 

environmental sustainability. The nation has made significant investments in wind and solar 

energy technology, becoming the top manufacturer of wind turbines and photovoltaic panels 

worldwide. In addition to increasing China's capacity for renewable energy, these 

developments have lowered the cost of renewable technologies globally, opening them up to 

underdeveloped countries. Furthermore, China's emphasis on smart city technology and 

electric car manufacturing highlights its dedication to incorporating TI into sustainable urban 

development. There are still issues, though, namely with how China's industrial operations 

affect the environment and how to fairly divide technology gains among different regions. 

The study's conclusions highlight how crucial it is to maintain R&D spending in order to 

support ecologically friendly industrial practices. By acting as a catalyst to separate economic 

expansion from environmental deterioration, technological innovation helps countries meet 
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sustainability targets without sacrificing industrial output. For business executives, tackling 

the environmental issues of the twenty-first century requires the ongoing development of 

green technology, such as enhanced waste management systems, energy-efficient 

manufacturing techniques, and renewable energy systems. Furthermore, international 

cooperation in technical innovation is required due to the global character of environmental 

concerns. Countries can pool resources and expertise to speed up the development and 

implementation of green technologies through technology transfer procedures, cooperative 

R&D programs, and knowledge-sharing efforts. Collaborations between South Korea and 

China in the development of renewable energy or Germany and Japan in hydrogen energy 

research, for instance, demonstrate the potential of joint innovation to promote sustainability 

globally. 

Finally, the positive relationship between population (POP) and environmental quality 

found in this study emphasizes how important demographic dynamics are when combined 

with successful policy measures. Implementing well-thought-out legislation and encouraging 

group environmental action can have a positive impact on the relationship between population 

expansion and increased environmental stress, which is frequently linked to increased 

resource consumption and waste generation. The examples of China and the United States 

offer strong proof that demographic variables can support sustainable development and 

environmental enhancements when appropriately used. The interaction of government 

policies, community involvement, and public knowledge has been crucial in the United States 

in reducing the environmental impact of its sizable population. With one of the largest 

populations in the world, the United States inevitably puts strain on ecosystems and natural 

resources. Nonetheless, the country's focus on grassroots environmental projects and public 

awareness campaigns has been crucial in improving the condition of the environment. 

Environmental responsibility has been promoted via community-driven initiatives including 

recycling campaigns, nearby conservation projects, and popular support for renewable energy. 

Government policies that promote sustainable practices, such as stronger environmental laws, 

financial assistance for environmental education, and incentives for the use of green energy, 

further support these initiatives. Together, these actions show how, with the help of sensible 

laws and group efforts, a sizable population may be used to promote environmental change 

rather than operate as a liability. Another compelling example of how population-centric 

programs can support environmental sustainability is China. China, the world's most 

populated nation, has a difficult time striking a balance between environmental protection and 

population expansion. However, the country has shown how effective coordinated efforts and 
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well-timed policy changes can be in tackling environmental problems. China is committed to 

lowering its dependency on fossil fuels and decreasing pollution, as seen by its ambitious 

renewable energy projects, which include the construction of massive solar and wind energy 

installations. Public initiatives to educate the country's large population about sustainable 

practices and energy saving help to support these initiatives. Furthermore, China's emphasis 

on green infrastructure and urban design has made it possible to create environmentally 

friendly cities that incorporate sustainable waste management techniques, renewable energy 

sources, and effective transit systems. China has demonstrated via the use of its demographic 

strength that population increase may result in notable environmental gains when combined 

with creative policies and group efforts. The importance of education and public knowledge 

in influencing environmental outcomes is further shown by the positive association between 

population and environmental quality. Communities can be empowered to take proactive 

action by educating the public about the advantages of sustainable practices and the negative 

effects of environmental deterioration. Campaigns that encourage water conservation, trash 

reduction, and energy efficiency, for instance, can have a multiplier impact when people adopt 

eco-friendly habits that add up to larger gains. A new generation of environmentally conscious 

citizens who are better prepared to handle future issues can also be fostered by investments in 

environmental education. In order to maximize the beneficial impacts of population dynamics 

on environmental quality, policy measures are essential. The creation and application of laws 

that promote sustainable conduct and offer rewards for eco-friendly activities must be given 

top priority by governments. For example, municipal policies that support green spaces, 

energy-efficient housing, and public transit can lessen the negative environmental effects of 

urban population density. Similar to this, policies for rural development that prioritize natural 

resource management and sustainable agriculture can guarantee that population expansion in 

rural areas does not result in resource depletion or environmental deterioration. By 

coordinating certain policies with demographic patterns, countries can turn population 

expansion into a benefit for environmental sustainability. The beneficial effects of population 

dynamics on environmental quality can also be strengthened through international 

collaboration and knowledge exchange. Countries can handle the problems caused by 

population expansion while maximizing its possible advantages by working together to 

exchange best practices, technical advancements, and regulatory frameworks. For example, 

international advancement in environmental sustainability can be promoted by the sharing of 

knowledge on community-based conservation initiatives and renewable energy technology 

between countries such as the United States and China. 
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CHAPTER 6 

6 Conclusion and Recommendations 

6.1 Introduction  

The study analyzes the relationship among artificial intelligence (AI), environmental, social 

and governance (ESG) criteria, economic growth (EG), technological innovation (TI), and 

population (POP) concerning the environmental quality of the five countries with the highest 

installation of industrial robots from 2011 to 2022. The inquiry utilizes econometric methods 

in data analysis to explore the relationship between the variables. This study utilizes CADF 

and CIPS second-generation unit root tests, as presented by Pesaran (2007), to assess the 

stationarity of the parameters examined. The research employs the slope heterogeneity tests 

developed by Pesaran and Yamagata (2008) to examine the problem of slope heterogeneity 

related to the data. The research utilizes the recently established RALS-EG cointegration tests 

to examine the long-term relationship between the variables under consideration. This is 

accomplished by the use of the Driscoll-Kraay, Rogers, and White methodologies. 

Additionally, CS-ARDL and MMQR estimators are used for robustness analysis. 

6.2 Summary of the Conclusion 

This research illustrates the complex interrelationships between Artificial Intelligence 

(AI), Environmental, Social, and Governance (ESG) practices, Economic Growth (EG), 

Technological Innovation (TI), and Population (POP) concerning environmental quality in 

industrialized countries. The study use sophisticated econometric techniques, including 

Driscoll-Kraay, White, Roger, CS-ARDL, and MMQR estimators, to demonstrate the 

potential and problems associated with attaining environmental sustainability. 

The results indicate that AI technologies now exert a considerable environmental 

impact owing to their energy-intensive characteristics. Although AI presents prospects to 

improve efficiency and stimulate innovation, its extensive use without sustainable practices 

may intensify environmental deterioration. Conversely, ESG practices have significant, 

beneficial effects on environmental quality in both the short and long term, highlighting the 

need of integrating sustainability into business and industrial activities. The results on 

economic growth suggest that, while it leads to minor enhancements in environmental 

outcomes, it is inadequate for realizing significant changes without supplementary, focused 

initiatives. Technological innovation serves as a fundamental element for improving 

environmental quality. Investments in green technology and creative production processes are 
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essential for alleviating the negative impacts of industrialization and fostering sustainable 

development. Furthermore, population dynamics significantly influence the extent to which 

increased environmental consciousness among expanding populations may catalyze collective 

efforts towards sustainability. 

6.3 Recommendations and Policy Implications 

The results of the study offer a precise framework for practical policy suggestions to address 

the relationship among economic growth, technical advancements, and environmental quality. 

The policies that follow build on these recommendations by highlighting how crucial 

cooperation, creativity, and flexible governance are to achieving sustainable development 

objectives. 

Advocate for Sustainable AI Technology 

With AI's increasing use in industrial processes and its energy-intensive nature, it is critical to 

promote sustainable AI technology. Leaders in the public and corporate sectors should give 

top priority to research and development (R&D) projects aimed at developing AI systems that 

use less energy and emit fewer emissions. This could entail developing decentralized AI 

technologies that lessen the demand for large amounts of processing power, streamlining data 

center operations, and encouraging innovation in low-power machine learning algorithms. 

Another crucial step is to set environmental performance standards for AI systems. Industries 

can be held responsible for the environmental effects of their AI applications by establishing 

explicit guidelines for energy efficiency and emissions reduction. Furthermore, companies 

can be encouraged to connect their operations with sustainability objectives by utilizing 

subsidies, grants, and tax incentives to encourage the use of green technologies in AI-driven 

industries. Legislators might also establish certifications for AI systems that use less energy, 

giving companies a competitive edge and encouraging eco-friendly customer behavior. 

Enhance ESG Integration 

In order to connect corporate practices with sustainability goals, industries must enforce 

Environmental, Social, and Governance (ESG) adherence. Strong regulatory frameworks 

requiring ESG reporting and compliance across industries should be created by policymakers. 

To guarantee accountability and promote the broad adoption of sustainable practices, these 

frameworks should incorporate tools like tax incentives for businesses that satisfy ESG 

standards and penalties for non-compliance. Governments can aggressively promote the 

advantages of ESG integration beyond enforcement by offering case studies, guidelines, and 

teaching materials that show how ESG practices may lower risk, increase stakeholder trust, 

and boost profitability. Enhancing public-private partnerships is equally important. By 
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exchanging knowledge, combining resources, and encouraging creativity, partnerships 

between governments, corporations, and non-governmental organizations can hasten the 

adoption of ESG principles. Governments and financial institutions, for example, can work 

together to create ESG-focused investment funds that incentivize businesses for their 

sustainability initiatives. 

Promote Sustainable Economic Development 

Policies that incorporate sustainability into growth strategies are necessary to decouple 

economic progress from environmental deterioration. Governments should prioritize the 

development of renewable energy and offer financial incentives, including tax rebates and 

feed-in tariffs, to hasten the switch to cleaner energy sources. Green infrastructure 

investments, such eco-friendly buildings, sustainable urban design, and energy-efficient 

transit systems, can further lessen environmental impacts while promoting economic 

expansion. National development plans should incorporate circular economy frameworks, 

which place a high priority on waste reduction, resource efficiency, and product lifetime 

management. Industries can be encouraged to invest in cleaner technology and lower 

emissions by putting carbon pricing mechanisms like carbon taxes or cap-and-trade schemes 

into place. By promoting innovation, these strategies not only boost the economy but also 

produce income that may be used to fund sustainability initiatives. 

Expedite Technological Innovation 

In order to solve environmental issues and advance sustainable practices, technological 

innovation must be accelerated. To keep innovation at the top of national agendas, 

governments should greatly boost funding for research and development in clean energy and 

sustainable technology. Creating innovation hubs that include scholars, business executives, 

and legislators can promote cross-sector cooperation and the quick creation of innovative 

solutions. These facilities might concentrate on topics including advanced recycling systems, 

carbon capture and storage (CCS) technology, and renewable energy storage. Fostering 

collaboration between academic institutions, commercial businesses, and governmental 

organizations can also aid in closing the gap between research and commercialization, 

guaranteeing the widespread adoption of sustainable innovations. International R&D 

cooperation, especially in the sharing of innovations and best practices, can hasten the world's 

shift to sustainability. 

Enhance Public Awareness and Community Engagement 

Building a sustainable culture and promoting grassroots environmental action depend heavily 

on public awareness and community involvement. School curricula, workplace training, and 
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community activities should all incorporate educational programs that improve environmental 

literacy and encourage sustainable practices. By addressing important topics like waste 

management, energy conservation, and climate change mitigation, these programs can enable 

people to make wise decisions. Local efforts, including neighborhood-focused recycling 

programs and campaigns to promote the use of renewable energy, can take advantage of 

population shifts to bring about significant change. High-density metropolitan areas, for 

instance, can gain from energy-efficient housing developments and public transit programs, 

while rural areas can concentrate on renewable energy installations and sustainable 

agriculture. In order to allow communities to participate in the creation of policies and keep 

an eye on the execution of sustainability initiatives, governments should also invest in digital 

platforms that promote citizen participation in environmental decision-making. 

Implement Comprehensive Monitoring Systems 

To guarantee the efficacy of programs intended to improve environmental quality, strong 

monitoring systems must be established. The environmental impact of AI technologies, ESG 

practices, and other factors should be evaluated and monitored in real-time by these systems. 

Policymakers can receive precise and fast information from advanced data analytics and AI-

powered monitoring technologies, allowing them to recognize new issues and modify their 

plans of action accordingly. Regular reviews of policy results can aid in improving strategies 

and guaranteeing that they continue to be in line with changing economic and environmental 

circumstances. Governments might, for example, put in place performance dashboards that 

monitor the advancement of important sustainability metrics like resource efficiency, 

emissions reductions, and the use of renewable energy. These dashboards' public accessibility 

can improve accountability and transparency, building stakeholder trust and promoting 

ongoing participation. 
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Appendices 

Appendix A: Synopsis of existing literature 

 

Author(s) Methodology Country 
Dependent 

Variable 

Independent 

Variable 
Main Findings 

Akhter et al. 

(2024) 

ARDL bounds 

test, FMOLS, 

DOLS, and 

CCR 

United 

States 

LCF FA, AI, URB, 

and IQ 

Financial accessibility, 

artificial intelligence 

innovation, and institutional 

quality favorably affect load 

capacity, but urbanization 

diminishes the load capacity 

factor in both the short and 

long term. 

Alandejani 

and Al-

Shaer 

(2023) 

Ordinary Least 

Square (OLS) 

regression, 

with robust 

standard errors 

USA, 

China, UK 

ESG and CO2 

emissions 

EPU, PIS, and 

UA 

Economic uncertainty drives 

higher engagement in ESG and 

emission reduction targets; 

political instability increases 

social and environmental 

engagement, while risk-

tolerant societies show better 

ESG performance. Profitable 

companies handle uncertainty 

better and invest in ESG. 

Ali et al. 

(2023) 

Driscoll-Kraay 

standard error 

estimator with 

fixed effects 

MINT 

(Mexico, 

Indonesia, 

Nigeria, 

Turkey) 

LCF ED, RE, NRE, 

and TI 

In MINT countries, long-term 

foreign debt, renewable 

energy, and access to clean 

energy enhance LCF, whereas 

non-renewable energy and 

technical innovation diminish 

LCF. The study suggests 

prioritizing research and 

development to promote 

innovation and enforce 

environmental compliance to 

reduce non-renewable energy 

impacts. 

Ali, Igunnu, 

et al. (2024) 

RALS-EG 

Cointegration, 

ARDL Model 

Pakistan CO2 emissions   GF, EG, HC, 

EP and TI 

Green finance, human capital, 

and oil prices reduce carbon 

emissions in the short and long 

term. Economic growth and 

gas prices increase emissions 

long term, while economic 

growth decreases emissions in 

the short term. Policies 

fostering green investments 

and resilience are 

recommended. 

Aydin et al. 

(2024) 

Regularized 

Common 

Correlated 

19 

Countries 

LCF IF, TI, RE and 

EG 

Investment freedom decreases 

LCF in New Zealand and 

increases it in Latvia. 
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Effects (rCCE) 

and Common 

Correlated 

Effects (CCE) 

estimators 

Technological innovation 

decreases LCF for Singapore 

and increases it for Germany. 

Renewable energy increases 

LCF for the UK and Spain. 

Chen et al. 

(2022) 

Bartik method 

to quantify 

data 

270 

Chinese 

cities 

CO2 emissions AI, FD, FI, and 

POP 

Artificial intelligence exerts a 

substantial negative influence 

on carbon emission intensity. 

The impact of AI on carbon 

emission reduction is 

particularly pronounced in 

super and megacities, huge 

urban areas, and cities with 

superior infrastructure and 

modern technology. Artificial 

intelligence mitigates carbon 

emissions by optimizing 

industrial frameworks, 

strengthening informational 

infrastructure, and advancing 

green technological innovation. 

Chen and 

Jin (2023) 

Fixed-effects 

regression 

model 

China CO2 emissions AI, TI, GTI, 

GMI and GPI 

The inhibiting effect of AI on 

carbon emissions is 

strengthened by the firms' 

green technological, 

management, and product 

innovation capabilities.  

The study provides evidence 

that the integration of AI and 

green innovation can promote 

low-carbon development in the 

manufacturing industry. 

Costantiello 

and 

Leogrande 

(2023) 

Fixed Effects, 

Random 

Effects and 

WLS-

Weighted 

Least Squares 

193 

countries 

CO2 emissions ME, R&D and 

RE 

CO2 emissions are positively 

associated with methane 

emissions and R&D 

expenditures, negatively 

associated with renewable 

energy consumption and 

drought index 

Dai et al. 

(2024) 

Cross-

sectionally 

augmented 

ARDL model 

ASEAN 

Region 

LCF HC, GE, POP 

and EG 

Higher income levels, human 

capital (HUC), and green 

energy stimulate load capacity 

factor (LCF) and 

environmental quality in 

ASEAN. Nonetheless, 

population density and 

economic globalization 

intensify environmental 

degradation. 
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 The study suggests policies to 

enhance environmental quality 

and achieve SDGs. 

Ding et al. 

(2024) 

Emissions 

savings 

estimation 

across 

scenarios 

United 

States 

CO2 emissions AI and EC The implementation of 

artificial intelligence may 

decrease energy usage and 

carbon emissions by roughly 

8% to 19% by 2050.  

Integrating artificial 

intelligence with energy policy 

and low-carbon power 

generation may decrease 

energy usage by 40% and 

carbon emissions by 90%. 

Djedaiet et 

al. (2024) 

PMG-ARDL 

for symmetric 

effects, PMG-

NARDL for 

asymmetric 

effects, 

Westerlund 

cointegration 

test 

African 

oil-

producing 

OPEC 

countries 

(7 

countries) 

Environmental 

quality 

EG, EC, EP 

and POP 

The load capacity factor is 

adversely impacted by rises in 

oil prices, with short-term 

affects significantly 

outweighing long-term effects. 

An growth in population 

elevates the demand for 

products and services, hence 

exerting more strain on the 

environment. Moreover, 

population growth results in 

heightened detrimental 

activities towards the 

environment to satisfy 

fundamental demands through 

the depletion of natural 

resources. 

Fareed et al. 

(2021) 

Fourier 

quantile 

causality 

approach 

Indonesia LCF INC, NRE and 

RE 

Unidirectional causality exists 

from non-renewable energy 

usage to LCF across all 

quantiles. Income, export 

diversification, and renewable 

energy contribute to 

environmental quality at 

medium and upper quantiles. 

Renewable energy and export 

diversification enhance LCF, 

whereas income and non-

renewable energy usage 

diminish LCF. 

Gaur et al. 

(2023) 

System of 

Systems (SoS) 

and network 

analysis 

Not 

Specified 

CO2 emissions AI AI can combat climate change 

but contributes to carbon 

emissions; focus on creating 

sustainable AI models to 

minimize environmental 

impact. 
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Guloglu et 

al. (2023) 

Quantile 

Common 

Correlated 

Effects Mean 

Group (QMG) 

estimator 

OECD 

countries 

(26 

countries) 

LCF HC, URB, RE Human capital, resource rent, 

and renewable energy enhance 

the load capacity factor, 

however urbanization 

adversely impacts 

environmental quality. The 

research validates the U-

shaped relationship between 

income and environmental 

quality, corroborating the load 

capacity curve concept. The 

findings underscore the 

significance of renewable 

energy and human capital in 

attaining Sustainable 

Development Goals, such as 

shifting to a low-carbon 

economy and mitigating water 

pollution. 

Işık et al. 

(2024) 

CS-ARDL 

model 

G7 Nations LCF ECON-ESG Governance factors positively 

affect LCF; economic factors 

negatively impact LCF. 

Environmental and social 

factors show no effect. ECON-

ESG composite negatively 

affects LCF. 

Jahanger et 

al. (2024) 

MMQR and 

Dumitrescu & 

Hurlin 

Top SDGs 

Nations 

LCF TI, ET, RE and 

EG 

Technological innovation, 

environmental taxation, 

renewable energy, and 

globalization adversely affect 

LCF; economic growth 

positively influences LCF. The 

interplay between 

technological innovation and 

renewable energy enhances 

LCF across all quantiles. 

Khalil et al. 

(2024) 

Time fixed-

effects panel 

regression. 

10 Asian 

Countries 

CO2 emissions ESG, CGS, 

TRI and EI 

The findings of this study 

indicate that environmental 

performance significantly 

positively impacts the 

examined nations. 

Liu et al. 

(2022) 

STIRPAT 

model 

Chinese 

industrial 

sector 

CO2 emissions AI, POP, AFF, 

TI, FDI and 

Energy price 

AI markedly decreases carbon 

intensity, with more 

pronounced effects in labor- 

and technology-intensive 

sectors; the impact fluctuates 

according to industrial phases 

and policy durations. 

Raihan et 

al. (2023) 

Autoregressive 

Distributed 

Lag (ARDL) 

Mexico LCF EG, FG, FF, 

RE and URB 

Growth in economic activity, 

fossil fuel use, and 

urbanization diminish Mexico's 
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method, 

dynamic 

ordinary least 

squares 

(DOLS), fully 

modified least 

squares 

(FMOLS), and 

canonical 

cointegrating 

regression 

(CCR) 

LCF, whilst the deployment of 

renewable energy and financial 

globalization exert beneficial 

effects on LCF. The results are 

consistent in both long-term 

and short-term dynamics. 

Policymakers must promote 

renewable energy, sustainable 

urban development, and eco-

friendly technologies. 

Saggar and 

Nigam 

(2023) 

Theoretical 

framework 

and 

comparative 

analysis 

Not 

Specified 

GHG 

emissions 

AI The study indicates that 

employing AI could facilitate 

the identification and 

implementation of viable 

solutions for mitigating 

greenhouse gas emissions that 

might not have been achievable 

through traditional techniques. 

Sun et al. 

(2024) 

SEM-ANN 

Model 

Bangladesh ESG 

Performance 

GT, EE Green tax policies and energy 

efficiency enhance ESG 

performance, with green tax 

serving as a mediator in this 

relationship. 

Wang et al. 

(2022) 

 Korea ESG bond FS, ESG 

committee, FO 

and ETS 

The issuance of ESG bonds is 

positively correlated with firm 

size and foreign ownership 

interests. Companies having 

ESG committees and those 

participating in carbon trading 

are more inclined to issue ESG 

bonds. Minimal stock market 

response to ESG bonds in 

Korea. 

Wang et al. 

(2024) 

STIRPAT 

approach, 

mediation 

effect, and 

panel 

threshold 

techniques 

69 

countries 

CO2 emissions 

and energy 

transition 

AI, TO, EG, 

and URB 

AI promotes energy transition 

and reduces carbon emissions, 

especially in trade-open 

economies; the impact is 

subject to trade thresholds and 

country-specific factors. 

Xu et al. 

(2022) 

Bounds testing 

procedure for 

cointegration, 

ARDL 

method, and 

spectral 

causality test 

Brazil LCF FG, URB, EG, 

RE and NRE 

In Brazil, economic expansion 

and the utilization of both 

renewable and non-renewable 

energy diminish the load 

capacity factor, although 

urbanization exerts negligible 

influence. Financial 

globalization positively 

influences the load capacity 
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factor. The research advocates 

for politicians to promote 

foreign investment to enhance 

environmental quality. 

Yoon et al. 

(2020) 

Multiregional 

input-output 

(MRIO) model 

and Structural 

decomposition 

analysis 

(SDA) 

China, 

Japan, and 

Korea 

CO2 emissions EC, TO and 

MPS 

China is a net exporter of 

embodied carbon emissions to 

Japan and Korea, with its 

exports exhibiting greater 

carbon intensity than its 

imports. China's emissions are 

influenced by its production 

and trade framework, but 

Japan's and Korea's emissions 

are influenced by China's 

ultimate demand. Sectoral 

analysis identifies principal 

industries responsible for 

emissions. 

Yun and 

Kang 

(2020) 

Johansen 

Cointegration 

Test, ARDL 

Model 

Korea, 

Japan, 

Germany 

CO2 emissions NE, RE, FF In Germany, nuclear and 

renewable energy sources have 

diminished CO2 emissions 

over the long term. In Korea, 

renewable energy, especially 

hydropower, has led to a rise in 

CO2 emissions. Japan 

exhibited no substantial effects 

aside from those related to 

fossil fuels. In the short term, 

nuclear energy in Korea and 

renewable energy in Germany 

diminished CO2 emissions, 

whereas alternative energy 

sources augmented emissions. 
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Appendix B: Top 5 industrial robots installed countries6 

 

                                                

6 For more details, visit: “https://ourworldindata.org/grapher/annual-industrial-robots-installed” 
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Appendix C: Matrix of correlations 

Source: Author(s) compilation. Data retrieved from Stata

  Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) 

 (1) ESG 1.000 

 (2) E1 0.393 1.000 

 (3) E2 -0.881 -0.206 1.000 

 (4) E3 -0.791 -0.059 0.845 1.000 

 (5) E4 0.387 0.018 -0.127 -0.064 1.000 

 (6) E5 -0.880 -0.360 0.686 0.592 -0.519 1.000 

 (7) S1 0.967 0.557 -0.807 -0.704 0.400 -0.867 1.000 

 (8) S2 0.837 0.031 -0.713 -0.683 0.415 -0.702 0.739 1.000 

 (9) S3 0.273 0.158 -0.173 -0.040 0.047 -0.217 0.199 0.180 1.000 

 (10) S4 -0.282 -0.473 0.097 -0.003 -0.120 0.288 -0.293 -0.034 -0.831 1.000 

 (11) S5 -0.952 -0.272 0.812 0.711 -0.558 0.898 -0.911 -0.852 -0.243 0.237 1.000 

 (12) G1 -0.800 -0.362 0.642 0.595 -0.417 0.711 -0.801 -0.661 0.046 0.046 0.749 1.000 

 (13) G2 -0.507 0.039 0.415 0.461 -0.113 0.379 -0.384 -0.640 -0.538 0.498 0.494 0.253 1.000 

 (14) G3 0.852 0.600 -0.754 -0.660 0.242 -0.745 0.915 0.552 -0.010 -0.100 -0.760 -0.730 -0.087 1.000 

 (15) G4 0.915 0.524 -0.867 -0.784 0.123 -0.748 0.935 0.662 0.092 -0.159 -0.789 -0.742 -0.303 0.929 1.000 

 (16) G5 0.805 0.323 -0.612 -0.452 0.450 -0.683 0.748 0.772 0.574 -0.472 -0.785 -0.554 -0.553 0.543 0.620 1.000 

 (17) G6 0.864 0.097 -0.925 -0.865 0.117 -0.697 0.777 0.725 0.177 -0.042 -0.784 -0.625 -0.364 0.760 0.850 0.585 1.000 



 

 57 

 

Appendix D: Turnitin Similarity Report 
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