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1.

Introduction

Let O be a closed convex nonempty subset of a real Hilbert space H with the
inner product {...) and norm [|.||. respectively.
Hecall that a mapping T : €' — ' 1s said to be nonexrpansive 1f

| Te — Tyl < ||z —y|l. Ye,yeC. (1)

A point x £ C'1s called a fired point of T if and only if Tx = 2. We denote by
F(T) the set of fixed points of the mapping T, that 1s

F(T={zeC:Txr=ux}. (2)

We assume that F(T) #£ 0. It i1s well known that F(T) is closed and convex
(see e.g., Goebel and Kirk [3]).
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A self mapping f : €' — (' 1s said to be contraction if there 1s a constant
a € [0,1) such that

Ifz = fyl < alle—yll, Va.yel. (3)

We use [[ to denote the collection of all contractions on €'
Let F': C — C be an operator. F 1s called L-Lipschitzian 1f there exists L = (
such that

|Te =Tyl < Lllx —yll. Yr.y € C. (4)

The map F 1s said to be monotone 1f
(Fr— Fy,z—y) >0, Vr,yeC. (5)

The mapping F'1s said to be n-strongly monotone 1f there exists n = () such
that
(Fz — Fy,z —y) = nlle —yl°, Vz,yeC. (6)

An operator A H — H 1s said to be strongly positive if there exists a constant
~ = 0 such that
(Az,z) = 7||z|’, VreH. (7)

Remark 1.1 From the definition of A, we note that a strongly positive bounded
linear operator A is a || Al|-Lipschitzian and F-strongly monotone operator.

Let ' be a nonempty closed convex subset of a real Hilbert space H. and
F : C — C be a nonlinear map. Then, a variational inequality problem with
respect to O and F is to find a point #® € C such that

(Fr*,x —2*) >0, VreC. (8)

We denote by VI{F,C) the set of solutions of this variational inequality prob-
lem.

The vanational mequality problem was mitially introduced and studied by
Stampacchia [17] in 1964. It is well known that variational inequalities cover
as diverse disciplines as partial differential equations, optimal control, opti-
mization, mathematical programming, mechanics and finance, (see [1-23]).

It 1s also known that the VI(F,C') 1s equivalent to the fixed point equation

" = Polr™ — pF(x7)], (9)

where P is the metric (nearest point) projection of H onto C' (Le., Prx = y
where |z — y|| = inf{||lz — z|| : z € C} for x € H) and p = 0 is an arbitrarily
fixed constant.

Consequently, under appropnate conditions on F' and g, fixed point methods
can be used to find or approximate a solution of the varational imequality.
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Iterative methods for approximating fixed points of nonexpansive mappings
and their generalhizations which solves some variational iequalities problems
have been studied by a number of authors (e.g., see [5, 9, 13, 15, 20, 23] and
the references therein).

In 1953, Mann [4] introduced a well-known classical iteration to approximate
a fixed pont of a nonexpansive mapping. This iteration 1s defined as follows:

Tni1 = opty + (1 — oy )T (x,). n =0, (10)

where the initial guess z; is taken in C' arbitrarily, and the sequence {a, }22
is in the interval [0,1]. But Mann's iteration process has only weak conver-
gence, even in Hilbert space setting. In general for example, Reich [12] showed
that if £ 15 a uniformly convex Banach space and has a Fréchet dafferentiable
norm and if the sequence {ay,} is such that 3> a,(l — a,) = oo, then the
sequence {r,} generated by the process (10) converges weakly to a point in
F(T). Therefore. many authors try to modify mann’s iteration process to have
strong convergence for nonlinear operators. (e.g., see [5, 9, 13, 15, 16, 20, 21, 23]
and the references therein).

In 2005, Kim and Xu [9] introduced the following iteration process:

ro = x & C arbitrarily chosen,
Yn = BnZn + {(1 - .ﬂn}TIﬂu {{11}
Tpyl = Opll+ {l - &ﬂ]ynr n = 0.

They proved in uniformly smooth Banach space that the sequence {r,} de-
fined by (11) converges strongly to a fixed point of T under some appropriate
conditions on {an,} and {3,}.

In 2006, Marino and Xu [5] introduced the following iterative algorithm:
ro=rxe H . =ayflz,) + (I -0, A)Tx,, n=0, (12)

where T 1s a self-nonexpansive mapping on H, f 15 a contraction and A 15 a
strong positive linear bounded operator on H. They proved that if the sequence
{a,} of parameters satisfies appropriate conditions, then the sequence {x,}
generated by (12) converges strongly to the unique solution of the variational
mequality:

(A= ~f)ii—z)<0, YreC, (13)

which 1s also the optimality condition for the minimization problem m-in% (Ax, x)—
reld

h{x). where h is a potential function for vf (i.e.,h'(x) =~ f(x). for = € H).
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In 2008, Yao et al. [23] modified Mann's iterative scheme by using the so-
called viscosity approximation method which was introduced by Moudafi [7].
More precisely, Yao et al. [23] mtroduced and studied the following iterative
algorithm:

rp=x¢€ K,

Yn = Bnan + (1 — 3,) Ty, (14)

Tpet1 = ap¥flzn) + (1 —ap)y,, n =0,
where T 18 a nonexpansive mapping of K into itself and f 1s a contraction on
K. They obtamed a strong convergence theorem under some mild restrictions
on the parameters.

In 2010, Tian [20] considered the following general iterative method:
ro=x€ H, xpi1=anyflan)+ (I —ponF)Tr,, n>=0, (15)

where T 1s a nonexpansive mapping on H, f 1s a contraction, F'is k-Lipschitzian
and 7-strongly monotone with k = 0, 5 > 0, 0 < p < 25/k>.

He proved that if the sequence {a,} of parameters satisfy some appropriate
conditions, then the sequence {x,} generated by (15) converges strongly to a
fixed point r of T which solves the variational iequality:

{((vf —pF)r,z—x) <0, ¥YxreF(T).
In 1999, Atsushiba and Takahashi [1] defined the mapping J,, as follows:
Uni = FmaTi+ (1 =),
Ups = YmoTolUng + (1 —p0)l
Una = TnaT3Una+ (1 — yns)l
(16)
Upnv-1 = Fmn-1Tnv-1Unn-2+ (1 —yun_1)]
Jn=Unn = TanInUnn-1+ (1= yun)i.
Where I = Ung and {y,:}" C [0.1]. This mapping is called the J-mapping
generated by 77, 75, ..., Ty and vn1.vno. ... VN -

In 2000, Takahashi and ghlm(}_]l [19] proved that if X is strictly convex Banach
space, then F(J,) = ﬂi  FI(T;). where 0 <~y < 1.

In 2007, Shang et al. [13] introduced a composite iteration scheme as follows:

rg = x&C arbitrarily chosen,
n = Bnn + {1 - .":j)ﬂ}'jﬂxﬂ' {1?]
Inyl = f_'t'n']'"f[.'rﬁ] -+ {(j — ﬂ'ﬂ"q}'yn, TL E D.
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where f €[], 1s a contraction, and A is a linear bounded operator.

But, the iterative scheme (17) 1s not well-defined because x,; (n > 1) may not
lie in C', so Jury 1s not defined. However. if C' = H, the iterative scheme (17)
is well-defined and Theorem 2.1 of [13] is obtained. In the case C' # H. the
iterative scheme (17) have to be modified in order to make it well-defined.

In 2009, Kangtunyakarn and Suantai [8] introduced a new mapping, called K-
mapping, for finding a common fixed pont of a finite family of nonexpansive
mappings. For a finite family of nonexpansive mappings {T;}Y, and sequence
{70}, in [0, 1], the mapping K, : C' — C defined as follows:

Uni = YaaTi+ (1 —n1)d,
Un,‘l - ﬂ:"ﬂ.ETlUﬂ,l + 'l(l - '}"n,‘lj'{"rﬂ,l-
Un,.’i == “.f'ﬂ.ET'i'[r'rﬂ,E + {(1 — '}"n,.'ij'[f'rﬂ,ﬂ-

(18)

Unn-1 = Yan-1Tnv-1Uny-2+ (1 — yan—1)Unn-2,
K, = 'r-"rﬂ,l"l.-’ = YanIn Un,;"l.-’—l + 'l(]- - r}'ﬂ,f‘u’]{’rﬂ:f‘u’—l-

The mapping K, 15 called K-mapping generated by T1,75.Ts. .. .. Ty and

ﬂ:".ﬂ.11 ﬁ‘.ﬂ.21 ﬂ:".ﬂ.31 ey J:".ﬂ.;"':'r-

Recently, in 2010, Singthong and Suantai [15] introduced a composite iter-

ative scheme as follows:

rg = xr e C arbitrarily chosen,
Un BnZn + {(1 - -'ﬂi"t]KﬂIﬂ'l {rlg}
Tnr1 = PC-‘(ﬂ'n'}"f['In} + (1 — ﬂ'ﬂA}yn)n n =,

where f € ]~ i1s a contraction, and A is a bounded linear operator. They
proved, under certain appropriate conditions on the sequences {a, } and {3, }.
that {x,} defined by (19) converges strongly to a common fixed point g of
the finite family of nonexpansive mappings {T;} ;. which solved the following
variational mequality:

N
(vflq) — Aq.p—q) <0, pe[F(T). (20)
i=1

Let €' be a nonempty closed convex subset of a real Banach space E. Let
{T;}, be a countable infinite family of nonexpansive mappings of €' into
itself and let {A;}7°; be a sequence of real numbers such that A; € (0.1) for
all ¢ € M. where M denotes the set of Natural numbers. For all n € F, define
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a mapping W, : €' — C by

{"rﬂ,ﬂ-l-l = 1,
Uﬂ.ﬂ = )ILRTﬂLlrn,ﬂ-i-l + [1 - )'lﬂ }L
L'rﬂ,ﬂ—l = AT 1Unn + {J - ‘}"i"t—l}f'
Unr = NDUppyr + (1= M),
Unk—1 = Ae—1Tno1tUnp + (1 — Ae1)d, (21)
L-"ﬂ,g = XaTolU,a+ (1 — }ug]f,
1'1"'-“ = lr_,'rﬂj = )kl'TILrﬂ_g + {1 — )’u.ljf

The mapping W5, 1s called the W-mapping generated by the countable infimite
family of nonexpansive mappings T1, T, Ta, ... and Ay, Aa, Ay .. ..

The following famous theorem 1s referred to as the Banach contraction prinei-
ple.

Theorem 1.2 (Banach, [2]) Let (X,d) be a complete metric space and let f
be a contraction on X, i.e., there exists v € (0,1) such that d(f(x), fly)) <
rd(x,y) for all z,y € X. Then [ has a unique fired point.

Theorem 1.3 (Meir and Keeler, [6]) Let (X.d) be a complete metric space
and let ¢ be a Mewr-Keeler contraction (MKC) on X, i.e., for every e = (),
there exists & = 0 such that d(z,y) < € + 4 implies d(¢(x), oly)) < € for all
x,y € X. Then ¢ has a unique fived point.

Remark 1.4 Theorem 1.3 1s one of generalizations of Theorem 1.2, because
contractions are MKCs.

Question 1. Can Theorem 3.4 of Marino and Xu [5], Theorem 1 of Yao et al.
(23], Theorem 2.1 of Singthong and Suantai [15], and so on be extended from
one or finite family of nonexpansive mappings to countable infinite family of
nonexpansive mappings?

Question 2. We know that the Meir-Keeler contraction (MKC) 1s more gen-
eral than the contraction. What happens if the contraction is replaced by the
MEKC?

Question 3. We know that the p-strongly monotone and L-Lipschitzian op-
erator 15 more general than the strong positive hinear bounded operator. What
happens if the strong positive linear bounded operator 1s replaced by the -
strongly monotone and L-Lipschitzian operator?
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Question 4. Can the restriction imposed on the parameter {A,;} mn [13, 15]
be relaxed?

The purpose of this paper i1s to give the affirmative answers to these questions
mentioned above. Motivated by Kim and Xu [9], Marino and Xu [5], Tian [20],
Yao et al. [23], Shang et al. [13], Singthong and Suantai [15], we introduced a
general iterative scheme as follows:

To=1xc (.
Un = ,is}ﬁl'ﬂ + {1 — I;:.J)ﬂ}i'i’rnl'ﬂ. {(22]
Tni1 = Polapyd(an) + (I — anpF)y,], n =0,

where F 1s the projection of H onto €', W), 18 the W-mapping generated
by the countable infinite family of nonexpansive mappings 77, 75, T, ... and
A Ao Ag. ., @1s an MKC and F : ¢ — (' 1s an g-strongly monotone and
L-Lipschitzian operator in Hilbert space. We prove, under certain appropriate
conditions on the sequences {a,} and {3,}, that {r,} defined by (22) con-
verges strongly to a common fixed point of the countable infinite family of
nonexpansive mappings {T; }72. which solves some variational inequality.

2. Preliminaries
In the sequel, we will make use of the following lemmas.

Lemma 2.1 (Xu, [22]) Let {a,} be a sequence of nonnegative real numbers
such that  ap.; < (1 —,)a, +6,, n =0,
where {7, } is a sequence in (0, 1) and {0,} is a sequence in B such that:

(/) hmy, =0 and 3, = oo:
A—rod =1

(i7) limsup2: < 0 or 3 || < co. Then lima, = 0.

¥ I "
n—oo n=1 00

Lemma 2.2 (Suzuki, [18]) Let ¢ be a MKC on a convex subset C' of a Banach
space E. Then for each € = 0, there exists r € (0,1) such that ||z — y| = €
implies ||d(x) — o(y)|| < rllz —yl| for allz,y € C.

Lemma 2.3 (Demiclosedness Principle, [18]) Let H be a real Hilbert space, C'
a closed conver subset of H, and T : O — € a nonerpansive mapping with
F(T)#0. If{x,} is a sequence in C weakly converging to x and if {(I-T )x,}
converges strongly to y. then (I — Tz = y.

Lemma 2.4 (Wang, [21]) Let C be a nonempty, closed and conver subset of
a real Hilbert space H. Let F : O — C be an n-strongly monotone and L-
Lipschitzian operator with n = 0, L = 0. Assume that 0 < p < 2n/L* and
7= plp— ‘i;} Then for each t € (0, min{1, ,};}) we have

NI —tpuF)z — (I —tpF)y| < (1 —tr)llz —yll. VYr.yeC.
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3.

Lemma 2.5 (Shimoji and Takahashi, [14]) Let C be a closed conver nonempty
subset of a strictly conver real Banach space. Let {T;}7° be a countable infinite
family of nonexpansive mappings of C' into itself such that (-, F(Ti) # 0 and
let 1A}, be a real sequence such that 0 < A; < b < 1 for all i € N, for some
constant b € (0,1). Let Wy, be the W-mappings generated by T1.Ts, ... and

Ay Aa, .. Then, W, is nonerpansive and
() FW,) = F(Th).
n=1 i=1

Lemma 2.6 (Ofoedu, [11]) Let C' be a closed conver nonempty subset of a

strictly conver real Banach space. Let {T;}2, be a countable infinite family

of nonexpansive mappings of C into itself such that (2, F(T;) # 0 and let

{Ai}:2, be a real sequence such that 0 < A; < b < 1 for all ¢ € N, for some

constant b € (0,1). Suppose W, : C' — C be given by (21) for all n € M, then,
[Whi12n — Wazn|| < 2H Aillzn — gl = 0 as n — oo,

i=1

for every bounded sequence {x,} C C, q € (i, F(T;).

Results and Discussion

Lemma 3.1 Let C' be a nonempty, closed and conver subset of a real Hilbert
space H. Let T : C' — C be a nonerpansive mapping suth that F(T) # 0 and
let & be an MKC on C. Suppose F : C — C be an 5j-strongly monotone and

L-Lipschitzian operator with n = 0, L = 0. Assume that 0 < p < 25/L°,

t € (0, min{l, }r}] and 0 < v < 7, where 7 = u(n — ‘%2] Then there exists a

unique r, € C' such that
r, = tyo(z,) + (I — tpF)Tx,.
proof From the definition of MKC, we can see MKC is also a nonerpansive
mapping. Now. for each t € (0, min{1, ,H) define a mapping T, on C' by
Tix = tyo(z) + (I —tpF )Tz, VreC.
Then, by Lemma 2.4, we have

ITex — Toy|| tylle(x) — o(y)ll + (I — tpF)Tx — (I — tpF)Ty||
tyllo(x) — o(y)ll + (1 —i7)|[Tx — Ty
tyllx —yll + (1 —t7) ]|z — g

[L =t =)= =yl

A I TA
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which implies that T, is a contraction. Hence, T, has a unique fived point,
denoted by x,, which uniquely solve the fired point equation:

ry = ty¢(x,) + (I —tpF)Tx,. (23)
The following proposition summarizes the basic properties of the net {r,}.

Proposition 3.2 Let {x,} be defined by (23), then
(i) {x.} is bounded for t € (0, min{1, L}).
(i) lina”r,; — Tx, || =0

t—

(iti) {z.} defines a continous curve from (0, min{1,1}) into C.

proof (i) For any q € F(T). fived e1 > 0, for each t € (0, min{1, 1}), we
have the following cases:
Case 1. ||z, — q| < €1; In this case, we can see easily that {x,} is bounded.

Case 2. |x, —q|ll = €. In this case, by Lemma 2.2, there is a number
ry € (0.1) such that
[(x) — olg)ll < ryllee — qll.

From (23) and Lemma 2.4, we have

|z — gl = |ltvola) + (I —tpF )Tz, — 4|

[tyolx) —pFq] + (I —tpF)Tx, — (I — tpF)q||

(I —tpF)Txy — (I — tpF)q|| +t||yo(xe) — pFq|

(1 —t7) |z — gl| + tyllP(ze) — dq)|| + tllvep(q) — pFq]
(1 —t7) ||z — gl + tyrillee — gl + tl|velq) — uFql

[1 = t(r = yr1)]l|lze — ql| +t]vélq) — nFqll.

LA 1A TA

It follows that
volq) — nFql
T — 11 '

Hence, {x,} is bounded, so are {¢(x,)} and {FTz,}.

ze —qll <

(¢i) From (23), we have

|ze — Txy|| = t]|yd(x) — pFTxe]| =0 as t— 0. (24)
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(éii) Take t,ty € (0, min{1, };}} From (23) and Lemma 2.4, we have

ezl = v + (T — tnF)Tw] — [toy(rg) + (I — top )T ]|
= |l(t —to)vo(z.) + toy[é(z) — @lxe)] + (t0 — t)uF Tz,
+(I —topF )Tz, — (I — touF )Tz, ||
< (Yol )l + pllFTz[) [t — o] + toy|lze — 24, |l
+(1 — to7)||Txr — Ty ||
< (Yllolz)[| + pl FTxz. )|t — to| + [1 — tolT — ¥)]l|ze — 24, |

It follows that

() || + pl FTx,|

Ir, — T <
e = | < ==

|t — tql.
This shows that {x,} is locally Lipschitzian and hence continuous.

Theorem 3.3 Assume that {x,} is defined by (23), then {x,} converges strongly

k)

as t — 0 to a fired point x* of T which solves the variational inequality:
{((pF —~e)x* . 2" —x) <0, Yxe F(T). (25)

proot We first show the uniqueness of a solution of the variational inequality
(25). Suppose bothT € F(T) andy € F(T) are solutions to (25). Without lost
of generality, we may assume there is a positive number e such that |[T—7|| = €.
Then, by Lemma 2.2, there is a number r € (0, 1) such that ||6(F) — &(7)| <
rllT —gll.
From (25), we know

(uF — o)z, T—7) < 0. (26)
and

(WF —v¢)y. 5 —7) < 0. (27)
Adding up (26) and (27), we have

(pF — @) — (pF —y¢)7. T —7) < 0.

Observe that

pl? ul?
— =0 — — <
9 > = 1 5 n
pl?,
& pln——=)<m
<~ T < un.

It follows that
0<~<71<pun.
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We notice that

((uF —50)T — (uF —v0)y,T —7)

VoIV IV IV IV

11

plFz — Fy.7 =) —{¢(T) — (7). T - 7)
|7 =71 = o) — o@)17 - 7l
pn||z —3lI* — vz —7|*

(pn — )7 - 71

(pn — 7)€’

0.

Therefore, T = § and the uniqueness is proved. Below we use x* € F(T) to

denote the unique solution of (25).

Next, we show that x; — ™ ast — 0.

Since {x,} is bounded and H is reflexive, there exists a subsequence {x, } of

{z,} such that z,, — x*. By (24). we have z,  — Txr,, — 0 as

tp, — 0. It

follows from Lemma 2.3 that x* € F(T).

We claim

e, — 2% = 0.

By contradiction, there is a number ey = 0 and a subsequence {z, } of {z, }
such that |z, — x*|| = . From Lemma 2.2, there is a number r,, > 0 such

that [|6(z,,) — 6(a") || < rglze,, — 2.

T, — 2 = tm(V9(xy,,) — pFx") + (I — tyupF) T,

to derive that

e, —2*]* =

we write

— (I — tpuF)x",

tm(Y0(21,) — pFa", 2y, — 27)

I = tmpF) Ty, — (I —tppF)z™, z, —x7)

It follows that

< tmlyolx,, ) — pFz* o, —2*) + (1 — tpu7) |2, — .I.'*Hg.

(volz,, ) — pFz* z, —x*)

(yoler,) —vdla®). xp,, —a™) + (yola*) — pFa™, x;, — )

yo(x*) — pFo* x,  — %)

(28)

|ze, —2°|* < -

- '}"Tf.[]||'~1’r,m - I*”2 + ‘:

- T
Therefore,

. 1
* 2 \
Iy, — T |0 = ——\7
o1, =P < ——
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From (28). we get that x,  — x*. It is a contradiction. Hence, we have
|lx:, — 7| — 0.
Next, we show that r* solves the variational inequality (25). Since
r, = tyo(z,) + (I — tpF) Ty,
we derive that
(14F = 3¢)a = —2(I = )z + p(Far, — T, (20)

But, (I —T) is accretive, that is;

(I =T)xe = (I =Tz, 2, — 2) Iz — z||* = | Tz, — Tzl — 2]

2 2
lze — 2" = llee — =]

0.

I NRURNAY)

It follows from (29) that. for all z € F(T)

B

_%{{I — TNz, — (I -T)z.xy — 2} + p{Fx, — FTx,, 7, — z)
p{Fr, — FTx,, x, — z)
pLlxy — Ty [, — =]
|ze — Ty || M. (30)

((nF — yo)x, x, — =)

A 1A A

where M is an apppropriate constant such that M = sup{pL|x, — z||}. where
t e ({].min{l, ,1;}} Now, replacing t in (30) with t,, and letting n — oc,
noticing that (I — T)x,, — (I — T)a* =0 for x* € F(T). we obtain

{((pF —~d)x™. 2™ — z) < (.
That is, 2* € F(T) is a solution of the variational inequality (25). Hence,
x* =T by uniqueness. We have shoun that each cluster point of {x,} (at t —
0) equals T. Therefore,

lim||.z, — || = 0.

This completes the proof.
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Theorem 3.4 Let C' be a nonempty, closed and convex subset of a real Hilbert
space H. Let F' @ C — C be an n-strongly monotone and L-Lipschitzian
operator withn = 0, L = 0 and let & be an MKC on C. Let {T;}22,: C — C be
a countable infinite family of nonexpansive mappings such that (2, F(T:) # 0
and let {XN}:2, be a real sequence such that 0 < A\ < b < 1 for all i € M, for
some constant b € (0,1). Suppose W,, : C' — C be given by {21} fm" all n € .
Assume that 0 < p < 2n/L? and 0 < v < 7, where 7 = p(n — —} Given that
{a,} and {3,} are sequences in (0, 1) satisfying the following conditions:

(C1) limay, =0, Zafﬁ = 00

(C2) 0 < lminf3, < lmsupf, < 1;

T—r 20 —F o0
-
(C3) 2. lan+1 — an| < o0, Z |Bn1 — PBn| < oo
n=1 n=1

Let {xn} be the sequence generated by the iterative scheme (22), then {x,}
converges strongly to a fizred point x* of {T;}:2,. which solves the variational
inequality:

{(yo —pF)z*z —2x") <0, V¥ze m F(T,
i=1

proof First, we start by showing that the sequence {x,} and {y,} are bounded.
Indeed, take a point q € (o) F(T;). we notice that

”yﬂ - Q'H ”."3‘?1'1'-]‘1 + (1 - .‘3]‘1)1'1;;1'1'-71 - Q'”
| Bntn + Bng — Bug + Wyx, — 3. Wz, — q||
< Ballrn —ql| + (1 = 8n)|[Waaa — ¢

= [lzn — 4l

Without loss of generality, we can assume an € (U min {1 ,';})

From definition of MKC and Lemma 2.2, for any e = 0, there is a number
re € (0.1) such that:

(1) of [lon — gl < € then ||¢(zn) — o(g)l| < €

(i) if ||zn — g = € then ||é(zn) — O(q)|| < rellzn — gl|.
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It follows from (22) and Lemma 2.4 that

[zni1—qll = [[Pelanyélan) + (I — anpF)y,] — Polg)|
= ”‘Iﬂ’T'{f’(In} + {I - Qﬂf-’*F}yn - Q‘”
= lan[yd(zn) — pFq] + (I — anpF )y, — (I — anpF)q||
< (I — anpF)yn — (I — anpF)q|| + anl|yé(zn) — nFql|
< (1= an7)yn — qll + anllyélan) — vé(q) + vélq) — pFqll
< (1 —an7)|lzn — qll + anyllé(zn) — @(@)]| + anllyolq) — pFqll

(1 — an)||zn — gl + any max{rc|zn — qll. €} + anllvé(q) — pFyq||
max{ (1 — o, 7)||zn — qll + apyrlla, — ql| + anllyélq) — nFql.
(1 — ap7)||zn — qll + anye + ayllyolq) — pFqll}
= max{(l — an(7 — yre)||zn — gl + anlvélq) — pFql.
(1 — o 7) || — qll + anye + ay||lyolg) — pFql|}
|lvélq) — pFqll |

= max {(1 - aﬂ{T - Trcj||rn - "—]‘” + E"n("_ - ']"TL}

T — T
' e+ llyolg) — pF
(1 = @) llzn — gll + an(r — yr L 12010) — 1Fdl }
T — Te
Ar- i i - F
< max { Iz, — g, 2 o) — q||}
T — 7T
By simple inductions, we have
ve + llvelg) — pFyl
”-TH_Q'” = HIH..K{”;}_‘.D_{?L . . Eﬂ
7=

Hence {x} is bounded, and so are {yn}., {Fyn} and {¢(xn)}.
Since Wy is nonexpansive and yn = Fntn + (1 — 30)Whrn, we also have

”yﬂ+1 - yn” = ||[-3ﬂ+1'~1"n+1 + {1 - .i.3ﬂ+ljl'1”':'1+11’1t+1] - [.Sﬂrn + [1 - .Sn“'{"':‘lrﬂ]”
= | .ﬁn+11-'n+1 - ,ﬁﬂ+111'-n + ﬁﬂ+1117n - ,Bnil'-ﬂ + {(1 - .':/i."t+1jl[1"lf-’.;i+1;11'n+1 - I"i"rn+l-'rﬂ]|
+{1 -/ ﬂ—i—l]“'{‘:t+131’n - Hn-rﬂ} + (1 - .*'.3?1-1—1]1'1":1-1"?1 - (J- - .*'?ﬂ}l'][‘;nil’ﬂ||

e ||~rn+1 - Iﬂ“ + |."3TE+I — .3n|||-rn|| + (1 - .3ﬂ+1}||l"i;ﬂ+1xﬂ+1 - ]"1;1‘1+1'rﬂ”
+(1 - .3.'1+1:|||H";i+lrn — i'][";:fa'i'-*.'i|| + |.3n - .511+1|||1'1';n1'-ﬂ”
= ,r':iJH-I ||In+1 - Iﬂ“ + |."3ﬂ+l - .5n|||-rn|| + (J- - .Bﬂ-i-l]”Iﬂ'l-l - Iﬂ”

+{1 - ﬂ-l-l}”i;i!;i-l-l'rn - 1.1;]‘1;11'?1” + |-3ﬂ — n+1|||1'1;n?r'ﬂ||
= |lznst — Tall + | Bast = Balllzall + (1 = Bast)|Wasizn — Waza|
+|."3ﬂ - ."3?1+I | ” H:.IEIHH {(31)
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By using the Lemma 2.6, we can conclude that

”I'fi'rﬂ-rn—l - I"i'rn—Ii‘-n—IH <2 H )'lt'HIﬂ—l - QH — 0 as n — oc. (32]

i=1

From (22), the inequalities (31) and (32), we have

lzn1 — zall <

[

[

[

[

[

15

e y6(zn) + (I — anptF )] — [an176(n_1) + (I — a1 F)go ]|

lanyd(zn) — anyd(xn-1)] + [onyd(Tn-1) — n-170(xn-1)]

+[{(I - ﬂ'ﬂ#F]yﬂ - {(I - ﬂ'ﬂﬁ'F]yﬂ—l] + [aﬂ—lﬁ'Fyﬂ—l — ﬂ'ﬂﬁ'Fyﬂ—l]”

leny[d(zn) — @lan1)] + [(I — anptF)yn — (I — anpF)yn-1]
+(om — an—1)y0(xn—1) + (an—1 — an)pFyn—1]|

anyl|é(an) — olrn_1)|| + [[(1 — n F)yn — (I — cupeF )y |
+lo — an1l[lv@(Tn—1) + pFyn1||

anyl|lzn — zna| + (1 = an7)llyn — Y1l

+log — a1l (Y| @(zn-1) | + pl| Fyn-1ll)

anY||zn — zn-1| + (1 — an7)[||zn — za-1|| + [Bn — Bn-1]||zn-1]]
+(1 = B)lWhzn—1 — Wy gzpall + (81 — BalllWn—12n-1ll]
+|ag — a1 | M,y

[1 — an(T — Y)][len — zn-1| + Ma|Bn — Bn1]

+2'“ - ."3?1} H ’jlli||xﬂ—l - '?” + |‘r—-"n —

i=1

[1 - ﬂ'n[T - ']'}] ”-rn - Iﬂ—l” + *1':{3{":1'?1 - aﬂ—l' + |.3ﬂ - ,3?1—1”

+2(1 — 5,) H Aillzn—1 — ql|,

i=1

where My, My, and My are appropriate constants such that My = max{ M, Ms}:
Url E Supﬂ:';’l{?.”{.ﬁ{‘rﬂ]” + ”H‘Fyn”}-. 41"—?2 E Supﬂzl{”-rﬂ” + ”Hn1ﬂ||}

From the condition (C'3) and Lemma 2.1, we obtain that

1im_||‘r'n+1 - Iﬂ” = 0. {33]

From (22), we also have

||-'1-'ﬂ+1 - 3:’?1”

| Peonyd(zn) + (I — anpF)yn] — oy
lanye(zn) + (I — anptF)yn — yall
anllvo(zn)ll + an | F (gl

ﬂﬂ(||'}"¢[-1'ﬂ]|| + ||#Fyn||)-

AN P4t
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Using the condition (C'1), we obtain
lil_ll_ ”j-"ﬁ-l-l - yn” = 0. (34)

Since
”Iﬂ - yn” = ”In - In+1|| + ||‘rﬂ+1 - yﬂ“"

using (33) and (34). we have that
lim ||z, — y,|| = 0. (35)
On the other hand, we note that

IWazn —zal = [lzn — yall + [lyn — Wazsl|
||i1‘-n — yﬂ” + |||[;.;J'ﬁ.’,t.'n + {J. - Ir'fiﬂ}]’i'{nxﬂ} - I‘fi'.rﬂ.rn”
= ||'I'n - yﬂ” + .":.i‘ﬂ”Iﬂ - I"i"rﬂl'n”s

which wmplies that

Waa, — || < n— Ynil
Waa =l < 1= llen =
From the condition (C2) and (35). we obtain
lim ||Whzn — xq|| = 0. (36)

Next, we show that imsup,,_, . ((vé — pF)z*, on — %) < 0,
where ¥ = iy o x, with r; being the fired point of the contraction

x = tyd(x) + (I — tpF )Wz,
Thus, x;, by Lemma 3.1, solves the fired point equation
= tyd(ae) + (I — tpF )Wy,
To show this, we take a subsequence {x,,} of the sequence {xy} such that

limsup{(v¢ — pF)x™, xp — ") = lim {(v¢ — pF)x™, 2y, — 7).

T k—roo

We may also assume that x, — q. Note that g € F(W,,) = F(T) in virtue of
Lemmas 2.5, 2.5 and (36). It follows from Theorem 3.5, We can get that

limsup((ye — pF)z*, xy — %) = lim {(yo — pF)z*, x,, — ")
— oo k—roc

= {(yd — pF)x*, g —x) <0,
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Hence
limsup((vé — pF)z*, o — %) < 0. (37)
Finally, we show that 1i111 ||-Jc.ﬂ —z*|| =0.

By contradiction, them is a number ey = 0 such that
limsup ||z, — z7|| = €.
Tl—r 20
Case 1. Fized €1 (e1 < €n), if for some n > N € N such that ||z, — 2*| =
en — €1, and for the other n > N € N such that ||y — 2*|| < €0 — €1.

Let . . .
2{(v¢ — pF)x", 200y — 1°)

M, =
! (€0 —€1)?
From (37), we know limsup M, < 0. Hence, there are two numbers h and
Ti—r OO

N. when n = N we have M, < h, where h = min{7 — ~}. From the above
introduction, we can extract a number ng > N satisfying |x,, — 2%|| < €0 — €1,
then we estimate ||y, — =*||. From (22) and Lemma 2.4, we have
”‘rﬂu'i'l - I*H2 = ||Pﬁ.'[&1m'}"¢|’|[1’?m] + (I - a?mPF}ynu] — I [1*}”2
< [Jeng 19 (Tne) + (I — angptF ) yny — 5'5'1‘”2
= llang [¥0xng) — pFx™] + (I — angpiF)yng — (I — ﬂ'ﬂuﬂ*F]It”E
= (I — angptF )yn, — (I — angpF)x*, 2011 — %)
+ Qg V(D (Tng) — G(27), T 1 — T7) + ang (¥0(27) — pFa*, 2n041 — 27)
< I = angptF)yng — (I — anopuF)x*||[|pg 1 — ||
+ g Y| Ty — 2 [[[[2ng+1 — 2| + any (v0(2”) — pFT, g1 — 27)
< (1= angT)llyng — 27| [l2ng+1 — 27| + anpyllZng — 27|l 2ng+1 — 27|
+ Qi ('}'@{I ) — pb'r* +fng+1 — *}
< [1 = ang (T = Y)]llwng — 27| Fng+1 — 27|

+ Qng (r}@{(I*] - H‘FI*'. Tng+1 — I*}

® 1 x4
< 11— ang (7 = 7y = |+ 5 g1 — 2

2
+ ang (yO(2") — pFx* rpye1 — 7)
< 51— an (=0 — @) + gllengs1 — P
Gy (16(5%) — " g — ).
which implies that

|ang+1 — 2*||* < [1 — ang (T — 7)](€0 — €1)* + 200, (yo(x™) — pFa*, angi1 — x*)
[1 - ﬂ'ﬂu{T -7 ﬂfﬂu]]{fﬂ - 'El}g
< (€0 — 61}2-
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Hence, we have
||'rﬂu+1 - I*H < €p — €1.

In the same way. we can get
|zp — %] < €0 — €1, ¥ = ny.

It contradict the hmsup||x, — *|| = «.

Te—rC

Case 2. Fived ¢; (e; < en). if ||z — 2%|| = eg — €1, for alln > N € N,
In this case from Lemma 2.2, there is a number r € (0, 1), such that

|o(xn) — @(z7)]| < rllan — 27|, n=N.
From (22) and Lemma 2.4. we have that

|2pi1 — -gc.“‘||‘3 = ||Pelanydl(z,) + (I — appF)y,] — P.;-{l.""]l||‘3
= ”ﬂ'ﬂ“-"ﬁj’[f'n] + U — o F )iy — 'JL"*”Q
= [lan[yg(an) — pFa*] + (I — anpF)yn — (I — anpF)z"||?
= {(I — anpuF )y, — (I — appuF)x* . 2y — %)
+ o Y(@(zn) — d(27). 2y — 27) + ap(yo(z") — pFx’ 2y — 27)
< (I — canpF)yn — (I — anpF )z’ ||[|znir — 27|
+ ap ¥, — 2 [|rng — 27 + an(yo(x®) — pFa® wp g —a7)
< (1 —an7)lyn — 27 [[|zns1 — || + anyr|lzn — 27 ||[|#n41 — 27|
+ ap{vo(z*) — pFr* rnq — %)
< [1 —an(r = yr)]|l2n — 2°[[|zns1 — 2% + anlyé(a*) — pFa*, xpq — 27)
1 o 1 i
< ﬁ[l — a1 —7)][lz — 2|7 + E”Inﬂ —z*|?
+ 0n(19(a%) = uFa" 20y — 3°),
which implies that

”-I-'ﬂ+l — 13‘3'*”‘3 [1 - ‘-'Iﬂ'l:T - ’T?']]H.'I.'ﬂ - -'I"*“2 + 20 {T@{I*] — Fx", Tn+l — I*}
[1 — ap(T —yr)][lzn — &
2{7‘@5{3’*} — pFr®, rpe — I*}

T — T

AN PN

+an (T — ) (38)

Applying Lemma 2.1 to (38). we conclude that x,, — =% as n — oo. It also
contradict the

|zn — z*|| = en — €1.

This completes the proof.
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4. Conclusion
We conclude the article with the following observations.

(i) Theorem 3.4 improve and extend Theorem 3.2 of Kim and Xu [9], Theorem 1 of Yao et al. [23],
Theorem 3.4 of Marino and Xu [5], Theorem 3.2 of Tian[20], Theorem 2.1 of Shang et al. [13],
Theorem 2.1 of Singthong and Suantai[15] and includes those results as special cases. Especially,
our results extend above results from contractions to more general MKC. Our iterative scheme
studied in this article can be viewed as a refinement and modification of the iterative methods in
[5, 9, 13, 15, 20, 21, 23]. On the other hand, our iterative schemes concern a countable infinite
family of nonexpansive mappings, in this respect, they can be viewed as another improvement.

(i) Our results extend the results of; Marino and Xu [5], Shang et al. [13], Singthong and Suantai [15],
from strong positive linear bounded operator to n-strongly monotone and L-Lipschitzian operator.

(iii) The advantage of the results in this paper is that less restrictions on the parameters {yn} in [13, 15]
are imposed. Our results unify many recent results including the results in [5, 9, 13, 15, 20, 21, 23].

(iv) It is worth noting that we obtained strong convergence result concerning a countable infinite
family of nonexpansive mappings. Our result is new and the proofs are simple and different from
those in [5, 9, 13, 15, 20, 21, 23].
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